## Numerical Analysis of the Effects of Rubble Mound Breakwater Geometry Under the Effect of Nonlinear Wave Force

- Research Article-Civil Engineering
- Published:
- (2023)

Arabian Journal for Science and EngineeringAims and scopeSubmit manuscript

- Helia Molaei Nodeh
^{1}, - Reza Dezvareh
^{1}& - Mahdi Yousefifard
^{1}

- 22 Accesses
- Explore all metrics

## Abstract

Assessing the interaction of waves and porous offshore structures such as rubble mound breakwaters plays a critical role in designing such structures optimally. This study focused on the effect of the geometric parameters of a sloped rubble mound breakwater, including the shape of the armour, method of its arrangement, and the breakwater slope. Thus, three main design criteria, including the wave reflection coefficient (*K*_{r}), transmission coefficient (*K*_{t}), and depreciation wave energy coefficient (*K*_{d}), are discussed. Based on the results, a decrease in wavelength reduced the *K*_{r} and increased the *K*_{t} and *K*_{d}. The rubble mound breakwater with the Coreloc armour layer could exhibit the lowest *K*_{r} compared to other armour geometries. In addition, a decrease in the breakwater slope reduced the *K*_{r} and *K*_{d} by 3.4 and 1.25%, respectively. In addition, a decrease in the breakwater slope from 33 to 25° increased the wave breaking height by 6.1% on average. Further, a decrease in the breakwater slope reduced the intensity of turbulence depreciation. Finally, the armour geometry and arrangement of armour layers on the breakwater with its different slopes affect the wave behaviour and interaction between the wave and breakwater. Thus, layering on the breakwater and the correct use of the geometric shapes of the armour should be considered when designing such structures.

파도와 잔해 더미 방파제와 같은 다공성 해양 구조물의 상호 작용을 평가하는 것은 이러한 구조물을 최적으로 설계하는 데 중요한 역할을 합니다. 본 연구는 경사진 잔해 둔덕 방파제의 기하학적 매개변수의 효과에 초점을 맞추었는데, 여기에는 갑옷의 형태, 배치 방법, 방파제 경사 등이 포함된다. 따라서 파동 반사 계수(*K*_{r}), 투과 계수(*K*_{t}) 및 감가상각파 에너지 계수(*K*_{d})에 대해 논의합니다. 결과에 따르면 파장이 감소하면 *K*가 감소합니다._{r}*그리고 K*를 증가시켰습니다_{t} 및 *K*_{d}. Coreloc 장갑 층이 있는 잔해 언덕 방파제는 가장 낮은 *K*를 나타낼 수 있습니다._{r} 다른 갑옷 형상과 비교했습니다. 또한 방파제 경사가 감소하여 *K*가 감소했습니다._{r} 및 *K*_{d} 각각 3.4%, 1.25% 증가했다. 또한 방파제 경사가 33°에서 25°로 감소하여 파도 파쇄 높이가 평균 6.1% 증가했습니다. 또한, 방파제 경사의 감소는 난류 감가상각의 강도를 감소시켰다. 마지막으로, 경사가 다른 방파제의 장갑 형상과 장갑 층의 배열은 파도 거동과 파도와 방파제 사이의 상호 작용에 영향을 미칩니다. 따라서 이러한 구조를 설계 할 때 방파제에 층을 쌓고 갑옷의 기하학적 모양을 올바르게 사용하는 것을 고려해야합니다.

### Keywords

- Rubble mound breakwater
- Computational fluid dynamics
- Armour layer
- Wave reflection coefficient
- Wave transmission coefficient
- Wave energy dissipation coefficient

