Omega-Luitex법을 이용한 수력점프 발생시 러프 베드의 와류 진화 예측 및 영향 분석
Cong Trieu Tran, Cong Ty Trinh
Abstract
The dissipation of energy downstream of hydropower projects is a significant issue. The hydraulic jump is exciting and widely applied in practice to dissipate energy. Many hydraulic jump characteristics have been studied, such as length of jump Lj and sequent flow depth y2. However, understanding the evolution of the vortex structure in the hydraulic jump shows a significant challenge. This study uses the RNG k-e turbulence model to simulate hydraulic jumps on the rough bed. The Omega-Liutex method is compared with Q-criterion for capturing vortex structure in the hydraulic jump. The formation, development, and shedding of the vortex structure at the rough bed in the hydraulic jumper are analyzed. The vortex forms and rapidly reduces strength on the rough bed, resulting in fast dissipation of energy. At the rough block rows 2nd and 3rd, the vortex forms a vortex rope that moves downstream and then breaks. The vortex-shedding region represents a significant energy attenuation of the flow. Therefore, the rough bed dissipates kinetic energy well. Adding reliability to the vortex determined by the Liutex method, the vorticity transport equation is used to compare the vorticity distribution with the Liutex distribution. The results show a further comprehension of the hydraulic jump phenomenon and its energy dissipation.
[1] Viti, N., Valero, D., & Gualtieri, C. (2019). Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water, 11(1), 28. https://doi.org/10.3390/w11010028
[2] Peterka, A. J. (1978.) Hydraulic Design of Stilling Basins and Energy Dissipators. Department of the Interior, Bureau of Reclamation.
[3] Bejestan, M. S. & Neisi, K. (2009). A new roughened bed hydraulic jump stilling basin. Asian journal of applied sciences, 2(5), 436-445. https://doi.org/10.3923/ajaps.2009.436.445
[4] Tokyay, N. D. (2005). Effect of channel bed corrugations on hydraulic jumps. Impacts of Global Climate Change, 1-9. https://doi.org/10.1061/40792(173)408
[5] Nikmehr, S. & Aminpour, Y. (2020). Numerical Simulation of Hydraulic Jump over Rough Beds. Periodica Polytechnica Civil Engineering, 64(2), 396-407. https://doi.org/10.3311/PPci.15292
[6] Hunt, J. C., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Studying turbulence using numerical simulation databases. 2. Proceedings of the 1988 summer program.
[7] Gao, Y. & Liu, C. (2018). Rortex and comparison with eigenvalue-based vortex identification criteria. Physics of Fluids, 30(8), 085107. https://doi.org/10.1063/1.5040112
[8] Liu, C., Gao, Y., Tian, S., & Dong, X. (2018). Rortex – A new vortex vector definition and vorticity tensor and vector decompositions. Physics of Fluids, 30(3), 035103. https://doi.org/10.1063/1.5023001
[9] Liu, C. et al. (2019). Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. Journal of Hydrodynamics, 31(2), 205-223. https://doi.org/10.1007/s42241-019-0022-4
[10] Liu, C., Wang, Y., Yang, Y. et al (2016). New omega vortex identification method. Science China Physics, Mechanics & Astronomy, (8), 56-64. https://doi.org/10.1007/s11433-016-0022-6
[11] Tran, C. T. & Pham, D. C. (2022). Application of Liutex and Entropy Production to Analyze the Influence of Vortex Rope in the Francis-99 Turbine Draft Tube. Tehnički vjesnik, 29(4), 1177-1183. https://doi.org/10.17559/TV-20210821070801
[12] Dong, X., Gao, Y., & Liu, C. (2019). New normalized Rortex/vortex identification method. Physics of Fluids, 31(1), 011701. https://doi.org/10.1063/1.5066016
[13] Wang, L., Zheng, Z., Cai, W. et al. (2019). Extension Omega and Omega-Liutex methods applied to identify vortex structures in viscoelastic turbulent flow. Journal of Hydrodynamics, 31(5), 911-921. https://doi.org/10.1007/s42241-019-0045-x
[14] Xu, H., Cai, X., & Liu, C. (2019). Liutex (vortex) core definition and automatic identification for turbulence vortex structures. Journal of Hydrodynamics, 31(5), 857-863. https://doi.org/10.1007/s42241-019-0066-5
[15] Tran, C. T. et al. (2020). Prediction of the precessing vortex core in the Francis-99 draft tube under off-design conditions by using Liutex/Rortex method. Journal of Hydrodynamics, 32, 623-628. https://doi.org/10.1007/s42241-020-0031-3
[16] Liu, C. et al. (2019). A Liutex based definition of vortex axis line. arXiv preprint arXiv:1904.10094. https://doi.org/10.48550/arXiv.1904.10094
[17] Samadi-Boroujeni, H. et al. (2013). Effect of triangular corrugated beds on the hydraulic jump characteristics. Canadian Journal of Civil Engineering, 40(9), 841-847. https://doi.org/10.1139/cjce-2012-0019
[18] Ghaderi, A. et al. (2020). Characteristics of free and submerged hydraulic jumps over different macroroughnesses. Journal of Hydroinformatics, 22(6), 1554-1572. https://doi.org/10.2166/hydro.2020.298
[19] Wu, Z. et al. (2021). Analysis of the influence of transverse groove structure on the flow of a flat-plate surface based on Liutex parameters. Engineering Applications of Computational Fluid Mechanics, 15(1), 1282-1297. https://doi.org/10.1080/19942060.2021.1968955
[20] Ji, B., et al. (2014). Numerical simulation of threedimensional cavitation shedding dynamics with special emphasis on cavitation – vortex interaction. Ocean Engineering, 87, 64-77. https://doi.org/10.1016/j.oceaneng.2014.05.005
[21] Tran, C., Bin, J., & Long, X. (2019). Simulation and Analysis of Cavitating Flow in the Draft Tube of the Francis Turbine with Splitter Blades at Off-Design Condition. Tehnicki vjesnik – Technical Gazette, 26(6). https://doi.org/10.17559/TV-20190316042929
Waqed H. Hassan| Zahraa Mohammad Fadhe*| Rifqa F. Thiab| Karrar Mahdi Civil Engineering Department, Faculty of Engineering, University of Warith Al-Anbiyaa, Kerbala 56001, Iraq Civil Engineering Department, Faculty of Engineering, University of Kerbala, Kerbala 56001, Iraq Corresponding Author Email: Waqed.hammed@uowa.edu.iq
OPEN ACCESS
Abstract:
This work investigates numerically a local scour moves in irregular waves around tripods. It is constructed and proven to use the numerical model of the seabed-tripod-fluid with an RNG k turbulence model. The present numerical model then examines the flow velocity distribution and scour characteristics. After that, the suggested computational model Flow-3D is a useful tool for analyzing and forecasting the maximum scour development and the flow field in random waves around tripods. The scour values affecting the foundations of the tripod must be studied and calculated, as this phenomenon directly and negatively affects the structure of the structure and its design life. The lower diagonal braces and the main column act as blockages, increasing the flow accelerations underneath them. This increases the number of particles that are moved, which in turn creates strong scouring in the area. The numerical model has a good agreement with the experimental model, with a maximum percentage of error of 10% between the experimental and numerical models. In addition, Based on dimensional analysis parameters, an empirical equation has been devised to forecast scour depth with flow depth, median size ratio, Keulegan-Carpenter (Kc), Froud number flow, and wave velocity that the results obtained in this research at various flow velocities and flow depths demonstrated that the maximum scour depth rate depended on wave height with rising velocities and decreasing particle sizes (d50) and the scour depth attains its steady-current value for Vw < 0.75. As the Froude number rises, the maximum scour depth will be large.
Keywords:
local scour, tripod foundation, Flow-3D, waves
1. Introduction
New energy sources have been used by mankind since they become industrialized. The main energy sources have traditionally been timber, coal, oil, and gas, but advances in the science of new energies, such as nuclear energy, have emerged [1, 2]. Clean and renewable energy such as offshore wind has grown significantly during the past few decades. There are numerous different types of foundations regarding offshore wind turbines (OWTs), comprising the tripod, jacket, gravity foundation, suction anchor (or bucket), and monopile [3, 4]. When the water depth is less than 30 meters, Offshore wind farms usually employ the monopile type [4]. Engineers must deal with the wind’s scouring phenomenon turbine foundations when planning and designing wind turbines for an offshore environment [5]. Waves and currents generate scour, this is the erosion of soil near a submerged foundation and at its location [6]. To predict the regional scour depth at a bridge pier, Jalal et al. [7-10] developed an original gene expression algorithm using artificial neural networks. Three monopiles, one main column, and several diagonal braces connecting the monopiles to the main column make up the tripod foundation, which has more complicated shapes than a single pile. The design of the foundation may have an impact on scour depth and scour development since the foundation’s form affects the flow field [11, 12]. Stahlmann [4] conducted several field investigations. He discovered that the main column is where the greatest scour depth occurred. Under the main column is where the maximum scour depth occurs in all experiments. The estimated findings show that higher wave heights correspond to higher flow velocities, indicating that a deeper scour depth is correlated with finer silt granularity [13] recommends as the design value for a single pile. These findings support the assertion that a tripod may cause the seabed to scour more severely than a single pile. The geography of the scour is significantly more influenced by the KC value (Keulegan–Carpenter number)
The capability of computer hardware and software has made computational fluid dynamics (CFD) quite popular to predict the behavior of fluid flow in industrial and environmental applications has increased significantly in recent years [14].
Finding an acceptable piece of land for the turbine’s construction and designing the turbine pile precisely for the local conditions are the biggest challenges. Another concern related to working in a marine environment is the effect of sea waves and currents on turbine piles and foundations. The earth surrounding the turbine’s pile is scoured by the waves, which also render the pile unstable.
In this research, the main objective is to investigate numerically a local scour around tripods in random waves. It is constructed and proven to use the tripod numerical model. The present numerical model is then used to examine the flow velocity distribution and scour characteristics.
2. Numerical Model
To simulate the scouring process around the tripod foundation, the CFD code Flow-3D was employed. By using the fractional area/volume method, it may highlight the intricate boundaries of the solution domain (FAVOR).
This model was tested and validated utilizing data derived experimentally from Schendel et al. [15] and Sumer and Fredsøe [6]. 200 runs were performed at different values of parameters.
2.1 Momentum equations
The incompressible viscous fluid motion is described by the three RANS equations listed below [16]:
where, respectively, u, v, and w represent the x, y, and z flow velocity components; volume fraction (VF), area fraction (Ai; I=x, y, z), water density (f), viscous force (fi), and body force (Gi) are all used in the formula.
2.2 Model of turbulence
Several turbulence models would be combined to solve the momentum equations. A two-equation model of turbulence is the RNG k-model, which has a high efficiency and accuracy in computing the near-wall flow field. Therefore, the flow field surrounding tripods was captured using the RNG k-model.
2.3 Model of sediment scour
2.3.1 Induction and deposition
Eq. (4) can be used to determine the particle entrainment lift velocity [17].
α𝛼i is the Induction parameter, ns the normal vector is parallel to the seafloor, and for the present numerical model, ns=(0,0,1), θ𝜃cr is the essential Shields variable, g is the accelerated by gravity, di is the size of the particles, ρi is species density in beds, and d∗ The diameter of particles without dimensions; these values can be obtained in Eq. (5).
fbis the essential particle packing percentage, qb, i is the bed load transportation rate, and cb, I the percentage of sand by volume i. These variables can be found in Eq. (9), Eq. (10), fb, δ𝛿i the bed load thickness.
In this paper, after the calibration of numerous trials, the selection of parameters for sediment scour is crucial. Maximum packing fraction is 0.64 with a shields number of 0.05, entrainment coefficient of 0.018, the mass density of 2650, bed load coefficient of 12, and entrainment coefficient of 0.01.
3. Model Setup
To investigate the scour characteristics near tripods in random waves, the seabed-tripod-fluid numerical model was created as shown in Figure 1. The tripod basis, a seabed, and fluid and porous medium were all components of the model. The seabed was 240 meters long, 40 meters wide, and three meters high. It had a median diameter of d50 and was composed of uniformly fine sand. The 2.5-meter main column diameter D. The base of the main column was three dimensions above the original seabed. The center of the seafloor was where the tripod was, 130 meters from the offshore and 110 meters from the onshore. To prevent wave reflection, the porous media were positioned above the seabed on the onshore side.
Figure 1. An illustration of the numerical model for the seabed-tripod-fluid
3.1 Generation of meshes
Figure 2 displays the model’s mesh for the Flow-3D software grid. The current model made use of two different mesh types: global mesh grid and nested mesh grid. A mesh grid with the following measurements was created by the global hexahedra mesh grid: 240m length, 40m width, and 32m height. Around the tripod, a finer nested mesh grid was made, with dimensions of 0 to 32m on the z-axis, 10 to 30 m on the x-axis, and 25 to 15 m on the y-axis. This improved the calculation’s precision and mesh quality.
To increase calculation efficiency, the top side, The model’s two x-z plane sides, as well as the symmetry boundaries, were all specified. For u, v, w=0, the bottom boundary wall was picked. The offshore end of the wave boundary was put upstream. For the wave border, random waves were generated using the wave spectrum from the Joint North Sea Wave Project (JONSWAP). Boundary conditions are shown in Figure 3.
Figure 3. Boundary conditions of the typical problem
The wave spectrum peak enhancement factor (=3.3 for this work) and can be used to express the unidirectional JONSWAP frequency spectrum.
3.3 Mesh sensitivity
Before doing additional research into scour traits and scour depth forecasting, mesh sensitivity analysis is essential. Three different mesh grid sizes were selected for this section: Mesh 1 has a 0.45 by 0.45 nested fine mesh and a 0.6 by 0.6 global mesh size. Mesh 2 has a 0.4 global mesh size and a 0.35 nested fine mesh size, while Mesh 3 has a 0.25 global mesh size and a nested fine mesh size of 0.15. Comparing the relative fine mesh size (such as Mesh 2 or Mesh 3) to the relatively coarse mesh size (such as Mesh 1), a larger scour depth was seen; this shows that a finer mesh size can more precisely represent the scouring and flow field action around a tripod. Significantly, a lower mesh size necessitates a time commitment and a more difficult computer configuration. Depending on the sensitivity of the mesh guideline utilized by Pang et al., when Mesh 2 is applied, the findings converge and the mesh size is independent [20]. In the next sections, scouring the area surrounding the tripod was calculated using Mesh 2 to ensure accuracy and reduce computation time. The working segment generates a total of 14, 800,324 cells.
3.4 Model validation
Comparisons between the predicted outcomes from the current model and to confirm that the current numerical model is accurate and suitably modified, experimental data from Sumer and Fredsøe [6] and Schendel et al. [15] were used. For the experimental results of Run 05, Run 15, and Run 22 from Sumer and Fredsøe [6], the experimental A9, A13, A17, A25, A26, and A27 results from Schendel et al. [15], and the numerical results from the current model are shown in Figure 4. The present model had d50=0.051cm, the height of the water wave(h)=10m, and wave velocity=0.854 m.s-1.
Figure 5. Comparison of the present study’s maximum scour depth with that authored by Sumer and Fredsøe [6] and Schendel et al. [15]
According to Figure 5, the highest discrepancy between the numerical results and experimental data is about 10%, showing that overall, there is good agreement between them. The ability of the current numerical model to accurately depict the scour process and forecast the maximum scour depth (S) near foundations is demonstrated by this. Errors in the simulation were reduced by using the calibrated values of the parameter. Considering these results, a suggested simulated scouring utilizing a Flow-3D numerical model is confirmed as a superior way for precisely forecasting the maximum scour depth near a tripod foundation in random waves.
3.5 Dimensional analysis
The variables found in this study as having the greatest impacts, variables related to flow, fluid, bed sediment, flume shape, and duration all had an impact on local scouring depth (t). Hence, scour depth (S) can be seen as a function of these factors, shown as:
With the aid of dimensional analysis, the 14-dimensional parameters in Eq. (11) were reduced to 6 dimensionless variables using Buckingham’s -theorem. D, V, and were therefore set as repetition parameters and others as constants, allowing for the ignoring of their influence. Eq. (12) thus illustrates the relationship between the effect of the non-dimensional components on the depth of scour surrounding a tripod base.
(12)
\frac{S}{D}=f\left(\frac{h}{D}, \frac{d 50}{D}, \frac{V}{V W}, F r, K c\right)
where, SD𝑆𝐷 are scoured depth ratio, VVw𝑉𝑉𝑤 is flow wave velocity, d50D𝑑50𝐷 median size ratio, $Fr representstheFroudnumber,and𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒𝐹𝑟𝑜𝑢𝑑𝑛𝑢𝑚𝑏𝑒𝑟,𝑎𝑛𝑑Kc$is the Keulegan-Carpenter.
4. Result and Discussion
4.1 Development of scour
Similar to how the physical model was used, this numerical model was also used. The numerical model’s boundary conditions and other crucial variables that directly influence the outcomes were applied (flow depth, median particle size (d50), and wave velocity). After the initial 0-300 s, the scour rate reduced as the scour holes grew quickly. The scour depths steadied for about 1800 seconds before reaching an asymptotic value. The findings of scour depth with time are displayed in Figure 6.
4.2 Features of scour
Early on (t=400s), the scour hole began to appear beneath the main column and then began to extend along the diagonal bracing connecting to the wall-facing pile. Gradually, the geography of the scour; of these results is similar to the experimental observations of Stahlmann [4] and Aminoroayaie Yamini et al. [1]. As the waves reached the tripod, there was an enhanced flow acceleration underneath the main column and the lower diagonal braces as a result of the obstructing effects of the structural elements. More particles are mobilized and transported due to the enhanced near-bed flow velocity, it also increases bed shear stress, turbulence, and scour at the site. In comparison to a single pile, the main column and structural components of the tripod have a significant impact on the flow velocity distribution and, consequently, the scour process and morphology. The main column and seabed are separated by a gap, therefore the flow across the gap may aid in scouring. The scour hole first emerged beneath the main column and subsequently expanded along the lower structural components, both Aminoroayaie Yamini et al. [1] and Stahlmann [4] made this claim. Around the tripod, there are several different scour morphologies and the flow velocity distribution as shown in Figures 7 and 8.
Figure 8. Random waves of flow velocity distribution around a tripod
4.3 Wave velocity’s (Vw) impact on scour depth
In this study’s section, we looked at how variations in wave current velocity affected the scouring depth. Bed scour pattern modification could result from an increase or decrease in waves. As a result, the backflow area produced within the pile would become stronger, which would increase the depth of the sediment scour. The quantity of current turbulence is the primary cause of the relationship between wave height and bed scour value. The current velocity has increased the extent to which the turbulence energy has changed and increased in strength now present. It should be mentioned that in this instance, the Jon swap spectrum random waves are chosen. The scour depth attains its steady-current value for Vw<0.75, Figure 9 (a) shows that effect. When (V) represents the mean velocity=0.5 m.s-1.
Figure 9. Main effects on maximum scour depth (Smax) as a function of column diameter (D)
4.4 Impact of a median particle (d50) on scour depth
In this section of the study, we looked into how variations in particle size affected how the bed profile changed. The values of various particle diameters are defined in the numerical model for each run numerical modeling, and the conditions under which changes in particle diameter have an impact on the bed scour profile are derived. Based on Figure 9 (b), the findings of the numerical modeling show that as particle diameter increases the maximum scour depth caused by wave contact decreases. When (d50) is the diameter of Sediment (d50). The Shatt Al-Arab soil near Basra, Iraq, was used to produce a variety of varied diameters.
4.5 Impact of wave height and flow depth (h) on scour depth
One of the main elements affecting the scour profile brought on by the interaction of the wave and current with the piles of the wind turbines is the height of the wave surrounding the turbine pile causing more turbulence to develop there. The velocity towards the bottom and the bed both vary as the turbulence around the pile is increased, modifying the scour profile close to the pile. According to the results of the numerical modeling, the depth of scour will increase as water depth and wave height in random waves increase as shown in Figure 9 (c).
4.6 Froude number’s (Fr) impact on scour depth
No matter what the spacing ratio, the Figure 9 shows that the Froude number rises, and the maximum scour depth often rises as well increases in Figure 9 (d). Additionally, it is crucial to keep in mind that only a small portion of the findings regarding the spacing ratios with the smallest values. Due to the velocity acceleration in the presence of a larger Froude number, the range of edge scour downstream is greater than that of upstream. Moreover, the scouring phenomena occur in the region farthest from the tripod, perhaps as a result of the turbulence brought on by the collision of the tripod’s pile. Generally, as the Froude number rises, so does the deposition height and scour depth.
4.7 Keulegan-Carpenter (KC) number
The geography of the scour is significantly more influenced by the KC value. Greater KC causes a deeper equilibrium scour because an increase in KC lengthens the horseshoe vortex’s duration and intensifies it as shown in Figure 10.
The result can be attributed to the fact that wave superposition reduced the crucial KC for the initiation of the scour, particularly under small KC conditions. The primary variable in the equation used to calculate This is the depth of the scouring hole at the bed. The following expression is used to calculate the Keulegan-Carpenter number:
Kc=Vw∗TpD𝐾𝑐=𝑉𝑤∗𝑇𝑝𝐷 (13)
where, the wave period is Tp and the wave velocity is shown by Vw.
Figure 10. Relationship between the relative maximum scour depth and KC
5. Conclusion
(1) The existing seabed-tripod-fluid numerical model is capable of faithfully reproducing the scour process and the flow field around tripods, suggesting that it may be used to predict the scour around tripods in random waves.
(2) Their results obtained in this research at various flow velocities and flow depths demonstrated that the maximum scour depth rate depended on wave height with rising velocities and decreasing particle sizes (d50).
(3) A diagonal brace and the main column act as blockages, increasing the flow accelerations underneath them. This raises the magnitude of the disturbance and the shear stress on the seafloor, which in turn causes a greater number of particles to be mobilized and conveyed, as a result, causes more severe scour at the location.
(4) The Froude number and the scouring process are closely related. In general, as the Froude number rises, so does the maximum scour depth and scour range. The highest maximum scour depth always coincides with the bigger Froude number with the shortest spacing ratio.
Since the issue is that there aren’t many experiments or studies that are relevant to this subject, therefore we had to rely on the monopile criteria. Therefore, to gain a deeper knowledge of the scouring effect surrounding the tripod in random waves, further numerical research exploring numerous soil, foundation, and construction elements as well as upcoming physical model tests will be beneficial.
Nomenclature
CFD
Computational fluid dynamics
FAVOR
Fractional Area/Volume Obstacle Representation
VOF
Volume of Fluid
RNG
Renormalized Group
OWTs
Offshore wind turbines
Greek Symbols
ε, ω
Dissipation rate of the turbulent kinetic energy, m2s-3
Subscripts
d50
Median particle size
Vf
Volume fraction
GT
Turbulent energy of buoyancy
KT
Turbulent velocity
PT
Kinetic energy of the turbulence
Αi
Induction parameter
ns
Induction parameter
ΘΘcr
The essential Shields variable
Di
Diameter of sediment
d∗
The diameter of particles without dimensions
µf
Dynamic viscosity of the fluid
qb,i
The bed load transportation rate
Cs,i
Sand particle’s concentration of mass
D
Diameter of pile
Df
Diffusivity
D
Diameter of main column
Fr
Froud number
Kc
Keulegan–Carpenter number
G
Acceleration of gravity g
H
Flow depth
Vw
Wave Velocity
V
Mean Velocity
Tp
Wave Period
S
Scour depth
References
[1] Aminoroayaie Yamini, O., Mousavi, S.H., Kavianpour, M.R., Movahedi, A. (2018). Numerical modeling of sediment scouring phenomenon around the offshore wind turbine pile in marine environment. Environmental Earth Sciences, 77: 1-15. https://doi.org/10.1007/s12665-018-7967-4
[2] Hassan, W.H., Hashim, F.S. (2020). The effect of climate change on the maximum temperature in Southwest Iraq using HadCM3 and CanESM2 modelling. SN Applied Sciences, 2(9): 1494. https://doi.org/10.1007/s42452-020-03302-z
[3] Fazeres-Ferradosa, T., Rosa-Santos, P., Taveira-Pinto, F., Pavlou, D., Gao, F.P., Carvalho, H., Oliveira-Pinto, S. (2020). Preface: Advanced research on offshore structures and foundation design part 2. In Proceedings of the Institution of Civil Engineers-Maritime Engineering. Thomas Telford Ltd, 173(4): 96-99. https://doi.org/10.1680/jmaen.2020.173.4.96
[4] Stahlmann, A. (2013). Numerical and experimental modeling of scour at foundation structures for offshore wind turbines. In ISOPE International Ocean and Polar Engineering Conference. ISOPE, pp. ISOPE-I.
[5] Petersen, T.U., Sumer, B.M., Fredsøe, J. (2014). Edge scour at scour protections around offshore wind turbine foundations. In 7th International Conference on Scour and Erosion. CRC Press, pp. 587-592.
[6] Sumer, B.M., Fredsøe, J. (2001). Scour around pile in combined waves and current. Journal of Hydraulic Engineering, 127(5): 403-411. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(403)
[7] Jalal, H.K., Hassan, W.H. (2020). Effect of bridge pier shape on depth of scour. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 671(1): 012001. https://doi.org/10.1088/1757-899X/671/1/012001
[8] Hassan, W.H., Jalal, H.K. (2021). Prediction of the depth of local scouring at a bridge pier using a gene expression programming method. SN Applied Sciences, 3(2): 159. https://doi.org/10.1007/s42452-020-04124-9
[9] Jalal, H.K., Hassan, W.H. (2020). Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 745(1): 012150. https://doi.org/10.1088/1757-899X/745/1/012150
[10] Hassan, W.H., Attea, Z.H., Mohammed, S.S. (2020). Optimum layout design of sewer networks by hybrid genetic algorithm. Journal of Applied Water Engineering and Research, 8(2): 108-124. https://doi.org/10.1080/23249676.2020.1761897
[11] Hassan, W.H., Hussein, H.H., Alshammari, M.H., Jalal, H.K., Rasheed, S.E. (2022). Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier. Results in Engineering, 13: 100353. https://doi.org/10.1016/j.rineng.2022.100353
[12] Hassan, W.H., Hh, H., Mohammed, S.S., Jalal, H.K., Nile, B.K. (2021). Evaluation of gene expression programming to predict the local scour depth around a bridge pier. Journal of Engineering Science and Technology, 16(2): 1232-1243. https://doi.org/10.1016/j.rineng.2022.100353
[13] Nerland, C. (2010). Offshore wind energy: Balancing risk and reward. In Proceedings of the Canadian Wind Energy Association’s 2010 Annual Conference and Exhibition, Canada, p. 2000.
[14] Hassan, W.H., Nile, B.K., Mahdi, K., Wesseling, J., Ritsema, C. (2021). A feasibility assessment of potential artificial recharge for increasing agricultural areas in the kerbala desert in Iraq using numerical groundwater modeling. Water, 13(22): 3167. https://doi.org/10.3390/w13223167
[15] Schendel, A., Welzel, M., Schlurmann, T., Hsu, T.W. (2020). Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coastal Engineering, 161: 103751. https://doi.org/10.1016/j.coastaleng.2020.103751
[16] Yakhot, V., Orszag, S.A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1): 3-51. https://doi.org/10.1007/BF01061452
[17] Mastbergen, D.R., Van Den Berg, J.H. (2003). Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4): 625-637. https://doi.org/10.1046/j.1365-3091.2003.00554.x
[18] Soulsby, R. (1997). Dynamics of marine sands. https://doi.org/10.1680/doms.25844
[19] Van Rijn, L.C. (1984). Sediment transport, part I: Bed load transport. Journal of Hydraulic Engineering, 110(10): 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
[20] Pang, A.L.J., Skote, M., Lim, S.Y., Gullman-Strand, J., Morgan, N. (2016). A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Applied Ocean Research, 57: 114-124. https://doi.org/10.1016/j.apor.2016.02.010
Mohammad Raze Raeisi Dehkordi1*, Amir Hossein Yeganeh Mazhar1 , Farzaneh Kheradzare2 1– PhD. Student in the Department of Construction and Water Management, Science and Research Unit, Islamic Azad University, Tehran, Iran 2– M.Sc. Graduate Water resource management, Department of Civil Engineering and Mechanics, Ghiaseddin Jamshid Kashani University, Qazvin, Iran
One of the key issues in river engineering is analyzing the flow properties at the intersection of natural rivers and canals. The flow of the side channel moves away from the intersection of the two channels as a result of the exchange of input force from the side channel with the main flow after coming into contact with it. One of the most evident properties of the flow in these sections is the development of a revolving region with low pressure and even negative pressure close to the inner wall of the side channel. One advantage of the whirling flow in this low-pressure region is that it gives the flow enough space to sediment, but it also increases flow speed near the channel’s bottom and outside wall by lowering the intersectional area of the flow. One of the most crucial considerations in the design of these intersections is minimizing sedimentation in the rotating region and scouring in the area above the shear plane.
Materials and methods:
The channel (flume) created in the laboratory based on Weber et al., (2001) model, was employed in the current investigation to confirm the validity and examine other study objectives. The main channel is 21. 95 meters long, while the side channel, which is at a 90-degree angle to the main channel, is 3. 66 meters long. The total downstream discharge is approximately 0. 17 m3/s, with the upstream velocities of the main channel being 0. 166 m/s and the side channel being 0. 5 m/s. In both channels, the flow depth and width are 0. 91 meters and 0. 296 meters, respectively. In this study, 6 various models’ angles of intersection between the main and side channels, inlet flow velocity, intersectional area, and side channel length have been examined. Models 2 and 3 have intersection angles of 60 and 30 degrees, respectively, and share the rest of their attributes with the fundamental model, or model number 1. Model 1 is the same as Weber’s experimental model. The length of the side channel in model 4 is different from model 1. The only difference between model 6 and the basic model is the side channel intake speed.
Results and Discussion
Analyzing the intersection angle The angle between the main channel and the side channel is investigated in this section of the findings. Models 1, 2, and 3 are assessed using the intersection angles of 90, 60, and 30 degrees, respectively. In some studies, the impact of the intersection angle has been examined, but in this study, three-dimensional investigation in transverse and longitudinal sections as well as the plan of the intersection is discussed, as can be observed from the literature review. Considering three models with intersection angles of 90, 60, and 30 degrees, the kinetic energy contours at the channel’s middle height can be obtained for each model. The channel with a 30-degree intersection angle (model 3) has the maximum kinetic energy in the flow. The channel with a 60-degree intersection has the minimum kinetic energy. As a result of the maximum deviation of the flow in the main channel caused by the flow of the side channel, the channel with a 90-degree intersection also has the maximum kinetic energy near the wall in front of the side channel.
Examining the side channel length In model 1, the side channel is 3. 66 meters long, whereas in model 4, it is 5. 52 meters long. This study aims to determine how changing the side channel’s length affects the flow pattern where two channels intersect. The kinetic energy contours were obtained for two states of the channel length, which are known to extend the lateral channel, increase the energy of the flow after the intersection, and shorten the length of the high-kinetic energy zone. When compared to model 1 with a shorter length of the side channel, the width of the flow separation zone is reduced by approximately 20%, which results in less flow sedimentation. Figure 12 illustrates the rotating zones in the flow separation area. The flow separation region’s length is essentially unchanged. Studying the intersection of the lateral channel After determining the lateral channel’s length, its width and, consequently, its intersectional area should be evaluated.
This section compares model 1 width of 0. 91 meters to model 5 width of 1. 40 meters. One of the most recent topics related to the intersection of the main and side channels is examining the intersection of the side channel. In model 5, the side channel’s flow rate has also increased due to an increase in the width or intersection of the channel. The flow rate through the intersection and the momentum of the flow from the side channel and the main channel increase when the side channel flow rate rises. The findings indicate that when flow width and side channel flow rise, energy increases after the inlet.
Investigating the value of inlet speed in the side channel Unlike the preceding sections, which were all concerned with the channel geometry, the inlet velocity in the side channel is one of the hydraulic parameters of the flow. In this section, models 1 and 6 with inlet velocities of the side channel of 0. 5 and 0. 75 m/s are evaluated. According to the modeling, the flow is somewhat horst before and immediately on the intersection of the flow level, but it undergoes a substantial prolapse just after the intersection. Model 6 has a larger volume and height of flow, but a smaller and softer prolapse after the intersection.
Conclusion
Some hydraulic and geometric properties of the intersection of channels have been examined using Flow-3D software. The RNG turbulence model was used for three-dimensional modeling. Some of the results are listed below. The flow is uniform upstream of the main and minor channels and only slightly becomes horst at the intersection. The analysis of the lengthening of the side channel revealed a 20% reduction in the separation zone’s width and a considerable reduction in the kinetic energy at the intersection. The input flow rate of this channel to the intersection increases with the speed and width of the side channel, which accounts for the local drop in the width of the main channel flow.
References
Azhdari, K., Talebi, Z. & Hosseini, S. H. (2020). Simulation of Subcritical Flow Distribution and Water Surface Fluctuations in Fourbranch Open Channel Junction with FLOW 3D. Irrigation and Drainage, 14(3), 1018- 1031. (In persian).
Behdarvandi, M., Hajipour, M., Parsi, E. & Ansari ghojghar, M. (2022). Investigation of Velocity Changes in a Straight Asymmetric pattern at river bend. Water and Soil Conservation, 22(6), 81-89. (In Persian).
Ghobadian, R. & Seyedi tabar, Z. (2016). Numerical investigating of the effect of lateral channel junction position on flow Rectangular Composite Channel Using Flow3D Software. Irrigation and Water Engineering, 13(1), 1-16. Doi: 10.22125/iwe.2022.158503 (In Persian).
Burqaʻi, S. M. & Nazari, A. (2003). Laboratory investigation of sediment pattern at the intersection of channels. 6th International Civil Engineering Conference, Amirkabir University of Technology, Tehran, Iran (In Persian).
Hemmati, M. & Aghazade-Soureh, T. (2018). Simulation of the Effect of Bed Discordance on Flow Pattern at the River Confluence by Flow-3D Model. Irrigation and Drainage, 11(5), 785-797.
Hosseini, S, M. & Abrishami, J. (2018). OpenChannel Hydraulics. 35th Edition: Imam Reza International University, 613 pages (In Persian).
Karami moghadam, M., Keshavarz, A. & Sabzevar, T. (2019). The Effect of Diversion Flow, Intake Inlet Shape, Topography and Bed Roughness on the Flow Separation Dimensions and Shear Stress at the Lateral Intake. Irrigation and Drainage Structures Engineering Research, 73(19), 113-126. (In Persian).
Khosravinia, P., Hosseini, S.H. & Hosseinzadeh Dalir, A. (2018). Numerical analyzing of flow in open channel junction with effect of side slope of channel. Irrigation and Water Engineering, 10(1), 1-16. Doi: 10.22125/iwe.2019.95871 (In Persian).
Kwanza, J.K., Kinyanjui, M. & Nkoroi, J.M. (2007). Modelling fluid flow in rectangular and trapezoidal open channels. Advances and Applications in Fluid Mechanics, 2(2), 149- 158.
Masjedi, A. & Taeedi, A. (2011). Experimental Investigations of Effect Intake Angle on Discharge in Lateral Intakes in 180 Degree Bend. World Applied Sciences Journal, 15(10), 1442-1444
Musavi Jahromi, S.M., & Goudarzizadeh, R. (2011). Numerical Simulation of 3D Flow Pattern at Open-Channel Junctions. Irrigation Sciences and Engineering, 34(2), 61-70 (In Persian).
Nikpour, M. & Khosravinia, P. (2018). Numerical Simulation of Side Slope Effect of Main Channel Wall on Flow Behavior in Open Channels Junction. Irrigation and Drainage, 11(6), 1024-1037. (In persian).
Raeisi Dehkordi, M. (2022). Description of types of pollution in water resources and protection of water resources, New Approaches in Civil Engineering, 6(1), 42- 52. Doi: 10.30469/jnace.2022.154373 (In Persian).
Ramamurthy, A.S., Carballada, L.B. & Tran, D.M. (1988). Combining Open Channel Flow at Right Angled Junctions. Journal of hydraulic engineering, 114(12), 1449-1460.
Tabesh, M. (2018). Advanced Modeling of Water Distribution Networks. 4th Edition: University of Tehran Press, 585 pages.
Taylor, E. (1944). Flow Characteristics at Rectangular Open-Channel Junctions. Journal of hydraulic engineering, 10(6), 893- 902.
Thiong’o, J.W. (2011). Investigations of fluid flows in open rectangular and triangular channels. Master’s thesis, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.
Weber, L.J., Schumate, E.D. & Mawer, N. (2001). Experiments on Flow at a 90° Open-Channel Junction. Journal of hydraulic engineering, 127(5), 340-350.
Gonzalo Duró, Mariano De Dios, Alfredo López, Sergio O. Liscia
ABSTRACT
This study presents comparisons between the results of a commercial CFD code and physical model measurements. The case study is a hydro-combined power station operating in spillway mode for a given scenario. Two turbulence models and two scales are implemented to identify the capabilities and limitations of each approach and to determine the selection criteria for CFD modeling for this kind of structure. The main flow characteristics are considered for analysis, but the focus is on a fluctuating frequency phenomenon for accurate quantitative comparisons. Acceptable representations of the general hydraulic functioning are found in all approaches, according to physical modeling. The k-ε RNG, and LES models give good representation of the discharge flow, mean water depths, and mean pressures for engineering purposes. The k-ε RNG is not able to characterize fluctuating phenomena at a model scale but does at a prototype scale. The LES is capable of identifying the dominant frequency at both prototype and model scales. A prototype-scale approach is recommended for the numerical modeling to obtain a better representation of fluctuating pressures for both turbulence models, with the complement of physical modeling for the ultimate design of the hydraulic structures.
본 연구에서는 상용 CFD 코드 결과와 물리적 모델 측정 결과를 비교합니다. 사례 연구는 주어진 시나리오에 대해 배수로 모드에서 작동하는 수력 복합 발전소입니다.
각 접근 방식의 기능과 한계를 식별하고 이러한 종류의 구조에 대한 CFD 모델링의 선택 기준을 결정하기 위해 두 개의 난류 모델과 두 개의 스케일이 구현되었습니다. 주요 흐름 특성을 고려하여 분석하지만 정확한 정량적 비교를 위해 변동하는 주파수 현상에 중점을 둡니다.
일반적인 수리학적 기능에 대한 허용 가능한 표현은 물리적 모델링에 따라 모든 접근 방식에서 발견됩니다. k-ε RNG 및 LES 모델은 엔지니어링 목적을 위한 배출 유량, 평균 수심 및 평균 압력을 잘 표현합니다.
k-ε RNG는 모델 규모에서는 변동 현상을 특성화할 수 없지만 프로토타입 규모에서는 특성을 파악합니다. LES는 프로토타입과 모델 규모 모두에서 주요 주파수를 식별할 수 있습니다.
수력학적 구조의 궁극적인 설계를 위한 물리적 모델링을 보완하여 두 난류 모델에 대한 변동하는 압력을 더 잘 표현하기 위해 수치 모델링에 프로토타입 규모 접근 방식이 권장됩니다.
Figure 1 – Physical scale model (left). Upstream flume and point gauge (right)
Figure 4 – Water levels: physical model (maximum values) and CFD results (mean values)Figure 5 – Instantaneous pressures [Pa] and velocities [m/s] at model scale (bay center)
ADRIAN R. J. (2007). “Hairpin vortex organization in wall turbulence.” Phys. Fluids 19(4), 041301. DEWALS B., ARCHAMBEAU P., RULOT F., PIROTTON M. and ERPICUM S. (2013). “Physical and Numerical Modelling in Low-Head Structures Design.” Proc. International Workshop on Hydraulic Design of Low-Head Structures, Aachen, Germany, Bundesanstalt für Wasserbau Publ., D.B. BUNG and S. PAGLIARA Editors, pp.11-30. GRENANDER, U. (1959). Probability and Statistics: The Harald Cramér Volume. Wiley. HIRT, C. W. and NICHOLS B. D. (1981). “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of Computational Physics 39(1): 201-225. JOHNSON M. C. and SAVAGE B. M. (2006). “Physical and numerical comparison of flow over ogee spillway in the presence of tailwater.” J. Hydraulic Eng. 132(12): 1353–1357. KHAN L.A., WICKLEIN E.A., RASHID M., EBNER L.L. and RICHARDS N.A. (2004). “Computational fluid dynamics modeling of turbine intake hydraulics at a hydropower plant.” Journal of Hydraulic Research, 42:1, 61-69 LAROCQUE L.A., IMRAN J. and CHAUDHRY M. (2013). “3D numerical simulation of partial breach dam-break flow using the LES and k–ϵ turbulence models.” Jl of Hydraulic Research, 51:2, 145-157 LI S., LAI Y., WEBER L., MATOS SILVA J. and PATEL V.C. (2004). “Validation of a threedimensional numerical model for water-pump intakes.” Journal of Hydraulic Research, 42:3, 282-292 NOVAK P., GUINOT V., JEFFREY A. and REEVE D.E. (2010). “Hydraulic modelling – An introduction.” Spon Press, London and New York, ISBN 978-0-419-25010-4, 616 pp.