## References

- Sollitt, C.K.; Cross, R.H.: Wave transmission through permeable breakwaters. In Coastal Engineering. pp. 1827–1846. (1973)
- Sulisz, W.: Wave reflection and transmission at permeable breakwaters of arbitrary cross-section. Coast. Eng.
**9**(4), 371–386 (1985)Article Google Scholar - Kobayashi, N.; Wurjanto, A.: Numerical model for waves on rough permeable slopes. J. Coast. Res.149–166. (1990)
- Wurjanto, A.; Kobayashi, N.: Irregular wave reflection and runup on permeable slopes. J. Waterw. Port Coast. Ocean Eng.
**119**(5), 537–557 (1993)Article Google Scholar - van Gent, M.R.: Numerical modelling of wave interaction with dynamically stable structures. In Coastal Engineering 1996. pp. 1930–1943. (1997)
- Liu, P.L.F.; Wen, J.: Nonlinear diffusive surface waves in porous media. J. Fluid Mech.
**347**, 119–139 (1997)Article MathSciNet MATH Google Scholar - Troch, P.; De Rouck, J.: Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters. In Coastal Engineering. pp. 1638–1649. (1999)
- Liu, P.L.F.; Lin, P.; Chang, K.A.; Sakakiyama, T.: Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng.
**125**(6), 322–330 (1999)Article Google Scholar - Abdolmaleki, K.; Thiagarajan, K.P.; Morris-Thomas, M.T.: Simulation of the dam break problem and impact flows using a Navier-Stokes solver. Simulation
**13**, 17 (2004)Google Scholar - Higuera, P.; Lara, J.L.; Losada, I.J.: Realistic wave generation and active wave absorption for Navier-Stokes models: application to OpenFOAM®. Coast. Eng.
**71**, 102–118 (2013)Article Google Scholar - Higuera, P.; Lara, J.L.; Losada, I.J.: Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part II: application. Coast. Eng.
**83**, 259–270 (2014)Article Google Scholar - Gui, Q.; Dong, P.; Shao, S.; Chen, Y.: Incompressible SPH simulation of wave interaction with porous structure. Ocean Eng.
**110**, 126–139 (2015)Article Google Scholar - Dentale, F.; Donnarumma, G.; Carratelli, E.P.; Reale, F.: A numerical method to analyze the interaction between sea waves and rubble mound emerged breakwaters. WSEAS Trans. Fluid Mech
**10**, 106–116 (2015)Google Scholar - Dentale, F.; Reale, F.; Di Leo, A.; Carratelli, E.P.: A CFD approach to rubble mound breakwater design. Int. J. Naval Archit. Ocean Eng.
**10**(5), 644–650 (2018)Article Google Scholar - Koley, S.: Wave transmission through multilayered porous breakwater under regular and irregular incident waves. Eng. Anal. Bound. Elem.
**108**, 393–401 (2019)Article MathSciNet MATH Google Scholar - Koley, S.; Panduranga, K.; Almashan, N.; Neelamani, S.; Al-Ragum, A.: Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters. Ocean Eng.
**218**, 108218 (2020)Article Google Scholar - Pourteimouri, P.; Hejazi, K.: Development of an integrated numerical model for simulating wave interaction with permeable submerged breakwaters using extended Navier-Stokes equations. J. Mar. Sci. Eng.
**8**(2), 87 (2020)Article Google Scholar - Cao, D.; Yuan, J.; Chen, H.: Towards modelling wave-induced forces on an armour layer unit of rubble mound coastal revetments. Ocean Eng.
**239**, 109811 (2021)Article Google Scholar - Díaz-Carrasco, P.; Eldrup, M.R.; Andersen, T.L.: Advance in wave reflection estimation for rubble mound breakwaters: the importance of the relative water depth. Coast. Eng.
**168**, 103921 (2021)Article Google Scholar - Vieira, F.; Taveira-Pinto, F.; Rosa-Santos, P.: Damage evolution in single-layer cube armoured breakwaters with a regular placement pattern. Coast. Eng.
**169**, 103943 (2021)Article Google Scholar - Booshi, S.; Ketabdari, M.J.: Modeling of solitary wave interaction with emerged porous breakwater using PLIC-VOF method. Ocean Eng.
**241**, 110041 (2021)Article Google Scholar - Aristodemo, F.; Filianoti, P.; Tripepi, G.; Gurnari, L.; Ghaderi, A.: On the energy transmission by a submerged barrier interacting with a solitary wave. Appl. Ocean Res.
**122**, 103123 (2022)Article Google Scholar - Teixeira, P.R.; Didier, E.: Numerical analysis of performance of an oscillating water column wave energy converter inserted into a composite breakwater with rubble mound foundation. Ocean Eng.
**278**, 114421 (2023)Article Google Scholar - Burgan, H.I.: Numerical modeling of structural irregularities on unsymmetrical buildings. Tehnički vjesnik
**28**(3), 856–861 (2021)Google Scholar - Jones, I.P.: CFDS-Flow3D user guide. (1994)
- Al Shaikhli, H.I.; Khassaf, S.I.: Stepped mound breakwater simulation by using flow 3D. Eurasian J. Eng. Technol.
**6**, 60–68 (2022)Google Scholar - Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.
**39**(1), 201–225 (1981)Article MATH Google Scholar - Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water
**13**(5), 674 (2021)Article Google Scholar - Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A
**4**(7), 1510–1520 (1992)Article MathSciNet MATH Google Scholar - Van der Meer, J.W.; Stam, C.J.M.: Wave runup on smooth and rock slopes of coastal structures. J. Waterw. Port Coast. Ocean Eng.
**118**(5), 534–550 (1992)Article Google Scholar - Goda, Y.; Suzuki, Y. Estimation of incident and reflected waves in random wave experiments. In: ASCE, Proceedings of 15th International Conference on Coastal Engineering, (Honolulu, Hawaii). vol. 1, pp. 828–845. (1976)
- Zanuttigh, B.; Van der Meer, J.W.: Wave reflection from coastal structures. In: AA.VV., Proceedings of the XXX International Conference on Coastal Engineering, World Scientific, (San Diego, CA, USA, September 2006). pp. 4337–4349. (2006)
- Seelig W.N.; Ahrens J.P.: Estimation of wave reflection and energy dissipation coefficients for beaches, revetments, and breakwaters. CERC, Technical Paper, Fort Belvoir. vol. 81, p. 41 (1981)
- Mase, H.: Random wave runup height on gentle slope. J. Waterw. Port Coast. Ocean Eng.
**115**(5), 649–661 (1989)Article Google Scholar