This work investigates numerically a local scour moves in irregular waves around tripods. It is constructed and proven to use the numerical model of the seabed-tripodfluid with an RNG k turbulence model. The present numerical model then examines the flow velocity distribution and scour characteristics. After that, the suggested computational model Flow-3D is a useful tool for analyzing and forecasting the maximum scour development and the flow field in random waves around tripods. The scour values affecting the foundations of the tripod must be studied and calculated, as this phenomenon directly and negatively affects the structure of the structure and its design life. The lower diagonal braces and the main column act as blockages, increasing the flow accelerations underneath them. This increases the number of particles that are moved, which in turn creates strong scouring in the area. The numerical model has a good agreement with the experimental model, with a maximum percentage of error of 10% between the experimental and numerical models. In addition, Based on dimensional analysis parameters, an empirical equation has been devised to forecast scour depth with flow depth, median size ratio, Keulegan-Carpenter (Kc), Froud number flow, and wave velocity that the results obtained in this research at various flow velocities and flow depths demonstrated that the maximum scour depth rate depended on wave height with rising velocities and decreasing particle sizes (d50) and the scour depth attains its steady-current value for Vw < 0.75. As the Froude number rises, the maximum scour depth will be large.
웨어의 두 가지 서로 다른 배열(즉, 직선형 웨어와 직사각형 미로 웨어)을 사용하여 웨어 모양, 웨어 간격, 웨어의 오리피스 존재, 흐름 영역에 대한 바닥 경사와 같은 기하학적 매개변수의 영향을 평가했습니다.
유량과 수심의 관계, 수심 평균 속도의 변화와 분포, 난류 특성, 어도에서의 에너지 소산. 흐름 조건에 미치는 영향을 조사하기 위해 FLOW-3D® 소프트웨어를 사용하여 전산 유체 역학 시뮬레이션을 수행했습니다.
수치 모델은 계산된 표면 프로파일과 속도를 문헌의 실험적으로 측정된 값과 비교하여 검증되었습니다. 수치 모델과 실험 데이터의 결과, 급락유동의 표면 프로파일과 표준화된 속도 프로파일에 대한 평균 제곱근 오차와 평균 절대 백분율 오차가 각각 0.014m와 3.11%로 나타나 수치 모델의 능력을 확인했습니다.
수영장과 둑의 흐름 특성을 예측합니다. 각 모델에 대해 L/B = 1.83(L: 웨어 거리, B: 수로 폭) 값에서 급락 흐름이 발생할 수 있고 L/B = 0.61에서 스트리밍 흐름이 발생할 수 있습니다. 직사각형 미로보 모델은 기존 모델보다 무차원 방류량(Q+)이 더 큽니다.
수중 흐름의 기존 보와 직사각형 미로 보의 경우 Q는 각각 1.56과 1.47h에 비례합니다(h: 보 위 수심). 기존 웨어의 풀 내 평균 깊이 속도는 직사각형 미로 웨어의 평균 깊이 속도보다 높습니다.
그러나 주어진 방류량, 바닥 경사 및 웨어 간격에 대해 난류 운동 에너지(TKE) 및 난류 강도(TI) 값은 기존 웨어에 비해 직사각형 미로 웨어에서 더 높습니다. 기존의 웨어는 직사각형 미로 웨어보다 에너지 소산이 더 낮습니다.
더 낮은 TKE 및 TI 값은 미로 웨어 상단, 웨어 하류 벽 모서리, 웨어 측벽과 채널 벽 사이에서 관찰되었습니다. 보와 바닥 경사면 사이의 거리가 증가함에 따라 평균 깊이 속도, 난류 운동 에너지의 평균값 및 난류 강도가 증가하고 수영장의 체적 에너지 소산이 감소했습니다.
둑에 개구부가 있으면 평균 깊이 속도와 TI 값이 증가하고 풀 내에서 가장 높은 TKE 범위가 감소하여 두 모델 모두에서 물고기를 위한 휴식 공간이 더 넓어지고(TKE가 낮아짐) 에너지 소산율이 감소했습니다.
Two different arrangements of the weir (i.e., straight weir and rectangular labyrinth weir) were used to evaluate the effects of geometric parameters such as weir shape, weir spacing, presence of an orifice at the weir, and bed slope on the flow regime and the relationship between discharge and depth, variation and distribution of depth-averaged velocity, turbulence characteristics, and energy dissipation at the fishway. Computational fluid dynamics simulations were performed using FLOW-3D® software to examine the effects on flow conditions. The numerical model was validated by comparing the calculated surface profiles and velocities with experimentally measured values from the literature. The results of the numerical model and experimental data showed that the root-mean-square error and mean absolute percentage error for the surface profiles and normalized velocity profiles of plunging flows were 0.014 m and 3.11%, respectively, confirming the ability of the numerical model to predict the flow characteristics of the pool and weir. A plunging flow can occur at values of L/B = 1.83 (L: distance of the weir, B: width of the channel) and streaming flow at L/B = 0.61 for each model. The rectangular labyrinth weir model has larger dimensionless discharge values (Q+) than the conventional model. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q is proportional to 1.56 and 1.47h, respectively (h: the water depth above the weir). The average depth velocity in the pool of a conventional weir is higher than that of a rectangular labyrinth weir. However, for a given discharge, bed slope, and weir spacing, the turbulent kinetic energy (TKE) and turbulence intensity (TI) values are higher for a rectangular labyrinth weir compared to conventional weir. The conventional weir has lower energy dissipation than the rectangular labyrinth weir. Lower TKE and TI values were observed at the top of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall. As the distance between the weirs and the bottom slope increased, the average depth velocity, the average value of turbulent kinetic energy and the turbulence intensity increased, and the volumetric energy dissipation in the pool decreased. The presence of an opening in the weir increased the average depth velocity and TI values and decreased the range of highest TKE within the pool, resulted in larger resting areas for fish (lower TKE), and decreased the energy dissipation rates in both models.
1 Introduction
Artificial barriers such as detour dams, weirs, and culverts in lakes and rivers prevent fish from migrating and completing the upstream and downstream movement cycle. This chain is related to the life stage of the fish, its location, and the type of migration. Several riverine fish species instinctively migrate upstream for spawning and other needs. Conversely, downstream migration is a characteristic of early life stages [1]. A fish ladder is a waterway that allows one or more fish species to cross a specific obstacle. These structures are constructed near detour dams and other transverse structures that have prevented such migration by allowing fish to overcome obstacles [2]. The flow pattern in fish ladders influences safe and comfortable passage for ascending fish. The flow’s strong turbulence can reduce the fish’s speed, injure them, and delay or prevent them from exiting the fish ladder. In adult fish, spawning migrations are usually complex, and delays are critical to reproductive success [3].
Various fish ladders/fishways include vertical slots, denil, rock ramps, and pool weirs [1]. The choice of fish ladder usually depends on many factors, including water elevation, space available for construction, and fish species. Pool and weir structures are among the most important fish ladders that help fish overcome obstacles in streams or rivers and swim upstream [1]. Because they are easy to construct and maintain, this type of fish ladder has received considerable attention from researchers and practitioners. Such a fish ladder consists of a sloping-floor channel with series of pools directly separated by a series of weirs [4]. These fish ladders, with or without underwater openings, are generally well-suited for slopes of 10% or less [1, 2]. Within these pools, flow velocities are low and provide resting areas for fish after they enter the fish ladder. After resting in the pools, fish overcome these weirs by blasting or jumping over them [2]. There may also be an opening in the flooded portion of the weir through which the fish can swim instead of jumping over the weir. Design parameters such as the length of the pool, the height of the weir, the slope of the bottom, and the water discharge are the most important factors in determining the hydraulic structure of this type of fish ladder [3]. The flow over the weir depends on the flow depth at a given slope S0 and the pool length, either “plunging” or “streaming.” In plunging flow, the water column h over each weir creates a water jet that releases energy through turbulent mixing and diffusion mechanisms [5]. The dimensionless discharges for plunging (Q+) and streaming (Q*) flows are shown in Fig. 1, where Q is the total discharge, B is the width of the channel, w is the weir height, S0 is the slope of the bottom, h is the water depth above the weir, d is the flow depth, and g is the acceleration due to gravity. The maximum velocity occurs near the top of the weir for plunging flow. At the water’s surface, it drops to about half [6].
Fig. 1
Extensive experimental studies have been conducted to investigate flow patterns for various physical geometries (i.e., bed slope, pool length, and weir height) [2]. Guiny et al. [7] modified the standard design by adding vertical slots, orifices, and weirs in fishways. The efficiency of the orifices and vertical slots was related to the velocities at their entrances. In the laboratory experiments of Yagci [8], the three-dimensional (3D) mean flow and turbulence structure of a pool weir fishway combined with an orifice and a slot is investigated. It is shown that the energy dissipation per unit volume and the discharge have a linear relationship.
Considering the beneficial characteristics reported in the limited studies of researchers on the labyrinth weir in the pool-weir-type fishway, and knowing that the characteristics of flow in pool-weir-type fishways are highly dependent on the geometry of the weir, an alternative design of the rectangular labyrinth weir instead of the straight weirs in the pool-weir-type fishway is investigated in this study [7, 9]. Kim [10] conducted experiments to compare the hydraulic characteristics of three different weir types in a pool-weir-type fishway. The results show that a straight, rectangular weir with a notch is preferable to a zigzag or trapezoidal weir. Studies on natural fish passes show that pass ability can be improved by lengthening the weir’s crest [7]. Zhong et al. [11] investigated the semi-rigid weir’s hydraulic performance in the fishway’s flow field with a pool weir. The results showed that this type of fishway performed better with a lower invert slope and a smaller radius ratio but with a larger pool spacing.
Considering that an alternative method to study the flow characteristics in a fishway with a pool weir is based on numerical methods and modeling from computational fluid dynamics (CFD), which can easily change the geometry of the fishway for different flow fields, this study uses the powerful package CFD and the software FLOW-3D to evaluate the proposed weir design and compare it with the conventional one to extend the application of the fishway. The main objective of this study was to evaluate the hydraulic performance of the rectangular labyrinth pool and the weir with submerged openings in different hydraulic configurations. The primary objective of creating a new weir configuration for suitable flow patterns is evaluated based on the swimming capabilities of different fish species. Specifically, the following questions will be answered: (a) How do the various hydraulic and geometric parameters relate to the effects of water velocity and turbulence, expressed as turbulent kinetic energy (TKE) and turbulence intensity (TI) within the fishway, i.e., are conventional weirs more affected by hydraulics than rectangular labyrinth weirs? (b) Which weir configurations have the greatest effect on fish performance in the fishway? (c) In the presence of an orifice plate, does the performance of each weir configuration differ with different weir spacing, bed gradients, and flow regimes from that without an orifice plate?
2 Materials and Methods
2.1 Physical Model Configuration
This paper focuses on Ead et al. [6]’s laboratory experiments as a reference, testing ten pool weirs (Fig. 2). The experimental flume was 6 m long, 0.56 m wide, and 0.6 m high, with a bottom slope of 10%. Field measurements were made at steady flow with a maximum flow rate of 0.165 m3/s. Discharge was measured with magnetic flow meters in the inlets and water level with point meters (see Ead et al. [6]. for more details). Table 1 summarizes the experimental conditions considered for model calibration in this study.
Fig. 2
Table 1 Experimental conditions considered for calibration
Computational fluid dynamics (CFD) simulations were performed using FLOW-3D® v11.2 to validate a series of experimental liner pool weirs by Ead et al. [6] and to investigate the effects of the rectangular labyrinth pool weir with an orifice. The dimensions of the channel and data collection areas in the numerical models are the same as those of the laboratory model. Two types of pool weirs were considered: conventional and labyrinth. The proposed rectangular labyrinth pool weirs have a symmetrical cross section and are sized to fit within the experimental channel. The conventional pool weir model had a pool length of l = 0.685 and 0.342 m, a weir height of w = 0.141 m, a weir width of B = 0.56 m, and a channel slope of S0 = 5 and 10%. The rectangular labyrinth weirs have the same front width as the offset, i.e., a = b = c = 0.186 m. A square underwater opening with a width of 0.05 m and a depth of 0.05 m was created in the middle of the weir. The weir configuration considered in the present study is shown in Fig. 3.
Fig. 3
2.3 Governing Equations
FLOW-3D® software solves the Navier–Stokes–Reynolds equations for three-dimensional analysis of incompressible flows using the fluid-volume method on a gridded domain. FLOW -3D® uses an advanced free surface flow tracking algorithm (TruVOF) developed by Hirt and Nichols [12], where fluid configurations are defined in terms of a VOF function F (x, y, z, t). In this case, F (fluid fraction) represents the volume fraction occupied by the fluid: F = 1 in cells filled with fluid and F = 0 in cells without fluid (empty areas) [4, 13]. The free surface area is at an intermediate value of F. (Typically, F = 0.5, but the user can specify a different intermediate value.) The equations in Cartesian coordinates (x, y, z) applicable to the model are as follows:
�f∂�∂�+∂(���x)∂�+∂(���y)∂�+∂(���z)∂�=�SOR
(1)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�x+�x
(2)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�y+�y
(3)
∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�z+�z
(4)
where (u, v, w) are the velocity components, (Ax, Ay, Az) are the flow area components, (Gx, Gy, Gz) are the mass accelerations, and (fx, fy, fz) are the viscous accelerations in the directions (x, y, z), ρ is the fluid density, RSOR is the spring term, Vf is the volume fraction associated with the flow, and P is the pressure. The k–ε turbulence model (RNG) was used in this study to solve the turbulence of the flow field. This model is a modified version of the standard k–ε model that improves performance. The model is a two-equation model; the first equation (Eq. 5) expresses the turbulence’s energy, called turbulent kinetic energy (k) [14]. The second equation (Eq. 6) is the turbulent dissipation rate (ε), which determines the rate of dissipation of kinetic energy [15]. These equations are expressed as follows Dasineh et al. [4]:
In these equations, k is the turbulent kinetic energy, ε is the turbulent energy consumption rate, Gk is the generation of turbulent kinetic energy by the average velocity gradient, with empirical constants αε = αk = 1.39, C1ε = 1.42, and C2ε = 1.68, eff is the effective viscosity, μeff = μ + μt [15]. Here, μ is the hydrodynamic density coefficient, and μt is the turbulent density of the fluid.
2.4 Meshing and the Boundary Conditions in the Model Setup
The numerical area is divided into three mesh blocks in the X-direction. The meshes are divided into different sizes, a containing mesh block for the entire spatial domain and a nested block with refined cells for the domain of interest. Three different sizes were selected for each of the grid blocks. By comparing the accuracy of their results based on the experimental data, the reasonable mesh for the solution domain was finally selected. The convergence index method (GCI) evaluated the mesh sensitivity analysis. Based on this method, many researchers, such as Ahmadi et al. [16] and Ahmadi et al. [15], have studied the independence of numerical results from mesh size. Three different mesh sizes with a refinement ratio (r) of 1.33 were used to perform the convergence index method. The refinement ratio is the ratio between the larger and smaller mesh sizes (r = Gcoarse/Gfine). According to the recommendation of Celik et al. [17], the recommended number for the refinement ratio is 1.3, which gives acceptable results. Table 2 shows the characteristics of the three mesh sizes selected for mesh sensitivity analysis.Table 2 Characteristics of the meshes tested in the convergence analysis
The results of u1 = umax (u1 = velocity component along the x1 axis and umax = maximum velocity of u1 in a section perpendicular to the invert of the fishway) at Q = 0.035 m3/s, × 1/l = 0.66, and Y1/b = 0 in the pool of conventional weir No. 4, obtained from the output results of the software, were used to evaluate the accuracy of the calculation range. As shown in Fig. 4, x1 = the distance from a given weir in the x-direction, Y1 = the water depth measured in the y-direction, Y0 = the vertical distance in the Cartesian coordinate system, h = the water column at the crest, b = the distance between the two points of maximum velocity umax and zero velocity, and l = the pool length.
Fig. 4
The apparent index of convergence (p) in the GCI method is calculated as follows:
�=ln(�3−�2)(�2−�1)/ln(�)
(7)
f1, f2, and f3 are the hydraulic parameters obtained from the numerical simulation (f1 corresponds to the small mesh), and r is the refinement ratio. The following equation defines the convergence index of the fine mesh:
GCIfine=1.25|ε|��−1
(8)
Here, ε = (f2 − f1)/f1 is the relative error, and f2 and f3 are the values of hydraulic parameters considered for medium and small grids, respectively. GCI12 and GCI23 dimensionless indices can be calculated as:
GCI12=1.25|�2−�1�1|��−1
(9)
Then, the independence of the network is preserved. The convergence index of the network parameters obtained by Eqs. (7)–(9) for all three network variables is shown in Table 3. Since the GCI values for the smaller grid (GCI12) are lower compared to coarse grid (GCI23), it can be concluded that the independence of the grid is almost achieved. No further change in the grid size of the solution domain is required. The calculated values (GCI23/rpGCI12) are close to 1, which shows that the numerical results obtained are within the convergence range. As a result, the meshing of the solution domain consisting of a block mesh with a mesh size of 0.012 m and a block mesh within a larger block mesh with a mesh size of 0.009 m was selected as the optimal mesh (Fig. 5).Table 3 GCI calculation
The boundary conditions applied to the area are shown in Fig. 6. The boundary condition of specific flow rate (volume flow rate-Q) was used for the inlet of the flow. For the downstream boundary, the flow output (outflow-O) condition did not affect the flow in the solution area. For the Zmax boundary, the specified pressure boundary condition was used along with the fluid fraction = 0 (P). This type of boundary condition considers free surface or atmospheric pressure conditions (Ghaderi et al. [19]). The wall boundary condition is defined for the bottom of the channel, which acts like a virtual wall without friction (W). The boundary between mesh blocks and walls were considered a symmetrical condition (S).
Fig. 6
The convergence of the steady-state solutions was controlled during the simulations by monitoring the changes in discharge at the inlet boundary conditions. Figure 7 shows the time series plots of the discharge obtained from the Model A for the three main discharges from the numerical results. The 8 s to reach the flow equilibrium is suitable for the case of the fish ladder with pool and weir. Almost all discharge fluctuations in the models are insignificant in time, and the flow has reached relative stability. The computation time for the simulations was between 6 and 8 h using a personal computer with eight cores of a CPU (Intel Core i7-7700K @ 4.20 GHz and 16 GB RAM).
Fig. 7
3 Results
3.1 Verification of Numerical Results
Quantitative outcomes, including free surface and normalized velocity profiles obtained using FLOW-3D software, were reviewed and compared with the results of Ead et al. [6]. The fourth pool was selected to present the results and compare the experiment and simulation. For each quantity, the percentage of mean absolute error (MAPE (%)) and root-mean-square error (RMSE) are calculated. Equations (10) and (11) show the method used to calculate the errors.
MAPE(%)100×1�∑1�|�exp−�num�exp|
(10)
RMSE(−)1�∑1�(�exp−�num)2
(11)
Here, Xexp is the value of the laboratory data, Xnum is the numerical data value, and n is the amount of data. As shown in Fig. 8, let x1 = distance from a given weir in the x-direction and Y1 = water depth in the y-direction from the bottom. The trend of the surface profiles for each of the numerical results is the same as that of the laboratory results. The surface profiles of the plunging flows drop after the flow enters and then rises to approach the next weir. The RMSE and MAPE error values for Model A are 0.014 m and 3.11%, respectively, indicating acceptable agreement between numerical and laboratory results. Figure 9 shows the velocity vectors and plunging flow from the numerical results, where x and y are horizontal and vertical to the flow direction, respectively. It can be seen that the jet in the fish ladder pool has a relatively high velocity. The two vortices, i.e., the enclosed vortex rotating clockwise behind the weir and the surface vortex rotating counterclockwise above the jet, are observed for the regime of incident flow. The point where the jet meets the fish passage bed is shown in the figure. The normalized velocity profiles upstream and downstream of the impact points are shown in Fig. 10. The figure shows that the numerical results agree well with the experimental data of Ead et al. [6].
Fig. 8Fig. 9Fig. 10
3.2 Flow Regime and Discharge-Depth Relationship
Depending on the geometric shape of the fishway, including the distance of the weir, the slope of the bottom, the height of the weir, and the flow conditions, the flow regime in the fishway is divided into three categories: dipping, transitional, and flow regimes [4]. In the plunging flow regime, the flow enters the pool through the weir, impacts the bottom of the fishway, and forms a hydraulic jump causing two eddies [2, 20]. In the streamwise flow regime, the surface of the flow passing over the weir is almost parallel to the bottom of the channel. The transitional regime has intermediate flow characteristics between the submerged and flow regimes. To predict the flow regime created in the fishway, Ead et al. [6] proposed two dimensionless parameters, Qt* and L/w, where Qt* is the dimensionless discharge, L is the distance between weirs, and w is the height of the weir:
��∗=���0���
(12)
Q is the total discharge, B is the width of the channel, S0 is the slope of the bed, and g is the gravity acceleration. Figure 11 shows different ranges for each flow regime based on the slope of the bed and the distance between the pools in this study. The results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22] were used for this comparison. The distance between the pools affects the changes in the regime of the fish ladder. So, if you decrease the distance between weirs, the flow regime more likely becomes. This study determined all three flow regimes in a fish ladder. When the corresponding range of Qt* is less than 0.6, the flow regime can dip at values of L/B = 1.83. If the corresponding range of Qt* is greater than 0.5, transitional flow may occur at L/B = 1.22. On the other hand, when Qt* is greater than 1, streamwise flow can occur at values of L/B = 0.61. These observations agree well with the results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22].
Fig. 11
For plunging flows, another dimensionless discharge (Q+) versus h/w given by Ead et al. [6] was used for further evaluation:
�+=��ℎ�ℎ=23�d�
(13)
where h is the water depth above the weir, and Cd is the discharge coefficient. Figure 12a compares the numerical and experimental results of Ead et al. [6]. In this figure, Rehbock’s empirical equation is used to estimate the discharge coefficient of Ead et al. [6].
�d=0.57+0.075ℎ�
(14)
Fig. 12
The numerical results for the conventional weir (Model A) and the rectangular labyrinth weir (Model B) of this study agree well with the laboratory results of Ead et al. [6]. When comparing models A and B, it is also found that a rectangular labyrinth weir has larger Q + values than the conventional weir as the length of the weir crest increases for a given channel width and fixed headwater elevation. In Fig. 12b, Models A and B’s flow depth plot shows the plunging flow regime. The power trend lines drawn through the data are the best-fit lines. The data shown in Fig. 12b are for different bed slopes and weir geometries. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q can be assumed to be proportional to 1.56 and 1.47h, respectively. In the results of Ead et al. [6], Q is proportional to 1.5h. If we assume that the flow through the orifice is Qo and the total outflow is Q, the change in the ratio of Qo/Q to total outflow for models A and B can be shown in Fig. 13. For both models, the flow through the orifice decreases as the total flow increases. A logarithmic trend line was also found between the total outflow and the dimensionless ratio Qo/Q.
Fig. 13
3.3 Depth-Averaged Velocity Distributions
To ensure that the target fish species can pass the fish ladder with maximum efficiency, the average velocity in the fish ladder should be low enough [4]. Therefore, the average velocity in depth should be as much as possible below the critical swimming velocities of the target fishes at a constant flow depth in the pool [20]. The contour plot of depth-averaged velocity was used instead of another direction, such as longitudinal velocity because fish are more sensitive to depth-averaged flow velocity than to its direction under different hydraulic conditions. Figure 14 shows the distribution of depth-averaged velocity in the pool for Models A and B in two cases with and without orifice plates. Model A’s velocity within the pool differs slightly in the spanwise direction. However, no significant variation in velocity was observed. The flow is gradually directed to the sides as it passes through the rectangular labyrinth weir. This increases the velocity at the sides of the channel. Therefore, the high-velocity zone is located at the sides. The low velocity is in the downstream apex of the weir. This area may be suitable for swimming target fish. The presence of an opening in the weir increases the flow velocity at the opening and in the pool’s center, especially in Model A. The flow velocity increase caused by the models’ opening varied from 7.7 to 12.48%. Figure 15 illustrates the effect of the inverted slope on the averaged depth velocity distribution in the pool at low and high discharge. At constant discharge, flow velocity increases with increasing bed slope. In general, high flow velocity was found in the weir toe sidewall and the weir and channel sidewalls.
Fig. 14Fig. 15
On the other hand, for a constant bed slope, the high-velocity area of the pool increases due to the increase in runoff. For both bed slopes and different discharges, the most appropriate path for fish to travel from upstream to downstream is through the middle of the cross section and along the top of the rectangular labyrinth weirs. The maximum dominant velocities for Model B at S0 = 5% were 0.83 and 1.01 m/s; at S0 = 10%, they were 1.12 and 1.61 m/s at low and high flows, respectively. The low mean velocities for the same distance and S0 = 5 and 10% were 0.17 and 0.26 m/s, respectively.
Figure 16 shows the contour of the averaged depth velocity for various distances from the weir at low and high discharge. The contour plot shows a large variation in velocity within short distances from the weir. At L/B = 0.61, velocities are low upstream and downstream of the top of the weir. The high velocities occur in the side walls of the weir and the channel. At L/B = 1.22, the low-velocity zone displaces the higher velocity in most of the pool. Higher velocities were found only on the sides of the channel. As the discharge increases, the velocity zone in the pool becomes wider. At L/B = 1.83, there is an area of higher velocities only upstream of the crest and on the sides of the weir. At high discharge, the prevailing maximum velocities for L/B = 0.61, 1.22, and 1.83 were 1.46, 1.65, and 1.84 m/s, respectively. As the distance between weirs increases, the range of maximum velocity increases.
Fig. 16
On the other hand, the low mean velocity for these distances was 0.27, 0.44, and 0.72 m/s, respectively. Thus, the low-velocity zone decreases with increasing distance between weirs. Figure 17 shows the pattern distribution of streamlines along with the velocity contour at various distances from the weir for Q = 0.05 m3/s. A stream-like flow is generally formed in the pool at a small distance between weirs (L/B = 0.61). The rotation cell under the jet forms clockwise between the two weirs. At the distances between the spillways (L/B = 1.22), the transition regime of the flow is formed. The transition regime occurs when or shortly after the weir is flooded. The rotation cell under the jet is clockwise smaller than the flow regime and larger than the submergence regime. At a distance L/B = 1.83, a plunging flow is formed so that the plunging jet dips into the pool and extends downstream to the center of the pool. The clockwise rotation of the cell is bounded by the dipping jet of the weir and is located between the bottom and the side walls of the weir and the channel.
Fig. 17
Figure 18 shows the average depth velocity bar graph for each weir at different bed slopes and with and without orifice plates. As the distance between weirs increases, all models’ average depth velocity increases. As the slope of the bottom increases and an orifice plate is present, the average depth velocity in the pool increases. In addition, the average pool depth velocity increases as the discharge increases. Among the models, Model A’s average depth velocity is higher than Model B’s. The variation in velocity ranged from 8.11 to 12.24% for the models without an orifice plate and from 10.26 to 16.87% for the models with an orifice plate.
Fig. 18
3.4 Turbulence Characteristics
The turbulent kinetic energy is one of the important parameters reflecting the turbulent properties of the flow field [23]. When the k value is high, more energy and a longer transit time are required to migrate the target species. The turbulent kinetic energy is defined as follows:
�=12(�x′2+�y′2+�z′2)
(15)
where ux, uy, and uz are fluctuating velocities in the x, y, and z directions, respectively. An illustration of the TKE and the effects of the geometric arrangement of the weir and the presence of an opening in the weir is shown in Fig. 19. For a given bed slope, in Model A, the highest TKE values are uniformly distributed in the weir’s upstream portion in the channel’s cross section. In contrast, for the rectangular labyrinth weir (Model B), the highest TKE values are concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value in Models A and B is 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%). In the downstream portion of the conventional weir and within the crest of the weir and the walls of the rectangular labyrinth, there was a much lower TKE value that provided the best conditions for fish to recover in the pool between the weirs. The average of the lowest TKE for bottom slopes of 5 and 10% in Model A is 0.041 and 0.056 J/kg, and for Model B, is 0.047 and 0.064 J/kg. The presence of an opening in the weirs reduces the area of the highest TKE within the pool. It also increases the resting areas for fish (lower TKE). The highest TKE at the highest bottom slope in Models A and B with an orifice is 0.208 and 0.191 J/kg, respectively.
Fig. 19
Figure 20 shows the effect of slope on the longitudinal distribution of TKE in the pools. TKE values significantly increase for a given discharge with an increasing bottom slope. Thus, for a low bed slope (S0 = 5%), a large pool area has expanded with average values of 0.131 and 0.168 J/kg for low and high discharge, respectively. For a bed slope of S0 = 10%, the average TKE values are 0.176 and 0.234 J/kg. Furthermore, as the discharge increases, the area with high TKE values within the pool increases. Lower TKE values are observed at the apex of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall for both bottom slopes. The effect of distance between weirs on TKE is shown in Fig. 21. Low TKE values were observed at low discharge and short distances between weirs. Low TKE values are located at the top of the rectangular labyrinth weir and the downstream corner of the weir wall. There is a maximum value of TKE at the large distances between weirs, L/B = 1.83, along the center line of the pool, where the dip jet meets the bottom of the bed. At high discharge, the maximum TKE value for the distance L/B = 0.61, 1.22, and 1.83 was 0.246, 0.322, and 0.417 J/kg, respectively. In addition, the maximum TKE range increases with the distance between weirs.
Fig. 20Fig. 21
For TKE size, the average value (TKEave) is plotted against q in Fig. 22. For all models, the TKE values increase with increasing q. For example, in models A and B with L/B = 0.61 and a slope of 10%, the TKE value increases by 41.66 and 86.95%, respectively, as q increases from 0.1 to 0.27 m2/s. The TKE values in Model B are higher than Model A for a given discharge, bed slope, and weir distance. The TKEave in Model B is higher compared to Model A, ranging from 31.46 to 57.94%. The presence of an orifice in the weir reduces the TKE values in both weirs. The intensity of the reduction is greater in Model B. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, an orifice reduces TKEave values by 60.35 and 19.04%, respectively. For each model, increasing the bed slope increases the TKEave values in the pool. For example, for Model B with q = 0.18 m2/s, increasing the bed slope from 5 to 10% increases the TKEave value by 14.34%. Increasing the distance between weirs increases the TKEave values in the pool. For example, in Model B with S0 = 10% and q = 0.3 m2/s, the TKEave in the pool increases by 34.22% if you increase the distance between weirs from L/B = 0.61 to L/B = 0.183.
Fig. 22
Cotel et al. [24] suggested that turbulence intensity (TI) is a suitable parameter for studying fish swimming performance. Figure 23 shows the plot of TI and the effects of the geometric arrangement of the weir and the presence of an orifice. In Model A, the highest TI values are found upstream of the weirs and are evenly distributed across the cross section of the channel. The TI values increase as you move upstream to downstream in the pool. For the rectangular labyrinth weir, the highest TI values were concentrated on the sides of the pool, between the top of the weir and the side wall of the channel, and along the top of the weir. Downstream of the conventional weir, within the apex of the weir, and at the corners of the walls of the rectangular labyrinth weir, the percentage of TI was low. At the highest discharge, the average range of TI in Models A and B was 24–45% and 15–62%, respectively. The diversity of TI is greater in the rectangular labyrinth weir than the conventional weir. Fish swimming performance is reduced due to higher turbulence intensity. However, fish species may prefer different disturbance intensities depending on their swimming abilities; for example, Salmo trutta prefers a disturbance intensity of 18–53% [25]. Kupferschmidt and Zhu [26] found a higher range of TI for fishways, such as natural rock weirs, of 40–60%. The presence of an orifice in the weir increases TI values within the pool, especially along the middle portion of the cross section of the fishway. With an orifice in the weir, the average range of TI in Models A and B was 28–59% and 22–73%, respectively.
Fig. 23
The effect of bed slope on TI variation is shown in Fig. 24. TI increases in different pool areas as the bed slope increases for a given discharge. For a low bed slope (S0 = 5%), a large pool area has increased from 38 to 63% and from 56 to 71% for low and high discharge, respectively. For a bed slope of S0 = 10%, the average values of TI are 45–67% and 61–73% for low and high discharge, respectively. Therefore, as runoff increases, the area with high TI values within the pool increases. A lower TI is observed for both bottom slopes in the corner of the wall, downstream of the crest walls, and between the side walls in the weir and channel. Figure 25 compares weir spacing with the distribution of TI values within the pool. The TI values are low at low flows and short distances between weirs. A maximum value of TI occurs at long spacing and where the plunging stream impinges on the bed and the area around the bed. TI ranges from 36 to 57%, 58–72%, and 47–76% for the highest flow in a wide pool area for L/B = 0.61, 1.22, and 1.83, respectively.
Fig. 24Fig. 25
The average value of turbulence intensity (TIave) is plotted against q in Fig. 26. The increase in TI values with the increase in q values is seen in all models. For example, the average values of TI for Models A and B at L/B = 0.61 and slope of 10% increased from 23.9 to 33.5% and from 42 to 51.8%, respectively, with the increase in q from 0.1 to 0.27 m2/s. For a given discharge, a given gradient, and a given spacing of weirs, the TIave is higher in Model B than Model A. The presence of an orifice in the weirs increases the TI values in both types. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, the presence of an orifice increases TIave from 23.9 to 37.1% and from 42 to 48.8%, respectively. For each model, TIave in the pool increases with increasing bed slope. For Model B with q = 0.18 m2/s, TIave increases from 37.5 to 45.8% when you increase the invert slope from 5 to 10%. Increasing the distance between weirs increases the TIave in the pool. In Model B with S0 = 10% and q = 0.3 m2/s, the TIave in the pool increases from 51.8 to 63.7% as the distance between weirs increases from L/B = 0.61 to L/B = 0.183.
Fig. 26
3.5 Energy Dissipation
To facilitate the passage of various target species through the pool of fishways, it is necessary to pay attention to the energy dissipation of the flow and to keep the flow velocity in the pool slow. The average volumetric energy dissipation (k) in the pool is calculated using the following basic formula:
�=����0��
(16)
where ρ is the water density, and H is the average water depth of the pool. The change in k versus Q for all models at two bottom slopes, S0 = 5%, and S0 = 10%, is shown in Fig. 27. Like the results of Yagci [8] and Kupferschmidt and Zhu [26], at a constant bottom slope, the energy dissipation in the pool increases with increasing discharge. The trend of change in k as a function of Q from the present study at a bottom gradient of S0 = 5% is also consistent with the results of Kupferschmidt and Zhu [26] for the fishway with rock weir. The only difference between the results is the geometry of the fishway and the combination of boulders instead of a solid wall. Comparison of the models shows that the conventional model has lower energy dissipation than the rectangular labyrinth for a given discharge. Also, increasing the distance between weirs decreases the volumetric energy dissipation for each model with the same bed slope. Increasing the slope of the bottom leads to an increase in volumetric energy dissipation, and an opening in the weir leads to a decrease in volumetric energy dissipation for both models. Therefore, as a guideline for volumetric energy dissipation, if the value within the pool is too high, the increased distance of the weir, the decreased slope of the bed, or the creation of an opening in the weir would decrease the volumetric dissipation rate.
Fig. 27
To evaluate the energy dissipation inside the pool, the general method of energy difference in two sections can use:
ε=�1−�2�1
(17)
where ε is the energy dissipation rate, and E1 and E2 are the specific energies in Sects. 1 and 2, respectively. The distance between Sects. 1 and 2 is the same. (L is the distance between two upstream and downstream weirs.) Figure 28 shows the changes in ε relative to q (flow per unit width). The rectangular labyrinth weir (Model B) has a higher energy dissipation rate than the conventional weir (Model A) at a constant bottom gradient. For example, at S0 = 5%, L/B = 0.61, and q = 0.08 m3/s.m, the energy dissipation rate in Model A (conventional weir) was 0.261. In Model B (rectangular labyrinth weir), however, it was 0.338 (22.75% increase). For each model, the energy dissipation rate within the pool increases as the slope of the bottom increases. For Model B with L/B = 1.83 and q = 0.178 m3/s.m, the energy dissipation rate at S0 = 5% and 10% is 0.305 and 0.358, respectively (14.8% increase). Figure 29 shows an orifice’s effect on the pools’ energy dissipation rate. With an orifice in the weir, both models’ energy dissipation rates decreased. Thus, the reduction in energy dissipation rate varied from 7.32 to 9.48% for Model A and from 8.46 to 10.57 for Model B.
Fig. 28Fig. 29
4 Discussion
This study consisted of entirely of numerical analysis. Although this study was limited to two weirs, the hydraulic performance and flow characteristics in a pooled fishway are highlighted by the rectangular labyrinth weir and its comparison with the conventional straight weir. The study compared the numerical simulations with laboratory experiments in terms of surface profiles, velocity vectors, and flow characteristics in a fish ladder pool. The results indicate agreement between the numerical and laboratory data, supporting the reliability of the numerical model in capturing the observed phenomena.
When the configuration of the weir changes to a rectangular labyrinth weir, the flow characteristics, the maximum and minimum area, and even the location of each hydraulic parameter change compared to a conventional weir. In the rectangular labyrinth weir, the flow is gradually directed to the sides as it passes the weir. This increases the velocity at the sides of the channel [21]. Therefore, the high-velocity area is located on the sides. In the downstream apex of the weir, the flow velocity is low, and this area may be suitable for swimming target fish. However, no significant change in velocity was observed at the conventional weir within the fish ladder. This resulted in an average increase in TKE of 32% and an average increase in TI of about 17% compared to conventional weirs.
In addition, there is a slight difference in the flow regime for both weir configurations. In addition, the rectangular labyrinth weir has a higher energy dissipation rate for a given discharge and constant bottom slope than the conventional weir. By reducing the distance between the weirs, this becomes even more intense. Finally, the presence of an orifice in both configurations of the weir increased the flow velocity at the orifice and in the middle of the pool, reducing the highest TKE value and increasing the values of TI within the pool of the fish ladder. This resulted in a reduction in volumetric energy dissipation for both weir configurations.
The results of this study will help the reader understand the direct effects of the governing geometric parameters on the hydraulic characteristics of a fishway with a pool and weir. However, due to the limited configurations of the study, further investigation is needed to evaluate the position of the weir’s crest on the flow direction and the difference in flow characteristics when combining boulders instead of a solid wall for this type of labyrinth weir [26]. In addition, hydraulic engineers and biologists must work together to design an effective fishway with rectangular labyrinth configurations. The migration habits of the target species should be considered when designing the most appropriate design [27]. Parametric studies and field observations are recommended to determine the perfect design criteria.
The current study focused on comparing a rectangular labyrinth weir with a conventional straight weir. Further research can explore other weir configurations, such as variations in crest position, different shapes of labyrinth weirs, or the use of boulders instead of solid walls. This would help understand the influence of different geometric parameters on hydraulic characteristics.
5 Conclusions
A new layout of the weir was evaluated, namely a rectangular labyrinth weir compared to a straight weir in a pool and weir system. The differences between the weirs were highlighted, particularly how variations in the geometry of the structures, such as the shape of the weir, the spacing of the weir, the presence of an opening at the weir, and the slope of the bottom, affect the hydraulics within the structures. The main findings of this study are as follows:
The calculated dimensionless discharge (Qt*) confirmed three different flow regimes: when the corresponding range of Qt* is smaller than 0.6, the regime of plunging flow occurs for values of L/B = 1.83. (L: distance of the weir; B: channel width). When the corresponding range of Qt* is greater than 0.5, transitional flow occurs at L/B = 1.22. On the other hand, if Qt* is greater than 1, the streaming flow is at values of L/B = 0.61.
For the conventional weir and the rectangular labyrinth weir with the plunging flow, it can be assumed that the discharge (Q) is proportional to 1.56 and 1.47h, respectively (h: water depth above the weir). This information is useful for estimating the discharge based on water depth in practical applications.
In the rectangular labyrinth weir, the high-velocity zone is located on the side walls between the top of the weir and the channel wall. A high-velocity variation within short distances of the weir. Low velocity occurs within the downstream apex of the weir. This area may be suitable for swimming target fish.
As the distance between weirs increased, the zone of maximum velocity increased. However, the zone of low speed decreased. The prevailing maximum velocity for a rectangular labyrinth weir at L/B = 0.61, 1.22, and 1.83 was 1.46, 1.65, and 1.84 m/s, respectively. The low mean velocities for these distances were 0.27, 0.44, and 0.72 m/s, respectively. This finding highlights the importance of weir spacing in determining the flow characteristics within the fishway.
The presence of an orifice in the weir increased the flow velocity at the orifice and in the middle of the pool, especially in a conventional weir. The increase ranged from 7.7 to 12.48%.
For a given bottom slope, in a conventional weir, the highest values of turbulent kinetic energy (TKE) are uniformly distributed in the upstream part of the weir in the cross section of the channel. In contrast, for the rectangular labyrinth weir, the highest TKE values were concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value for the conventional and the rectangular labyrinth weir was 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%).
For a given discharge, bottom slope, and weir spacing, the average values of TI are higher for the rectangular labyrinth weir than for the conventional weir. At the highest discharge, the average range of turbulence intensity (TI) for the conventional and rectangular labyrinth weirs was between 24 and 45% and 15% and 62%, respectively. This reveals that the rectangular labyrinth weir may generate more turbulent flow conditions within the fishway.
For a given discharge and constant bottom slope, the rectangular labyrinth weir has a higher energy dissipation rate than the conventional weir (22.75 and 34.86%).
Increasing the distance between weirs decreased volumetric energy dissipation. However, increasing the gradient increased volumetric energy dissipation. The presence of an opening in the weir resulted in a decrease in volumetric energy dissipation for both model types.
Availability of data and materials
Data is contained within the article.
References
Katopodis C (1992) Introduction to fishway design, working document. Freshwater Institute, Central Arctic Region
Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C.: Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 63, 88–101 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.010ArticleGoogle Scholar
Dasineh, M.; Ghaderi, A.; Bagherzadeh, M.; Ahmadi, M.; Kuriqi, A.: Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics 9, 3135 (2021)ArticleGoogle Scholar
Silva, A.T.; Bermúdez, M.; Santos, J.M.; Rabuñal, J.R.; Puertas, J.: Pool-type fishway design for a potamodromous cyprinid in the Iberian Peninsula: the Iberian barbel—synthesis and future directions. Sustainability 12, 3387 (2020). https://doi.org/10.3390/su12083387ArticleGoogle Scholar
Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A.: Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: effect of boulder density and fishway discharge. Ecol. Eng. 73, 335–344 (2014). https://doi.org/10.1016/j.ecoleng.2014.09.065ArticleGoogle Scholar
Ead, S.; Katopodis, C.; Sikora, G.; Rajaratnam, N.J.J.: Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 3, 379–390 (2004)ArticleGoogle Scholar
Guiny, E.; Ervine, D.A.; Armstrong, J.D.: Hydraulic and biological aspects of fish passes for Atlantic salmon. J. Hydraul. Eng. 131, 542–553 (2005)ArticleGoogle Scholar
Zhong, Z.; Ruan, T.; Hu, Y.; Liu, J.; Liu, B.; Xu, W.: Experimental and numerical assessment of hydraulic characteristic of a new semi-frustum weir in the pool-weir fishway. Ecol. Eng. 170, 106362 (2021). https://doi.org/10.1016/j.ecoleng.2021.106362ArticleGoogle Scholar
Roache, P.J.: Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 1994(116), 405–413 (1994)ArticleGoogle Scholar
Guo, S.; Chen, S.; Huang, X.; Zhang, Y.; Jin, S.: CFD and experimental investigations of drag force on spherical leak detector in pipe flows at high Reynolds number. Comput. Model. Eng. Sci. 101(1), 59–80 (2014)Google Scholar
Ahmadi, M.; Kuriqi, A.; Nezhad, H.M.; Ghaderi, A.; Mohammadi, M.: Innovative configuration of vertical slot fishway to enhance fish swimming conditions. J. Hydrodyn. 34, 917–933 (2022). https://doi.org/10.1007/s42241-022-0071-yArticleGoogle Scholar
Ahmadi, M.; Ghaderi, A.; MohammadNezhad, H.; Kuriqi, A.; Di Francesco, S.J.W.: Numerical investigation of hydraulics in a vertical slot fishway with upgraded configurations. Water 13, 2711 (2021)ArticleGoogle Scholar
Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME (2008). https://doi.org/10.1115/1.2960953ArticleGoogle Scholar
Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)ArticleGoogle Scholar
Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T.: Pool-type fishways: two different morpho-ecological cyprinid species facing plunging and streaming flows. PLoS ONE 8, e65089 (2013). https://doi.org/10.1371/journal.pone.0065089ArticleGoogle Scholar
Yupeng Ren abc, Huiguang Zhou cd, Houjie Wang ab, Xiao Wu ab, Guohui Xu cd, Qingsheng Meng cd
Abstract
해저 퇴적물 흐름은 퇴적물을 심해로 운반하는 주요 수단 중 하나이며, 종종 장거리를 이동하고 수십 또는 수백 킬로미터에 걸쳐 상당한 양의 퇴적물을 운반합니다. 그것의 강력한 파괴력은 종종 이동 과정에서 잠수함 유틸리티에 심각한 손상을 초래합니다.
퇴적물 흐름의 퇴적물 농도는 주변 해수와의 밀도차를 결정하며, 이 밀도 차이는 퇴적물 흐름의 흐름 능력을 결정하여 이송된 퇴적물의 최종 퇴적 위치에 영향을 미칩니다. 본 논문에서는 다양한 미사 및 점토 중량비(미사/점토 비율이라고 함)를 갖는 다양한 퇴적물 농도의 퇴적물 흐름을 수로 테스트를 통해 연구합니다.
우리의 테스트 결과는 특정 퇴적물 구성에 대해 퇴적물 흐름이 가장 빠르게 이동하는 임계 퇴적물 농도가 있음을 나타냅니다. 4가지 미사/점토 비율 각각에 대한 임계 퇴적물 농도와 이에 상응하는 최대 속도가 구해집니다. 결과는 점토 함량이 임계 퇴적물 농도와 선형적으로 음의 상관 관계가 있음을 나타냅니다.
퇴적물 농도가 증가함에 따라 퇴적물의 흐름 거동은 흐름 상태에서 붕괴된 상태로 변환되고 흐름 거동이 변화하는 두 탁한 현탁액의 유체 특성은 모두 Bingham 유체입니다.
또한 본 논문에서는 퇴적물 흐름 내 입자 배열을 분석하여 위에서 언급한 결과에 대한 미시적 설명도 제공합니다.
Submarine sediment flows is one of the main means for transporting sediment to the deep sea, often traveling long-distance and transporting significant volumes of sediment for tens or even hundreds of kilometers. Its strong destructive force often causes serious damage to submarine utilities on its course of movement. The sediment concentration of the sediment flow determines its density difference with the ambient seawater, and this density difference determines the flow ability of the sediment flow, and thus affects the final deposition locations of the transported sediment. In this paper, sediment flows of different sediment concentration with various silt and clay weight ratios (referred to as silt/clay ratio) are studied using flume tests. Our test results indicate that there is a critical sediment concentration at which sediment flows travel the fastest for a specific sediment composition. The critical sediment concentrations and their corresponding maximum velocities for each of the four silt/clay ratios are obtained. The results further indicate that the clay content is linearly negatively correlated with the critical sediment concentration. As the sediment concentration increases, the flow behaviors of sediment flows transform from the flow state to the collapsed state, and the fluid properties of the two turbid suspensions with changing flow behaviors are both Bingham fluids. Additionally, this paper also provides a microscopic explanation of the above-mentioned results by analyzing the arrangement of particles within the sediment flow.
Introduction
Submarine sediment flows are important carriers for sea floor sediment movement and may carry and transport significant volumes of sediment for tens or even hundreds of kilometers (Prior et al., 1987; Pirmez and Imran, 2003; Zhang et al., 2018). Earthquakes, storms, and floods may all trigger submarine sediment flow events (Hsu et al., 2008; Piper and Normark, 2009; Pope et al., 2017b; Gavey et al., 2017). Sediment flows have strong forces during the movement, which will cause great harm to submarine structures such as cables and pipelines (Pope et al., 2017a). It was first confirmed that the cable breaking event caused by the sediment flow occurred in 1929. The sediment flow triggered by the Grand Banks earthquake damaged 12 cables. According to the time sequence of the cable breaking, the maximum velocity of the sediment flow is as high as 28 m/s (Heezen and Ewing, 1952; Kuenen, 1952; Heezen et al., 1954). Subsequent research shows that the lowest turbidity velocity that can break the cable also needs to reach 19 m/s (Piper et al., 1988). Since then, there have been many damage events of submarine cables and oil and gas pipelines caused by sediment flows in the world (Hsu et al., 2008; Carter et al., 2012; Cattaneo et al., 2012; Carter et al., 2014). During its movement, the sediment flow will gradually deposit a large amount of sediment carried by it along the way, that is, the deposition process of the sediment flow. On the one hand, this process brings a large amount of terrestrial nutrients and other materials to the ocean, while on the other hand, it causes damage and burial to benthic organisms, thus forming the largest sedimentary accumulation on Earth – submarine fans, which are highly likely to become good reservoirs for oil and gas resources (Daly, 1936; Yuan et al., 2010; Wu et al., 2022). The study on sediment flows (such as, the study of flow velocity and the forces acting on seabed structures) can provide important references for the safe design of seabed structures, the protection of submarine ecosystems, and exploration of turbidity sediments related oil and gas deposits. Therefore, it is of great significance to study the movement of sediment flows.
The sediment flow, as a highly sediment-concentrated fluid flowing on the sea floor, has a dense bottom layer and a dilute turbulent cloud. Observations at the Monterey Canyon indicated that the sediment flow can maintain its movement over long distances if its bottom has a relatively high sediment concentration. This dense bottom layer can be very destructive along its movement path to any facilities on the sea floor (Paull et al., 2018; Heerema et al., 2020; Wang et al., 2020). The sediment flow mentioned in this research paper is the general term of sediment density flow.
The sediment flow, which occurs on the seafloor, has the potential to cause erosion along its path. In this process, the suspended sediment is replenished, allowing the sediment flow to maintain its continuous flow capacity (Zhao et al., 2018). The dynamic force of sediment flow movement stem from its own gravity and density difference with surrounding water. In cases that the gravity drive of the slope is absent (on a flat sea floor), the flow velocity and distance of sediment flows are essentially determined by the sediment composition and concentration of the sediment flows as previous studies have demonstrated. Ilstad et al. (2004) conducted underwater flow tests in a sloped tank and employed high speed video camera to perform particle tracking. The results indicated that the premixed sand-rich and clay-rich slurries demonstrated different flow velocity and flow behavior. Using mixed kaolinite(d50 = 6 μm) and silica flour(d50 = 9 μm) in three compositions with total volumetric concentration ranged 22% or 28%, Felix and Peakall (2006) carried out underwater flow tests in a 5° slope Perspex channel and found that the flow ability of sediment flows is different depending on sediment compositions and concentrations. Sumner et al. (2009) used annular flume experiments to investigate the depositional dynamics and deposits of waning sediment-laden flows, finding that decelerating fast flows with fixed sand content and variable mud content resulted in four different deposit types. Chowdhury and Testik (2011) used lock-exchange tank, and experimented the kaolin clay sediment flows in the concentration range of 25–350 g/L, and predicted the fluid mud sediment flows propagation characteristics, but this study focused on giving sediment flows propagate phase transition time parameters, and is limited to clay. Lv et al. (2017) found through experiments that the rheological properties and flow behavior of kaolin clay (d50 = 3.7 μm) sediment flows were correlated to clay concentrations. In the field monitoring conducted by Liu et al. (2023) at the Manila Trench in the South China Sea in 2021, significant differences in the velocity, movement distance, and flow morphology of turbidity currents were observed. These differences may be attributed to variations in the particle composition of the turbidity currents.
On low and gentle slopes, although sediment flow with sand as the main sediment composition moves faster, it is difficult to propagate over long distances because sand has greater settling velocity and subaqueous angle of repose. Whereas the sediment flows with silt and clay as main composition may maintain relatively stable currents. Although its movement speed is slow, it has the ability to propagate over long distances because of the low settling rate of the fine particles (Ilstad et al., 2004; Liu et al., 2023). In a field observation at the Gaoping submarine canyon, the sediments collected from the sediment flows exhibited grain size gradation and the sediment was mostly composed of silt and clay (Liu et al., 2012). At the largest deltas in the world, for instance, the Mississippi River Delta, the sediments are mainly composed of silt and clay, which generally distributed along the coast in a wide range and provided the sediment sources for further distribution. The sediment flows originated and transported sediment from the coast to the deep sea are therefore share the same sediment compositions as delta sediments. To study the sediment flows composed of silt and clay is of great importance.
The sediment concentration of the sediment flows determines the density difference between the sediment flows and the ambient water and plays a key role in its flow ability. For the sediment flow with sediment composed of silt and clay, low sediment concentration means low density and therefore leads to low flow ability; however, although high sediment concentration results in high density, since there is cohesion between fine particles, it changes fluid properties and leads to low flow ability as well. Therefore, there should be a critical sediment concentration with mixed composition of silt and clay, at which the sediment flow maintains its strongest flow capacity and have the highest movement speed. In other words, the two characteristics of particle diameter and concentration of the sediment flow determine its own motion ability, which, if occurs, may become the most destructive force to submarine structures.
The objectives of this work was to study how the sediment composition (measured in relative weight of silt and clay, and referred as silt/clay ratio) and sediment concentration affect flow ability and behavior of the sediment flows, and to quantify the critical sediment concentration at which the sediment flows reached the greatest flow velocity under the experiment setting. We used straight flume without slope and conducted a series of flume tests with varying sediment compositions (silt-rich or clay-rich) and concentrations (96 to 1212 g/L). Each sediment flow sample was tested and analyzed for rheological properties using a rheometer, in order to characterize the relationship between flow behavior and rheological properties. Combined with the particle diameter, density and viscosity characteristics of the sediment flows measured in the experiment, a numerical modeling study is conducted, which are mutually validated with the experimental results.
The sediment concentration determines the arrangements of the sediment particles in the turbid suspension, and the arrangement impacts the fluid properties of the turbid suspension. The microscopic mode of particle arrangement in the turbid suspension can be constructed to further analyze the relationship between the fluid properties of turbid suspension and the flow behaviors of the sediment flow, and then characterize the critical sediment concentration at which the sediment flow runs the fastest. A simplified microscopic model of particle arrangement in turbid suspension was constructed to analyze the microscopic arrangement characteristics of sediment particles in turbid suspension with the fastest velocity.
Section snippets
Equipment and materials
The sediment flows flow experiments were performed in a Perspex channel with smooth transparent walls. The layout and dimensions of the experimental set-up were shown in Fig. 1. The bottom of the channel was flat and straight, and a gate was arranged to separate the two tanks. In order to study the flow capacity of turbidity currents from the perspective of their own composition (particle size distribution and concentration), we used a straight channel instead of an inclined one, to avoid any
Relationship between sediment flow flow velocity and sediment concentration
After the sediment flow is generated, its movement in the first half (50 cm) of the channel is relatively stable, and there is obvious shock diffusion in the second half. The reason is that the excitation wave (similar to the surge) will be formed during the sediment flow movement, and its speed is much faster than the speed of the sediment flow head. When the excitation wave reaches the tail of the channel, it will be reflected, thus affecting the subsequent flow of the sediment flow.
Sediment flows motion simulation based on FLOW-3D
As a relatively mature 3D fluid simulation software, FLOW-3D can accurately predict the free surface flow, and has been used to simulate the movement process of sediment flows for many times (Heimsund, 2007). The model adopted in this paper is RNG turbulence model, which can better deal with the flow with high strain rate and is suitable for the simulation of sediment flows with variable shape during movement. The governing equations of the numerical model involved include continuity equation,
Conclusions
In this study, we conducted a series of sediment flow flume tests with mixed silt and clay sediment samples in four silt/clay ratios on a flat slope. Rheological measurements were carried out on turbid suspension samples and microstructure analysis of the sediment particle arrangements was conducted, we concluded that:
(1)The flow velocity of the sediment flow is controlled by the sediment concentration and its own particle diameter composition, the flow velocity increased with the increase of the
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements
This work was supported by the National Natural Science Foundation of China [Grant no. 42206055]; the National Natural Science Foundation of China [Grant no. 41976049]; and the National Natural Science Foundation of China [Grant no. 42272327].
R.A. BagnoldAuto-suspension of transported sediment; turbidity currentsProc. R. Soc. Lond.(1962)
L. Carter et al.Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore TaiwanGeophys. Res. Lett.(2012)
L. Carter et al.Insights into submarine geohazards from breaks in subsea telecommunication cablesOceanography(2014)
A. Cattaneo et al.Searching for the seafloor signature of the 21 May 2003 Boumerdès earthquake offshore Central AlgeriaNat. Hazard. Earth. Sys.(2012)
S. ChoiLayer-averaged modeling of two-dimensional turbidity currents with a dissipative; galerkin finite element method; part i, formulation and application exampleJ. Hydraul. Res.(1998)
S.U. Choi et al.k-ε Turbulence modeling of density currents developing two dimensionally on a slopeJ. Hydraul. Eng.(2002)
R.A. DalyOrigin of submarine canyonsAm. J. Sci.(1936)
M. Felix et al.Transformation of debris flows into turbidity currents : mechanisms inferred from laboratory experimentsSedimentology(2006)
F.H. Harlow et al.Turbulence transport equationsPhys. Fluids(1967)
G.J. Heerema et al.What determines the downstream evolution of turbidity currents?Earth Planet. Sci. Lett.(2020)
There are more references available in the full text version of this article.
Received: 10 June 2023 / Revised: 19 June 2023 / Accepted: 27 June 2023 / Published: 1 July 2023(This article belongs to the Section Ocean Engineering)
일부 수식이 손상되어 표시될 수 있습니다. 이 경우 원문을 참조하시기 바랍니다.
Abstract
Local scouring might result in the spanning of submarine cables, endangering their mechanical and electrical properties. In this contribution, a three-dimensional computational fluid dynamics simulation model is developed using FLOW-3D, and the scouring process of semi-exposed submarine cables is investigated. The effects of the sediment critical Shields number, sediment density, and ocean current velocity on local scouring are discussed, and variation rules for the submarine cables’ spanning time are provided. The results indicate that three scouring holes are formed around the submarine cables. The location of the bottom of the holes corresponds to that of the maximum shear velocity. The continuous development of scouring holes at the wake position leads to the spanning of the submarine cables. The increase in the sediment’s critical Shields number and sediment density, as well as the decrease in the ocean current velocity, will extend the time for maintaining the stability of the upstream scouring hole and retard the development velocity of the wake position and downstream scouring holes. The spanning time has a cubic relationship with the sediment’s critical Shields number, a linear relationship with the sediment density, and an exponential relationship with the ocean current velocity. In this paper, the local scouring process of semi-exposed submarine cables is studied, which provides a theoretical basis for the operation and maintenance of submarine cables.
As a key piece of equipment in cross-sea power grids, submarine cables are widely used to connect autonomous power grids, supply power to islands or offshore platforms, and transmit electric power generated by marine renewable energy installations to onshore substations [1]. Once submarine cables break down due to natural disasters or human-made damage, the normal operation of other marine electric power equipment connected to them may be affected. These chain reactions will cause great economic losses and serious social impacts [2].
To protect submarine cables, they are usually buried 1 to 3 m below the seabed [3]. However, submarine cables are still confronted with potential threats from the complex subsea environment. Under the influence of fishing, anchor damage, ocean current scouring, and other factors, the sediment above submarine cables will always inevitably migrate. When a submarine cable is partially exposed, the scouring at this position will be exacerbated; eventually, it will cause the submarine cable to span. According to a field investigation of the 500 kV oil-filled submarine cable that is part of the Hainan networking system, the total length of the span is 49 m [4]. Under strong ocean currents, spanning submarine cables may experience vortex-induced vibrations. Fatigue stress caused by vortex-induced vibrations may lead to metal sheath rupture [5], which endangers the mechanical and electrical properties of submarine cables. Therefore, understanding the local scouring processes of partially exposed submarine cables is crucial for predicting scouring patterns. This is the basis for developing effective operation and maintenance strategies for submarine cables.
The mechanism and influencing factors of sediment erosion have been examined by researchers around the world. In 1988, Sumer [6] conducted experiments to show that the shedding vortex in the wake of a pipeline would increase the Shields parameter by 3–4 times, which would result in severe scouring. In 1991, Chiew [7] performed experiments to prove that the maximum scouring depth could be obtained when the pipeline was located on a flat bed and was scoured by a unidirectional water flow. Based on the test results, they provided a prediction formula for the maximum scouring depth. In 2003, Mastbergen [8] proposed a one-dimensional, steady-state numerical model of turbidity currents, which considered the negative pore pressures in the seabed. The calculated results of this model were basically consistent with the actual scouring of a submarine canyon. In 2007, Dey [9] presented a semitheoretical model for the computation of the maximum clear-water scour depth below underwater pipelines in uniform sediments under a steady flow, and the predicted scour depth in clear water satisfactorily agreed with the observed values. In 2008, Dey [10] conducted experiments on clear-water scour below underwater pipelines under a steady flow and obtained a variation pattern of the depth of the scouring hole. In 2008, Liang [11] used a two-dimensional numerical simulation to study the scouring process of a tube bundle under the action of currents and waves. They discovered that, compared with the scouring of a single tube, the scouring depth of the tube bundle was deeper, and the scouring time was longer. In 2012, Yang [12] found that placing rubber sheets under pipes can greatly accelerate their self-burial. The rubber sheets had the best performance when their length was about 1.5 times the size of the pipe. In 2020, Li [13] investigated the two-dimensional local scour beneath two submarine pipelines in tandem under wave-plus-current conditions via numerical simulation. They found that for conditions involving waves plus a low-strength current, the scour pattern beneath the two pipelines behaved like that in the pure-wave condition. Conversely, when the current had equal strength to the wave-induced flow, the scour pattern beneath the two pipelines resembled that in the pure-current condition. In 2020, Guan [14] studied and discussed the interactive coupling effects among a vibrating pipeline, flow field, and scour process through experiments, and the experimental data showed that the evolution of the scour hole had significant influences on the pipeline vibrations. In 2021, Liu [15] developed a two-dimensional finite element numerical model and researched the local scour around a vibrating pipeline. The numerical results showed that the maximum vibration amplitude of the pipeline could reach about 1.2 times diameter, and the maximum scour depth occurred on the wake side of the vibrating pipeline. In 2021, Huang [16] carried out two-dimensional numerical simulations to investigate the scour beneath a single pipeline and piggyback pipelines subjected to an oscillatory flow condition at a KC number of 11 and captured typical steady-streaming structures around the pipelines due to the oscillatory flow condition. In 2021, Cui [17] investigated the characteristics of the riverbed scour profile for a pipeline buried at different depths under the condition of riverbed sediments with different particle sizes. The results indicated that, in general, the equilibrium scour depth changed in a spoon shape with the gradual increase in the embedment ratio. In 2022, Li [18] used numerical simulation to study the influence of the burial depth of partially buried pipelines on the surrounding flow field, but they did not investigate the scour depth. In 2022, Zhu [19] performed experiments to prove that the scour hole propagation rate under a pipeline decreases with an increasing pipeline embedment ratio and rises with the KC number. In 2022, Najafzadeh [20] proposed equations for the prediction of the scouring propagation rate around pipelines due to currents based on a machine learning model, and the prediction results were consistent with the experimental data. In 2023, Ma [21] used the computational fluid dynamics coarse-grained discrete element method to simulate the scour process around a pipeline. The results showed that this method can effectively reduce the considerable need for computing resources and excessive computation time. In 2023, through numerical simulations, Hu [22] discovered that the water velocity and the pipeline diameter had a significant effect on the depth of scouring.
In the preceding works, the researchers investigated the mechanism of sediment scouring and the effect of various factors on the local scouring of submarine pipelines. However, submarine cables are buried beneath the seabed, while submarine pipelines are erected above the seabed. The difference in laying methods leads to a large discrepancy between their local scouring processes. Therefore, the conclusions of the above investigations are not applicable to the local scouring of submarine cables. Currently, there is no report on the research of the local scouring of partially exposed submarine cables.
In this paper, a three-dimensional computational fluid dynamics (CFD) finite element model, based on two-phase flow, is established using FLOW-3D. The local scouring process of semi-exposed submarine cables under steady-state ocean currents is studied, and the variation rules of the depth and the shape of the scouring holes, as well as the shear velocity with time, are obtained. By setting different critical Shields numbers of the sediment, different sediment densities, and different ocean current velocities, the change rule of the scouring holes’ development rate and the time required for the spanning of submarine cables are explored.
2. Sediment Scouring Model
In the sediment scouring model, the sediment is set as the dispersed particle, which is regarded as a kind of quasifluid. In this context, sediment scouring is considered as a two-phase flow process between the liquid phase and solid particle phase. The sediment in this process is further divided into two categories: one is suspended in the fluid, and the other is deposited on the bottom.When the local Shields number of sediment is greater than the critical Shields number, the deposited sediment will be transformed into the suspended sediment under the action of ocean currents. The calculation formulae of the local Shields numbers θ and the critical Shields numbers
ρf is the fluid density, g is the acceleration of gravity, d
50 is the median size of sediment, and μ is the dynamic viscosity of sediment.And each sediment particle suspended in the fluid obeys the equations for mass conservation and energy conservation
𝑢�¯ is the mean velocity vector of the fluid and the sediment particle,
us is the velocity of the sediment particle,
fs is the volume fraction of the sediment particle, P is the pressure, F is the volumetric and viscous force, K is the drag force, and
ur is the relative velocity.
3. Numerical Setup and Modeling
In this paper, a three-dimensional submarine cable local scouring simulation model is established by FLOW-3D. Based on the numerical simulation, the process of the submarine cable, which gradually changes from semi-exposed to the spanning state under the steady-state ocean current, is studied. The geometric modeling, the mesh division, the physical field setup, and the grid independent test of CFD numerical model are as follows.
3.1. Geometric Modeling and Mesh Division
A three-dimensional (3D) numerical model of the local scouring of a semi-exposed submarine cable is established, which is shown in Figure 1. The dimensions of the model are marked in Figure 1. The inlet direction of the ocean current is defined as the upstream of the submarine cable (referred to as upstream), and the outlet direction of the ocean current is defined as the downstream of the submarine cable (referred to as downstream).
Figure 1. Three-dimensional finite element model of local scouring of semi-exposed submarine cable.
The submarine cable with a diameter of 0.2 m is positioned on sediment that is initially in a semi-exposed state. When the length of the span is short, the submarine cable will not show obvious deformation due to gravity or scouring from the ocean current. Therefore, the submarine cable surface is set as the fixed boundary. The model’s left boundary is set as the inlet, the right boundary is set as the outlet, the front and rear boundaries are set as symmetry, and the bottom boundary is set as the non-slip wall. Since the water depth above the submarine cable is more than 0.6 m in practice, the top boundary of the model is also set as symmetry. The sediment near the inlet and the outlet will be carried by ocean currents, which leads to the abnormal scouring terrain. At each end of the sediment, a baffle (thickness of 3 cm) is installed to ensure that the simulation results can reflect the real situation.
Due to the fact that the flow field around the semi-exposed submarine cable is not a simple two-dimensional symmetrical distribution, it should be solved by three-dimensional numerical simulation. Considering the accuracy and efficiency of the calculation, the size of mesh is set to 0.02 m. The total number of meshes after the dissection is 133,254.
3.2. Physical Field Setup
The CFD finite element model contains four physical field modules: sediment scouring module, gravity and non-inertial reference frame module, density evaluation module, and viscosity and turbulence module. In this paper, the renormalization group (RNG) k–ε turbulence model is used, which has high computational accuracy for turbulent vortices. Therefore, this turbulence model is suitable for calculating the sediment scouring process around the semi-exposed submarine cable [25]. The key parameters of the numerical simulation are referring to the survey results of submarine sediments in the Korean Peninsula [26], as listed in Table 1.Table 1. Key parameters of numerical simulation.
3.3. Mesh Independent Test
In order to eliminate errors caused by the quantity of grids in the calculation process, two sizes of mesh are set on the validation model, and the scour profiles under different mesh sizes are compared. The validation model is shown in Figure 2, and the scouring terrain under different mesh size is given in Figure 3.
Figure 2. Validation model.
Figure 3. Scouring terrain under different mesh sizes.
It can be seen from Figure 3 that with the increase in the number of meshes, the scouring terrain of the verification model changes slightly, and the scouring depth is basically unchanged. Considering the accuracy of the numerical simulation and the calculation’s time cost, it is reasonable to consider setting the mesh size to 0.02 m.
4. Results and Analysis
4.1. Analysis of Local Scouring Process
Based on the CFD finite element numerical simulation, the local scouring process of the submarine cable under the steady-state ocean current is analyzed. The end time of the simulation is 9 h, the initial time step is 0.01 s, and the fluid velocity is 0.40 m/s. Simulation results are saved every minute. Figure 4 illustrates the scouring terrain around the semi-exposed submarine cable, which has been scoured by the steady-state current for 5 h.
Figure 4. Scouring terrain around semi-exposed submarine cable (scour for 5 h).
As can be seen from Figure 4, three scouring holes were separately formed in the upstream wake position and downstream of the semi-exposed submarine cable. The scouring holes are labeled according to their locations. The variation of the scouring terrain around the semi-exposed submarine cable over time is given in Figure 5. The red circle in the picture corresponds to the position of the submarine cable, and the red box in the legend marks the time when the submarine cable is spanning.
Figure 5. Variation of scouring terrain around semi-exposed submarine cable adapted to time.
From Figure 5, in the first hour of scouring, the upstream (−0.5 m to −0.1 m) and downstream (0.43 m to 1.5 m) scouring holes appeared. The upstream scouring hole was relatively flat with depth of 0.04 m. The depth of the downstream scouring hole increased with the increase in distance, and the maximum depth was 0.13 m. The scouring hole that developed at the wake position was very shallow, and its depth was only 0.007 m.
In the second hour of scouring, the upstream scouring hole’s depth remained nearly constant. The depth of the downstream scouring hole only increased by 0.002 m. The scouring hole at the wake position developed steadily, and its depth increased from 0.007 m to 0.014 m.
The upstream and downstream scouring holes did not continue to develop during the third to the sixth hour. Compared to the first two hours, the development of scouring holes at the wake position accelerated significantly, with an average growth rate of 0.028 m/h. The growth rate in the fifth hour of the scouring hole at the wake position was slightly faster than the other times. After 6 h of scouring, the sediment on the right side of the submarine cable had been hollowed out.
In the seventh and the eighth hour of scouring, the upstream scouring hole’s depth increased slightly, the downstream scouring hole still remained stable, and the depth of the scouring hole at wake position increased by 0.019 m. The sediment under the submarine cable was gradually eroded as well. By the end of the eighth hour, the lower right part of the submarine cable had been exposed to water as well.
At 8 h 21 min of the scouring, the submarine cable was completely spanned, and the scouring holes were connected to each other. Within the next 10 min, the development of the scouring holes sped up significantly, and the maximum depth of scouring holes increased greatly to 0.27 m.
In reference [17], researchers have studied the local scouring process of semi-buried pipelines in sandy riverbeds through experiments. The test results show that the scouring process can be divided into a start-up stage, micropore formation stage, extension stage, and equilibrium stage. In this paper, the first three stages are simulated, and the results are in good agreement with the experiment, which proves the accuracy of the present numerical model.
In this research, the velocity of ocean currents at the sediment surface is defined as the shear velocity, which plays an important role in the process of local scouring. Figure 6 provides visual data on how the shear velocity varies over time.
Figure 6. Shear velocity changes in the scouring process.
The semi-exposed submarine cable protrudes from the seabed, which makes the shear velocity of its surface much higher than other locations. After the submarine cable is spanned, the shear velocity of the scouring hole surface below it is taken. This is the reason for the sudden change of shear velocity at the submarine cable’s location in Figure 6.The shear velocity in the initial state of the upstream scouring hole is obviously greater than in subsequent times. After 1 h of scouring, the shear velocity in the upstream scouring hole rapidly decreased from 1.1 × 10
−2 m/s to 3.98 × 10
−3 m/s and remained stable until the end of the sixth hour. This phenomenon explains why the upstream scouring hole developed rapidly in the first hour but remained stable for the following 5 h.The shear velocity in the downstream scouring hole reduced at first and then increased; its initial value was 1.41 × 10
−2 m/s. It took approximately 5 h for the shear velocity to stabilize, and the stable shear velocity was 2.26 × 10
−3 m/s. Therefore, compared with the upstream scouring hole, the downstream scouring hole was deeper and required more time to reach stability.The initial shear velocity in the scouring hole at the wake position was only 7.1 × 10
−3 m/s, which almost does not change in the first hour. This leads to a very slow development of the scouring hole at the wake position in the early stages. The maximum shear velocity in this scouring hole gradually increased to 1.05 × 10
−2 m/s from the second to the fifth hour, and then decreased to 6.61 × 10
−3 m/s by the end of the eighth hour. This is why the scouring hole at the wake position grows fastest around the fifth hour. Consistent with the pattern of change in the scouring hole’s terrain, the location of the maximal shear velocity also shifted to the right with time.
The shear velocity of all three scouring holes rose dramatically in the last hour. Combined with the terrain in Figure 5, this can be attributed to the complete spanning of the submarine cable.
From Equations (3)–(5), one can see the movement of the sediment is related directly with the sediment’s critical Shields number, sediment density, and ocean current velocity. Based on the parameters in Table 1, the influence of the above parameters on the local scouring process of semi-exposed submarine cables will be discussed.
4.2. Influence Factors
4.2.1. Sediment’s Critical Shields Number
The sediment’s critical Shields number
θcr is set as 0.02, 0.03, 0.04, 0.05, 0.06, and 0.07, and the variations of scouring terrain over time under each
Figure 7. Influence of sediment’s critical Shields number
θcr on local scouring around semi-exposed submarine cable: (a
) θcr = 0.02; (b
) θcr = 0.03; (c
) θcr = 0.04; (d
) θcr = 0.05; (e
) θcr = 0.06; and (f
) θcr = 0.07.From Figure 7, one can see that a change in
θcr will affect the depth of the upstream scouring hole and the development speed of the scouring hole at the wake position, but it will have no significant impact on the expansion of the downstream scouring hole.Under conditions of different
θcr, the upstream scouring hole will reach a temporary plateau within 1 h, at which time the stable depth will be about 0.04 m. When
θcr ≤ 0.05, the upstream scouring hole will continue to expand after a few hours. The stable time is obviously affected by
θcr, which will gradually increase from 1 h to 11 h with the increase in
θcr. The terrain of the upstream scouring hole will gradually convert to deep on the left and to shallow on the right. Since the scouring hole at the wake position has not been stable, its state at the time of submarine cable spanning is studied emphatically. In the whole process of scouring, the scouring hole at the wake position continues to develop and does not reach a stable state. With the increase in
θcr, the development velocity of the scouring hole at the wake position will decrease considerably. Its average evolution velocity decreases from 3.88 cm/h to 1.62 cm/h, and its depth decreases from 21.9 cm to 18.8 cm. Under the condition of each
θcr, the downstream scouring hole will stabilize within 1 h, and the stable depth will be basically unchanged (all about 13.5 cm).As
θcr increases, so does the sediment’s ability to withstand shearing forces, which will cause it to become increasingly difficult to be eroded or carried away by ocean currents. This effect has been directly reflected in the depth of scouring holes (upstream and wake position). Due to the blocking effect of semi-exposed submarine cables, the wake is elongated, which is why the downstream scouring hole develops before the scouring hole at the wake position and quickly reaches a stable state. However, due to the high wake intensity, this process is not significantly affected by the change of
θcr.
4.2.2. Sediment Density
The density of sediment
ρs is set as 1550 kg/m
3, 1600 kg/m
3, 1650 kg/m
3, 1700 kg/m
3, 1750 kg/m
3, and 1800 kg/m
3, and the variation of scouring terrain over time under each
ρs will also affect the depth of the upstream scouring hole and the development speed of the scouring hole at the wake position. In addition, it can even have an impact on the downstream scouring hole depth.Under different
ρs conditions, the upstream scouring hole will always reach a temporary stable state in 1 h, at which time the stable depth will be 0.04 m. When
ρs ≤ 1750 kg/m
3, the upstream scouring hole will continue to expand after a few hours. The stabilization time of upstream scouring hole is more clearly affected by
ρs, which will gradually increase from 3 h to 13 h with the increase in
ρs. The terrain of the upstream scouring hole will gradually change to deep on the left and to shallow on the right. Since the scouring hole at the wake position has not been stable, its state at the time of the submarine cable spanning is studied emphatically, too. In the whole process of scouring, the scouring hole at the wake position continues to develop and does not reach a stable state. When
ρs is large, the development rate of scouring hole obviously decreased with time. With the increase in
ρs, the development velocity of the scouring hole at the wake position reduces from 3.38 cm/h to 1.14 cm/h, and the depth of this scouring hole declines from 20 cm to 15 cm. As
ρs increases, the stabilization time of the downstream scouring hole increases from less than 1 h to about 2 h, but the stabilization depth of the downstream scouring hole remains essentially the same (all around 13.5 cm).As can be seen from Equation (1), the increase in
ρs will reduce the Shields number, thus weakening the shear action of the sediment by the ocean current, which explains the extension of the stability time of the upstream scouring hole. At the same time, with the increase in the depth of scouring hole at the wake position, its shear velocity will decreases. Therefore, under a larger
ρs value, the development speed of scouring hole at the wake position will decrease significantly with time. Possibly for the same reason,
ρs can affect the development rate of downstream scouring hole.
4.2.3. Ocean Current Velocity
The ocean current velocity v is set as 0.35 m/s, 0.40 m/s, 0.45 m/s, 0.50 m/s, 0.55 m/s, and 0.60 m/s. Figure 9 presents the variation in scouring terrain with time for each v.
Figure 9. Influence of ocean current velocity v on local scouring around semi-exposed submarine cable: (a) v = 0.35 m/s; (b) v = 0.40 m/s; (c) v = 0.45 m/s; (d) v = 0.50 m/s; (e) v = 0.55 m/s; and (f) v = 0.60 m/s.
Changes in v affect the depth of the upstream and downstream scouring holes, as well as the development velocity of the wake position and downstream scouring holes.
When v ≤ 0.45 m/s, the upstream scouring hole will reach a temporary stable state within 1 h, at which point the stable depth will be 0.04 m. The stabilization time of the upstream scouring hole is affected by v, which will gradually decrease from 15 h to 3 h with the increase in v. When v > 0.45 m/s, the upstream scouring hole is going to expand continuously. With the increase in v, its average development velocity increases from 6.68 cm/h to 8.66 cm/h, and its terrain changes to deep on the left and to shallow on the right. When the submarine cable is spanning, special attention should be paid to the depth of the scouring hole at the wake position. Throughout whole scouring process, the scouring hole at the wake position continues to develop and does not reach a stable state. With the increase in v, the depth of scouring hole at the wake position will increase from 14 cm to 20 cm, and the average development velocity will increase from 0.91 cm/h to 10.43 cm/h. As v increases, the time required to stabilize the downstream scouring hole is shortened from 1to 2 h to less than 1 h, but the stable depth is remains nearly constant at 13.5 cm.
An increase in v will increase the shear velocity. Therefore, when the depth of the scouring hole increases, the shear velocity in the hole will also increase, which can deepen both the upstream and downstream scouring hole. According to Equation (1), the Shields number is proportional to the square of the shear velocity. The increase in shear velocity significantly intensifies local scouring, which increases the development rate of scouring holes at the wake position and downstream.
4.3. Variation Rule of Spanning Time
In this paper, the spanning time is defined as the time taken for a semi-exposed submarine cable (initial state) to become a spanning submarine cable. Figure 10 illustrates the effect of the above parameters on the spanning time of the semi-exposed submarine cable.
Figure 10. Influence of different parameters on spanning time of the semi-exposed submarine cable: (a) Sediment critical Shields number; (b) Sediment density; and (c) Ocean current velocity.From Figure 10a, the spanning time monotonically increases with the increase in the critical Shields number of sediment. However, the slope of the curve decreases first and then increases, and the inflection point is at
θcr = 4.59 × 10
−2. The relationship between spanning time t and sediment’s critical Shields number
θcr can be formulated by a cubic function as shown in Equation (6):
𝑡=−2.98+6.76𝜃𝑐𝑟−1.45𝜃2𝑐𝑟+0.11𝜃3𝑐𝑟.�=−2.98+6.76���−1.45���2+0.11���3.(6)It can be seen from Figure 10b that with the increase in the sediment density, the spanning time increases monotonically and linearly. The relationship between the spanning time t and the sediment’s density
ρs can be formulated by the first order function as shown in Equation (7):
𝑡=−41.59+30.54𝜌𝑠.�=−41.59+30.54��.(7)Figure 10c shows that with the increase in the ocean current velocity, the spanning time decreases monotonically. The slope of the curve increases with the increase in the ocean current velocity, so it can be considered that there is saturation of the ocean current velocity effect. The relationship between the spanning time t and the ocean current velocity v can be formulated by the exponential function
𝑡=0.15𝑣−4.38.�=0.15�−4.38.(8)
5. Conclusions
In this paper, a three-dimensional CFD finite element numerical simulation model is established, which is used to research the local scouring process of the semi-exposed submarine cable under the steady-state ocean current. The relationship between shear velocity and scouring terrain is discussed, the influence of sediment critical Shields number, sediment density and ocean current velocity on the local scouring process is analyzed, and the variation rules of the spanning time of the semi-exposed submarine cable is given. The conclusions are as follows:
Under the steady-state ocean currents, scouring holes will be formed at the upstream, wake position and downstream of the semi-exposed submarine cable. The upstream and downstream scouring holes develop faster, which will reach a temporary stable state at about 1 h after the start of the scouring. The scouring hole at the wake position will continue to expand at a slower rate and eventually lead to the spanning of the submarine cable.
There is a close relationship between the distribution of shear velocity and the scouring terrain. As the local scouring process occurs, the location of the maximum shear velocity within the scouring hole shifts and causes the bottom of the hole to move as well.
When the sediment’s critical Shields number and density are significantly large and ocean current velocity is sufficiently low, the duration of the stable state of the upstream scouring hole will be prolonged, and the average development velocity of the scouring holes at the wake position and downstream will be reduced.
The relationship between the spanning time and the critical Shields number θcr can be formulated as a cubic function, in which the curve’s inflection point is θcr = 4.59 × 10−2. The relationship between spanning time and sediment density can be formulated as a linear function. The relationship between spanning time and ocean current velocity can be formulated by exponential function.
Based on the conclusions of this paper, even when it is too late to take measures or when the exposed position of the submarine cable cannot be located, the degree of burial depth development still can be predicted. This prediction is important for the operation and maintenance of the submarine cable. However, the study still leaves something to be desired. Only the local scouring process under the steady-state ocean current was studied, which is an extreme condition. In practice, exposed submarine cables are more likely to be scoured by reciprocating ocean currents. In the future, we will investigate the local scouring of submarine cables under the reciprocating ocean current.
Author Contributions
Conceptualization, Y.H. and Q.L.; methodology, Q.L., P.Z. and H.T.; software, Q.L.; validation, Q.L., L.C. and W.T.; writing—original draft preparation, Q.L.; writing—review and editing, Y.H. and Q.L.; supervision, Y.H. and L.Y. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by the [Smart Grid Joint Fund Key Project between National Natural Science Foundation of China and State Grid Corporation] grant number [U1766220].
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
The data supporting the reported results cannot be shared at this time, as they have been used in producing more publications on this research.
Acknowledgments
This work is supported by the Smart Grid Joint Fund Key Project of the National Natural Science Foundation of China and State Grid Corporation (Grant No. U1766220).
Conflicts of Interest
The authors declare no conflict of interest.
References
Taormina, B.; Bald, J.; Want, A.; Thouzeau, G.; Lejart, M.; Desroy, N.; Carlier, A. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renew. Sust. Energ. Rev.2018, 96, 380–391. [Google Scholar] [CrossRef]
Gulski, E.; Anders, G.J.; Jogen, R.A.; Parciak, J.; Siemiński, J.; Piesowicz, E.; Paszkiewicz, S.; Irska, I. Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability. Renew. Sust. Energ. Rev.2021, 151, 111580. [Google Scholar] [CrossRef]
Wang, W.; Yan, X.; Li, S.; Zhang, L.; Ouyang, J.; Ni, X. Failure of submarine cables used in high-voltage power transmission: Characteristics, mechanisms, key issues and prospects. IET Gener. Transm. Distrib.2021, 15, 1387–1402. [Google Scholar] [CrossRef]
Chen, H.; Chen, Z.; Lu, H.; Wu, C.; Liang, J. Protection method for submarine cable detection and exposed suspension problem in Qiongzhou straits. Telecom Pow. Technol.2019, 36, 60–61+63. [Google Scholar]
Zhu, J.; Ren, B.; Dong, P.; Chen, W. Vortex-induced vibrations of a free spanning submarine power cable. Ocean Eng.2023, 272, 113792. [Google Scholar] [CrossRef]
Sumer, B.M.; Jensen, H.R.; Mao, Y.; Fredsøe, J. Effect of lee-wake on scour below pipelines in current. J. Waterw. Port Coast. Ocean. Eng.1988, 114, 599–614. [Google Scholar] [CrossRef]
Chiew, Y.M. Prediction of maximum scour depth at submarine pipelines. J. Hydraul. Eng.1991, 117, 452–466. [Google Scholar] [CrossRef]
Mastbergen, D.R.; Vandenberg, J.H. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology2003, 50, 625–637. [Google Scholar] [CrossRef]
Dey, S.; Singh, N.P. Clear-water scour below underwater pipelines under steady flow. J. Hydraul. Eng.2008, 134, 588–600. [Google Scholar] [CrossRef]
Liang, D.; Cheng, L. Numerical study of scour around a pipeline bundle. Proc. Inst. Civil Eng. Mar. Eng.2008, 161, 89–95. [Google Scholar] [CrossRef]
Yang, L.; Guo, Y.; Shi, B.; Kuang, C.; Xu, W.; Cao, S. Study of scour around submarine pipeline with a rubber plate or rigid spoiler in wave conditions. J. Waterw. Port Coast. Ocean Eng.2012, 138, 484–490. [Google Scholar] [CrossRef]
Li, Y.; Ong, M.C.; Fuhrman, D.R.; Larsen, B.E. Numerical investigation of wave-plus-current induced scour beneath two submarine pipelines in tandem. Coast. Eng.2020, 156, 103619. [Google Scholar] [CrossRef]
Guan, D.; Hsieh, S.C.; Chiew, Y.M.; Low, Y.M.; Wei, M. Local scour and flow characteristics around pipeline subjected to vortex-induced vibrations. J. Hydraul. Eng.2020, 146, 04019048. [Google Scholar] [CrossRef]
Liu, M.M.; Jin, X.; Wang, L.; Yang, F.; Tang, J. Numerical investigation of local scour around a vibrating pipeline under steady currents. Ocean Eng.2021, 221, 108546. [Google Scholar] [CrossRef]
Huang, J.; Yin, G.; Ong, M.C.; Myrhaug, D.; Jia, X. Numerical investigation of scour beneath pipelines subjected to an oscillatory flow condition. J. Mar. Sci. Eng.2021, 9, 1102. [Google Scholar] [CrossRef]
Cui, F.; Du, Y.; Hao, X.; Peng, S.; Bao, Z.; Peng, S. Experimental study on local scour and related mechanical effects at river-crossing underwater oil and gas pipelines. Adv. Civ. Eng.2021, 2021, 6689212. [Google Scholar] [CrossRef]
Li, B.; Ma, H. Scouring mechanism of suspended and partially-buried pipelines under steady flow. Coast. Eng.2022, 177, 104201. [Google Scholar] [CrossRef]
Najafzadeh, M.; Oliveto, G. Scour propagation rates around offshore pipelines exposed to currents by applying data-driven models. Water2022, 14, 493. [Google Scholar] [CrossRef]
Zhu, Y.; Xie, L.; Wong, T.; Su, T. Development of three-dimensional scour below pipelines in regular waves. J. Mar. Sci. Eng.2022, 10, 124. [Google Scholar] [CrossRef]
Ma, H.; Li, B. CFD-CGDEM coupling model for scour process simulation of submarine pipelines. Ocean Eng.2023, 271, 113789. [Google Scholar] [CrossRef]
Hu, K.; Bai, X.; Vaz, M.A. Numerical simulation on the local scour processing and influencing factors of submarine pipeline. J. Mar. Sci. Eng.2023, 11, 234. [Google Scholar] [CrossRef]
Yang, B.; Gao, F.; Wu, Y. Experimental study on local scour of sandy seabed under submarine pipeline in unidirectional currents. Eng. Mech.2008, 25, 206–210. [Google Scholar]
Cheng, Y.; Wang, X.; Luo, W.; Huang, X.; Lyu, X. Experimental study of local scour around a downstream inclined pile under combined waves and current. Adv. Eng. Sci.2021, 53, 64–71. [Google Scholar]
Lu, Y.; Zhou, L.; Shen, X. Different turbulence models for simulating a liquid-liquid hydro cyclone. J. Tsinghua Univ.2001, 41, 105–109. [Google Scholar]
Yun, D.H.; Kim, Y.T. Experimental study on settlement and scour characteristics of artificial reef with different reinforcement type and soil type. Geotext. Geomembr.2018, 46, 448–454. [Google Scholar] [CrossRef]
A series of numerical simulation were conducted to study the local scour around umbrella suction anchor foundation (USAF) under random waves. In this study, the validation was carried out firstly to verify the accuracy of the present model. Furthermore, the scour evolution and scour mechanism were analyzed respectively. In addition, two revised models were proposed to predict the equilibrium scour depth Seq around USAF. At last, a parametric study was carried out to study the effects of the Froude number Fr and Euler number Eu for the Seq. The results indicate that the present numerical model is accurate and reasonable for depicting the scour morphology under random waves. The revised Raaijmakers’s model shows good agreement with the simulating results of the present study when KCs,p < 8. The predicting results of the revised stochastic model are the most favorable for n = 10 when KCrms,a < 4. The higher Fr and Eu both lead to the more intensive horseshoe vortex and larger Seq.
The rapid expansion of cities tends to cause social and economic problems, such as environmental pollution and traffic jam. As a kind of clean energy, offshore wind power has developed rapidly in recent years. The foundation of offshore wind turbine (OWT) supports the upper tower, and suffers the cyclic loading induced by waves, tides and winds, which exerts a vital influence on the OWT system. The types of OWT foundation include the fixed and floating foundation, and the fixed foundation was used usually for nearshore wind turbine. After the construction of fixed foundation, the hydrodynamic field changes in the vicinity of the foundation, leading to the horseshoe vortex formation and streamline compression at the upside and sides of foundation respectively [1,2,3,4]. As a result, the neighboring soil would be carried away by the shear stress induced by vortex, and the scour hole would emerge in the vicinity of foundation. The scour holes increase the cantilever length, and weaken the lateral bearing capacity of foundation [5,6,7,8,9]. Moreover, the natural frequency of OWT system increases with the increase of cantilever length, causing the resonance occurs when the system natural frequency equals the wave or wind frequency [10,11,12]. Given that, an innovative foundation called umbrella suction anchor foundation (USAF) has been designed for nearshore wind power. The previous studies indicated the USAF was characterized by the favorable lateral bearing capacity with the low cost [6,13,14]. The close-up of USAF is shown in Figure 1, and it includes six parts: 1-interal buckets, 2-external skirt, 3-anchor ring, 4-anchor branch, 5-supporting rod, 6-telescopic hook. The detailed description and application method of USAF can be found in reference [13].
Figure 1. The close-up of umbrella suction anchor foundation (USAF).
Numerical and experimental investigations of scour around OWT foundation under steady currents and waves have been extensively studied by many researchers [1,2,15,16,17,18,19,20,21,22,23,24]. The seabed scour can be classified as two types according to Shields parameter θ, i.e., clear bed scour (θ < θcr) or live bed scour (θ > θcr). Due to the set of foundation, the adverse hydraulic pressure gradient exists at upstream foundation edges, resulting in the streamline separation between boundary layer flow and seabed. The separating boundary layer ascended at upstream anchor edges and developed into the horseshoe vortex. Then, the horseshoe vortex moved downstream gradually along the periphery of the anchor, and the vortex shed off continually at the lee-side of the anchor, i.e., wake vortex. The core of wake vortex is a negative pressure center, liking a vacuum cleaner. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortexes. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow when the turbulence energy could not support the survival of wake vortex. According to Tavouktsoglou et al. [25], the scale of pile wall boundary layer is proportional to 1/ln(Rd) (Rd is pile Reynolds), which means the turbulence intensity induced by the flow-structure interaction would decrease with Rd increases, but the effects of Rd can be neglected only if the flow around the foundation is fully turbulent [26]. According to previous studies [1,15,27,28,29,30,31,32], the scour development around pile foundation under waves was significantly influenced by Shields parameter θ and KC number simultaneously (calculated by Equation (1)). Sand ripples widely existed around pile under waves in the case of live bed scour, and the scour morphology is related with θ and KC. Compared with θ, KC has a greater influence on the scour morphology [21,27,28]. The influence mechanism of KC on the scour around the pile is reflected in two aspects: the horseshoe vortex at upstream and wake vortex shedding at downstream.
KC=UwmTD��=�wm��(1)
where, Uwm is the maximum velocity of the undisturbed wave-induced oscillatory flow at the sea bottom above the wave boundary layer, T is wave period, and D is pile diameter.
There are two prerequisites to satisfy the formation of horseshoe vortex at upstream pile edges: (1) the incoming flow boundary layer with sufficient thickness and (2) the magnitude of upstream adverse pressure gradient making the boundary layer separating [1,15,16,18,20]. The smaller KC results the lower adverse pressure gradient, and the boundary layer cannot separate, herein, there is almost no horseshoe vortex emerging at upside of pile. Sumer et al. [1,15] carried out several sets of wave flume experiments under regular and irregular waves respectively, and the experiment results show that there is no horseshoe vortex when KC is less than 6. While the scale and lifespan of horseshoe vortex increase evidently with the increase of KC when KC is larger than 6. Moreover, the wake vortex contributes to the scour at lee-side of pile. Similar with the case of horseshoe vortex, there is no wake vortex when KC is less than 6. The wake vortex is mainly responsible for scour around pile when KC is greater than 6 and less than O(100), while horseshoe vortex controls scour nearly when KC is greater than O(100).
Sumer et al. [1] found that the equilibrium scour depth was nil around pile when KC was less than 6 under regular waves for live bed scour, while the equilibrium scour depth increased with the increase of KC. Based on that, Sumer proposed an equilibrium scour depth predicting equation (Equation (2)). Carreiras et al. [33] revised Sumer’s equation with m = 0.06 for nonlinear waves. Different with the findings of Sumer et al. [1] and Carreiras et al. [33], Corvaro et al. [21] found the scour still occurred for KC ≈ 4, and proposed the revised equilibrium scour depth predicting equation (Equation (3)) for KC > 4.
Rudolph and Bos [2] conducted a series of wave flume experiments to investigate the scour depth around monopile under waves only, waves and currents combined respectively, indicting KC was one of key parameters in influencing equilibrium scour depth, and proposed the equilibrium scour depth predicting equation (Equation (4)) for low KC (1 < KC < 10). Through analyzing the extensive data from published literatures, Raaijmakers and Rudolph [34] developed the equilibrium scour depth predicting equation (Equation (5)) for low KC, which was suitable for waves only, waves and currents combined. Khalfin [35] carried out several sets of wave flume experiments to study scour development around monopile, and proposed the equilibrium scour depth predicting equation (Equation (6)) for low KC (0.1 < KC < 3.5). Different with above equations, the Khalfin’s equation considers the Shields parameter θ and KC number simultaneously in predicting equilibrium scour depth. The flow reversal occurred under through in one wave period, so sand particles would be carried away from lee-side of pile to upside, resulting in sand particles backfilled into the upstream scour hole [20,29]. Considering the backfilling effects, Zanke et al. [36] proposed the equilibrium scour depth predicting equation (Equation (7)) around pile by theoretical analysis, and the equation is suitable for the whole range of KC number under regular waves and currents combined.
where, γ is safety factor, depending on design process, typically γ = 1.5, Kwave is correction factor considering wave action, Khw is correction factor considering water depth.
where, n is the 1/n’th highest wave for random waves
For predicting equilibrium scour depth under irregular waves, i.e., random waves, Sumer and Fredsøe [16] found it’s suitable to take Equation (2) to predict equilibrium scour depth around pile under random waves with the root-mean-square (RMS) value of near-bed orbital velocity amplitude Um and peak wave period TP to calculate KC. Khalfin [35] recommended the RMS wave height Hrms and peak wave period TP were used to calculate KC for Equation (6). References [37,38,39,40] developed a series of stochastic theoretical models to predict equilibrium scour depth around pile under random waves, nonlinear random waves plus currents respectively. The stochastic approach thought the 1/n’th highest wave were responsible for scour in vicinity of pile under random waves, and the KC was calculated in Equation (8) with Um and mean zero-crossing wave period Tz. The results calculated by Equation (8) agree well with experimental values of Sumer and Fredsøe [16] if the 1/10′th highest wave was used. To author’s knowledge, the stochastic approach proposed by Myrhaug and Rue [37] is the only theoretical model to predict equilibrium scour depth around pile under random waves for the whole range of KC number in published documents. Other methods of predicting scour depth under random waves are mainly originated from the equation for regular waves-only, waves and currents combined, which are limited to the large KC number, such as KC > 6 for Equation (2) and KC > 4 for Equation (3) respectively. However, situations with relatively low KC number (KC < 4) often occur in reality, for example, monopile or suction anchor for OWT foundations in ocean environment. Moreover, local scour around OWT foundations under random waves has not yet been investigated fully. Therefore, further study are still needed in the aspect of scour around OWT foundations with low KC number under random waves. Given that, this study presents the scour sediment model around umbrella suction anchor foundation (USAF) under random waves. In this study, a comparison of equilibrium scour depth around USAF between this present numerical models and the previous theoretical models and experimental results was presented firstly. Then, this study gave a comprehensive analysis for the scour mechanisms around USAF. After that, two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] respectively to predict the equilibrium scour depth. Finally, a parametric study was conducted to study the effects of the Froude number (Fr) and Euler number (Eu) to equilibrium scour depth respectively.
2. Numerical Method
2.1. Governing Equations of Flow
The following equations adopted in present model are already available in Flow 3D software. The authors used these theoretical equations to simulate scour in random waves without modification. The incompressible viscous fluid motion satisfies the Reynolds-averaged Navier-Stokes (RANS) equation, so the present numerical model solves RANS equations:
where, VF is the volume fraction; u, v, and w are the velocity components in x, y, z direction respectively with Cartesian coordinates; Ai is the area fraction; ρf is the fluid density, fi is the viscous fluid acceleration, Gi is the fluid body acceleration (i = x, y, z).
2.2. Turbulent Model
The turbulence closure is available by the turbulent model, such as one-equation, the one-equation k-ε model, the standard k-ε model, RNG k-ε turbulent model and large eddy simulation (LES) model. The LES model requires very fine mesh grid, so the computational time is large, which hinders the LES model application in engineering. The RNG k-ε model can reduce computational time greatly with high accuracy in the near-wall region. Furthermore, the RNG k-ε model computes the maximum turbulent mixing length dynamically in simulating sediment scour model. Therefore, the RNG k-ε model was adopted to study the scour around anchor under random waves [41,42].
where, kT is specific kinetic energy involved with turbulent velocity, GT is the turbulent energy generated by buoyancy; εT is the turbulent energy dissipating rate, PT is the turbulent energy, Diffε and DiffkT are diffusion terms associated with VF, Ai; CDIS1, CDIS2 and CDIS3 are dimensionless parameters, and CDIS1, CDIS3 have default values of 1.42, 0.2 respectively. CDIS2 can be obtained from PT and kT.
2.3. Sediment Scour Model
The sand particles may suffer four processes under waves, i.e., entrainment, bed load transport, suspended load transport, and deposition, so the sediment scour model should depict the above processes efficiently. In present numerical simulation, the sediment scour model includes the following aspects:
2.3.1. Entrainment and Deposition
The combination of entrainment and deposition determines the net scour rate of seabed in present sediment scour model. The entrainment lift velocity of sand particles was calculated as [43]:
where, αi is the entrainment parameter, ns is the outward point perpendicular to the seabed, d* is the dimensionless diameter of sand particles, which was calculated by Equation (15), θcr is the critical Shields parameter, g is the gravity acceleration, di is the diameter of sand particles, ρi is the density of seabed species.
In Equation (14), the entrainment parameter αi confirms the rate at which sediment erodes when the given shear stress is larger than the critical shear stress, and the recommended value 0.018 was adopted according to the experimental data of Mastbergen and Von den Berg [43]. ns is the outward pointing normal to the seabed interface, and ns = (0,0,1) according to the Cartesian coordinates used in present numerical model.
The shields parameter was obtained from the following equation:
θ=U2f,m(ρi/ρf−1)gd50�=�f,m2(��/�f−1)��50(16)
where, Uf,m is the maximum value of the near-bed friction velocity; d50 is the median diameter of sand particles. The detailed calculation procedure of θ was available in Soulsby [44].
The critical shields parameter θcr was obtained from the Equation (17) [44]
The sand particles begin to deposit on seabed when the turbulence energy weaken and cann’t support the particles suspending. The setting velocity of the particles was calculated from the following equation [44]:
This is called bed load transport when the sand particles roll or bounce over the seabed and always have contact with seabed. The bed load transport velocity was computed by [45]:
where, qb,i is the bed load transport rate, which was obtained from Equation (20), δi is the bed load thickness, which was calculated by Equation (21), cb,i is the volume fraction of sand i in the multiple species, fb is the critical packing fraction of the seabed.
where, Cs,i is the suspended sand particles mass concentration of sand i in the multiple species, us,i is the sand particles velocity of sand i, Df is the diffusivity.
The velocity of sand i in the multiple species could be obtained from the following equation:
where, u¯�¯ is the velocity of mixed fluid-particles, which can be calculated by the RANS equation with turbulence model, cs,i is the suspended sand particles volume concentration, which was computed from Equation (24).
cs,i=Cs,iρi�s,�=�s,���(24)
3. Model Setup
The seabed-USAF-wave three-dimensional scour numerical model was built using Flow-3D software. As shown in Figure 2, the model includes sandy seabed, USAF model, sea water, two baffles and porous media. The dimensions of USAF are shown in Table 1. The sandy bed (210 m in length, 30 m in width and 11 m in height) is made up of uniform fine sand with median diameter d50 = 0.041 cm. The USAF model includes upper steel tube with the length of 20 m, which was installed in the middle of seabed. The location of USAF is positioned at 140 m from the upstream inflow boundary and 70 m from the downstream outflow boundary. Two baffles were installed at two ends of seabed. In order to eliminate the wave reflection basically, the porous media was set at the outflow side on the seabed.
Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wv-wave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.
Table 1. Numerical simulating cases.
3.1. Mesh Geometric Dimensions
In the simulation of the scour under the random waves, the model includes the umbrella suction anchor foundation, seabed and fluid. As shown in Figure 3, the model mesh includes global mesh grid and nested mesh grid, and the total number of grids is 1,812,000. The basic procedure for building mesh grid consists of two steps. Step 1: Divide the global mesh using regular hexahedron with size of 0.6 × 0.6. The global mesh area is cubic box, embracing the seabed and whole fluid volume, and the dimensions are 210 m in length, 30 m in width and 32 m in height. The details of determining the grid size can see the following mesh sensitivity section. Step 2: Set nested fine mesh grid in vicinity of the USAF with size of 0.3 × 0.3 so as to shorten the computation cost and improve the calculation accuracy. The encryption range is −15 m to 15 m in x direction, −15 m to 15 m in y direction and 0 m to 32 m in z direction, respectively. In order to accurately capture the free-surface dynamics, such as the fluid-air interface, the volume of fluid (VOF) method was adopted for tracking the free water surface. One specific algorithm called FAVORTM (Fractional Area/Volume Obstacle Representation) was used to define the fractional face areas and fractional volumes of the cells which are open to fluid flow.
Figure 3. The sketch of mesh grid.
3.2. Boundary Conditions
As shown in Figure 2, the initial fluid length is 210 m as long as seabed. A wave boundary was specified at the upstream offshore end. The details of determining the random wave spectrum can see the following wave parameters section. The outflow boundary was set at the downstream onshore end. The symmetry boundary was used at the top and two sides of the model. The symmetric boundaries were the better strategy to improve the computation efficiency and save the calculation cost [46]. At the seabed bottom, the wall boundary was adopted, which means the u = v = w= 0. Besides, the upper steel tube of USAF was set as no-slip condition.
3.3. Wave Parameters
The random waves with JONSWAP wave spectrum were used for all simulations as realistic representation of offshore conditions. The unidirectional JONSWAP frequency spectrum was described as [47]:
where, α is wave energy scale parameter, which is calculated by Equation (26), ω is frequency, ωp is wave spectrum peak frequency, which can be obtained from Equation (27). γ is wave spectrum peak enhancement factor, in this study γ = 3.3. σ is spectral width factor, σ equals 0.07 for ω ≤ ωp and 0.09 for ω > ωp respectively.
α=0.0076(gXU2)−0.22�=0.0076(���2)−0.22(26)
ωp=22(gU)(gXU2)−0.33�p=22(��)(���2)−0.33(27)
where, X is fetch length, U is average wind velocity at 10 m height from mean sea level.
In present numerical model, the input key parameters include X and U for wave boundary with JONSWAP wave spectrum. The objective wave height and period are available by different combinations of X and U. In this study, we designed 9 cases with different wave heights, periods and water depths for simulating scour around USAF under random waves (see Table 2). For random waves, the wave steepness ε and Ursell number Ur were acquired form Equations (28) and (29) respectively
ε=2πgHsT2a�=2���s�a2(28)
Ur=Hsk2h3w�r=�s�2ℎw3(29)
where, Hs is significant wave height, Ta is average wave period, k is wave number, hw is water depth. The Shield parameter θ satisfies θ>θcr for all simulations in current study, indicating the live bed scour prevails.
Table 2. Numerical simulating cases.
3.4. Mesh Sensitivity
In this section, a mesh sensitivity analysis was conducted to investigate the influence of mesh grid size to results and make sure the calculation is mesh size independent and converged. Three mesh grid size were chosen: Mesh 1—global mesh grid size of 0.75 × 0.75, nested fine mesh grid size of 0.4 × 0.4, and total number of grids 1,724,000, Mesh 2—global mesh grid size of 0.6 × 0.6, nested fine mesh grid size of 0.3 × 0.3, and total number of grids 1,812,000, Mesh 3—global mesh grid size of 0.4 × 0.4, nested fine mesh grid size of 0.2 × 0.2, and total number of grids 1,932,000. The near-bed shear velocity U* is an important factor for influencing scour process [1,15], so U* at the position of (4,0,11.12) was evaluated under three mesh sizes. As the Figure 4 shown, the maximum error of shear velocity ∆U*1,2 is about 39.8% between the mesh 1 and mesh 2, and 4.8% between the mesh 2 and mesh 3. According to the mesh sensitivity criterion adopted by Pang et al. [48], it’s reasonable to think the results are mesh size independent and converged with mesh 2. Additionally, the present model was built according to prototype size, and the mesh size used in present model is larger than the mesh size adopted by Higueira et al. [49] and Corvaro et al. [50]. If we choose the smallest cell size, it will take too much time. For example, the simulation with Mesh3 required about 260 h by using a computer with Intel Xeon Scalable Gold 4214 CPU @24 Cores, 2.2 GHz and 64.00 GB RAM. Therefore, in this case, considering calculation accuracy and computation efficiency, the mesh 2 was chosen for all the simulation in this study.
Figure 4. Comparison of near-bed shear velocity U* with different mesh grid size.
The nested mesh block was adopted for seabed in vicinity of the USAF, which was overlapped with the global mesh block. When two mesh blocks overlap each other, the governing equations are by default solved on the mesh block with smaller average cell size (i.e., higher grid resolution). It is should be noted that the Flow 3D software used the moving mesh captures the scour evolution and automatically adjusts the time step size to be as large as possible without exceeding any of the stability limits, affecting accuracy, or unduly increasing the effort required to enforce the continuity condition [51].
3.5. Model Validation
In order to verify the reliability of the present model, the results of present study were compared with the experimental data of Khosronejad et al. [52]. The experiment was conducted in an open channel with a slender vertical pile under unidirectional currents. The comparison of scour development between the present results and the experimental results is shown in Figure 5. The Figure 5 reveals that the present results agree well with the experimental data of Khosronejad et al. [52]. In the first stage, the scour depth increases rapidly. After that, the scour depth achieves a maximum value gradually. The equilibrium scour depth calculated by the present model is basically corresponding with the experimental results of Khosronejad et al. [52], although scour depth in the present model is slightly larger than the experimental results at initial stage.
Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].
Secondly, another comparison was further conducted between the results of present study and the experimental data of Petersen et al. [17]. The experiment was carried out in a flume with a circular vertical pile in combined waves and current. Figure 4 shows a comparison of time evolution of scour depth between the simulating and the experimental results. As Figure 5 indicates, the scour depth in this study has good overall agreement with the experimental results proposed in Petersen et al. [17]. The equilibrium scour depth calculated by the present model is 0.399 m, which equals to the experimental value basically. Overall, the above verifications prove the present model is accurate and capable in dealing with sediment scour under waves.
In addition, in order to calibrate and validate the present model for hydrodynamic parameters, the comparison of water surface elevation was carried out with laboratory experiments conducted by Stahlmann [53] for wave gauge No. 3. The Figure 6 depicts the surface wave profiles between experiments and numerical model results. The comparison indicates that there is a good agreement between the model results and experimental values, especially the locations of wave crest and trough. Comparison of the surface elevation instructs the present model has an acceptable relative error, and the model is a calibrated in terms of the hydrodynamic parameters.
Figure 6. Comparison of surface elevation between the present study and Stahlmann [53].
Finally, another comparison was conducted for equilibrium scour depth or maximum scour depth under random waves with the experimental data of Sumer and Fredsøe [16] and Schendel et al. [22]. The Figure 7 shows the comparison between the numerical results and experimental data of Run01, Run05, Run21 and Run22 in Sumer and Fredsøe [16] and test A05 and A09 in Schendel et al. [22]. As shown in Figure 7, the equilibrium scour depth or maximum scour depth distributed within the ±30 error lines basically, meaning the reliability and accuracy of present model for predicting equilibrium scour depth around foundation in random waves. However, compared with the experimental values, the present model overestimated the equilibrium scour depth generally. Given that, a calibration for scour depth was carried out by multiplying the mean reduced coefficient 0.85 in following section.
Figure 7. Comparison of equilibrium (or maximum) scour depth between the present study and Sumer and Fredsøe [16], Schendel et al. [22].
Through the various examination for hydrodynamic and morphology parameters, it can be concluded that the present model is a validated and calibrated model for scour under random waves. Thus, the present numerical model would be utilized for scour simulation around foundation under random waves.
4. Numerical Results and Discussions
4.1. Scour Evolution
Figure 8 displays the scour evolution for case 1–9. As shown in Figure 8a, the scour depth increased rapidly at the initial stage, and then slowed down at the transition stage, which attributes to the backfilling occurred in scour holes under live bed scour condition, resulting in the net scour decreasing. Finally, the scour reached the equilibrium state when the amount of sediment backfilling equaled to that of scouring in the scour holes, i.e., the net scour transport rate was nil. Sumer and Fredsøe [16] proposed the following formula for the scour development under waves
St=Seq(1−exp(−t/Tc))�t=�eq(1−exp(−�/�c))(30)
where Tc is time scale of scour process.
Figure 8. Time evolution of scour for case 1–9: (a) Case 1–5; (b) Case 6–9.
The computing time is 3600 s and the scour development curves in Figure 8 kept fluctuating, meaning it’s still not in equilibrium scour stage in these cases. According to Sumer and Fredsøe [16], the equilibrium scour depth can be acquired by fitting the data with Equation (30). From Figure 8, it can be seen that the scour evolution obtained from Equation (30) is consistent with the present study basically at initial stage, but the scour depth predicted by Equation (30) developed slightly faster than the simulating results and the Equation (30) overestimated the scour depth to some extent. Overall, the whole tendency of the results calculated by Equation (30) agrees well with the simulating results of the present study, which means the Equation (30) is applicable to depict the scour evolution around USAF under random waves.
4.2. Scour Mechanism under Random Waves
The scour morphology and scour evolution around USAF are similar under random waves in case 1~9. Taking case 7 as an example, the scour morphology is shown in Figure 9.
Figure 9. Scour morphology under different times for case 7.
From Figure 9, at the initial stage (t < 1200 s), the scour occurred at upstream foundation edges between neighboring anchor branches. The maximum scour depth appeared at the lee-side of the USAF. Correspondingly, the sediments deposited at the periphery of the USAF, and the location of the maximum accretion depth was positioned at an angle of about 45° symmetrically with respect to the wave propagating direction in the lee-side of the USAF. After that, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.
According to previous studies [1,15,16,19,30,31], the horseshoe vortex, streamline compression and wake vortex shedding were responsible for scour around foundation. The Figure 10 displays the distribution of flow velocity in vicinity of foundation, which reflects the evolving processes of horseshoe vertex.
Figure 10. Velocity profile around USAF: (a) Flow runup and down stream at upstream anchor edges; (b) Horseshoe vortex at upstream anchor edges; (c) Flow reversal during wave through stage at lee side.
As shown in Figure 10, the inflow tripped to the upstream edges of the USAF and it was blocked by the upper tube of USAF. Then, the downflow formed the horizontal axis clockwise vortex and rolled on the seabed bypassing the tube, that is, the horseshoe vortex (Figure 11). The Figure 12 displays the turbulence intensity around the tube on the seabed. From Figure 12, it can be seen that the turbulence intensity was high-intensity with respect to the region of horseshoe vortex. This phenomenon occurred because of drastic water flow momentum exchanging in the horseshoe vortex. As a result, it created the prominent shear stress on the seabed, causing the local scour at the upstream edges of USAF. Besides, the horseshoe vortex moved downstream gradually along the periphery of the tube and the wake vortex shed off continually at the lee-side of the USAF, i.e., wake vortex.
Figure 11. Sketch of scour mechanism around USAF under random waves.
Figure 12. Turbulence intensity: (a) Turbulence intensity of horseshoe vortex; (b) Turbulence intensity of wake vortex; (c) Turbulence intensity of accretion area.
The core of wake vortex is a negative pressure center, liking a vacuum cleaner [11,42]. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortex. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow at the downside of USAF. As is shown in Figure 12, the turbulence intensity was low where the downflow occurred at lee-side, which means the turbulence energy may not be able to support the survival of wake vortex, leading to accretion happening. As mentioned in previous section, the formation of horseshoe vortex was dependent with adverse pressure gradient at upside of foundation. As shown in Figure 13, the evaluated range of pressure distribution is −15 m to 15 m in x direction. The t = 450 s and t = 1800 s indicate that the wave crest and trough arrived at the upside and lee-side of the foundation respectively, and the t = 350 s was neither the wave crest nor trough. The adverse gradient pressure reached the maximum value at t = 450 s corresponding to the wave crest phase. In this case, it’s helpful for the wave boundary separating fully from seabed, which leads to the formation of horseshoe vortex with high turbulence intensity. Therefore, the horseshoe vortex is responsible for the local scour between neighboring anchor branches at upside of USAF. What’s more, due to the combination of the horseshoe vortex and streamline compression, the maximum scour depth occurred at the upside of the USAF with an angle of about 45° corresponding to the wave propagating direction. This is consistent with the findings of Pang et al. [48] and Sumer et al. [1,15] in case of regular waves. At the wave trough phase (t = 1800 s), the pressure gradient became positive at upstream USAF edges, which hindered the separating of wave boundary from seabed. In the meantime, the flow reversal occurred (Figure 10) and the adverse gradient pressure appeared at downstream USAF edges, but the magnitude of adverse gradient pressure at lee-side was lower than the upstream gradient pressure under wave crest. In this way, the intensity of horseshoe vortex behind the USAF under wave trough was low, which explains the difference of scour depth at upstream and downstream, i.e., the scour asymmetry. In other words, the scour asymmetry at upside and downside of USAF was attributed to wave asymmetry for random waves, and the phenomenon became more evident for nonlinear waves [21]. Briefly speaking, the vortex system at wave crest phase was mainly related to the scour process around USAF under random waves.
Figure 13. Pressure distribution around USAF.
4.3. Equilibrium Scour Depth
The KC number is a key parameter for horseshoe vortex emerging and evolving under waves. According to Equation (1), when pile diameter D is fixed, the KC depends on the maximum near-bed velocity Uwm and wave period T. For random waves, the Uwm can be denoted by the root-mean-square (RMS) value of near-bed velocity amplitude Uwm,rms or the significant value of near-bed velocity amplitude Uwm,s. The Uwm,rms and Uwm,s for all simulating cases of the present study are listed in Table 3 and Table 4. The T can be denoted by the mean up zero-crossing wave period Ta, peak wave period Tp, significant wave period Ts, the maximum wave period Tm, 1/10′th highest wave period Tn = 1/10 and 1/5′th highest wave period Tn = 1/5 for random waves, so the different combinations of Uwm and T will acquire different KC. The Table 3 and Table 4 list 12 types of KC, for example, the KCrms,s was calculated by Uwm,rms and Ts. Sumer and Fredsøe [16] conducted a series of wave flume experiments to investigate the scour depth around monopile under random waves, and found the equilibrium scour depth predicting equation (Equation (2)) for regular waves was applicable for random waves with KCrms,p. It should be noted that the Equation (2) is only suitable for KC > 6 under regular waves or KCrms,p > 6 under random waves.
Table 3.Uwm,rms and KC for case 1~9.
Table 4.Uwm,s and KC for case 1~9.
Raaijmakers and Rudolph [34] proposed the equilibrium scour depth predicting model (Equation (5)) around pile under waves, which is suitable for low KC. The format of Equation (5) is similar with the formula proposed by Breusers [54], which can predict the equilibrium scour depth around pile at different scour stages. In order to verify the applicability of Raaijmakers’s model for predicting the equilibrium scour depth around USAF under random waves, a validation of the equilibrium scour depth Seq between the present study and Raaijmakers’s equation was conducted. The position where the scour depth Seq was evaluated is the location of the maximum scour depth, and it was depicted in Figure 14. The Figure 15 displays the comparison of Seq with different KC between the present study and Raaijmakers’s model.
Figure 14. Sketch of the position where the Seq was evaluated.
Figure 15. Comparison of the equilibrium scour depth between the present model and the model of Raaijmakers and Rudolph [34]: (a) KCrms,s, KCrms,a; (b) KCrms,p, KCrms,m; (c) KCrms,n = 1/10, KCrms,n = 1/5; (d) KCs,s, KCs,a; (e) KCs,p, KCs,m; (f) KCs,n = 1/10, KCs,n = 1/5.
As shown in Figure 15, there is an error in predicting Seq between the present study and Raaijmakers’s model, and Raaijmakers’s model underestimates the results generally. Although the error exists, the varying trend of Seq with KC obtained from Raaijmakers’s model is consistent with the present study basically. What’s more, the error is minimum and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves by using KCs,p. Based on this, a further revision was made to eliminate the error as much as possible, i.e., add the deviation value ∆S/D in the Raaijmakers’s model. The revised equilibrium scour depth predicting equation based on Raaijmakers’s model can be written as
As the Figure 16 shown, through trial-calculation, when ∆S/D = 0.05, the results calculated by Equation (31) show good agreement with the simulating results of the present study. The maximum error is about 18.2% and the engineering requirements have been met basically. In order to further verify the accuracy of the revised model for large KC (KCs,p > 4) under random waves, a validation between the revised model and the previous experimental results [21]. The experiment was conducted in a flume (50 m in length, 1.0 m in width and 1.3 m in height) with a slender vertical pile (D = 0.1 m) under random waves. The seabed is composed of 0.13 m deep layer of sand with d50 = 0.6 mm and the water depth is 0.5 m for all tests. The significant wave height is 0.12~0.21 m and the KCs,p is 5.52~11.38. The comparison between the predicting results by Equation (31) and the experimental results of Corvaro et al. [21] is shown in Figure 17. From Figure 17, the experimental data evenly distributes around the predicted results and the prediction accuracy is favorable when KCs,p < 8. However, the gap between the predicting results and experimental data becomes large and the Equation (31) overestimates the equilibrium scour depth to some extent when KCs,p > 8.
Figure 16. Comparison of Seq between the simulating results and the predicting values by Equation (31).
Figure 17. Comparison of Seq/D between the Experimental results of Corvaro et al. [21] and the predicting values by Equation (31).
In ocean environment, the waves are composed of a train of sinusoidal waves with different frequencies and amplitudes. The energy of constituent waves with very large and very small frequencies is relatively low, and the energy of waves is mainly concentrated in a certain range of moderate frequencies. Myrhaug and Rue [37] thought the 1/n’th highest wave was responsible for scour and proposed the stochastic model to predict the equilibrium scour depth around pile under random waves for full range of KC. Noteworthy is that the KC was denoted by KCrms,a in the stochastic model. To verify the application of the stochastic model for predicting scour depth around USAF, a validation between the simulating results of present study and predicting results by the stochastic model with n = 2,3,5,10,20,500 was carried out respectively.
As shown in Figure 18, compared with the simulating results, the stochastic model underestimates the equilibrium scour depth around USAF generally. Although the error exists, the varying trend of Seq with KCrms,a obtained from the stochastic model is consistent with the present study basically. What’s more, the gap between the predicting values by stochastic model and the simulating results decreases with the increase of n, but for large n, for example n = 500, the varying trend diverges between the predicting values and simulating results, meaning it’s not feasible only by increasing n in stochastic model to predict the equilibrium scour depth around USAF.
Figure 18. Comparison of Seq between the simulating results and the predicting values by Equation (8).
The Figure 19 lists the deviation value ∆Seq/D′ between the predicting values and simulating results with different KCrms,a and n. Then, fitted the relationship between the ∆S′and n under different KCrms,a, and the fitting curve can be written by Equation (32). The revised stochastic model (Equation (33)) can be acquired by adding ∆Seq/D′ to Equation (8).
The comparison between the predicting results by Equation (33) and the simulating results of present study is shown in Figure 20. According to the Figure 20, the varying trend of Seq with KCrms,a obtained from the stochastic model is consistent with the present study basically. Compared with predicting results by the stochastic model, the results calculated by Equation (33) is favorable. Moreover, comparison with simulating results indicates that the predicting results are the most favorable for n = 10, which is consistent with the findings of Myrhaug and Rue [37] for equilibrium scour depth predicting around slender pile in case of random waves.
Figure 20. Comparison of Seq between the simulating results and the predicting values by Equation (33).
In order to further verify the accuracy of the Equation (33) for large KC (KCrms,a > 4) under random waves, a validation was conducted between the Equation (33) and the previous experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. The details of experiments conducted by Corvaro et al. [21] were described in above section. Sumer and Fredsøe [16] investigated the local scour around pile under random waves. The experiments were conducted in a wave basin with a slender vertical pile (D = 0.032, 0.055 m). The seabed is composed of 0.14 m deep layer of sand with d50 = 0.2 mm and the water depth was maintained at 0.5 m. The JONSWAP wave spectrum was used and the KCrms,a was 5.29~16.95. The comparison between the predicting results by Equation (33) and the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] are shown in Figure 21. From Figure 21, contrary to the case of low KCrms,a (KCrms,a < 4), the error between the predicting values and experimental results increases with decreasing of n for KCrms,a > 4. Therefore, the predicting results are the most favorable for n = 2 when KCrms,a > 4.
Figure 21. Comparison of Seq between the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] and the predicting values by Equation (33).
Noteworthy is that the present model was built according to prototype size, so the errors between the numerical results and experimental data of References [16,21] may be attribute to the scale effects. In laboratory experiments on scouring process, it is typically impossible to ensure a rigorous similarity of all physical parameters between the model and prototype structure, leading to the scale effects in the laboratory experiments. To avoid a cohesive behaviour, the bed material was not scaled geometrically according to model scale. As a consequence, the relatively large-scaled sediments sizes may result in the overestimation of bed load transport and underestimation of suspended load transport compared with field conditions. What’s more, the disproportional scaled sediment presumably lead to the difference of bed roughness between the model and prototype, and thus large influences for wave boundary layer on the seabed and scour process. Besides, according to Corvaro et al. [21] and Schendel et al. [55], the pile Reynolds numbers and Froude numbers both affect the scour depth for the condition of non fully developed turbulent flow in laboratory experiments.
4.4. Parametric Study
4.4.1. Influence of Froude Number
As described above, the set of foundation leads to the adverse pressure gradient appearing at upstream, leading to the wave boundary layer separating from seabed, then horseshoe vortex formatting and the horseshoe vortex are mainly responsible for scour around foundation (see Figure 22). The Froude number Fr is the key parameter to influence the scale and intensity of horseshoe vortex. The Fr under waves can be calculated by the following formula [42]
Fr=UwgD−−−√�r=�w��(34)
where Uw is the mean water particle velocity during 1/4 cycle of wave oscillation, obtained from the following formula. Noteworthy is that the root-mean-square (RMS) value of near-bed velocity amplitude Uwm,rms is used for calculating Uwm.
Figure 22. Sketch of flow field at upstream USAF edges.
Tavouktsoglou et al. [25] proposed the following formula between Fr and the vertical location of the stagnation y
yh∝Fer�ℎ∝�r�(36)
where e is constant.
The Figure 23 displays the relationship between Seq/D and Fr of the present study. In order to compare with the simulating results, the experimental data of Corvaro et al. [21] was also depicted in Figure 23. As shown in Figure 23, the equilibrium scour depth appears a logarithmic increase as Fr increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increase of Fr, which is benefit for the wave boundary layer separating from seabed, resulting in the high-intensity horseshoe vortex, hence, causing intensive scour around USAF. Based on the previous study of Tavouktsoglou et al. [25] for scour around pile under currents, the high Fr leads to the stagnation point is closer to the mean sea level for shallow water, causing the stronger downflow kinetic energy. As mentioned in previous section, the energy of downflow at upstream makes up the energy of the subsequent horseshoe vortex, so the stronger downflow kinetic energy results in the more intensive horseshoe vortex. Therefore, the higher Fr leads to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably. Qi and Gao [19] carried out a series of flume tests to investigate the scour around pile under regular waves, and proposed the fitting formula between Seq/D and Fr as following
lg(Seq/D)=Aexp(B/Fr)+Clg(�eq/�)=�exp(�/�r)+�(37)
where A, B and C are constant.
Figure 23. The fitting curve between Seq/D and Fr.
Figure 24. Sketch of adverse pressure gradient at upstream USAF edges.
Took the Equation (37) to fit the simulating results with A = −0.002, B = 0.686 and C = −0.808, and the results are shown in Figure 23. From Figure 23, the simulating results evenly distribute around the Equation (37) and the varying trend of Seq/D and Fr in present study is consistent with Equation (37) basically, meaning the Equation (37) is applicable to express the relationship of Seq/D with Fr around USAF under random waves.
4.4.2. Influence of Euler Number
The Euler number Eu is the influencing factor for the hydrodynamic field around foundation. The Eu under waves can be calculated by the following formula. The Eu can be represented by the Equation (38) for uniform cylinders [25]. The root-mean-square (RMS) value of near-bed velocity amplitude Um,rms is used for calculating Um.
Eu=U2mgD�u=�m2��(38)
where Um is depth-averaged flow velocity.
The Figure 25 displays the relationship between Seq/D and Eu of the present study. In order to compare with the simulating results, the experimental data of Sumer and Fredsøe [16] and Corvaro et al. [21] were also plotted in Figure 25. As shown in Figure 25, similar with the varying trend of Seq/D and Fr, the equilibrium scour depth appears a logarithmic increase as Eu increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increasing of Eu, which is benefit for the wave boundary layer separating from seabed, inducing the high-intensity horseshoe vortex, hence, causing intensive scour around USAF.
Figure 25. The fitting curve between Seq/D and Eu.
Therefore, the variation of Fr and Eu reflect the magnitude of adverse pressure gradient pressure at upstream. Given that, the Equation (37) also was used to fit the simulating results with A = 8.875, B = 0.078 and C = −9.601, and the results are shown in Figure 25. From Figure 25, the simulating results evenly distribute around the Equation (37) and the varying trend of Seq/D and Eu in present study is consistent with Equation (37) basically, meaning the Equation (37) is also applicable to express the relationship of Seq/D with Eu around USAF under random waves. Additionally, according to the above description of Fr, it can be inferred that the higher Fr and Eu both lead to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably.
5. Conclusions
A series of numerical models were established to investigate the local scour around umbrella suction anchor foundation (USAF) under random waves. The numerical model was validated for hydrodynamic and morphology parameters by comparing with the experimental data of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22]. Based on the simulating results, the scour evolution and scour mechanisms around USAF under random waves were analyzed respectively. Two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves. Finally, a parametric study was carried out with the present model to study the effects of the Froude number Fr and Euler number Eu to the equilibrium scour depth around USAF under random waves. The main conclusions can be described as follows.(1)
The packed sediment scour model and the RNG k−ε turbulence model were used to simulate the sand particles transport processes and the flow field around UASF respectively. The scour evolution obtained by the present model agrees well with the experimental results of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22], which indicates that the present model is accurate and reasonable for depicting the scour morphology around UASF under random waves.(2)
The vortex system at wave crest phase is mainly related to the scour process around USAF under random waves. The maximum scour depth appeared at the lee-side of the USAF at the initial stage (t < 1200 s). Subsequently, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.(3)
The error is negligible and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves when KC is calculated by KCs,p. Given that, a further revision model (Equation (31)) was proposed according to Raaijmakers’s model to predict the equilibrium scour depth around USAF under random waves and it shows good agreement with the simulating results of the present study when KCs,p < 8.(4)
Another further revision model (Equation (33)) was proposed according to the stochastic model established by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves, and the predicting results are the most favorable for n = 10 when KCrms,a < 4. However, contrary to the case of low KCrms,a, the predicting results are the most favorable for n = 2 when KCrms,a > 4 by the comparison with experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21].(5)
The same formula (Equation (37)) is applicable to express the relationship of Seq/D with Eu or Fr, and it can be inferred that the higher Fr and Eu both lead to the more intensive horseshoe vortex and larger Seq.
Author Contributions
Conceptualization, H.L. (Hongjun Liu); Data curation, R.H. and P.Y.; Formal analysis, X.W. and H.L. (Hao Leng); Funding acquisition, X.W.; Writing—original draft, R.H. and P.Y.; Writing—review & editing, X.W. and H.L. (Hao Leng); The final manuscript has been approved by all the authors. All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by the Fundamental Research Funds for the Central Universities (grant number 202061027) and the National Natural Science Foundation of China (grant number 41572247).
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
The data presented in this study are available on request from the corresponding author.
Conflicts of Interest
The authors declare no conflict of interest.
References
Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour Around Vertical Pile in Waves. J. Waterw. Port. Coast. Ocean Eng.1992, 118, 15–31. [Google Scholar] [CrossRef]
Rudolph, D.; Bos, K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of the 6th International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; pp. 582–588. [Google Scholar]
Nielsen, A.W.; Liu, X.; Sumer, B.M.; Fredsøe, J. Flow and bed shear stresses in scour protections around a pile in a current. Coast. Eng.2013, 72, 20–38. [Google Scholar] [CrossRef]
Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Three-dimensional numerical modelling of wave-induced scour around piles in a side-by-side arrangement. Coast. Eng.2018, 138, 132–151. [Google Scholar] [CrossRef]
Li, H.; Ong, M.C.; Leira, B.J.; Myrhaug, D. Effects of Soil Profile Variation and Scour on Structural Response of an Offshore Monopile Wind Turbine. J. Offshore Mech. Arct. Eng.2018, 140, 042001. [Google Scholar] [CrossRef]
Li, H.; Liu, H.; Liu, S. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Géoméch. Energy Environ.2017, 10, 12–20. [Google Scholar] [CrossRef]
Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J.A.F.D.O. Editorial: Advanced research on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng. Marit. Eng.2019, 172, 118–123. [Google Scholar] [CrossRef]
Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik, D.; et al. Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS Project. Energies2019, 12, 1709. [Google Scholar] [CrossRef][Green Version]
Wu, M.; De Vos, L.; Chavez, C.E.A.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current Conditions. J. Mar. Sci. Eng.2020, 8, 417. [Google Scholar] [CrossRef]
Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng.2013, 63, 17–25. [Google Scholar] [CrossRef]
Prendergast, L.; Gavin, K.; Doherty, P. An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng.2015, 101, 1–11. [Google Scholar] [CrossRef][Green Version]
Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.; Giannini, G.; Haerens, P. Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng.2021, 9, 297. [Google Scholar] [CrossRef]
Yang, Q.; Yu, P.; Liu, Y.; Liu, H.; Zhang, P.; Wang, Q. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng.2020, 202, 106701. [Google Scholar] [CrossRef]
Yu, P.; Hu, R.; Yang, J.; Liu, H. Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves. Ocean Eng.2020, 213, 107696. [Google Scholar] [CrossRef]
Sumer, B.M.; Christiansen, N.; Fredsøe, J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. J. Fluid Mech.1997, 332, 41–70. [Google Scholar] [CrossRef]
Sumer, B.M.; Fredsøe, J. Scour around Pile in Combined Waves and Current. J. Hydraul. Eng.2001, 127, 403–411. [Google Scholar] [CrossRef]
Petersen, T.U.; Sumer, B.M.; Fredsøe, J. Time scale of scour around a pile in combined waves and current. In Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012. [Google Scholar]
Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J.-J. Edge scour at scour protections around piles in the marine environment—Laboratory and field investigation. Coast. Eng.2015, 106, 42–72. [Google Scholar] [CrossRef]
Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Ser. E Technol. Sci.2014, 57, 1030–1039. [Google Scholar] [CrossRef][Green Version]
Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics Induced by a Vertical Slender Pile under Regular and Random Waves. J. Waterw. Port. Coast. Ocean Eng.2018, 144, 04018018. [Google Scholar] [CrossRef]
Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coast. Eng.2020, 161, 103751. [Google Scholar] [CrossRef]
Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Reis, M.; das Neves, L. Reliability assessment of offshore dynamic scour protections using copulas. Wind. Eng.2018, 43, 506–538. [Google Scholar] [CrossRef]
Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble mound scour protections. Coast. Eng.2020, 158, 103671. [Google Scholar] [CrossRef]
Ettema, R.; Melville, B.; Barkdoll, B. Scale Effect in Pier-Scour Experiments. J. Hydraul. Eng.1998, 124, 639–642. [Google Scholar] [CrossRef]
Umeda, S. Scour Regime and Scour Depth around a Pile in Waves. J. Coast. Res. Spec. Issue2011, 64, 845–849. [Google Scholar]
Umeda, S. Scour process around monopiles during various phases of sea storms. J. Coast. Res.2013, 165, 1599–1604. [Google Scholar] [CrossRef]
Baykal, C.; Sumer, B.; Fuhrman, D.R.; Jacobsen, N.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng.2017, 122, 87–107. [Google Scholar] [CrossRef][Green Version]
Miles, J.; Martin, T.; Goddard, L. Current and wave effects around windfarm monopile foundations. Coast. Eng.2017, 121, 167–178. [Google Scholar] [CrossRef][Green Version]
Miozzi, M.; Corvaro, S.; Pereira, F.A.; Brocchini, M. Wave-induced morphodynamics and sediment transport around a slender vertical cylinder. Adv. Water Resour.2019, 129, 263–280. [Google Scholar] [CrossRef]
Yu, T.; Zhang, Y.; Zhang, S.; Shi, Z.; Chen, X.; Xu, Y.; Tang, Y. Experimental study on scour around a composite bucket foundation due to waves and current. Ocean Eng.2019, 189, 106302. [Google Scholar] [CrossRef]
Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave Scour Around Piles. In Proceedings of the Coastal Engineering 2000, American Society of Civil Engineers (ASCE), Sydney, Australia, 16–21 July 2000; pp. 1860–1870. [Google Scholar]
Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions—Laboratory experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 152–161. [Google Scholar]
Khalfin, I.S. Modeling and calculation of bed score around large-diameter vertical cylinder under wave action. Water Resour.2007, 34, 357. [Google Scholar] [CrossRef][Green Version]
Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast. Eng.2011, 58, 986–991. [Google Scholar] [CrossRef]
Myrhaug, D.; Rue, H. Scour below pipelines and around vertical piles in random waves. Coast. Eng.2003, 48, 227–242. [Google Scholar] [CrossRef]
Myrhaug, D.; Ong, M.C.; Føien, H.; Gjengedal, C.; Leira, B.J. Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean Eng.2009, 36, 605–616. [Google Scholar] [CrossRef]
Myrhaug, D.; Ong, M.C. Random wave-induced onshore scour characteristics around submerged breakwaters using a stochastic method. Ocean Eng.2010, 37, 1233–1238. [Google Scholar] [CrossRef]
Ong, M.C.; Myrhaug, D.; Hesten, P. Scour around vertical piles due to long-crested and short-crested nonlinear random waves plus a current. Coast. Eng.2013, 73, 106–114. [Google Scholar] [CrossRef]
Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput.1986, 1, 3–51. [Google Scholar] [CrossRef]
Yakhot, V.; Smith, L.M. The renormalization group, the e-expansion and derivation of turbulence models. J. Sci. Comput.1992, 7, 35–61. [Google Scholar] [CrossRef]
Mastbergen, D.R.; Berg, J.V.D. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology2003, 50, 625–637. [Google Scholar] [CrossRef]
Soulsby, R. Dynamics of Marine Sands; Thomas Telford Ltd.: London, UK, 1998. [Google Scholar] [CrossRef]
Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng.1984, 110, 1431–1456. [Google Scholar] [CrossRef][Green Version]
Zhang, Q.; Zhou, X.-L.; Wang, J.-H. Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng.2017, 142, 625–638. [Google Scholar] [CrossRef]
Yu, Y.X.; Liu, S.X. Random Wave and Its Applications to Engineering, 4th ed.; Dalian University of Technology Press: Dalian, China, 2011. [Google Scholar]
Pang, A.; Skote, M.; Lim, S.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Appl. Ocean Res.2016, 57, 114–124. [Google Scholar] [CrossRef]
Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using Open-FOAM®. Part I: Formulation and validation. Coast. Eng.2014, 83, 243–258. [Google Scholar] [CrossRef]
Corvaro, S.; Crivellini, A.; Marini, F.; Cimarelli, A.; Capitanelli, L.; Mancinelli, A. Experimental and Numerical Analysis of the Hydrodynamics around a Vertical Cylinder in Waves. J. Mar. Sci. Eng.2019, 7, 453. [Google Scholar] [CrossRef][Green Version]
Flow3D User Manual, version 11.0.3; Flow Science, Inc.: Santa Fe, NM, USA, 2013.
Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour.2012, 37, 73–85. [Google Scholar] [CrossRef]
Stahlmann, A. Experimental and Numerical Modeling of Scour at Foundation Structures for Offshore Wind Turbines. Ph.D. Thesis, Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, Hannover, Germany, 2013. [Google Scholar]
Breusers, H.N.C.; Nicollet, G.; Shen, H. Local Scour Around Cylindrical Piers. J. Hydraul. Res.1977, 15, 211–252. [Google Scholar] [CrossRef]
Schendel, A.; Hildebrandt, A.; Goseberg, N.; Schlurmann, T. Processes and evolution of scour around a monopile induced by tidal currents. Coast. Eng.2018, 139, 65–84. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Hu, R.; Liu, H.; Leng, H.; Yu, P.; Wang, X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. J. Mar. Sci. Eng.2021, 9, 886. https://doi.org/10.3390/jmse9080886
AMA Style
Hu R, Liu H, Leng H, Yu P, Wang X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. Journal of Marine Science and Engineering. 2021; 9(8):886. https://doi.org/10.3390/jmse9080886Chicago/Turabian Style
Hu, Ruigeng, Hongjun Liu, Hao Leng, Peng Yu, and Xiuhai Wang. 2021. “Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves” Journal of Marine Science and Engineering 9, no. 8: 886. https://doi.org/10.3390/jmse9080886
Find Other Styles
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.
For more information on the journal statistics, click here.
Multiple requests from the same IP address are counted as one view.
Mahdi Feizbahr,1Navid Tonekaboni,2Guang-Jun Jiang,3,4and Hong-Xia Chen3,4 Academic Editor: Mohammad Yazdi
Abstract
강을 따라 식생은 조도를 증가시키고 평균 유속을 감소시키며, 유동 에너지를 감소시키고 강 횡단면의 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받기 때문에 홍수시 유동저항에 큰 영향을 미친다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건과 식물에 따라 달라지므로 모델은 유속, 유속 깊이 및 수로를 따라 식생 유형의 영향을 고려하여 유속을 시뮬레이션해야 합니다. 총 48개의 모델을 시뮬레이션하여 근관의 거칠기 효과를 조사했습니다. 결과는 속도를 높임으로써 베드 속도를 감소시키는 식생의 영향이 무시할만하다는 것을 나타냅니다.
Abstract
Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.
1. Introduction
Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [1–14]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [15–27]. Consequently, it is necessary to study the effects of the passive factors on the active domain [28–36]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [38–41].
One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [43–45]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [47, 48].
Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity is another form of current resistance. The reason for using the ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].
To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].
The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where n, f, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed, = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:
Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.
On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:
By using equation (6), equation (5) is converted as follows:
Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].
Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [45, 55].
One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [47, 57, 58] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [45, 59–61]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [49, 63–66] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.
FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where are mass accelerations in the directions x, y, z and are viscosity accelerations in the directions x, y, z and are obtained from the following equations:
Shear stresses in equation (11) are obtained from the following equations:
The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.
Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.
Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.
In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).
Table 1
The studied models.
The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After seconds, this model reached a convergence accuracy of .
Figure 1
The simulated model and its boundary conditions.
Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.
48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.
Any control and simulation system has some inputs that we should determine to test any technology [70–77]. Determination and true implementation of such parameters is one of the key steps of any simulation [23, 78–81] and computing procedure [82–86]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.
Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [87, 88]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).
Figure 2
Modeling the plant with cylindrical tubes at the bottom of the canal.
Figure 3
Velocity profiles in positions 2 and 5.
The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.
The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.
The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.
2. Modeling Results
After analyzing the models, the results were shown in graphs (Figures 4–14 ). The total number of experiments in this study was 48 due to the limitations of modeling.
Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.
Figure 5
Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.
Figure 6
Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.
Figure 7
Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.
Figure 8
Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.
Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.
Figure 10
Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.
Figure 11
Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.
Figure 12
Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.
Figure 13
Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.
Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.
To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.
According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.
According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.
According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.
According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5–10, which can be justified by increasing the speed and, of course, increasing the Froude number.
With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 5–8 and 10, 11), which can be justified by increasing the speed and, of course, increasing the Froude number.
According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.
According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.
Figure 15
Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.
According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 16
Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.
According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 17
Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.
According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 18
Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.
According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.
Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.
According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.
Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.
According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [2, 7, 8, 15, 18, 89–94]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [95–99].
Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.
3. Conclusion
The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.
Nomenclature
n:
Manning’s roughness coefficient
C:
Chézy roughness coefficient
f:
Darcy–Weisbach coefficient
V:
Flow velocity
R:
Hydraulic radius
g:
Gravitational acceleration
y:
Flow depth
Ks:
Bed roughness
A:
Constant coefficient
:
Reynolds number
∂y/∂x:
Depth of water change
S0:
Slope of the canal floor
Sf:
Slope of energy line
Fr:
Froude number
D:
Characteristic length of the canal
G:
Mass acceleration
:
Shear stresses.
Data Availability
All data are included within the paper.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.
References
H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
SYAFIQ ZIKRYAND FITRIADHY* Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia * Corresponding author: naoe.afit@gmail.com http://doi.org/10.46754/umtjur.2021.07.017
Abstract
수중익선은 일반적으로 열악한 환경 조건으로 인해 승객의 편안함에 영향을 미칠 수 있는 높은 저항과 과도한 수직 운동(히브 및 피치)을 경험합니다. 따라서 복잡한 유체역학적 현상이 존재하기 때문에 파랑에서 수중익선의 내항성능을 규명할 필요가 있다.
이를 위해 수중익선 운동에 대한 CFD(Computational Fluid Dynamic) 해석을 제안한다. Froude Number 및 포일 받음각과 같은 여러 매개변수가 고려되었습니다.
그 결과 Froude Number의 후속 증가는 히브 및 피치 운동에 반비례한다는 것이 밝혀졌습니다. 본질적으로 이것은 높은 응답 진폭 연산자(RAO)의 형태로 제공되는 수중익선 항해 성능의 업그레이드로 이어졌습니다.
또한 포일 선수의 증가하는 각도는 히브 운동에 비례하는 반면, 포일 선미는 7.5o에서 낮은 히브 운동을 보였고, 그 다음으로 5o, 10o 순으로 나타났다. 피치모션의 경우 포일 보우의 증가는 5o에서 더 낮았고, 그 다음이 10o, 7.5o 순이었다. 포일 선미의 증가는 수중익선에 의한 피치 모션 경험에 비례했습니다.
일반적으로 이 CFD 시뮬레이션은 앞서 언급한 설계 매개변수와 관련하여 공해 상태에서 수중익선 설계의 운영 효율성을 보장하는 데 매우 유용합니다.
Keywords
CFD, hydrofoil, foil angle of attack, heave, pitch.
Figure 1: Overall mesh block being used in simulationFigure 2: 3D (left) and 2D (right) views of wave elevation using case C
References
Djavareshkian, M. H., & Esmaeili, A. (2014). Heuristic optimization of submerged hydrofoil using ANFIS–PSO. Ocean Engineering, 92, 55-63. Fitriadhy, A., & Adam, N. A. (2017). Heave and pitch motions performance of a monotricat ship in head-seas. International Journal of Automotive and Mechanical Engineering, 14, 4243-4258. Islam, M., Jahra, F., & Hiscock, S. (2016). Data analysis methodologies for hydrodynamic experiments in waves. Journal of Naval Architecture and Marine Engineering, 13(1), 1-15. Koutsourakis, N., Bartzis, J. G., & Markatos, N. C. (2012). Evaluation of Reynolds stress, k-ε and RNG k-ε turbulence models in street canyon flows using various experimental datasets. Environmental fluid mechanics, 1-25. Manual, F. D. U. (2011). Flow3D User Manual, v9. 4.2, Flow Science. Inc., Santa Fe, NM. Matveev, K., & Duncan, R. (2005). Development of the tool for predicting hydrofoil system performance and simulating motion of hydrofoil-assisted boats. Paper presented at the High Speed and High Performance Ship and Craft Symposium, Everett/WA: ASNE, USA. Seif, M., Mehdigholi, H., & Najafi, A. (2014). Experimental and numerical modeling of the high speed planing vessel motion. Journal of Marine Engineering & Technology, 13(2), 62- 72. Sun, X., Yao, C., Xiong, Y., & Ye, Q. (2017). Numerical and experimental study on seakeeping performance of a swath vehicle in head waves. Applied Ocean Research, 68, 262- 275. Vakilabadi, K. A., Khedmati, M. R., & Seif, M.S. (2014). Experimental study on heave and pitch motion characteristics of a wave-piercing trimaran. Transactions of FAMENA, 38(3), 13- 26. Yakhot, A., Rakib, S., & Flannery, W. (1994). LowReynolds number approximation for turbulent eddy viscosity. Journal of scientific computing, 9(3), 283-292. Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of scientific computing, 1(1), 3-51.
인공어초(Artificial Reef, ARs)는 연안 어업 자원을 복원하고 생태 환경을 복원하기 위한 핵심 인공 구조물 중 하나입니다. 그러나 많은 AR이 세굴로 인해 안정성과 기능을 상실한 것으로 밝혀졌다.
AR의 기능적 효과를 보장하기 위해서는 서로 다른 흐름 조건에서 세굴로 인한 매장과 같은 AR의 불안정성을 연구하는 것이 매우 중요합니다.
FLOW-3D에 의해 확립된 3차원 수치 모델은 정상류에서 AR 주변의 국부 세굴 특성을 연구하는 데 사용됩니다. RNG k-ε 난류 모델로 닫힌 RANS 방정식은 하나의 AR 주변의 안정적인 유동장을 시뮬레이션하기 위해 설정됩니다.
시뮬레이션 결과는 이전 실험 결과와 비교되었으며 좋은 일치를 보여줍니다. 그 다음에, 세굴 특성, 평형 세굴 깊이 및 최대 세굴 체적에 대한 AR의 개구수 및 입사각의 영향을 조사하였다. 결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다.
또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다.
본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다. 또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다.
입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다.
결과는 개구수가 증가함에 따라 세굴 깊이와 세굴 부피가 감소함을 나타냅니다. 또한 수치적 결과를 바탕으로 AR의 개구수가 평형 세굴깊이와 최대 세굴량에 미치는 영향에 대한 실증식을 제시하였다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다.
베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다.
베드 전단 응력이 클수록 세굴이 더 강해집니다. 본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다. 입사각의 변화는 AR의 가장 상류 코너에서 베드 전단 응력의 변화에 영향을 미칠 것입니다. 베드 전단 응력이 클수록 세굴이 더 강해집니다.
본 연구는 증강현실의 최적화된 공학적 설계 및 구축을 위한 이론적 지원과 실질적인 지침을 제공할 것이다.
Numerical Simulation of Local Scour Around Square Artificial Reef
Artificial reefs (ARs) are one of the key man-made constructs to restore the offshore fishery resources and recover the ecological environment. However, it is found that many ARs lost their stability and function due to scour. In order to ensure the functional effect of ARs, it is of great significance to study the instability of ARs, like burying caused by scour in different flow conditions. The three-dimensional numerical model established by FLOW-3D is used to study the local scour characteristics around the AR in steady currents. The RANS equations, closed with the RNG k-ε turbulence model, are established for simulating a stable flow field around one AR. The simulation results are compared with previous experimental results and shows good agreement. Then, the effect of the opening number and the incident angles of ARs on the scour characteristics, the equilibrium scour depth and maximum scour volume are investigated. The results indicate that the scour depth and scour volume decrease with the increasing opening number. Moreover, the empirical equations of the effect of the opening number of the AR on the equilibrium scour depth and maximum scour volume are proposed based on the numerical results. The change of the incident angles will affect the change of bed shear stress at the most upstream corner of the AR. The greater bed shear stress results in a more intense scour. This study will provide theoretical support, and practical guidance for the optimized engineering design and construction of ARs.
결합된 Bi-level 메타휴리스틱 접근법을 사용한 해양 재생 에너지 변환기의 설계 최적화
Erfan Amini a1, Mahdieh Nasiri b1, Navid Salami Pargoo a, Zahra Mozhgani c, Danial Golbaz d, Mehrdad Baniesmaeil e, Meysam Majidi Nezhad f, Mehdi Neshat gj, Davide Astiaso Garcia h, Georgios Sylaios i
Abstract
In recent years, there has been an increasing interest in renewable energies in view of the fact that fossil fuels are the leading cause of catastrophic environmental consequences. Ocean wave energy is a renewable energy source that is particularly prevalent in coastal areas. Since many countries have tremendous potential to extract this type of energy, a number of researchers have sought to determine certain effective factors on wave converters’ performance, with a primary emphasis on ambient factors. In this study, we used metaheuristic optimization methods to investigate the effects of geometric factors on the performance of an Oscillating Surge Wave Energy Converter (OSWEC), in addition to the effects of hydrodynamic parameters. To do so, we used CATIA software to model different geometries which were then inserted into a numerical model developed in Flow3D software. A Ribed-surface design of the converter’s flap is also introduced in this study to maximize wave-converter interaction. Besides, a Bi-level Hill Climbing Multi-Verse Optimization (HCMVO) method was also developed for this application. The results showed that the converter performs better with greater wave heights, flap freeboard heights, and shorter wave periods. Additionally, the added ribs led to more wave-converter interaction and better performance, while the distance between the flap and flume bed negatively impacted the performance. Finally, tracking the changes in the five-dimensional objective function revealed the optimum value for each parameter in all scenarios. This is achieved by the newly developed optimization algorithm, which is much faster than other existing cutting-edge metaheuristic approaches.
Keywords
Wave Energy Converter
OSWEC
Hydrodynamic Effects
Geometric Design
Metaheuristic Optimization
Multi-Verse Optimizer
1. Introduction
The increase in energy demand, the limitations of fossil fuels, as well as environmental crises, such as air pollution and global warming, are the leading causes of calling more attention to harvesting renewable energy recently [1], [2], [3]. While still in its infancy, ocean wave energy has neither reached commercial maturity nor technological convergence. In recent decades, remarkable progress has been made in the marine energy domain, which is still in the early stage of development, to improve the technology performance level (TPL) [4], [5]and technology readiness level (TRL) of wave energy converters (WECs). This has been achieved using novel modeling techniques [6], [7], [8], [9], [10], [11], [12], [13], [14] to gain the following advantages [15]: (i) As a source of sustainable energy, it contributes to the mix of energy resources that leads to greater diversity and attractiveness for coastal cities and suppliers. [16] (ii) Since wave energy can be exploited offshore and does not require any land, in-land site selection would be less expensive and undesirable visual effects would be reduced. [17] (iii) When the best layout and location of offshore site are taken into account, permanent generation of energy will be feasible (as opposed to using solar energy, for example, which is time-dependent) [18].
In general, the energy conversion process can be divided into three stages in a WEC device, including primary, secondary, and tertiary stages [19], [20]. In the first stage of energy conversion, which is the subject of this study, the wave power is converted to mechanical power by wave-structure interaction (WSI) between ocean waves and structures. Moreover, the mechanical power is transferred into electricity in the second stage, in which mechanical structures are coupled with power take-off systems (PTO). At this stage, optimal control strategies are useful to tune the system dynamics to maximize power output [10], [13], [12]. Furthermore, the tertiary energy conversion stage revolves around transferring the non-standard AC power into direct current (DC) power for energy storage or standard AC power for grid integration [21], [22]. We discuss only the first stage regardless of the secondary and tertiary stages. While Page 1 of 16 WECs include several categories and technologies such as terminators, point absorbers, and attenuators [15], [23], we focus on oscillating surge wave energy converters (OSWECs) in this paper due to its high capacity for industrialization [24].
Over the past two decades, a number of studies have been conducted to understand how OSWECs’ structures and interactions between ocean waves and flaps affect converters performance. Henry et al.’s experiment on oscillating surge wave energy converters is considered as one of the most influential pieces of research [25], which demonstrated how the performance of oscillating surge wave energy converters (OSWECs) is affected by seven different factors, including wave period, wave power, flap’s relative density, water depth, free-board of the flap, the gap between the tubes, gap underneath the flap, and flap width. These parameters were assessed in their two models in order to estimate the absorbed energy from incoming waves [26], [27]. In addition, Folly et al. investigated the impact of water depth on the OSWECs performance analytically, numerically, and experimentally. According to this and further similar studies, the average annual incident wave power is significantly reduced by water depth. Based on the experimental results, both the surge wave force and the power capture of OSWECs increase in shallow water [28], [29]. Following this, Sarkar et al. found that under such circumstances, the device that is located near the coast performs much better than those in the open ocean [30]. On the other hand, other studies are showing that the size of the converter, including height and width, is relatively independent of the location (within similar depth) [31]. Subsequently, Schmitt et al. studied OSWECs numerically and experimentally. In fact, for the simulation of OSWEC, OpenFOAM was used to test the applicability of Reynolds-averaged Navier-Stokes (RANS) solvers. Then, the experimental model reproduced the numerical results with satisfying accuracy [32]. In another influential study, Wang et al. numerically assessed the effect of OSWEC’s width on their performance. According to their findings, as converter width increases, its efficiency decreases in short wave periods while increases in long wave periods [33]. One of the main challenges in the analysis of the OSWEC is the coupled effect of hydrodynamic and geometric variables. As a result, numerous cutting-edge geometry studies have been performed in recent years in order to find the optimal structure that maximizes power output and minimizes costs. Garcia et al. reviewed hull geometry optimization studies in the literature in [19]. In addition, Guo and Ringwood surveyed geometric optimization methods to improve the hydrodynamic performance of OSWECs at the primary stage [14]. Besides, they classified the hull geometry of OSWECs based on Figure 1. Subsequently, Whittaker et al. proposed a different design of OSWEC called Oyster2. There have been three examples of different geometries of oysters with different water depths. Based on its water depth, they determined the width and height of the converter. They also found that in the constant wave period the less the converter’s width, the less power captures the converter has [34]. Afterward, O’Boyle et al. investigated a type of OSWEC called Oyster 800. They compared the experimental and numerical models with the prototype model. In order to precisely reproduce the shape, mass distribution, and buoyancy properties of the prototype, a 40th-scale experimental model has been designed. Overall, all the models were fairly accurate according to the results [35].
Inclusive analysis of recent research avenues in the area of flap geometry has revealed that the interaction-based designs of such converters are emerging as a novel approach. An initiative workflow is designed in the current study to maximizing the wave energy extrication by such systems. To begin with, a sensitivity analysis plays its role of determining the best hydrodynamic values for installing the converter’s flap. Then, all flap dimensions and characteristics come into play to finalize the primary model. Following, interactive designs is proposed to increase the influence of incident waves on the body by adding ribs on both sides of the flap as a novel design. Finally, a new bi-level metaheuristic method is proposed to consider the effects of simultaneous changes in ribs properties and other design parameters. We hope this novel approach will be utilized to make big-scale projects less costly and justifiable. The efficiency of the method is also compared with four well known metaheuristic algorithms and out weight them for this application.
This paper is organized as follows. First, the research methodology is introduced by providing details about the numerical model implementation. To that end, we first introduced the primary model’s geometry and software details. That primary model is later verified with a benchmark study with regard to the flap angle of rotation and water surface elevation. Then, governing equations and performance criteria are presented. In the third part of the paper, we discuss the model’s sensitivity to lower and upper parts width (we proposed a two cross-sectional design for the flap), bottom elevation, and freeboard. Finally, the novel optimization approach is introduced in the final part and compared with four recent metaheuristic algorithms.
2. Numerical Methods
In this section, after a brief introduction of the numerical software, Flow3D, boundary conditions are defined. Afterwards, the numerical model implementation, along with primary model properties are described. Finally, governing equations, as part of numerical process, are discussed.
2.1. Model Setup
FLOW-3D is a powerful and comprehensive CFD simulation platform for studying fluid dynamics. This software has several modules to solve many complex engineering problems. In addition, modeling complex flows is simple and effective using FLOW-3D’s robust meshing capabilities [36]. Interaction between fluid and moving objects might alter the computational range. Dynamic meshes are used in our modeling to take these changes into account. At each time step, the computational node positions change in order to adapt the meshing area to the moving object. In addition, to choose mesh dimensions, some factors are taken into account such as computational accuracy, computational time, and stability. The final grid size is selected based on the detailed procedure provided in [37]. To that end, we performed grid-independence testing on a CFD model using three different mesh grid sizes of 0.01, 0.015, and 0.02 meters. The problem geometry and boundary conditions were defined the same, and simulations were run on all three grids under the same conditions. The predicted values of the relevant variable, such as velocity, was compared between the grids. The convergence behavior of the numerical solution was analyzed by calculating the relative L2 norm error between two consecutive grids. Based on the results obtained, it was found that the grid size of 0.02 meters showed the least error, indicating that it provided the most accurate and reliable solution among the three grids. Therefore, the grid size of 0.02 meters was selected as the optimal spatial resolution for the mesh grid.
In this work, the flume dimensions are 10 meters long, 0.1 meters wide, and 2.2 meters high, which are shown in figure2. In addition, input waves with linear characteristics have a height of 0.1 meters and a period of 1.4 seconds. Among the linear wave methods included in this software, RNGk-ε and k- ε are appropriate for turbulence model. The research of Lopez et al. shows that RNGk- ε provides the most accurate simulation of turbulence in OSWECs [21]. We use CATIA software to create the flap primary model and other innovative designs for this project. The flap measures 0.1 m x 0.65 m x 0.360 m in x, y and z directions, respectively. In Figure 3, the primary model of flap and its dimensions are shown. In this simulation, five boundaries have been defined, including 1. Inlet, 2. Outlet, 3. Converter flap, 4. Bed flume, and 5. Water surface, which are shown in figure 2. Besides, to avoid wave reflection in inlet and outlet zones, Flow3D is capable of defining some areas as damping zones, the length of which has to be one to one and a half times the wavelength. Therefore, in the model, this length is considered equal to 2 meters. Furthermore, there is no slip in all the boundaries. In other words, at every single time step, the fluid velocity is zero on the bed flume, while it is equal to the flap velocity on the converter flap. According to the wave theory defined in the software, at the inlet boundary, the water velocity is called from the wave speed to be fed into the model.
2.2. Verification
In the current study, we utilize the Schmitt experimental model as a benchmark for verification, which was developed at the Queen’s University of Belfast. The experiments were conducted on the flap of the converter, its rotation, and its interaction with the water surface. Thus, the details of the experiments are presented below based up on the experimental setup’s description [38]. In the experiment, the laboratory flume has a length of 20m and a width of 4.58m. Besides, in order to avoid incident wave reflection, a wave absorption source is devised at the end of the left flume. The flume bed, also, includes two parts with different slops. The flap position and dimensions of the flume can be seen in Figure4. In addition, a wave-maker with 6 paddles is installed at one end. At the opposite end, there is a beach with wire meshes. Additionally, there are 6 indicators to extract the water level elevation. In the flap model, there are three components: the fixed support structure, the hinge, and the flap. The flap measures 0.1m x 0.65m x 0.341m in x, y and z directions, respectively. In Figure5, the details are given [32]. The support structure consists of a 15 mm thick stainless steel base plate measuring 1m by 1.4m, which is screwed onto the bottom of the tank. The hinge is supported by three bearing blocks. There is a foam centerpiece on the front and back of the flap which is sandwiched between two PVC plates. Enabling changes of the flap, three metal fittings link the flap to the hinge. Moreover, in this experiment, the selected wave is generated based on sea wave data at scale 1:40. The wave height and the wave period are equal to 0.038 (m) and 2.0625 (s), respectively, which are tantamount to a wave with a period of 13 (s) and a height of 1.5 (m).
Two distinct graphs illustrate the numerical and experi-mental study results. Figure6 and Figure7 are denoting the angle of rotation of flap and surface elevation in computational and experimental models, respectively. The two figures roughly represent that the numerical and experimental models are a good match. However, for the purpose of verifying the match, we calculated the correlation coefficient (C) and root mean square error (RMSE). According to Figure6, correlation coefficient and RMSE are 0.998 and 0.003, respectively, and in Figure7 correlation coefficient and RMSE are respectively 0.999 and 0.001. Accordingly, there is a good match between the numerical and empirical models. It is worth mentioning that the small differences between the numerical and experimental outputs may be due to the error of the measuring devices and the calibration of the data collection devices.
Including continuity equation and momentum conserva- tion for incompressible fluid are given as [32], [39]:(1)
where P represents the pressure, g denotes gravitational acceleration, u represents fluid velocity, and Di is damping coefficient. Likewise, the model uses the same equation. to calculate the fluid velocity in other directions as well. Considering the turbulence, we use the two-equation model of RNGK- ε. These equations are:
(3)��t(��)+����(����)=����[�eff�������]+��-��and(4)���(��)+����(����)=����[�eff�������]+�1�∗����-��2��2�Where �2� and �1� are constants. In addition, �� and �� represent the turbulent Prandtl number of � and k, respectively.
�� also denote the production of turbulent kinetic energy of k under the effect of velocity gradient, which is calculated as follows:(5)��=�eff[�����+�����]�����(6)�eff=�+��(7)�eff=�+��where � is molecular viscosity,�� represents turbulence viscosity, k denotes kinetic energy, and ∊∊ is energy dissipation rate. The values of constant coefficients in the two-equation RNGK ∊-∊ model is as shown in the Table 1[40].Table 2.
Table 1. Constant coefficients in RNGK-∊ model
Factors
�
�0
�1
�2
��
��
��
Quantity
0.012
4.38
1.42
1.68
1.39
1.39
0.084
Table 2. Flap properties
Joint height (m)
0.476
Height of the center of mass (m)
0.53
Weight (Kg)
10.77
It is worth mentioning that the volume of fluid method is used to separate water and air phases in this software [41]. Below is the equation of this method [40].(8)����+����(���)=0where α and 1 − α are portion of water phase and air phase, respectively. As a weighting factor, each fluid phase portion is used to determine the mixture properties. Finally, using the following equations, we calculate the efficiency of converters [42], [34], [43]:(9)�=14|�|2�+�2+(�+�a)2(�n2-�2)2where �� represents natural frequency, I denotes the inertia of OSWEC, Ia is the added inertia, F is the complex wave force, and B denotes the hydrodynamic damping coefficient. Afterward, the capture factor of the converter is calculated by [44]:(10)��=�1/2��2����gw where �� represents the capture factor, which is the total efficiency of device per unit length of the wave crest at each time step [15], �� represent the dimensional amplitude of the incident wave, w is the flap’s width, and Cg is the group velocity of the incident wave, as below:(11)��=��0·121+2�0ℎsinh2�0ℎwhere �0 denotes the wave number, h is water depth, and H is the height of incident waves.
According to previous sections ∊,����-∊ modeling is used for all models simulated in this section. For this purpose, the empty boundary condition is used for flume walls. In order to preventing wave reflection at the inlet and outlet of the flume, the length of wave absorption is set to be at least one incident wavelength. In addition, the structured mesh is chosen, and the mesh dimensions are selected in two distinct directions. In each model, all grids have a length of 2 (cm) and a height of 1 (cm). Afterwards, as an input of the software for all of the models, we define the time step as 0.001 (s). Moreover, the run time of every simulation is 30 (s). As mentioned before, our primary model is Schmitt model, and the flap properties is given in table2. For all simulations, the flume measures 15 meters in length and 0.65 meters in width, and water depth is equal to 0.335 (m). The flap is also located 7 meters from the flume’s inlet.
Finally, in order to compare the results, the capture factor is calculated for each simulation and compared to the primary model. It is worth mentioning that capture factor refers to the ratio of absorbed wave energy to the input wave energy.
According to primary model simulation and due to the decreasing horizontal velocity with depth, the wave crest has the highest velocity. Considering the fact that the wave’s orbital velocity causes the flap to move, the contact between the upper edge of the flap and the incident wave can enhance its performance. Additionally, the numerical model shows that the dynamic pressure decreases as depth increases, and the hydrostatic pressure increases as depth increases.
To determine the OSWEC design, it is imperative to understand the correlation between the capture factor, wave period, and wave height. Therefore, as it is shown in Figure8, we plot the change in capture factor over the variations in wave period and wave height in 3D and 2D. In this diagram, the first axis features changes in wave period, the second axis displays changes in wave height, and the third axis depicts changes in capture factor. According to our wave properties in the numerical model, the wave period and wave height range from 2 to 14 seconds and 2 to 8 meters, respectively. This is due to the fact that the flap does not oscillate if the wave height is less than 2 (m), and it does not reverse if the wave height is more than 8 (m). In addition, with wave periods more than 14 (s), the wavelength would be so long that it would violate the deep-water conditions, and with wave periods less than 2 (s), the flap would not oscillate properly due to the shortness of wavelength. The results of simulation are shown in Figure 8. As it can be perceived from Figure 8, in a constant wave period, the capture factor is in direct proportion to the wave height. It is because of the fact that waves with more height have more energy to rotate the flap. Besides, in a constant wave height, the capture factor increases when the wave period increases, until a given wave period value. However, the capture factor falls after this point. These results are expected since the flap’s angular displacement is not high in lower wave periods, while the oscillating motion of that is not fast enough to activate the power take-off system in very high wave periods.
As is shown in Figure 9, we plot the change in capture factor over the variations in wave period (s) and water depth (m) in 3D. As it can be seen in this diagram, the first axis features changes in water depth (m), the second axis depicts the wave period (s), and the third axis displays OSWEC’s capture factor. The wave period ranges from 0 to 10 seconds based on our wave properties, which have been adopted from Schmitt’s model, while water depth ranges from 0 to 0.5 meters according to the flume and flap dimensions and laboratory limitations. According to Figure9, for any specific water depth, the capture factor increases in a varying rate when the wave period increases, until a given wave period value. However, the capture factor falls steadily after this point. In fact, the maximum capture factor occurs when the wave period is around 6 seconds. This trend is expected since, in a specific water depth, the flap cannot oscillate properly when the wavelength is too short. As the wave period increases, the flap can oscillate more easily, and consequently its capture factor increases. However, the capture factor drops in higher wave periods because the wavelength is too large to move the flap. Furthermore, in a constant wave period, by changing the water depth, the capture factor does not alter. In other words, the capture factor does not depend on the water depth when it is around its maximum value.
3. Sensitivity Analysis
Based on previous studies, in addition to the flap design, the location of the flap relative to the water surface (freeboard) and its elevation relative to the flume bed (flap bottom elevation) play a significant role in extracting energy from the wave energy converter. This study measures the sensitivity of the model to various parameters related to the flap design including upper part width of the flap, lower part width of the flap, the freeboard, and the flap bottom elevation. Moreover, as a novel idea, we propose that the flap widths differ in the lower and upper parts. In Figure10, as an example, a flap with an upper thickness of 100 (mm) and a lower thickness of 50 (mm) and a flap with an upper thickness of 50 (mm) and a lower thickness of 100 (mm) are shown. The influence of such discrepancy between the widths of the upper and lower parts on the interaction between the wave and the flap, or in other words on the capture factor, is evaluated. To do so, other parameters are remained constant, such as the freeboard, the distance between the flap and the flume bed, and the wave properties.
In Figure11, models are simulated with distinct upper and lower widths. As it is clear in this figure, the first axis depicts the lower part width of the flap, the second axis indicates the upper part width of the flap, and the colors represent the capture factor values. Additionally, in order to consider a sufficient range of change, the flap thickness varies from half to double the value of the primary model for each part.
According to this study, the greater the discrepancy in these two parts, the lower the capture factor. It is on account of the fact that when the lower part of the flap is thicker than the upper part, and this thickness difference in these two parts is extremely conspicuous, the inertia against the motion is significant at zero degrees of rotation. Consequently, it is difficult to move the flap, which results in a low capture factor. Similarly, when the upper part of the flap is thicker than the lower part, and this thickness difference in these two parts is exceedingly noticeable, the inertia is so great that the flap can not reverse at the maximum degree of rotation. As the results indicate, the discrepancy can enhance the performance of the converter if the difference between these two parts is around 20%. As it is depicted in the Figure11, the capture factor reaches its own maximum amount, when the lower part thickness is from 5 to 6 (cm), and the upper part thickness is between 6 and 7 (cm). Consequently, as a result of this discrepancy, less material will be used, and therefore there will be less cost.
As illustrated in Figure12, this study examines the effects of freeboard (level difference between the flap top and water surface) and the flap bottom elevation (the distance between the flume bed and flap bottom) on the converter performance. In this diagram, the first axis demonstrates the freeboard and the second axis on the left side displays the flap bottom elevation, while the colors indicate the capture factor. In addition, the feasible range of freeboard is between -15 to 15 (cm) due to the limitation of the numerical model, so that we can take the wave slamming and the overtopping into consideration. Additionally, based on the Schmitt model and its scaled model of 1:40 of the base height, the flap bottom should be at least 9 (cm) high. Since the effect of surface waves is distributed over the depth of the flume, it is imperative to maintain a reasonable flap height exposed to incoming waves. Thus, the maximum flap bottom elevation is limited to 19 (cm). As the Figure12 pictures, at constant negative values of the freeboard, the capture factor is in inverse proportion with the flap bottom elevation, although slightly.
Furthermore, at constant positive values of the freeboard, the capture factor fluctuates as the flap bottom elevation decreases while it maintains an overall increasing trend. This is on account of the fact that increasing the flap bottom elevation creates turbulence flow behind the flap, which encumbers its rotation, as well as the fact that the flap surface has less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, the capture factor increases by raising the freeboard. This is due to the fact that there is overtopping with adverse impacts on the converter performance when the freeboard is negative and the flap is under the water surface. Besides, increasing the freeboard makes the wave slam more vigorously, which improves the converter performance.
Adding ribs to the flap surface, as shown in Figure13, is a novel idea that is investigated in the next section. To achieve an optimized design for the proposed geometry of the flap, we determine the optimal number and dimensions of ribs based on the flap properties as our decision variables in the optimization process. As an example, Figure13 illustrates a flap with 3 ribs on each side with specific dimensions.
Figure14 shows the flow velocity field around the flap jointed to the flume bed. During the oscillation of the flap, the pressure on the upper and lower surfaces of the flap changes dynamically due to the changing angle of attack and the resulting change in the direction of fluid flow. As the flap moves upwards, the pressure on the upper surface decreases, and the pressure on the lower surface increases. Conversely, as the flap moves downwards, the pressure on the upper surface increases, and the pressure on the lower surface decreases. This results in a cyclic pressure variation around the flap. Under certain conditions, the pressure field around the flap can exhibit significant variations in magnitude and direction, forming vortices and other flow structures. These flow structures can affect the performance of the OSWEC by altering the lift and drag forces acting on the flap.
4. Design Optimization
We consider optimizing the design parameters of the flap of converter using a nature-based swarm optimization method, that fall in the category of metaheuristic algorithms [45]. Accordingly, we choose four state-of-the-art algorithms to perform an optimization study. Then, based on their performances to achieve the highest capture factor, one of them will be chosen to be combined with the Hill Climb algorithm to carry out a local search. Therefore, in the remainder of this section, we discuss the search process of each algorithm and visualize their performance and convergence curve as they try to find the best values for decision variables.
4.1. Metaheuristic Approaches
As the first considered algorithm, the Gray Wolf Optimizer (GWO) algorithm simulates the natural leadership and hunting performance of gray wolves which tend to live in colonies. Hunters must obey the alpha wolf, the leader, who is responsible for hunting. Then, the beta wolf is at the second level of the gray wolf hierarchy. A subordinate of alpha wolf, beta stands under the command of the alpha. At the next level in this hierarchy, there are the delta wolves. They are subordinate to the alpha and beta wolves. This category of wolves includes scouts, sentinels, elders, hunters, and caretakers. In this ranking, omega wolves are at the bottom, having the lowest level and obeying all other wolves. They are also allowed to eat the prey just after others have eaten. Despite the fact that they seem less important than others, they are really central to the pack survival. Since, it has been shown that without omega wolves, the entire pack would experience some problems like fighting, violence, and frustration. In this simulation, there are three primary steps of hunting including searching, surrounding, and finally attacking the prey. Mathematically model of gray wolves’ hunting technique and their social hierarchy are applied in determined by optimization. this study. As mentioned before, gray wolves can locate their prey and surround them. The alpha wolf also leads the hunt. Assuming that the alpha, beta, and delta have more knowledge about prey locations, we can mathematically simulate gray wolf hunting behavior. Hence, in addition to saving the top three best solutions obtained so far, we compel the rest of the search agents (also the omegas) to adjust their positions based on the best search agent. Encircling behavior can be mathematically modeled by the following equations: [46].(12)�→=|�→·��→(�)-�→(�)|(13)�→(�+1)=��→(�)-�→·�→(14)�→=2.�2→(15)�→=2�→·�1→-�→Where �→indicates the position vector of gray wolf, ��→ defines the vector of prey, t indicates the current iteration, and �→and �→are coefficient vectors. To force the search agent to diverge from the prey, we use �→ with random values greater than 1 or less than -1. In addition, C→ contains random values in the range [0,2], and �→ 1 and �2→ are random vectors in [0,1]. The second considered technique is the Moth Flame Optimizer (MFO) algorithm. This method revolves around the moths’ navigation mechanism, which is realized by positioning themselves and maintaining a fixed angle relative to the moon while flying. This effective mechanism helps moths to fly in a straight path. However, when the source of light is artificial, maintaining an angle with the light leads to a spiral flying path towards the source that causes the moth’s death [47]. In MFO algorithm, moths and flames are both solutions. The moths are actual search agents that fly in hyper-dimensional space by changing their position vectors, and the flames are considered pins that moths drop when searching the search space [48]. The problem’s variables are the position of moths in the space. Each moth searches around a flame and updates it in case of finding a better solution. The fitness value is the return value of each moth’s fitness (objective) function. The position vector of each moth is passed to the fitness function, and the output of the fitness function is assigned to the corresponding moth. With this mechanism, a moth never loses its best solution [49]. Some attributes of this algorithm are as follows:
•It takes different values to converge moth in any point around the flame.
•Distance to the flame is lowered to be eventually minimized.
•When the position gets closer to the flame, the updated positions around the flame become more frequent.
As another method, the Multi-Verse Optimizer is based on a multiverse theory which proposes there are other universes besides the one in which we all live. According to this theory, there are more than one big bang in the universe, and each big bang leads to the birth of a new universe [50]. Multi-Verse Optimizer (MVO) is mainly inspired by three phenomena in cosmology: white holes, black holes, and wormholes. A white hole has never been observed in our universe, but physicists believe the big bang could be considered a white hole [51]. Black holes, which behave completely in contrast to white holes, attract everything including light beams with their extremely high gravitational force [52]. In the multiverse theory, wormholes are time and space tunnels that allow objects to move instantly between any two corners of a universe (or even simultaneously from one universe to another) [53]. Based on these three concepts, mathematical models are designed to perform exploration, exploitation, and local search, respectively. The concept of white and black holes is implied as an exploration phase, while the concept of wormholes is considered as an exploitation phase by MVO. Additionally, each solution is analogous to a universe, and each variable in the solution represents an object in that universe. Furthermore, each solution is assigned an inflation rate, and the time is used instead of iterations. Following are the universe rules in MVO:
•The possibility of having white hole increases with the inflation rate.
•The possibility of having black hole decreases with the inflation rate.
•Objects tend to pass through black holes more frequently in universes with lower inflation rates.
•Regardless of inflation rate, wormholes may cause objects in universes to move randomly towards the best universe. [54]
Modeling the white/black hole tunnels and exchanging objects of universes mathematically was accomplished by using the roulette wheel mechanism. With every iteration, the universes are sorted according to their inflation rates, then, based on the roulette wheel, the one with the white hole is selected as the local extremum solution. This is accomplished through the following steps:
Assume that
(16)���=����1<��(��)����1≥��(��)
Where ��� represents the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui) is normalized inflation rate of the ith universe, r1 is a random number in [0,1], and j xk shows the jth parameter of the kth universe selected by a roulette wheel selection mechanism [54]. It is assumed that wormhole tunnels always exist between a universe and the best universe formed so far. This mechanism is as follows:(17)���=if�2<���:��+���×((���-���)×�4+���)�3<0.5��-���×((���-���)×�4+���)�3≥0.5����:���where Xj indicates the jth parameter of the best universe formed so far, TDR and WEP are coefficients, where Xj indicates the jth parameter of the best universelbjshows the lower bound of the jth variable, ubj is the upper bound of the jth variable, and r2, r3, and r4 are random numbers in [1], [54].
Finally, one of the newest optimization algorithms is WOA. The WOA algorithm simulates the movement of prey and the whale’s discipline when looking for their prey. Among several species, Humpback whales have a specific method of hunting [55]. Humpback whales can recognize the location of prey and encircle it before hunting. The optimal design position in the search space is not known a priori, and the WOA algorithm assumes that the best candidate solution is either the target prey or close to the optimum. This foraging behavior is called the bubble-net feeding method. Two maneuvers are associated with bubbles: upward spirals and double loops. A unique behavior exhibited only by humpback whales is bubble-net feeding. In fact, The WOA algorithm starts with a set of random solutions. At each iteration, search agents update their positions for either a randomly chosen search agent or the best solution obtained so far [56], [55]. When the best search agent is determined, the other search agents will attempt to update their positions toward that agent. It is important to note that humpback whales swim around their prey simultaneously in a circular, shrinking circle and along a spiral-shaped path. By using a mathematical model, the spiral bubble-net feeding maneuver is optimized. The following equation represents this behavior:(18)�→(�+1)=�′→·�bl·cos(2��)+�∗→(�)
Where:(19)�′→=|�∗→(�)-�→(�)|
X→(t+ 1) indicates the distance of the it h whale to the prey (best solution obtained so far),� is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1,1], and dot (.) is an element-by-element multiplication [55].
Comparing the four above-mentioned methods, simulations are run with 10 search agents for 400 iterations. In Figure 15, there are 20 plots the optimal values of different parameters in optimization algorithms. The five parameters of this study are freeboard, bottom elevations, number of ribs on the converter, rib thickness, and rib Height. The optimal value for each was found by optimization algorithms, naming WOA, MVO, MFO, and GWO. By looking through the first row, the freeboard parameter converges to its maximum possible value in the optimization process of GWO after 300 iterations. Similarly, MFO finds the same result as GWO. In contrast, the freeboard converges to its minimum possible value in MVO optimizing process, which indicates positioning the converter under the water. Furthermore, WOA found the optimal value of freeboard as around 0.02 after almost 200 iterations. In the second row, the bottom elevation is found at almost 0.11 (m) in all algorithms; however, the curves follow different trends in each algorithm. The third row shows the number of ribs, where results immediately reveal that it should be over 4. All algorithms coincide at 5 ribs as the optimal number in this process. The fourth row displays the trends of algorithms to find optimal rib thickness. MFO finds the optimal value early and sets it to around 0.022, while others find the same value in higher iterations. Finally, regarding the rib height, MVO, MFO, and GWO state that the optimal value is 0.06 meters, but WOA did not find a higher value than 0.039.
4.2. HCMVO Bi-level Approach
Despite several strong search characteristics of MVO and its high performance in various optimization problems, it suffers from a few deficiencies in local and global search mechanisms. For instance, it is trapped in the local optimum when wormholes stochastically generate many solutions near the best universe achieved throughout iterations, especially in solving complex multimodal problems with high dimensions [57]. Furthermore, MVO needs to be modified by an escaping strategy from the local optima to enhance the global search abilities. To address these shortages, we propose a fast and effective meta-algorithm (HCMVO) to combine MVO with a Random-restart hill-climbing local search. This meta-algorithm uses MVO on the upper level to develop global tracking and provide a range of feasible and proper solutions. The hill-climbing algorithm is designed to develop a comprehensive neighborhood search around the best-found solution proposed by the upper-level (MVO) when MVO is faced with a stagnation issue or falling into a local optimum. The performance threshold is formulated as follows.(20)Δ����THD=∑�=1�����TH��-����TH��-1�where BestTHDis the best-found solution per generation, andM is related to the domain of iterations to compute the average performance of MVO. If the proposed best solution by the local search is better than the initial one, the global best of MVO will be updated. HCMVO iteratively runs hill climbing when the performance of MVO goes down, each time with an initial condition to prepare for escaping such undesirable situations. In order to get a better balance between exploration and exploitation, the search step size linearly decreases as follows:(21)��=��-����Ma�iter��+1where iter and Maxiter are the current iteration and maximum number of evaluation, respectively. �� stands for the step size of the neighborhood search. Meanwhile, this strategy can improve the convergence rate of MVO compared with other algorithms.
Algorithm 1 shows the technical details of the proposed optimization method (HCMVO). The initial solution includes freeboard (�), bottom elevation (�), number of ribs (Nr), rib thickness (�), and rib height(�).
5. Conclusion
The high trend of diminishing worldwide energy resources has entailed a great crisis upon vulnerable societies. To withstand this effect, developing renewable energy technologies can open doors to a more reliable means, among which the wave energy converters will help the coastal residents and infrastructure. This paper set out to determine the optimized design for such devices that leads to the highest possible power output. The main goal of this research was to demonstrate the best design for an oscillating surge wave energy converter using a novel metaheuristic optimization algorithm. In this regard, the methodology was devised such that it argued the effects of influential parameters, including wave characteristics, WEC design, and interaction criteria.
To begin with, a numerical model was developed in Flow 3D software to simulate the response of the flap of a wave energy converter to incoming waves, followed by a validation study based upon a well-reputed experimental study to verify the accuracy of the model. Secondly, the hydrodynamics of the flap was investigated by incorporating the turbulence. The effect of depth, wave height, and wave period are also investigated in this part. The influence of two novel ideas on increasing the wave-converter interaction was then assessed: i) designing a flap with different widths in the upper and lower part, and ii) adding ribs on the surface of the flap. Finally, four trending single-objective metaheuristic optimization methods
Empty Cell
Algorithm 1:Hill Climb Multiverse Optimization
01:
procedure HCMVO
02:
�=30,�=5▹���������������������������������
03:
�=〈F1,B1,N,R,H1〉,…〈FN,B2,N,R,HN〉⇒lb1N⩽�⩽ubN
04:
Initialize parameters�ER,�DR,�EP,Best�,���ite��▹Wormhole existence probability (WEP)
05:
��=����(��)
06:
��=Normalize the inflation rate��
07:
for iter in[1,⋯,���iter]do
08:
for�in[1,⋯,�]do
09:
Update�EP,�DR,Black����Index=�
10:
for���[1,⋯,�]��
11:
�1=����()
12:
if�1≤��(��)then
13:
White HoleIndex=Roulette�heelSelection(-��)
14:
�(Black HoleIndex,�)=��(White HoleIndex,�)
15:
end if
16:
�2=����([0,�])
17:
if�2≤�EPthen
18:
�3=����(),�4=����()
19:
if�3<0.5then
20:
�1=((��(�)-��(�))�4+��(�))
21:
�(�,�)=Best�(�)+�DR�
22:
else
23:
�(�,�)=Best�(�)-�DR�
24:
end if
25:
end if
26:
end for
27:
end for
28:
�HD=����([�1,�2,⋯,�Np])
29:
Bes�TH�itr=����HD
30:
ΔBestTHD=∑�=1�BestTII��-BestTII��-1�
31:
ifΔBestTHD<��then▹Perform hill climbing local search
32:
BestTHD=����-�lim��������THD
33:
end if
34:
end for
35:
return�,BestTHD▹Final configuration
36:
end procedure
The implementation details of the hill-climbing algorithm applied in HCMPA can be seen in Algorithm 2. One of the critical parameters isg, which denotes the resolution of the neighborhood search around the proposed global best by MVO. If we set a small step size for hill-climbing, the convergence speed will be decreased. On the other hand, a large step size reinforces the exploration ability. Still, it may reduce the exploitation ability and in return increase the act of jumping from a global optimum or surfaces with high-potential solutions. Per each decision variable, the neighborhood search evaluates two different direct searches, incremental or decremental. After assessing the generated solutions, the best candidate will be selected to iterate the search algorithm. It is noted that the hill-climbing algorithm should not be applied in the initial iteration of the optimization process due to the immense tendency for converging to local optima. Meanwhile, for optimizing largescale problems, hill-climbing is not an appropriate selection. In order to improve understanding of the proposed hybrid optimization algorithm’s steps, the flowchart of HCMVO is designed and can be seen in Figure 16.
Figure 17 shows the observed capture factor (which is the absorbed energy with respect to the available energy) by each optimization algorithm from iterations 1 to 400. The algorithms use ten search agents in their modified codes to find the optimal solutions. While GWO and MFO remain roughly constant after iterations 54 and 40, the other three algorithms keep improving the capture factor. In this case, HCMVO and MVO worked very well in the optimizing process with a capture factor obtained by the former as 0.594 and by the latter as 0.593. MFO almost found its highest value before the iteration 50, which means the exploration part of the algorithm works out well. Similarly, HCMVO does the same. However, it keeps finding the better solution during the optimization process until the last iteration, indicating the strong exploitation part of the algorithm. GWO reveals a weakness in exploration and exploitation because not only does it evoke the least capture factor value, but also the curve remains almost unchanged throughout 350 iterations.
Figure 18 illustrates complex interactions between the five optimization parameters and the capture factor for HCMVO (a), MPA (b), and MFO (c) algorithms. The first interesting observation is that there is a high level of nonlinear relationships among the setting parameters that can make a multi-modal search space. The dark blue lines represent the best-found configuration throughout the optimisation process. Based on both HCMVO (a) and MVO (b), we can infer that the dark blue lines concentrate in a specific range, showing the high convergence ability of both HCMVO and MVO. However, MFO (c) could not find the exact optimal range of the decision variables, and the best-found solutions per generation distribute mostly all around the search space.
Empty Cell
Algorithm 1:Hill Climb Multiverse Optimization
01:
procedure HCMVO
02:
Initialization
03:
Initialize the constraints��1�,��1�
04:
�1�=Mi�1�+���1�/�▹Compute the step size,�is search resolution
were utilized to illuminate the optimum values of the design parameters, and the best method was chosen to develop a new algorithm that performs both local and global search methods.
The correlation between hydrodynamic parameters and the capture factor of the converter was supported by the results. For any given water depth, the capture factor increases as the wave period increases, until a certain wave period value (6 seconds) is reached, after which the capture factor gradually decreases. It is expected since the flap cannot oscillate effectively when the wavelength is too short for a certain water depth. Conversely, when the wavelength is too long, the capture factor decreases. Furthermore, under a constant wave period, increasing the water depth does not affect the capture factor. Regarding the sensitivity analysis, the study found that increasing the flap bottom elevation causes turbulence flow behind the flap and limitation of rotation, which leads to less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, increasing the freeboard improves the capture factor. Overtopping happens when the freeboard is negative and the flap is below the water surface, which has a detrimental influence on converter performance. Furthermore, raising the freeboard causes the wave impact to become more violent, which increases converter performance.
In the last part, we discussed the search process of each algorithm and visualized their performance and convergence curves as they try to find the best values for decision variables. Among the four selected metaheuristic algorithms, the Multi-verse Optimizer proved to be the most effective in achieving the best answer in terms of the WEC capture factor. However, the MVO needed modifications regarding its escape approach from the local optima in order to improve its global search capabilities. To overcome these constraints, we presented a fast and efficient meta-algorithm (HCMVO) that combines MVO with a Random-restart hill-climbing local search. On a higher level, this meta-algorithm employed MVO to generate global tracking and present a range of possible and appropriate solutions. Taken together, the results demonstrated that there is a significant degree of nonlinearity among the setup parameters that might result in a multimodal search space. Since MVO was faced with a stagnation issue or fell into a local optimum, we constructed a complete neighborhood search around the best-found solution offered by the upper level. In sum, the newly-developed algorithm proved to be highly effective for the problem compared to other similar optimization methods. The strength of the current findings may encourage future investigation on design optimization of wave energy converters using developed geometry as well as the novel approach.
CRediT authorship contribution statement
Erfan Amini: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Mahdieh Nasiri: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Navid Salami Pargoo: Writing – original draft, Writing – review & editing. Zahra Mozhgani: Conceptualization, Methodology. Danial Golbaz: Writing – original draft. Mehrdad Baniesmaeil: Writing – original draft. Meysam Majidi Nezhad: . Mehdi Neshat: Supervision, Conceptualization, Writing – original draft, Writing – review & editing, Visualization. Davide Astiaso Garcia: Supervision. Georgios Sylaios: Supervision.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgement
This research has been carried out within ILIAD (Inte-grated Digital Framework for Comprehensive Maritime Data and Information Services) project that received funding from the European Union’s H2020 programme.
[2]A. Morteza, M. SadipourReza Saadati Fard, Saman Taheri, and Amirhossein AhmadiA dagging-based deep learning framework for transmission line flexibility assessment, IET Renewable Power Generation (2022)Google Scholar
[3]A. Morteza, M. Ilbeigi, J. SchwedA blockchain information management framework for construction safety. Comput-ingCivil Engineering (2021, 2022.)Google Scholar
[4]Jochem Weber, Ronan Costello, and John Ringwood. Wec technology performance levels (tpls)-metric for successful development of economic wec technology. Proceedings EWTEC 2013, 2013.Google Scholar
[5]K. Rahgooy, A. Bahmanpour, M. Derakhshandi, A.a. Bagherzadeh-KhalkhaliDistribution of elastoplastic modulus of subgrade reaction for analysis of raft foundationsGeomechanics and Engineering, 28 (1) (2022), pp. 89-105View in ScopusGoogle Scholar
[7]M. Penalba, G. Giorgi, J.V. RingwoodMathematical modelling of wave energy converters: A review of nonlinear approachesRenewable and Sustainable Energy Reviews, 78 (2017), pp. 1188-1207View PDFView articleView in ScopusGoogle Scholar
[8]C. Windt, J. Davidson, J.V. RingwoodHigh-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanksRenewable and Sustainable Energy Reviews, 93 (2018), pp. 610-630View PDFView articleView in ScopusGoogle Scholar
[10]J.V. Ringwood, G. Bacelli, F. FuscoEnergymaximizing control of wave-energy converters: The development of control system technology to optimize their operationIEEE control systems magazine, 34 (5) (2014), pp. 30-55View article CrossRefView in ScopusGoogle Scholar
[11]N. Faedo, S. Olaya, J.V. RingwoodOptimal control, mpc and mpc-like algorithms for wave energy systems: An overviewIFAC Journal of Systems and Control, 1 (2017), pp. 37-56View PDFView articleView in ScopusGoogle Scholar
[12]L. Wang, J. Isberg, E. TedeschiReview of control strategies for wave energy conversion systems and their validation: the wave-to-wire approachRenewable and Sustainable Energy Reviews, 81 (2018), pp. 366-379View PDFView articleView in ScopusGoogle Scholar
[15]E. Amini, D. Golbaz, R. Asadi, M. Nasiri, O. Ceylan, M.M. Nezhad, et al.A comparative study of metaheuristic algorithms for wave energy converter power take-off optimisation: A case study for eastern australiaJournal of Marine Science and Engineering, 9(5):490 (2021)Google Scholar
[16]Arthur Pecher and Jens Peter KofoedHandbook of ocean wave energySpringer Nature (2017)Google Scholar
[17]G. Chang, C.A. Jones, J.D. Roberts, V.S. NearyA comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projectsRenewable Energy, 127 (2018), pp. 344-354View PDFView articleView in ScopusGoogle Scholar
[18]E. Amini, H. Mehdipour, E. Faraggiana, D. Golbaz, S. Mozaffari, G. Bracco, et al.Optimization of hydraulic power take-off system settings for point absorber wave energy converterRenewable Energy, 194 (2022), pp. 938-954View PDFView articleView in ScopusGoogle Scholar
[19]A. Garcia-Teruel, D.I.M. ForehandA review of geometry optimisa-tion of wave energy convertersRenewable and Sustainable Energy Reviews, 139 (2021), Article 110593View PDFView articleView in ScopusGoogle Scholar
[20]M.M. Nezhad, A. Heydari, M. Neshat, F. Keynia, G. Piras, D.A. GarciaA mediterranean sea offshore wind classification using merra-2 and machine learning modelsRenewable Energy, 190 (2022), pp. 156-166Google Scholar
[21]I. López, J. Andreu, S. Ceballos, I.M.D. Alegría, I. KortabarriaReview of wave energy technologies and the necessary power-equipmentRenewable and sustainable energy reviews, 27 (2013), pp. 413-434View PDFView articleView in ScopusGoogle Scholar
[22]R. Ekström, B. Ekergård, M. LeijonElectrical damping of linear generators for wave energy converters—a reviewRenewable and Sustainable Energy Reviews, 42 (2015), pp. 116-128View PDFView articleGoogle Scholar
[23]Danial Golbaz, Rojin Asadi, Erfan Amini, Hossein Mehdipour, Mahdieh Nasiri, Meysam Majidi Nezhad, Seyed Taghi Omid Naeeni, and Mehdi Neshat. Ocean wave energy converters optimization: A comprehensive review on research directions. arXiv preprint arXiv:2105.07180, 2021.Google Scholar
[24]Michael Choiniere, Jacob Davis, Nhu Nguyen, Nathan Tom, Matthew Fowler, and Krish Thiagarajan Sharman. Hydrodynamics and load shedding behavior of a variable geometry oscillating surge wave energy converter (oswec). Available at SSRN 3900951, 2022.Google Scholar
[25]Alan Henry, Olivier Kimmoun, Jonathan Nicholson, Guillaume Dupont, Yanji Wei, andFrederic Dias. A two dimensional experimental investigation of slamming of an oscillating wave surge converter. In The Twenty-fourth International Ocean and Polar Engineering Conference. OnePetro, 2014.Google Scholar
[26]S. Doyle, G.A. AggidisDevelopment of multioscillating water columns as wave energy convertersRenewable and Sustainable Energy Reviews, 107 (2019), pp. 75-86View PDFView articleView in ScopusGoogle Scholar
[28]Matthew Folley, TJT Whittaker, and Alan Henry. The effect of water depth on the performance of a small surging wave energy converter. Ocean Engineering, 34(8-9):1265–1274, 2007.Google Scholar
[30]D. Sarkar, E. Renzi, F. DiasEffect of a straight coast on the hydrodynamics and performance of the oscillating wave surge converterOcean Engineering, 105 (2015), pp. 25-32View PDFView articleView in ScopusGoogle Scholar
[31]Adrian de Andres, Jéromine Maillet, Jørgen Hals Todalshaug, Patrik Möller, and Henry Jeffrey. On the optimum sizing of a real wec from a techno-economic perspective. In International Conference on Offshore Mechanics and Arctic Engineering, volume 49972, page V006T09A013. American Society of Mechanical Engineers, 2016.Google Scholar
[34]T. Whittaker, M. FolleyNearshore oscillating wave surge converters and the development of oysterPhilosophical Transactions Sciences of the Royal Society A: Mathematical, Physical and Engineering, 370 (1959) (2012), pp. 345-364View article CrossRefView in ScopusGoogle Scholar
[35]Louise O’Boyle, Kenneth Doherty, Jos van’t Hoff, and Jessica Skelton. The value of full scale prototype data-testing oyster 800 at emec, orkney. In Proceedings of the 11th European wave and tidal energy conference (EWTEC), Nantes, France, pages 6–11, 2015.Google Scholar
[37]Ishmail B Celik, Urmila Ghia, Patrick J Roache, and Christopher J Freitas. Procedure for estimation and reporting of uncertainty due to discretization in cfd applications. Journal of fluids EngineeringTransactions of the ASME, 130(7), 2008.Google Scholar
[38]Pal Schmitt, K Doherty, Darragh Clabby, and T Whittaker. The opportunities and limitations of using cfd in the development of wave energyconverters. Marine&OffshoreRenewableEnergy, pages 89–97, 2012.Google Scholar
[39]M. Choiniere, J. Davis, N.u. Nguyen, N. Tom, M. Fowler, K. ThiagarajanHydrodynamics and load shedding behavior of a variable-geometry oscillating surge wave energy converter (oswec)Renewable Energy (2022)Google Scholar
[40]Yong Li and Mian Lin. Regular and irregular wave impacts on floating body. Ocean Engineering, 42:93–101, 2012. Pal Manuel Schmitt. Investigation of the near flow field of bottom hinged flap type wave energy converters. PhD thesis, Queen’s University Belfast, 2014.Google Scholar
[41]Alan John Henry. The hydrodynamics of small seabed mounted bottom hinged wave energy conerverters in shallow water. PhD thesis, Queen’s University Belfast, 2009.Google Scholar
[42]N. Ghorbani, A. Korzeniowski, et al.Adaptive risk hedging for call options under cox-ingersoll-ross interest ratesJournal of Mathematical Finance, 10 (04) (2020), p. 697 View PDF CrossRefView in ScopusGoogle Scholar
[44]M. Abdel-Basset, L. Abdel-Fatah, A.K. SangaiahChapter 10metaheuristic algorithms: a comprehensive reviewcomputational intelligence for multimedia big data on the cloud with engineering applications (2018)Google Scholar
[47]Mohammad Shehab, Laith Abualigah, Husam Al Hamad, Hamzeh Alabool, Mohammad Alshinwan, and Ahmad M Khasawneh. Moth– flame optimization algorithm: variants and applications. Neural Computing and Applications, 32(14):9859–9884, 2020.Google Scholar
[48]Betül Sultan Yıldız and Ali Rıza YıldızMoth-flame optimization algorithm to determine optimal machining parameters in manufacturing processesMaterials Testing, 59 (5) (2017), pp. 425-429Google Scholar
[49]M Tegmark. Barrow, jd davies, pc harper, cl, jr eds. Science and Ultimate Reality Cambridge University Press Cambridge, 2004.Google Scholar
[52]M.S. Morris, K.S. ThorneWormholes in spacetime and their use for interstellar travel: A tool for teaching general relativityAmerican Journal of Physics, 56 (5) (1988), pp. 395-412View article CrossRefView in ScopusGoogle Scholar
[53]S. Mirjalili, S.M. Mirjalili, A. HatamlouMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Computing and Applications, 27 (2) (2016), pp. 495-513View article CrossRefView in ScopusGoogle Scholar
[55]Farhad Soleimanian Gharehchopogh and Hojjat GholizadehA comprehensive survey: Whale optimization algorithm and its applicationsSwarm and Evolutionary Computation, 48 (2019), pp. 1-24Google Scholar
[56]L. AbualigahMulti-verse optimizer algorithm: a comprehensive survey of its results, variants, and applicationsNeural Computing and Applications, 32 (16) (2020), pp. 12381-12401View article CrossRefView in ScopusGoogle Scholar
Due to their high efficiency, low heat loss and associated sustainability advantages, impinging jets have been used extensively in marine engineering, geotechnical engineering and other engineering practices. In this paper, the flow structure and impact characteristics of impinging jets with different Reynolds numbers and impact distances are systematically studied by Flow-3D based on PIV experiments. In the study, the relevant state parameters of the jets are dimensionlessly treated, obtaining not only the linear relationship between the length of the potential nucleation zone and the impinging distance, but also the linear relationship between the axial velocity and the axial distance in the impinging zone. In addition, after the jet impinges on the flat plate, the vortex action range caused by the wall-attached flow of the jet gradually decreases inward with the increase of the impinging distance. By examining the effect of Reynolds number Re on the hydraulic characteristics of the submerged impact jet, it can be found that the structure of the continuous submerged impact jet is relatively independent of the Reynolds number. At the same time, the final simulation results demonstrate the applicability of the linear relationship between the length of the potential core region and the impact distance. This study provides methodological guidance and theoretical support for relevant engineering practice and subsequent research on impinging jets, which has strong theoretical and practical significance.
Figure 3. (a) Schematic diagram of the experimental setup; (b) PIV images of vertical impinging jets with velocity fields.
Figure 4. (a) Velocity distribution verification at the outlet of the jet pipe; (b) Distribution of flow angle in the mid-axis of the jet [39].
Figure 5. Along-range distribution of the dimensionless axial velocity of the jet at different impact distances.Figure 6 shows the variation of H
Figure 6. Relationship between the distribution of potential core region and the impact height H/D.
Figure 7. The relationship between the potential core length
Figure 8. Along-range distribution of the flow angle φ of the jet at different impact distances.
Figure 9. Velocity distribution along the axis of the jet at different impinging regions.
Figure 10. The absolute value distribution of slope under different impact distances.
Figure 11. Velocity distribution of impinging jet on wall under different impinging distances.
Figure 12. Along-range distribution of the dimensionless axial velocity of the jet at different Reynolds numbers.
Figure 13. Along-range distribution of the flow angle φ of the jet at different Reynolds numbers.
Figure 14. Velocity distribution along the jet axis at different Reynolds numbers.
Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.
References
Zhang, J.; Li, Y.; Zhang, Y.; Yang, F.; Liang, C.; Tan, S. Using a high-pressure water jet-assisted tunnel boring machine to break rock. Adv. Mech. Eng.2020, 12, 1687814020962290. [Google Scholar] [CrossRef]
Shi, X.; Zhang, G.; Xu, G.; Ma, Y.; Wu, X. Inactivating Microorganism on Medical Instrument Using Plasma Jet. High Volt. Eng.2009, 35, 632–635. [Google Scholar]
Gao, Y.; Han, P.; Wang, F.; Cao, J.; Zhang, S. Study on the Characteristics of Water Jet Breaking Coal Rock in a Drilling Hole. Sustainability2022, 14, 8258. [Google Scholar] [CrossRef]
Xu, W.; Wang, C.; Zhang, L.; Ge, J.; Zhang, D.; Gao, Z. Numerical study of continuous jet impinging on a rotating wall based on Wray—Agarwal turbulence model. J. Braz. Soc. Mech. Sci. Eng.2022, 44, 433. [Google Scholar] [CrossRef]
Hu, B.; Wang, C.; Wang, H.; Yu, Q.; Liu, J.; Zhu, Y.; Ge, J.; Chen, X.; Yang, Y. Numerical Simulation Study of the Horizontal Submerged Jet Based on the Wray—Agarwal Turbulence Model. J. Mar. Sci. Eng.2022, 10, 1217. [Google Scholar] [CrossRef]
Dahiya, A.K.; Bhuyan, B.K.; Kumar, S. Perspective study of abrasive water jet machining of composites—A review. J. Mech. Sci. Technol.2022, 36, 213–224. [Google Scholar] [CrossRef]
Abushanab, W.S.; Moustafa, E.B.; Harish, M.; Shanmugan, S.; Elsheikh, A.H. Experimental investigation on surface characteristics of Ti6Al4V alloy during abrasive water jet machining process. Alex. Eng. J.2022, 61, 7529–7539. [Google Scholar] [CrossRef]
Hu, B.; Wang, H.; Liu, J.; Zhu, Y.; Wang, C.; Ge, J.; Zhang, Y. A numerical study of a submerged water jet impinging on a stationary wall. J. Mar. Sci. Eng.2022, 10, 228. [Google Scholar] [CrossRef]
Peng, J.; Shen, H.; Xie, W.; Zhai, S.; Xi, G. Influence of flow fluctuation characteristics on flow and heat transfer in different regions. J. Drain. Irrig. Mach. Eng.2022, 40, 826–833. [Google Scholar]
Zhai, S.; Xie, F.; Yin, G.; Xi, G. Effect of gap ratio on vortex-induced vibration characteristics of different blunt bodies near-wall. J. Drain. Irrig. Mach. Eng.2021, 39, 1132–1138. [Google Scholar]
Lin, W.; Zhou, Y.; Wang, L.; Tao, L. PIV experiment and numerical simulation of trailing vortex structure of improved INTER-MIG impeller. J. Drain. Irrig. Mach. Eng.2021, 39, 158–164. [Google Scholar]
Han, B.; Yao, Z.; Tang, R.; Xu, H. On the supersonic impinging jet by laser Doppler velocimetry. Exp. Meas. Fluid Mech.2002, 16, 99–103. [Google Scholar]
Darisse, A.; Lemay, J.; Benaissa, A. LDV measurements of well converged third order moments in the far field of a free turbulent round jet. Exp. Therm. Fluid Sci.2013, 44, 825–833. [Google Scholar] [CrossRef]
Kumar, S.; Kumar, A. Effect of initial conditions on mean flow characteristics of a three dimensional turbulent wall jet. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.2021, 235, 6177–6190. [Google Scholar] [CrossRef]
Tao, D.; Zhang, R.; Ying, C. Development and application of the pollutant diffusion testing apparatus based on the image analysis. J. Saf. Environ.2016, 16, 247–251. [Google Scholar]
Seo, H.; Kim, K.C. Experimental study on flow and turbulence characteristics of bubbly jet with low void fraction. Int. J. Multiph. Flow2021, 142, 103738. [Google Scholar] [CrossRef]
Wen, Q.; Sha, J.; Liu, Y. TR-PIV measurement of the turbulent submerged jet and POB analysis of the dynamic structure. J. Exp. Fluid Mech.2014, 4, 16–24. [Google Scholar]
Yang, Y.; Zhou, L.; Shi, W.; He, Z.; Han, Y.; Xiao, Y. Interstage difference of pressure pulsation in a three-stage electrical submersible pump. J. Petrol. Sci. Eng.2021, 196, 107653. [Google Scholar] [CrossRef]
Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform.2021, 50, 101406. [Google Scholar] [CrossRef]
Han, Y.; Song, X.; Li, K.; Yan, X. Hybrid modeling for submergence depth of the pumping well using stochastic configuration networks with random sampling. J. Petrol. Sci. Eng.2022, 208, 109423. [Google Scholar] [CrossRef]
Tang, S.; Zhu, Y.; Yuan, S. A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images. Adv. Eng. Inform.2022, 52, 101554. [Google Scholar] [CrossRef]
Long, J.; Song, X.; Shi, J.; Chen, J. Optimization and CFD Analysis on Nozzle Exit Position of Two-phase Ejector. J. Refrig.2022, 43, 39–45. [Google Scholar]
Ni, Q.; Ruan, W. Optimization design of desilting jet pump parameters based on response surface model. J. Ship Mech.2022, 26, 365–374. [Google Scholar]
Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S. Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Therm. Eng.2017, 126, 594–601. [Google Scholar] [CrossRef]
Fu, W.; Liu, Z.; Li, Y.; Wu, H.; Tang, Y. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance. Int. J. Therm. Sci.2018, 132, 509–516. [Google Scholar] [CrossRef]
Lucas, C.; Rusche, H.; Schroeder, A.; Koehler, J. Numerical investigation of a two-phase CO2 ejector. Int. J. Refrigeration2014, 43, 154–166. [Google Scholar] [CrossRef]
Ma, X.; Zhu, T.; Fu, Y.; Yan, Y.; Chen, W. Numerical simulation of rock breaking by abrasive water jet. J. Coast. Res.2019, 93, 274–283. [Google Scholar] [CrossRef]
He, L.; Liu, Y.; Shen, K.; Yang, X.; Ba, Q.; Xiong, W. Numerical research on the dynamic rock-breaking process of impact drilling with multi-nozzle water jets. J. Pet. Sci. Eng.2021, 207, 109145. [Google Scholar] [CrossRef]
Yu, Z.; Wang, Z.; Lei, C.; Zhou, Y.; Qiu, X. Numerical Simulation on Internal Flow Field of a Self-excited Oscillation Pulsed Jet Nozzle with Back-flow. Mech. Sci. Technol. Aerosp. Eng.2022, 41, 998–1002. [Google Scholar]
Huang, J.; Ni, F.; Gu, L. Numerical method of FLOW-3D for sediment erosion simulation. China Harb. Eng.2019, 39, 6–11. [Google Scholar]
Al Shaikhli, H.I.; Khassaf, S.I. Using of flow 3d as CFD materials approach in waves generation. Mater. Today Proc.2022, 49, 2907–2911. [Google Scholar] [CrossRef]
Kosaj, R.; Alboresha, R.S.; Sulaiman, S.O. Comparison Between Numerical Flow3d Software and Laboratory Data, For Sediment Incipient Motion. IOP Conf. Ser. Earth Environ. Sci.2022, 961, 012031. [Google Scholar] [CrossRef]
Du, C.; Liu, X.; Zhang, J.; Wang, B.; Chen, X.; Yu, X. Long-distance water hammer protection of pipeline after pump being first lowered and then rasied. J. Drain. Irrig. Mach. Eng.2022, 40, 1248–1253, 1267. [Google Scholar]
Gao, F.; Li, X.; Gao, Q. Experiment and numerical simulation on hydraulic characteristics of novel trapezoidal measuring weir. J. Drain. Irrig. Mach. Eng.2022, 40, 1104–1111. [Google Scholar]
Tu, A.; Nie, X.; Li, Y.; Li, H. Experimental and simulation study on water infiltration characteristics of layered red soil. J. Drain. Irrig. Mach. Eng.2021, 39, 1243–1249. [Google Scholar]
Chen, J.; Zeng, B.; Liu, L.; Tao, K.; Zhao, H.; Zhang, C.; Zhang, J.; Li, D. Investigating the anchorage performance of full-grouted anchor bolts with a modified numerical simulation method. Eng. Fail. Anal.2022, 141, 106640. [Google Scholar] [CrossRef]
Hu, B.; Yao, Y.; Wang, M.; Wang, C.; Liu, Y. Flow and Performance of the Disk Cavity of a Marine Gas Turbine at Varying Nozzle Pressure and Low Rotation Speeds: A Numerical Investigation. Machines2023, 11, 68. [Google Scholar] [CrossRef]
Yao, J.; Wang, X.; Zhang, S.; Xu, S.; Jin, B.; Ding, S. Orthogonal test of important parameters affecting hydraulic performance of negative pressure feedback jet sprinkler. J. Drain. Irrig. Mach. Eng.2021, 39, 966–972. [Google Scholar]
Wang, C.; Wang, X.; Shi, W.; Lu, W.; Tan, S.K.; Zhou, L. Experimental investigation on impingement of a submerged circular water jet at varying impinging angles and Reynolds numbers. Exp. Therm. Fluid Sci.2017, 89, 189–198. [Google Scholar] [CrossRef]
Speziale, C.G.; Thangam, S. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci.1992, 30, 1379–1388. [Google Scholar] [CrossRef]
El Hassan, M.; Assoum, H.H.; Sobolik, V.; Vétel, J.; Abed-Meraim, K.; Garon, A.; Sakout, A. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids2012, 52, 1475–1489. [Google Scholar] [CrossRef]
Fairweather, M.; Hargrave, G. Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp. Fluids2002, 33, 464–471. [Google Scholar] [CrossRef]
Ashforth-Frost, S.; Jambunathan, K. Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int. Commun. Heat Mass Transf.1996, 23, 155–162. [Google Scholar] [CrossRef]
Chen, M.; Huang, H.; Wang, D.; Lv, S.; Chen, Y. PIV tests for flow characteristics of impinging jet in a semi-closed circular pipe. J. Vib. Shock2021, 40, 90–97, 113. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Mi, H.; Wang, C.; Jia, X.; Hu, B.; Wang, H.; Wang, H.; Zhu, Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability2023, 15, 5159. https://doi.org/10.3390/su15065159
AMA Style
Mi H, Wang C, Jia X, Hu B, Wang H, Wang H, Zhu Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability. 2023; 15(6):5159. https://doi.org/10.3390/su15065159Chicago/Turabian Style
Mi, Hongbo, Chuan Wang, Xuanwen Jia, Bo Hu, Hongliang Wang, Hui Wang, and Yong Zhu. 2023. “Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment” Sustainability 15, no. 6: 5159. https://doi.org/10.3390/su15065159
Paula Beceiro (corresponding author) Maria do Céu Almeida Hydraulic and Environment Department (DHA), National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisbon, Portugal E-mail: pbeceiro@lnec.pt Jorge Matos Department of Civil Engineering, Arquitecture and Geosources, Technical University of Lisbon (IST), Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal
ABSTRACT
물 흐름에 용존 산소(DO)의 존재는 해로운 영향의 발생을 방지하는 데 유익한 것으로 인식되는 호기성 조건을 보장하는 중요한 요소입니다.
하수도 시스템에서 흐르는 폐수에 DO를 통합하는 것은 공기-액체 경계면 또는 방울이나 접합부와 같은 특이점의 존재로 인해 혼입된 공기를 통한 연속 재방출의 영향을 정량화하기 위해 광범위하게 조사된 프로세스입니다. 공기 혼입 및 후속 환기를 향상시키기 위한 하수구 드롭의 위치는 하수구의 호기성 조건을 촉진하는 효과적인 방법입니다.
본 논문에서는 수직 낙하, 배경 및 계단식 낙하를 CFD(전산유체역학) 코드 FLOW-3D®를 사용하여 모델링하여 이러한 유형의 구조물의 존재로 인해 발생하는 난류로 인한 공기-물 흐름을 평가했습니다. 이용 가능한 실험적 연구에 기초한 수력학적 변수의 평가와 공기 혼입의 분석이 수행되었습니다.
이러한 구조물에 대한 CFD 모델의 결과는 Soares(2003), Afonso(2004) 및 Azevedo(2006)가 개발한 해당 물리적 모델에서 얻은 방류, 압력 헤드 및 수심의 측정을 사용하여 검증되었습니다.
유압 거동에 대해 매우 잘 맞았습니다. 수치 모델을 검증한 후 공기 연행 분석을 수행했습니다.
The presence of dissolved oxygen (DO) in water flows is an important factor to ensure the aerobic conditions recognised as beneficial to prevent the occurrence of detrimental effects. The incorporation of DO in wastewater flowing in sewer systems is a process widely investigated in order to quantify the effect of continuous reaeration through the air-liquid interface or air entrained due the presence of singularities such as drops or junctions. The location of sewer drops to enhance air entrainment and subsequently reaeration is an effective practice to promote aerobic conditions in sewers. In the present paper, vertical drops, backdrops and stepped drop was modelled using the computational fluid dynamics (CFD) code FLOW-3D® to evaluate the air-water flows due to the turbulence induced by the presence of this type of structures. The assessment of the hydraulic variables and an analysis of the air entrainment based in the available experimental studies were carried out. The results of the CFD models for these structures were validated using measurements of discharge, pressure head and water depth obtained in the corresponding physical models developed by Soares (2003), Afonso (2004) and Azevedo (2006). A very good fit was obtained for the hydraulic behaviour. After validation of numerical models, analysis of the air entrainment was carried out.
Key words | air entrainment, computational fluid dynamics (CFD), sewer drops
Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.
REFERENCES
Afonso, J. Dissipação de energia e rearejamento em quedas em colectores. M.Sc. Thesis, UTL/IST, Lisboa, Portugal. Almeida, M. C., Butler, D. & Matos, J. S. Reaeration by sewer drops. In: 8th Int. Conf. on Urban Storm Drainage, Sydney, Australia. Azevedo, R. I. Transferência de oxigénio em quedas guiadas em colectores. M.Sc. Thesis, IST, Lisboa, Portugal. Beceiro, P., Almeida, M. C. & Matos, J. Numerical Modelling of air-water flows in a vertical drop and a backdrop. In: 3rd IAHR Europe Congress, Porto, Portugal. Bombardelli, F. A., Meireles, I. & Matos, J. S. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of step stepped spillways. Environ. Fluid Mech. 11 (3), 263–288. Brethour, J. M. & Hirt, C. W. Drift Model for TwoComponent Flows. Flow Science, Inc., Los Alamos, NM, USA. Chamani, M. R. Jet Flow on Stepped Spillways and Drops. M.Sc. Thesis, University of Alberta, Alberta, Canada. Chanson, H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flow. Academic Press Inc., California, USA. Chanson, H. Air bubble entrainment in open channels: flow structure and bubble size distribution. Int. J. Multiphase 23 (1), 193–203. Chanson, H. Hydraulics of aerated flows: qui pro quo? Journal of Hydraulic Research 51 (3), 223–243. Dufresne, M., Vazques, J., Terfous, A., Ghenaim, A. & Poulet, J. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computer and Fluids 38, 1042–1049. Durve, A. P. & Patwardhan, A. W. Numerical and experimental investigation of onset of gas entrainment phenomenon. Chemical Engineering Science 73, 140–150. Felder, S. & Chanson, H. Air–water flows and free-surface profiles on a non-uniform stepped chute. Journal of Hydraulic Research 52 (2), 253–263. Flow Science FLOW-3D User’s Manuals Version 10.0. Vol.1/2. Flow Science Inc., Los Alamos, NM, USA. Granata, F., Marinis, G., Gargano, R. & Hager, W. H. Energy loss in circular drop manholes. In: 33rd IAHR Congress: Water Engineering for Sustainable Environment, British Columbia, Vancouver, Canada. Hirt, C. W. Modeling Turbulent Entrainment of air at A Free Surface. Flow Science Inc., Los Alamos, NM, USA. Hirt, C. W. & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225. Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int, Conf. Ship Hydro., National Academy of Science, Washington, DC, USA. Isfahani, A. H. G. & Brethour, J. On the Implementation of Two-Equation Turbulence Models in FLOW-3D. Flow Science Inc., Los Alamos, NM, USA. Kouyi, G. L., Bret, P., Didier, J. M., Chocat, B. & Billat, C. The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology 64 (2), 521–527. Lopes, P., Leandro, J., Carvalho, R. F., Páscoa, P. & Martins, R. Numerical and experimental investigation of a gully under surcharge conditions. Urban Water Journal 12 (6), 468–476. Martins, R., Leandro, J. & Carvalho, R. F. Characterization of the hydraulic performance of a gully under drainage conditions. Water Science and Technology 69 (12), 2423–2430. Matias, N., Nielsel, A. H., Vollertsen, J., Ferreira, F. & Matos, J. S. Reaeration and hydrogen sulfide release at drop structures. In: 8th International Conference on Sewer Processes and Networks (SPN8), Rotterdam, Netherlands. Matos, J. S. & Sousa, E. R. Prediction of dissolved oxygen concentration along sanitary sewers. Water Science and Technology 34 (5–6), 525–532. Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N. & Bertrand-Krajewski, J. L. Experiments and 3D simulations of flow structures in junctions and of their influence on location of flowmeters. In: 12th International Conference on Urban Drainage, Porto Alegre, Brazil. Ozmen-Cagatay, H. & Kocaman, S. Dam-break flow in the presence of obstacle: experiment and CFD Simulation. Engineering Applications of Computational Fluid Mechanics 5 (4), 541–552. Shojaee Fard, M. H. & Boyaghchi, F. A. Studies of the influence of various blade outlet angles in a centrifugal pump when handling viscous fluids. American Journal of Applied Sciences 4 (9), 718–724. Soares, A. Rearejamento em Quedas em Colectores de Águas Residuais. M.Sc. Thesis, FCTUC, Coimbra, Portugal. Sousa, C. M. & Lopes, R. R. Hidráulica e rearejamento em quedas verticais em colectores. Estudo Experimental. Research Report, UTL/IST, Lisboa, Portugal. Sousa, V., Meireles, I., Matos, J. & Almeida, M. C. Numerical modelling of air-water flow in a vertical drop manhole. In: 7th International Conference on Sewer Processes and Networks (SPN7), Shefield, UK. Stovin, V., Guymer, I. & Lau, S. D. Approaches to validating a 3D CFD manhole model. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK. Tota, P. V. Turbulent Flow Over A Backward-Facing Step Using the RNG Model. Flow Science Inc., Los Alamos, NM, USA. Valero, D. & García-Bartual, R. Calibration of an air entrainment model for CFD spillway applications. In: Advances in Hydroinformatics. Springer, Singapore, pp. 571–582. Versteeg, H. K. & Malalasekera, W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Group limited, England. Yang, Y., Yang, J., Zuo, J., Li, Y., He, S., Yang, X. & Zhang, K. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Research 45 (11), 3439–3452. Zhai, A. J., Zhang, Z., Zhang, W. & Chen, Q. Y. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part 1— summary of prevalent Turbulence models. HVAC&R Research 13 (6), 853–870. Zhao, C., Zhu, D. Z. & Rajaratnam, N. Computational and experimental study of surcharged flow at a 90W combining sewer junction. Journal of Hydraulic Engineering 134 (6), 688–700.
일본원자력연구소(JAERI) 산하 삼중수소공정연구소(TPL)에서는 핵융합로의 안전성 확인 및 강화를 위해 12m3의 대형 밀폐용기(Caisson)로 삼중수소 안전 연구(CATS)용 케이슨 조립체를 제작하여 추정 삼중수소 누출 이벤트가 발생해야 하는 경우 삼중수소 거동. 본 연구의 주요 목적 중 하나는 환기실에서 삼중수소 누출 사건이 발생한 후 삼중수소 거동을 예측하기 위한 시뮬레이션 방법을 확립하는 것입니다.
RNG 모델은 허용 가능한 엔지니어링 정밀도로 50m3/h 환기 케이슨에서 맴돌이 흐름 계산에 유효한 것으로 밝혀졌습니다. 의도된 삼중수소 방출 후 계산된 초기 및 제거 삼중수소 농도 이력은 50m3/h 환기 케이슨에서 실험 관찰과 일치했습니다.
환기실의 삼중수소 수송에는 벽 근처의 흐름이 중요한 역할을 하는 것으로 밝혀졌다. 한편, 3,000m3의 삼중수소 취급실에서 의도적으로 방출된 삼중수소 거동은 미일 협력하에 실험적으로 조사되었습니다. 동일한 방법으로 계산된 삼중수소 농도 이력은 실험적 관찰과 일치하였으며, 이는 현재 개발된 방법이 삼중수소 취급실의 실제 규모에 적용될 수 있음을 입증한다.
At the Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI), Caisson Assembly for Tritium Safety study (CATS) with 12 m3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate tritium behavior in the case where a tritium leak event should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak event should happen in a ventilated room. The RNG model was found to be valid for eddy flow calculation in the 50m3/h ventilated Caisson with acceptable engineering precision. The calculated initial and removal tritium concentration histories after intended tritium release were consistent with the experimental observations in the 50 m3/h ventilated Caisson. It is found that the flow near a wall plays an important role for the tritium transport in the ventilated room. On the other hand, tritium behavior intentionally released in the 3,000 m3 of tritium handling room was investigated experimentally under a US-Japan collaboration. The tritium concentration history calculated with the same method was consistent with the experimental observations, which proves that the present developed method can be applied to the actual scale of tritium handling room.
Fig. 1 Geometrical 3D model of CaissonFig. 2 Geometrical 3D model of “main cell” of TSTA
REFERENCES
(1) Los Alamos National Laboratory: Final Safety Analysis Report of Tritium Systems Test Assembly at the Los Alamos National Laboratory, TSTA-SAR, (1996). (2) Naruse, Y., Matsuda, Y., Tanaka, K.: Fusion Eng. Des., 12, 293 (1990). (3) Schira, P., Hutter, E., Jourdan, G., Penzhone, R.: Fu-VOL. 38, NO. 1, JANUARY 2001 sion Eng. Des., 18, 19 (1991). (4) Bartlit, J. R., Anderson, J. L., Jalbert, R. A., Carl-son, R. V., Okuno, K., Ide, T., Fukui, H., Enoeda, M., Naruse, Y.: Proc. 13th SOFE, Knoxville, TN., U.S.A., 798 (1989). (5) Hayashi, T., Kobayashi, K., Iwai, Y., Yamanishi, T., Nishi, M., Okuno, K., Carlson, R. V., Willms, R. S., Hyatt, D., Roybal, B.: Fusion Thecnol., 34, 521 (1998). (6) Hayashi, T., Kobayashi, K., Iwai, Y., Yamada, M., Suzuki, T., O’hira, S., Nakamura, H., Shu, W., Yama-nishi, T., Kawamura, Y., Isobe, K., Konishi, S., Nishi, M.: Submitted to Fusion Eng. Des. (1999). (7) Yakhot, V., Orgazag, S. A.: J. Sci. Comput., 1, 3 (1986). (8) Hirt, C. W., Cook, J. L.: J. Comp. Phys., 10, 324 (1972). (9) Daiguji, H., Miyake, Y., Yoshizawa, A.: “Computa-tional Fluid Dynamics of Turbulent Flow-Models and Numerical Methods”, Univ. of Tokyo Press, Tokyo, 183 (1998), [in Japanese]. (10) Hinze, J. 0.: “Turbulence”, McGraw-Hill, New York, 227 (1959). (11) Launder, B. E., Spalding, D. B.: “Mathematical Models of Turbulence”, Academics, London, (1972). (12) Jones, W. P., Launder, B. E.: Int. J. Heat Mass Trans-fer, 15, 301 (1972). (13) Jones, W. P., Launder, B. E.: Int. J. Heat Mass Trans-fer, 16, 1119 (1973). (14) Hanjalic, K., Launder, B. E.: J. Fluid Mech., 52, 609 (1972). (15) Harlow, F. W., Nakayama, P. I.: Phys. Fluids, 10, 2303 (1967). (16) Nakayama, P. I.: 8th Aerospace Science Meeting, AIAA paper No. 70-3, (1970). (17) Boussinesq, J.: “Theorie Analytique de la chaleur”, Ganthier-Villars, Paris, 157 (1903). (18) Hashimoto, K.: “Chemical Reaction Engineering”, (1st ed.), Baifuukan, Tokyo, 173 (1979), [in Japanese]. (19) Iwai, Y., Hayashi, T., Kobayashi, K., O’hira, S., Nishi, M.: Submitted to Fusion Eng. Des. (2000).
이 프로젝트의 주요 목표는 FLOW-3D를 사용하여 계단식 여수로에서 스키밍 흐름의 수치 모델링을 개발하는 것입니다. 이러한 구조의 설계는 물리적 모델링에서 얻은 경험적 표현과 CFD 코드를 지원하는 계단식 여수로를 통한 흐름의 수치 모델링에서 보완 연구를 기반으로 합니다. 수치 모델은 균일한 영역의 유속과 계단 여수로의 마찰 계수를 추정하는 데 사용됩니다(ϴ = 45º, Hd=4.61m). 흐름에 대한 자동 통기의 표현은 복잡하므로 프로그램은 공기 연행 모델을 사용하여 특정 제한이 있는 솔루션에 근접합니다.
The main objective of this project is to develop the numerical modeling of the skimming flow in a stepped spillway using FLOW-3D. The design of these structures is based on the use of empirical expressions obtained from physical modeling and complementary studies in the numerical modeling of flow over the stepped spillway with support of CFD code. The numerical model is used to estimate the flow velocity in the uniform region and the friction coefficient of the stepped spillway (ϴ = 45º, Hd=4.61m). The representation of auto aeration a flow is complex, so the program approximates the solution with certain limitations, using an air entrainment model; drift flux model and turbulence model k-ԑ RNG. The results obtained with numerical modeling and physical modeling at the beginning of natural auto aeration of flow and depth of the biphasic flow in the uniform region presents deviations above to 10% perhaps the flow is highly turbulent.
Figure 1. Grazing flow over a rapid step.Figura 2. Principales regiones existentes en un flujo rasante.Figure 3. Dimensions of the El Batán stepped rapid.Figure 4. 3D physical model of the El Batán stepped rapidFigura 7. Influencia del modelo de turbulencia. Qmodelo=27.95l/s.
REFERENCIAS
ARAGUA. (2013). “Modelación numérica y experimental de flujos aire-agua en caídas en colectores.”, Laboratório Nacional de Engenharia Civil, I. P. Av do Brasil 101 • 1700-066 Lisboa. Bombardelli, F.A., Meireles, I. and Matos, J., (2010), “Laboratory measurement and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways”, Environ Fluid Mechanics. Castro M. (2015) “Análisis Dimensional y Modelación física en Hidráulica”. Escuela Politécnica Nacional. Quito Ecuador. 50 p. Chanson H., D. B. Bung., J. Matos (2015). “Stepped spillways and cascades”. IAHR Monograph. School of Civil Engineering, University of Queensland, Brisbane, Australia. Chanson H. (1993). “Stepped Spillway Flows and Air Entrainment.” Can. Jl of Civil Eng., Vol. 20, No. 3, June, pp. 422-435 (ISSN 0315-1468). CIERHI, EPN TECH, (2016). “Estudio experimental en modelo físico de las rápidas con perfil escalonado y liso de la quebrada el Batán Fase I y Fase II”, Escuela Politécnica Nacional, Quito Ecuador. Fernández Oro J. M. (2012)., “Técnicas Numéricas en Ingeniería de Fluidos: Introducción a la Dinámica de Fluidos Computacional (CFD) por el Método de Volúmenes Finitos”. Barcelona: Reverté. Flow Science, Inc. (2012). “FLOW 3D 10.1.0 Documentation Release. Manual de Usuario”, Los Alamos National Laboratory. Santa Fe, New México Khatsuria, R.M., (2005)., “Hydraulics of Spillways and Energy Dissipators”. Department of Civil and Environmental Engineering Georgia Institute of Technology Atlanta. Lucio I., Matos J., Meireles I. (2015). “Stepped spillway flow over small embankment dams: some computational experiments”. 15th FLOW-3D European users conference. Mohammad S., Jalal A. and Michael P., (2012). “Numerical Computation of Inception Point Location for Steeply Sloping Stepped Spillways” 9th International Congress on Civil Engineering. Isfahan University of Technology (IUT), Isfahan, Iran Pfister M., Chanson H., (2013), “Scale Effects in Modelling Two-phase Airwater Flows”, Proceedings of 2013 IAHR World Congress. Sarfaraz, M. and Attari, J. (2011), “Numerical Simulation of Uniform Flow Region over a Steeply Sloping Stepped Spillway”, 6th National Congress on Civil Engineering, Semnan University, Semnan, Iran. Valero, D., Bung, D., (2015), “Hybrid investigation of air transport processes in moderately sloped stepped spillway flows”, E-proceedings of the 36th IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands.
Analysis of behavior and hydraulic characteristics of flow over the dam spillway is a complicated task that takes lots of money and time in water engineering projects planning. To model those hydraulic characteristics, several methods such as physical and numerical methods can be used. Nowadays, by utilizing new methods in computational fluid dynamics (CFD) and by the development of fast computers, the numerical methods have become accessible for use in the analysis of such sophisticated flows. The CFD softwares have the capability to analyze two- and three-dimensional flow fields. In this paper, the flow pattern at the guide wall of the Kamal-Saleh dam was modeled by Flow 3D. The results show that the current geometry of the left wall causes instability in the flow pattern and making secondary and vortex flow at beginning approach channel. This shape of guide wall reduced the performance of weir to remove the peak flood discharge.
댐 여수로 흐름의 거동 및 수리학적 특성 분석은 물 공학 프로젝트 계획에 많은 비용과 시간이 소요되는 복잡한 작업입니다. 이러한 수력학적 특성을 모델링하기 위해 물리적, 수치적 방법과 같은 여러 가지 방법을 사용할 수 있습니다. 요즘에는 전산유체역학(CFD)의 새로운 방법을 활용하고 빠른 컴퓨터의 개발로 이러한 정교한 흐름의 해석에 수치 방법을 사용할 수 있게 되었습니다. CFD 소프트웨어에는 2차원 및 3차원 유동장을 분석하는 기능이 있습니다. 본 논문에서는 Kamal-Saleh 댐 유도벽의 흐름 패턴을 Flow 3D로 모델링하였다. 결과는 왼쪽 벽의 현재 형상이 흐름 패턴의 불안정성을 유발하고 시작 접근 채널에서 2차 및 와류 흐름을 만드는 것을 보여줍니다. 이러한 형태의 안내벽은 첨두방류량을 제거하기 위해 둑의 성능을 저하시켰다.
Introduction
Spillways are one of the main structures used in the dam projects. Design of the spillway in all types of dams, specifically earthen dams is important because the inability of the spillway to remove probable maximum flood (PMF) discharge may cause overflow of water which ultimately leads to destruction of the dam (Das and Saikia et al. 2009; E 2013 and Novak et al. 2007). So study on the hydraulic characteristics of this structure is important. Hydraulic properties of spillway including flow pattern at the entrance of the guide walls and along the chute. Moreover, estimating the values of velocity and pressure parameters of flow along the chute is very important (Chanson 2004; Chatila and Tabbara 2004). The purpose of the study on the flow pattern is the effect of wall geometry on the creation transverse waves, flow instability, rotating and reciprocating flow through the inlet of spillway and its chute (Parsaie and Haghiabi 2015a, b; Parsaie et al. 2015; Wang and Jiang 2010). The purpose of study on the values of velocity and pressure is to calculate the potential of the structure to occurrence of phenomena such as cavitation (Fattor and Bacchiega 2009; Ma et al. 2010). Sometimes, it can be seen that the spillway design parameters of pressure and velocity are very suitable, but geometry is considered not suitable for conducting walls causing unstable flow pattern over the spillway, rotating flows at the beginning of the spillway and its design reduced the flood discharge capacity (Fattor and Bacchiega 2009). Study on spillway is usually conducted using physical models (Su et al. 2009; Suprapto 2013; Wang and Chen 2009; Wang and Jiang 2010). But recently, with advances in the field of computational fluid dynamics (CFD), study on hydraulic characterist–ics of this structure has been done with these techniques (Chatila and Tabbara 2004; Zhenwei et al. 2012). Using the CFD as a powerful technique for modeling the hydraulic structures can reduce the time and cost of experiments (Tabbara et al. 2005). In CFD field, the Navier–Stokes equation is solved by powerful numerical methods such as finite element method and finite volumes (Kim and Park 2005; Zhenwei et al. 2012). In order to obtain closed-form Navier–Stokes equations turbulence models, such k − ε and Re-Normalisation Group (RNG) models have been presented. To use the technique of computational fluid dynamics, software packages such as Fluent and Flow 3D, etc., are provided. Recently, these two software packages have been widely used in hydraulic engineering because the performance and their accuracy are very suitable (Gessler 2005; Kim 2007; Kim et al. 2012; Milési and Causse 2014; Montagna et al. 2011). In this paper, to assess the flow pattern at Kamal-Saleh guide wall, numerical method has been used. All the stages of numerical modeling were conducted in the Flow 3D software.
Materials and methods
Firstly, a three-dimensional model was constructed according to two-dimensional map that was prepared for designing the spillway. Then a small model was prepared with scale of 1:80 and entered into the Flow 3D software; all stages of the model construction was conducted in AutoCAD 3D. Flow 3D software numerically solved the Navier–Stokes equation by finite volume method. Below is a brief reference on the equations that used in the software. Figure 1 shows the 3D sketch of Kamal-Saleh spillway and Fig. 2 shows the uploading file of the Kamal-Saleh spillway in Flow 3D software.
Fig. 1Fig. 2
Review of the governing equations in software Flow 3D
Continuity equation at three-dimensional Cartesian coordinates is given as Eq (1).
where u, v, z are velocity component in the x, y, z direction; Ax, Ay, Az cross-sectional area of the flow; ρ fluid density; PSOR the source term; vf is the volume fraction of the fluid and three-dimensional momentum equations given in Eq (2).
where P is the fluid pressure; Gx, Gy, Gz the acceleration created by body fluids; fx, fy, fz viscosity acceleration in three dimensions and vf is related to the volume of fluid, defined by Eq. (3). For modeling of free surface profile the VOF technique based on the volume fraction of the computational cells has been used. Since the volume fraction F represents the amount of fluid in each cell, it takes value between 0 and 1.
Flow 3D offers five types of turbulence models: Prantl mixing length, k − ε equation, RNG models, Large eddy simulation model. Turbulence models that have been proposed recently are based on Reynolds-averaged Navier–Stokes equations. This approach involves statistical methods to extract an averaged equation related to the turbulence quantities.
Steps of solving a problem in Flow 3D software
(1) Preparing the 3D model of spillway by AutoCAD software. (2) Uploading the file of 3D model in Flow 3D software and defining the problem in the software and checking the final mesh. (3) Choosing the basic equations that should be solved. (4) Defining the characteristics of fluid. (5) Defining the boundary conditions; it is notable that this software has a wide range of boundary conditions. (6) Initializing the flow field. (7) Adjusting the output. (8) Adjusting the control parameters, choice of the calculation method and solution formula. (9) Start of calculation. Figure 1 shows the 3D model of the Kamal-Saleh spillway; in this figure, geometry of the left and right guide wall is shown.
Figure 2 shows the uploading of the 3D spillway dam in Flow 3D software. Moreover, in this figure the considered boundary condition in software is shown. At the entrance and end of spillway, the flow rate or fluid elevation and outflow was considered as BC. The bottom of spillway was considered as wall and left and right as symmetry.
Model calibration
Calibration of the Flow 3D for modeling the effect of geometry of guide wall on the flow pattern is included for comparing the results of Flow 3D with measured water surface profile. Calibration the Flow 3D software could be conducted in two ways: first, changing the value of upstream boundary conditions is continued until the results of water surface profile of the Flow 3D along the spillway successfully covered the measurement water surface profile; second is the assessment the mesh sensitivity. Analyzing the size of mesh is a trial-and-error process where the size of mesh is evaluated form the largest to the smallest. With fining the size of mesh the accuracy of model is increased; whereas, the cost of computation is increased. In this research, the value of upstream boundary condition was adjusted with measured data during the experimental studies on the scaled model and the mesh size was equal to 1 × 1 × 1 cm3.
Results and discussion
The behavior of water in spillway is strongly affected by the flow pattern at the entrance of the spillway, the flow pattern formation at the entrance is affected by the guide wall, and choice of an optimized form for the guide wall has a great effect on rising the ability of spillway for easy passing the PMF, so any nonuniformity in flow in the approach channel can cause reduction of spillway capacity, reduction in discharge coefficient of spillway, and even probability of cavitation. Optimizing the flow guiding walls (in terms of length, angle and radius) can cause the loss of turbulence and flow disturbances on spillway. For this purpose, initially geometry proposed for model for the discharge of spillway dam, Kamal-Saleh, 80, 100, and 120 (L/s) were surveyed. These discharges of flow were considered with regard to the flood return period, 5, 100 and 1000 years. Geometric properties of the conducting guidance wall are given in Table 1.Table 1 Characteristics and dimensions of the guidance walls tested
Results of the CFD simulation for passing the flow rate 80 (L/s) are shown in Fig. 3. Figure 3 shows the secondary flow and vortex at the left guide wall.
Fig. 3
For giving more information about flow pattern at the left and right guide wall, Fig. 4 shows the flow pattern at the right side guide wall and Fig. 5 shows the flow pattern at the left side guide wall.
Fig. 4Fig. 5
With regard to Figs. 4 and 5 and observing the streamlines, at discharge equal to 80 (L/s), the right wall has suitable performance but the left wall has no suitable performance and the left wall of the geometric design creates a secondary and circular flow, and vortex motion in the beginning of the entrance of spillway that creates cross waves at the beginning of spillway. By increasing the flow rate (Q = 100 L/s), at the inlet spillway secondary flows and vortex were removed, but the streamline is severely distorted. Results of the guide wall performances at the Q = 100 (L/s) are shown in Fig. 6.
Fig. 6
Also more information about the performance of each guide wall can be derived from Figs. 7 and 8. These figures uphold that the secondary and vortex flows were removed, but the streamlines were fully diverted specifically near the left side guide wall.
Fig. 7Fig. 8
As mentioned in the past, these secondary and vortex flows and diversion in streamline cause nonuniformity and create cross wave through the spillway. Figure 9 shows the cross waves at the crest of the spillway.
Fig. 9
The performance of guide walls at the Q = 120 (L/s) also was assessed. The result of simulation is shown in Fig. 10. Figures 11 and 12 show a more clear view of the streamlines near to right and left side guide wall, respectively. As seen in Fig. 12, the left side wall still causes vortex flow and creation of and diversion in streamline.
Fig. 10Fig. 11Fig. 12
The results of the affected left side guide wall shape on the cross wave creation are shown in Fig. 13. As seen from Fig. 3, the left side guide wall also causes cross wave at the spillway crest.
Fig. 13
As can be seen clearly in Figs. 9 and 13, by moving from the left side to the right side of the spillway, the cross waves and the nonuniformity in flow is removed. By reviewing Figs. 9 and 13, it is found that the right side guide wall removes the cross waves and nonuniformity. With this point as aim, a geometry similar to the right side guide wall was considered instead of the left side guide wall. The result of simulation for Q = 120 (L/s) is shown in Fig. 14. As seen from this figure, the proposed geometry for the left side wall has suitable performance smoothly passing the flow through the approach channel and spillway.
Fig. 14
More information about the proposed shape for the left guide wall is shown in Fig. 15. As seen from this figure, this shape has suitable performance for removing the cross waves and vortex flows.
Fig. 15
Figure 16 shows the cross section of flow at the crest of spillway. As seen in this figure, the proposed shape for the left side guide wall is suitable for removing the cross waves and secondary flows.
Fig. 16
Conclusion
Analysis of behavior and hydraulic properties of flow over the spillway dam is a complicated task which is cost and time intensive. Several techniques suitable to the purposes of study have been undertaken in this research. Physical modeling, usage of expert experience, usage of mathematical models on simulation flow in one-dimensional, two-dimensional and three-dimensional techniques, are some of the techniques utilized to study this phenomenon. The results of the modeling show that the CFD technique is a suitable tool for simulating the flow pattern in the guide wall. Using this tools helps the designer for developing the optimal shape for hydraulic structure which the flow pattern through them are important.
References
Chanson H (2004) 19—Design of weirs and spillways. In: Chanson H (ed) Hydraulics of open channel flow, 2nd edn. Butterworth-Heinemann, Oxford, pp 391–430ChapterGoogle Scholar
Chatila J, Tabbara M (2004) Computational modeling of flow over an ogee spillway. Comput Struct 82:1805–1812ArticleGoogle Scholar
Das MM, Saikia MD (2009) Irrigation and water power engineering. PHI Learning, New DelhiGoogle Scholar
E, Department Of Army: U.S. Army Corps (2013) Hydraulic Design of Spillways. BiblioBazaar, CharlestonGoogle Scholar
Fattor C, Bacchiega J (2009) Design conditions for morning-glory spillways: application to potrerillos dam spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2123–2128Google Scholar
Gessler D (2005) CFD modeling of spillway performance. Impacts Glob Clim Change. doi:10.1061/40792(173)398
Kim D-G (2007) Numerical analysis of free flow past a sluice gate. KSCE J Civ Eng 11:127–132ArticleGoogle Scholar
Kim D, Park J (2005) Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. KSCE J Civ Eng 9:161–169ArticleGoogle Scholar
Kim S, Yu K, Yoon B, Lim Y (2012) A numerical study on hydraulic characteristics in the ice Harbor-type fishway. KSCE J Civ Eng 16:265–272ArticleGoogle Scholar
Ma X-D, Dai G-Q, Yang Q, Li G-J, Zhao L (2010) Analysis of influence factors of cavity length in the spillway tunnel downstream of middle gate chamber outlet with sudden lateral enlargement and vertical drop aerator. J Hydrodyn Ser B 22:680–686ArticleGoogle Scholar
Milési G, Causse S (2014) 3D numerical modeling of a side-channel spillway. In: Gourbesville P, Cunge J, Caignaert G (eds) Advances in hydroinformatics. Springer, Singapore, pp 487–498ChapterGoogle Scholar
Montagna F, Bellotti G, Di Risio M (2011) 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat Hazards 58:591–608ArticleGoogle Scholar
Novak P, Moffat AIB, Nalluri C, Narayanan R (2007) Hydraulic structures. Taylor & Francis, LondonGoogle Scholar
Parsaie A, Haghiabi A (2015a) Computational modeling of pollution transmission in rivers. Appl Water Sci. doi:10.1007/s13201-015-0319-6
Parsaie A, Haghiabi A (2015b) The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Res Manag 29:973–985ArticleGoogle Scholar
Parsaie A, Yonesi H, Najafian S (2015) Predictive modeling of discharge in compound open channel by support vector machine technique. Model Earth Syst Environ 1:1–6ArticleGoogle Scholar
Su P-L, Liao H-S, Qiu Y, Li CJ (2009) Experimental study on a new type of aerator in spillway with low Froude number and mild slope flow. J Hydrodyn Ser B 21:415–422ArticleGoogle Scholar
Suprapto M (2013) Increase spillway capacity using Labyrinth Weir. Procedia Eng 54:440–446ArticleGoogle Scholar
Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83:2215–2224ArticleGoogle Scholar
Wang J, Chen H (2009) Experimental study of elimination of vortices along guide wall of bank spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2059–2063Google Scholar
Wang Y, Jiang C (2010) Investigation of the surface vortex in a spillway tunnel intake. Tsinghua Sci Technol 15:561–565ArticleGoogle Scholar
Zhenwei MU, Zhiyan Z, Tao Z (2012) Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Eng 28:808–812ArticleGoogle Scholar
Parsaie, A., Haghiabi, A.H. & Moradinejad, A. CFD modeling of flow pattern in spillway’s approach channel. Sustain. Water Resour. Manag.1, 245–251 (2015). https://doi.org/10.1007/s40899-015-0020-9
본 연구에서는 범람으로 인한 토사댐 붕괴에 대한 테일워터 깊이의 영향을 실험적으로 조사하였다. 테일워터 깊이의 네 가지 다른 값을 검사합니다. 각 실험에 대해 댐 수심 측량 프로파일의 진화, 고장 기간, 침식 체적 및 유출 수위곡선을 관찰하고 기록합니다.
결과는 tailwater 깊이를 늘리면 고장 시간이 최대 57% 감소하고 상대적으로 침식된 마루 높이가 최대 77.6% 감소한다는 것을 보여줍니다. 또한 상대 배수 깊이가 3, 4, 5인 경우 누적 침식 체적의 감소는 각각 23, 36.5 및 75%인 반면 최대 유출량의 감소는 각각 7, 14 및 17.35%입니다.
실험 결과는 침식 과정을 복제할 때 Flow 3D 소프트웨어의 성능을 평가하는 데 활용됩니다. 수치 모델은 비응집성 흙댐의 침식 과정을 성공적으로 시뮬레이션합니다.
The influence of tailwater depth on earth dam failure due to overtopping is investigated experimentally in this work. Four different values of tailwater depths are examined. For each experiment, the evolution of the dam bathymetry profile, the duration of failure, the eroded volume, and the outflow hydrograph are observed and recorded. The results reveal that increasing the tailwater depth reduces the time of failure by up to 57% and decreases the relative eroded crest height by up to 77.6%. In addition, for relative tailwater depths equal to 3, 4, and 5, the reduction in the cumulative eroded volume is 23, 36.5, and 75%, while the reduction in peak discharge is 7, 14, and 17.35%, respectively. The experimental results are utilized to evaluate the performance of the Flow 3D software in replicating the erosion process. The numerical model successfully simulates the erosion process of non-cohesive earth dams.
Eroded height of the dam measured at distance of 0.7 m from the dam heel (cm)t
Total time of failure (sec)t1
Time of crest width erosion (sec)Zcrest
The crest height (cm)Vtotal
Total volume of the dam (m3)Veroded
Cumulative eroded volume (m3)RMSE
The statistical variable root- mean- square errord
Degree of agreement indexyu.s.
The upstream water depth (cm)yd.s
The downstream water depth (cm)H
Water surface elevation over sharp crested weir (cm)Q
Outflow discharge (liter/sec)Qpeak
Peak discharge (liter/sec)
1. Introduction
Earth dams are compacted structures composed of natural materials that are usually mined or quarried from local locations. The failures of the earth dams have proven to be deadly, destructive, and costly. According to People’s Daily, two earthen dams, Yong’an Dam and Xinfa Dam located in Hulun Buir City in North China’s Inner Mongolia failed on 2021, due to a surge in the water level of the Nuomin River caused by heavy rain. The dam breach affected 16,660 people, flooded 325,622 mu of farmland (21708.1 ha), and destroyed 22 bridges, 124 culverts, and 15.6 km of roadways. Also, the failure of south fork dam (earth and rock fill dam) near Johnstown on 1889 is considered the worst U.S dam disaster in terms of loss of life. The dam was overtopped and washed away due to unexpected heavy rains, releasing 20 million tons of water which destroyed Johnstown and resulted in 2209 deaths, [1], [2]. Piping or shear sliding, failure due to natural factors, and failure due to overtopping are all possible causes of earth dam failure. However, overtopping failure is the most frequent cause of dam failure. According to The International Committee on Large Dams (ICOLD, 1995), and [3], more than one-third of the total known dam failures were caused by dam overtopping.
Overtopping occurs as the result of insufficient flood design or freeboard in some cases. Extreme rainstorms can cause floods which can overtop the dam and cause it to fail. The size and geometry of the reservoir or the dam (side slopes, top width, height, etc.), the homogeneity of the material used in the construction of the dam, overtopping depth, and the presence or absence of tailwater are all elements that influence this type of failure which will be illustrated in the following literature. Overtopping failures of earth dams may be divided into several failure mechanisms based on the material composition and the inner structure of the dam. For cohesive earth dams because of low permeability, no seepage exists on the slopes. Erosion often begins at the earth dam toe during turbulent erosion and moves upstream, undercutting the slope, causing the removal of large chunks of materials. While for non-cohesive earth dams the downstream face of the dam flattens progressively and is often said to rotate around a point near the downstream toe [4], [5], [6] In the last few decades, the study of failures due to overtopping has gained popularity among researchers. The overtopping failure, in fact, has been widely investigated in coastal and river hydraulics and morpho dynamic. In addition, several laboratory experimental studies have been conducted in this field in order to better understand different involved factors. Also, many numerical types of research have been conducted to investigate the process of overtopping failure as well as the elements that influence this type of failure.
Tabrizi et al. [5] conducted a series of embankment overtopping tests to find the effect of compaction on the failure of a homogenous sand embankment. A plane breach process occurred across the flume width due to the narrow flume width. They measured the downstream hydrographs and embankment surface profile for every case. They concluded that the peak discharge decreased with a high compaction level, while the time to peak increased. Kansoh et al. [6] studied experimentally the failure of compacted homogeneous non-cohesive earthen embankment due to overtopping. They investigated the influence of different shape parameters including the downstream slope, the crest width, and the height of the embankment on the erosion process. The erosion process was initiated by carving a pilot channel into the embankment crest. They evaluated the time of embankment failure for different shape parameters. They concluded that the failure time increases with increasing the downstream slope and the crest width. Zhu et al. [7] investigated experimentally the breaching of five embankments, one constructed with pure sand, and four with different sand-silt–clay mixtures. The erosion pattern was similar across the flume width. They stated that for cohesive soil mixtures the head cut erosion was the most important factor that affected the breach growth, while for non-cohesive soil the breach erosion was affected by shear erosion.
Amaral et al. [8] studied experimentally the failure by overtopping for two embankments built from silt sand material. They studied the effect of the degree of compaction of the embankment and the geometry of the pilot channel carved at the centre of the dam crest. They studied two shapes of pilot channel a rectangular shape and triangular shape. They stated that the breach development is influenced by a higher degree of compaction, however, the pilot channel geometry did not influence the breach’s final form. Bereta et al. [9] studied experimentally the breach formation of five dam models, three of them were homogenous clay soil while two were sandy-clay mixtures. The erosion process was initiated by cutting a pilot channel at the centre of the dam crest. They observed the initiation of erosion, flow shear erosion, sidewall bottom erosion, and distinguished the soil mechanical slope mass failure from the head cut vertically and laterally during these tests. Verma et al. [10] investigated experimentally a two-dimensional erosion phenomenon due to overtopping by using a wooden fuse plug model and five different soils. They concluded that the erosion process was affected mostly by cohesiveness and degree of compaction. For cohesive soils, a head cut erosion was observed, while for non-cohesive soils surface erosion occurred gradually. Also, the dimensions of fuse plug, type of fill material, reservoir capacity, and inflow were found to affect the behaviour of the overall breaching process.
Wu and Qin [11] studied the effect of adding coarse grains to the downstream face of a non-cohesive dam as a result of tailings deposition. The process of overtopping during tailings dam failures is analyzed and its effect on delaying the dam-break process and disaster mitigation are investigated. They found that the tested protective measures decreased the breach area, the maximum breaching flow discharge and flow velocity, and the downstream inundated area. Khankandi et al. [12] studied experimentally the effect of reservoir geometry on dam break flow in case of dry and wet bed conditions. They considered four different reservoir shapes, a long reservoir, a wide, a trapezoidal shaped and one with a 90◦ bend all with identical water volume and horizontal bed. The dam break is simulated by the sudden gate removal using a pneumatic jack. They measured the variation of water level over time with ultrasonic sensors and flow velocity component with an acoustic Doppler velocimeter. Also, the experimental results of water level variation are compared with Ritters solution (1892) [13]. They stated that for dry bed condition the long and 90 bend reservoirs results are close to the analytical solution by ritter also in these two shapes a 1D flow is noticed. However, for wide and trapezoidal reservoirs a 2D effect is significant due to flow contraction at channel entrance.
Rifai et al. [14] conducted a series of experiments to investigate the effect of tailwater depth on the outflow discharge and breach geometry during non-cohesive homogenous fluvial dikes overtopping failure. They cut an initial notch in the crest at 0.8 m from the upstream end of the dike to initiate overtopping. They compared their results to previous experiments under different main channel inflow discharges combined with a free floodplain. They divided the dike breaching process into three stages: gradual start of overtopping flow resulting in slow initiation of dike erosion, deepening and widening breach due to large flow depth and velocity, finally the flow depth starts stabilizing at its minimal level with or without sustained breach expansion. They stated that breach discharge has lower values than in free floodplain tests. Jiang [15] studied the effect of bed slope on breach parameters and peak discharge in non-cohesive embankment failure. An initial triangular breach with a depth and width of 4 cm was pre-set on one side of the dam. He stated that peak discharge increases with the increase of bed slope and then decreases.
Ozmen-cagatay et al. [16] studied experimentally flood wave propagation resulted from a sudden dam break event. For dam-break modelling, they used a mechanism that permitted the rapid removal of a vertical plate with a thickness of 4 mm and made of rigid plastic. They conducted three tests, one with dry bed condition and two tests with tailwater depths equal 0.025 m and 0.1 m respectively. They recorded the free surface profile during initial stages of dam break by using digital image processing. Finally, they compared the experimental results with the with a commercially available VOF-based CFD program solving the Reynolds-averaged Navier –Stokes equations (RANS) with the k– Ɛ turbulence model and the shallow water equations (SWEs). They concluded that Wave breaking was delayed with increasing the tailwater depth to initial reservoir depth ratio. They also stated that the SWE approach is sufficient more to represent dam break flows for wet bed condition. Evangelista [17] investigated experimentally and numerically using a depth-integrated two-phase model, the erosion of sand dike caused by the impact of a dam break wave. The dam break is simulated by a sudden opening of an upstream reservoir gate resulting in the overtopping of a downstream trapezoidal sand dike. The evolution of the water wave caused from the gate opening and dike erosion process are recorded by using a computer-controlled camera. The experimental results demonstrated that the progression of the wave front and dike erosion have a considerable influence on each other during the process. In addition, the dike constructed from fine sands was more resistant to erosion than the one built with coarse sand. They also stated that the numerical model can is capable of accurately predicting wave front position and dike erosion. Also, Di Cristo et al. [18] studied the effect of dam break wave propagation on a sand embankment both experimentally and numerically using a two-phase shallow-water model. The evolution of free surface and of the embankment bottom are recorded and used in numerical model assessment. They stated that the model allows reasonable simulation of the experimental trends of the free surface elevation regardeless of the geofailure operator.
Lots of numerical models have been developed over the past few years to simulate the dam break flooding problem. A one-dimensional model, such as Hec-Ras, DAMBRK and MIKE 11, ect. A two-dimensional model such as iRIC Nay2DH is used in earth embankment breach simulation. Other researchers studied the failure process numerically using (3D) computational fluid dynamics (CFD) models, such as FLOW-3D, and FLUENT. Goharnejad et al. [19] determined the outflow hydrograph which results from the embankment dam break due to overtopping. Hu et al. [20] performed a comparison between Flow-3D and MIKE3 FM numerical models in simulating a dam break event under dry and wet bed conditions with different tailwater depths. Kaurav et al. [21] simulated a planar dam breach process due to overtopping. They conducted a sensitivity analysis to find the effect of dam material, dam height, downstream slope, crest width, and inlet discharge on the erosion process and peak discharge through breach. They concluded that downstream slope has a significant influence on breaching process. Yusof et al. [22] studied the effect of embankment sediment sizes and inflow rates on breaching geometric and hydrodynamic parameters. They stated that the peak outflow hydrograph increases with increasing sediment size and inflow rates while time of failure decreases.
In the present work, the effect of tailwater depth on earth dam failure during overtopping is studied experimentally. The relation between the eroded volume of the dam and the tailwater depth is presented. Also, the percentage of reduction in peak discharge due to tailwater existence is calculated. An assessment of Flow 3D software performance in simulating the erosion process during earth dam failure is introduced. The statistical variable root- mean- square error, RMSE, and the agreement degree index, d, are used in model assessment.
2. Material and methods
The tests are conducted in a straight rectangular flume in the laboratory of Irrigation Engineering and Hydraulics Department, Faculty of Engineering, Alexandria University, Egypt. The flume dimensions are 10 m long, 0.86 m wide, and 0.5 m deep. The front part of the flume is connected to a storage basin 1 m long by 0.86 m wide. The storage basin is connected to a collecting tank for water recirculation during the experiments as shown in Fig. 1, Fig. 2. A sharp-crested weir is placed at a distance of 4 m downstream the constructed dam to keep a constant tailwater depth in each experiment and to measure the outflow discharge.
To measure the eroded volume with time a rods technique is used. This technique consists of two parallel wooden plates with 10 cm distance in between and five rows of stainless-steel rods passing vertically through the wooden plates at a spacing of 20 cm distributed across flume width. Each row consists of four rods with 15 cm spacing between them. Also, a graph board is provided to measure the drop in each rod with time as shown in Fig. 3, Fig. 4. After dam construction the rods are carefully rested on the dam, with the first line of rods resting in the middle of the dam crest and then a constant distance of 15 cm between rods lines is maintained.
A soil sample is taken and tested in the laboratory of the soil mechanics to find the soil geotechnical parameters. The soil particle size distribution is also determined by sieve analysis as shown in Fig. 5. The soil mean diameter d50,equals 0.38 mm and internal friction angle equals 32.6°.
2.1. Experimental procedures
To investigate the effect of the tailwater depth (do), the tailwater depth is changed four times 5, 15, 20, and 25 cm on the sand dam model. The dam profile is 35 cm height, with crest width = 15 cm, the dam base width is 155 cm, and the upstream and downstream slopes are 2:1 as shown in Fig. 6. The dam dimensions are set as the flume permitted to allow observation of the dam erosion process under the available flume dimensions and conditions. All of the conducted experiments have the same dimensions and configurations.
The optimum water content, Wc, from the standard proctor test is found to be 8 % and the maximum dry unit weight is 19.42 kN/m3. The soil and water are mixed thoroughly to ensure consistency and then placed on three horizontal layers. Each layer is compacted according to ASTM standard with 25 blows by using a rammer (27 cm × 20.5 cm) weighing 4 kg. Special attention is paid to the compaction of the soil to guarantee the repeatability of the tests.
After placing and compacting the three layers, the dam slopes are trimmed carefully to form the trapezoidal shape of the dam. A small triangular pilot channel with 1 cm height and 1:1 side slopes is cut into the dam crest to initiate the erosion process. The position of triangular pilot channel is presented in Fig. 1. Three digital video cameras with a resolution of 1920 × 1080 pixels and a frame rate of 60 fps are placed in three different locations. One camera on one side of the flume to record the progress of the dam profile during erosion. Another to track the water level over the sharp-crested rectangular weir placed at the downstream end of the flume. And the third camera is placed above the flume at the downstream side of the dam and in front of the rods to record the drop of the tip of the rods with time as shown previously in Fig. 1.
Before starting the experiment, the water is pumped into the storage basin by using pump with capacity 360 m3/hr, and then into the upstream section of the flume. The upstream boundary is an inflow condition. The flow discharge provided to the storage basin is kept at a constant rate of 6 L/sec for all experiments, while the downstream boundary is an outflow boundary condition.
Also, the required tailwater depth for each experiment is filled to the desired depth. A dye container valve is opened to color the water upstream of the dam to make it easy to distinguish the dam profile from the water profile. A wooden board is placed just upstream of the dam to prevent water from overtopping the dam until the water level rises to a certain level above the dam crest and then the wooden board is removed slowly to start the experiment.
2.2. Repeatability
To verify the accuracy of the results, each experiment is repeated two times under the same conditions. Fig. 7 shows the relative eroded crest height, Zeroded / Zo, with time for 5 cm tailwater depth. From the Figure, it can be noticed that results for all runs are consistent, and accuracy is achieved.
3. Numerical model
The commercially available numerical model, Flow 3D is used to simulate the dam failure due to overtopping for the cases of 15 cm, 20 cm and 25 cm tailwater depths. For numerical model calibration, experimental results for dam surface evolution are used. The numerical model is calibrated for selection of the optimal turbulence model (RNG, K-e, and k-w) and sediment scour equations (Van Rin, Meyer- peter and Muller, and Nielsen) that produce the best results. In this, the flow field is solved by the RNG turbulence model, and the van Rijn equation is used for the sediment scour model. A geometry file is imported before applying the mesh.
A Mesh sensitivity is analyzed and checked for various cell sizes, and it is found that decreasing the cell size significantly increases the simulation time with insignificant differences in the result. It is noticed that the most important factor influencing cell size selection is the value of the dam’s upstream and downstream slopes. For example, the slopes in the dam model are 2:1, thus the cell size ratio in X and Z directions should be 2:1 as well. The cell size in a mesh block is set to be 0.02 m, 0.025 m, and 0.01 m in X, Y and Z directions respectively.
In the numerical computations, the boundary conditions employed are the walls for sidewalls and the channel bottom. The pressure boundary condition is applied at the top, at the air–water interface, to account for atmospheric pressure on the free surface. The upstream boundary is volume flow rate while the downstream boundary is outflow discharge.
The initial condition is a fluid region, which is used to define fluid areas both upstream and downstream of the dam. To assess the model accuracy, the statistical variable root- mean- square error, RMSE, and the agreement degree index, d, are calculated as(1)RMSE=1N∑i=1N(Pi-Mi)2(2)d=1-∑Mi-Pi2∑Mi-M¯+Pi-P¯2
where N is the number of samples, Pi and Mi are the models and experimental values, P and M are the means of the model and experimental values. The best fit between the experimental and model results would have an RMSE = 0 and degree of agreement, d = 1.
4. Results of experimental work
The results of the total time of failure, t (defined as the time from when the water begins to overtop the dam crest until the erosion reaches a steady state, when no erosion occurs), time of crest width erosion t1, cumulative eroded volume Veroded, and peak discharge Qpeak for each experiment are listed in Table 1. The case of 5 cm tailwater depth is considered as a reference case in this work.
Table 1. Results of experimental work.
Tailwater depth, do (cm)
Total time of failure, t (sec)
Time of crest width erosion, t1 (sec)
cumulative eroded volume, Veroded (m3)
Peak discharge, Qpeak (liter/sec)
5
255
22
0.21
13.12
15
165
30
0.16
12.19
20
140
34
0.13
11.29
25
110
39
0.05
10.84
5. Discussion
5.1. Side erosion
The evolution of the bathymetry of the erosion line recorded by the video camera1. The videos are split into frames (60 frames/sec) by the Free Video to JPG Converter v.5.063 build and then converted into an excel spreadsheet using MATLAB code as shown in Fig. 8.
Fig. 9 shows a sample of numerical model output. Fig. 10, Fig. 11, Fig. 12 show a dam profile development for different time steps from both experimental and numerical model, for tailwater depths equal 15 cm, 20 cm and 25 cm. Also, the values of RMSE and d for each figure are presented. The comparison shows that the Flow 3D software can simulate the erosion process of non-cohesive earth dam during overtopping with an RMSE value equals 0.023, 0.0218, and 0.0167 and degree of agreement, d, equals 0.95, 0.968, and 0.988 for relative tailwater depths, do/(do)ref, = 3, 4 and 5, respectively. The low values of RMSE and high values of d show that the Flow 3D can effectively simulate the erosion process. From Fig. 10, Fig. 11, Fig. 12, it can be noticed that the model is not capable of reproducing the head cut, while it can simulate well the degradation of the crest height with a minor difference from experimental work. The reason of this could be due to inability of simulation of all physical conditions which exists in the experimental work, such as channel friction and the grain size distribution of the dam soil which is surely has a great effect on the erosion process and breach development. In the experimental work the grain size distribution is shown in Fig. 5, while the numerical model considers that the soil is uniform and exactly 50 % of the dam particles diameter are equal to the d50 value. Another reason is that the model is not considering the increased resistance of the dam due to the apparent cohesion which happens due to dam saturation [23].
It is clear from both the experimental and numerical results that for a 5 cm tailwater depth, do/(do)ref = 1.0, erosion begins near the dam toe and continues upward on the downstream slope until it reaches the crest. After eroding the crest width, the crest is lowered, resulting in increased flow rates and the speeding up of the erosion process. While for relative tailwater depths, do/(do)ref = 3, 4, and 5 erosion starts at the point of intersection between the downstream slope and tailwater. The existence of tailwater works as an energy dissipater for the falling water which reduces the erosion process and prevents the dam from failure as shown in Fig. 13. It is found that the time of the failure decreases with increasing the tailwater depth because most of the dam height is being submerged with water which decreases the erosion process. The reduction in time of failure from the referenced case is found to be 35.3, 45, and 57 % for relative tailwater depth, do /(do)ref equals 3, 4, and 5, respectively.
The relation between the relative eroded crest height, Zeroded /Zo, with time is drawn as shown in Fig. 14. It is found that the relative eroded crest height decreases with increasing tailwater depth by 10, 41, and 77.6 % for relative tailwater depth, do /(do)ref equals 3, 4, and 5, respectively. The time required for the erosion of the crest width, t1, is calculated for each experiment. The relation between relative tailwater depth and relative time of crest width erosion is shown in Fig. 15. It is found that the time of crest width erosion increases linearly with increasing, do /Zo. The percent of increase is 36.4, 54.5 and 77.3 % for relative tailwater depth, do /(do)ref = 3, 4 and 5, respectively.
Crest height, Zcrest is calculated from the experimental results and the Flow 3D results for relative tailwater depths, do/(do)ref, = 3, 4, and 5. A relation between relative crest height, Zcrest/Zo with time from experimental and numerical results is presented in Fig. 16. From Fig. 16, it is seen that there is a good consistency between the results of numerical model and the experimental results in the case of tracking the erosion of the crest height with time.
5.2. Upstream and downstream water depths
It is noticed that at the beginning of the erosion process, both upstream and downstream water depths increase linearly with time as long as erosion of the crest height did not take place. However, when the crest height starts to lower the upstream water depth decreases with time while the downstream water depth increases. At the end of the experiment, the two depths are nearly equal. A relation between relative downstream and upstream water depths with time is drawn for each experiment as shown in Fig. 17.
5.3. Eroded volume
A MATLAB code is used to calculate the cumulative eroded volume every time interval for each experiment. The total volume of the dam, Vtotal is 0.256 m3. The cumulative eroded volume, Veroded is 0.21, 0.16, 0.13, and 0.05 m3 for tailwater depths, do = 5, 15, 20, and 25 cm, respectively. Fig. 18 presents the relation between cumulative eroded volume, Veroded and time. From Fig. 18, it is observed that the cumulative eroded volume decreases with increasing the tailwater depth. The reduction in cumulative eroded volume is 23, 36.5, and 75 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The relative remained volume of the dam equals 0.18, 0.375, 0.492, and 0.8 for tailwater depths = 5, 15, 20, and 25 cm, respectively. Fig. 19 shows a relation between relative tailwater depth and relative cumulative eroded volume from experimental results. From that figure, it is noticed that the eroded volume decreases exponentially with increasing relative tailwater depth.
5.4. The outflow discharge
The inflow discharge provided to the storage tank is maintained constant for all experiments. The water surface elevation, H, over the sharp-crested weir placed at the downstream side is recorded by the video camera 2. For each experiment, the outflow discharge is then calculated by using the sharp-crested rectangular weir equation every 10 sec.
The outflow discharge is found to increase rapidly until it reaches its peak then it decreases until it is constant. For high values of tailwater depths, the peak discharge becomes less than that in the case of small tailwater depth as shown in Fig. 20 which agrees well with the results of Rifai et al. [14] The reduction in peak discharge is 7, 14, and 17.35 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively.
The scenario presented in this article in which the tailwater depth rises due to unexpected heavy rainfall, is investigated to find the effect of rising tailwater depth on earth dam failure. The results revealed that rising tailwater depth positively affects the process of dam failure in terms of preventing the dam from complete failure and reducing the outflow discharge.
6. Conclusions
The effect of tailwater depth on earth dam failure due to overtopping is investigated experimentally in this work. The study focuses on the effect of tailwater depth on side erosion, upstream and downstream water depths, eroded volume, outflow hydrograph, and duration of the failure process. The Flow 3D numerical software is used to simulate the dam failure, and a comparison is made between the experimental and numerical results to find the ability of this software to simulate the erosion process. The following are the results of the investigation:
The existence of tailwater with high depths prevents the dam from completely collapsing thereby turning it into a broad crested weir. The failure time decreases with increasing the tailwater depth and the reduction from the reference case is found to be 35.3, 45, and 57 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The difference between the upstream and downstream water depths decreases with time till it became almost negligible at the end of the experiment. The reduction in cumulative eroded volume is 23, 36.5, and 75 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The peak discharge decreases by 7, 14, and 17.35 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The relative eroded crest height decreases linearly with increasing the tailwater depth by 10, 41, and 77.6 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The numerical model can reproduce the erosion process with a minor deviation from the experimental results, particularly in terms of tracking the degradation of the crest height with time.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Google Scholar[2]Rose AT. The influence of dam failures on dam safety laws in Pennsylvania. Association of State Dam Safety Officials Annual Conference 2013, Dam Safety 2013. 2013;1:738–56.
View Record in ScopusGoogle Scholar[4]Pickert, G., Jirka, G., Bieberstein, A., Brauns, J. Soil/water interaction during the breaching process of overtopped embankments. In: Greco, M., Carravetta, A., Morte, R.D. (Eds.), Proceedings of the Conference River-Flow 2004, Balkema.
YongHui Zhu, P.J. Visser, J.K. Vrijling, GuangQian Wang
Experimental investigation on breaching of embankments
Experimental investigation on breaching of embankments, 54 (1) (2011), pp. 148-155 View PDF
CrossRefView Record in ScopusGoogle Scholar[8]Amaral S, Jónatas R, Bento AM, Palma J, Viseu T, Cardoso R, et al. Failure by overtopping of earth dams. Quantification of the discharge hydrograph. Proceedings of the 3rd IAHR Europe Congress: 14-15 April 2014, Portugal. 2014;(1):182–93.
Experimental study of breaching of an earthen dam using a fuse plug model
Int J Eng Trans A, 30 (4) (2017), pp. 479-485, 10.5829/idosi.ije.2017.30.04a.04 View PDF
View Record in ScopusGoogle Scholar[11]Wu T, Qin J. Experimental Study of a Tailings Impoundment Dam Failure Due to Overtopping. Mine Water and the Environment [Internet]. 2018;37(2):272–80. Available from: doi: 10.1007/s10230-018-0529-x.
C. Di Cristo, S. Evangelista, M. Greco, M. Iervolino, A. Leopardi, A. Vacca
Dam-break waves over an erodible embankment: experiments and simulations
J Hydraul Res, 56 (2) (2018), pp. 196-210 View PDF
CrossRefView Record in ScopusGoogle Scholar[19]Goharnejad H, Sm M, Zn M, Sadeghi L, Abadi K. Numerical Modeling and Evaluation of Embankment Dam Break Phenomenon (Case Study : Taleghan Dam) ISSN : 2319-9873. 2016;5(3):104–11.
Google Scholar[20]Hu H, Zhang J, Li T. Dam-Break Flows : Comparison between Flow-3D , MIKE 3 FM , and Analytical Solutions with Experimental Data. 2018;1–24. doi: 10.3390/app8122456.
My name is Shaimaa Ibrahim Mohamed Aman and I am a teaching assistant in Irrigation and Hydraulics department, Faculty of Engineering, Alexandria University. I graduated from the Faculty of Engineering, Alexandria University in 2013. I had my MSc in Irrigation and Hydraulic Engineering in 2017. My research interests lie in the area of earth dam Failures.
Peer review under responsibility of Ain Shams University.
1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University 2Director, Water Resources & Environment Department, HECOREA 3Director, Water Resources Department, ISAN 4Professor, Dept. of Civil & Environmental Engineering, Hongik University
1홍익대학교 건설환경공학과 박사과정 2㈜헥코리아 수자원환경사업부 이사 3㈜이산 수자원부 이사 4홍익대학교 건설환경공학과 교수
ABSTRACT
최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다. 그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다. 이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다. 수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다. 따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다. 이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다. 그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.
키워드 : 보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력
1. 서 론
최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.
기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006; Kim, 2007; Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.
그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.
2. 본 론
2.1 이론적 배경
2.1.1 3차원 수치모형의 기본이론
FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.
2.1.2 유동해석의 지배방정식
1) 연속 방정식(Continuity Equation)
FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1), (2)와 같다.
(1)
∇·v=0
(2)
∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.
2) 운동량 방정식(Momentum Equation)
각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3), (4), (5)와 같다.
여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.
2.1.3 소류력 산정
호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6), (7)과 같다.
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.
2) Manning 조도계수를 고려한 공식
Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.
(7)
τ=γn2V2R1/3
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.
FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.
2.2 하천호안 설계기준
하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.
Table 1.
Standard of Permissible Velocity and Shear on Revetment
Country (Reference)
Material
Permissible velocity (Vp, m/s)
Permissible Shear (τp, kN/m2)
Korea
River Construction Design Practice Guidelines (MOLIT, 2016)
Vegetated
5.0
0.50
Stone
5.0
0.80
USA
ASTM D’6460
Vegetated
6.1
0.81
Unvegetated
5.0
0.28
JAPAN
Dynamic Design Method of Revetment
–
5.0
–
2.3. 보조여수로 운영에 따른 하류하천 영향 분석
2.3.1 모형의 구축 및 경계조건
본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2, Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).
수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.
(8)
n=ks1/68.1g1/2
여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.
시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.
Table 2.
Mesh sizes and numerical conditions
Mesh
Numbers
49,102,500 EA
Increment (m)
Direction
Existing Spillway
Auxiliary Spillway
∆X
0.99 ~ 4.30
1.00 ~ 4.30
∆Y
0.99 ~ 8.16
1.00 ~ 5.90
∆Z
0.50 ~ 1.22
0.50 ~ 2.00
Boundary Conditions
Xmin / Ymax
Inflow / Water Surface Elevation
Xmax, Ymin, Zmin / Zmax
Wall / Symmetry
Turbulence Model
RNG model
Table 3.
Case of numerical simulation (Qp : Design flood discharge)
Case
Existing Spillway (Qe, m3/s)
Auxiliary Spillway (Qa, m3/s)
Remarks
1
Qp
0
Reference case
2
0
Qp
3
0
0.58Qp
Review of discharge capacity on auxiliary spillway
4
0
0.48Qp
5
0
0.45Qp
6
0
0.32Qp
7
0.50Qp
0.50Qp
Determination of optimal division ratio on Spillways
8
0.61Qp
0.39Qp
9
0.39Qp
0.61Qp
10
0.42Qp
0.58Qp
11
0.32Qp
0.45Qp
Determination of permissible division on Spillways
12
0.35Qp
0.48Qp
13
0.38Qp
0.53Qp
14
0.41Qp
0.56Qp
Table 4.
Roughness coefficient and roughness height
Criteria
Roughness coefficient (n)
Roughness height (ks, m)
Structure (Concrete)
0.014
0.00061
River
0.033
0.10496
Fig. 1
Layout of spillway and river in this study
2.3.2 보조 여수로의 방류능 검토
본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.
보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.
하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.
Fig. 2
Region of interest in this study
Fig. 3
Maximum velocity and location of Vmax according to Qa
Fig. 4
Maximum shear according to Qa
Fig. 5
Maximum water surface elevation and location of ηmax according to Qa
Table 5.
Numerical results for each cases (Case 1 ~ Case 6)
Case
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
1 (Qa = 0)
9.15
0.54
No Good
No Good
2 (Qa = Qp)
8.87
0.56
No Good
No Good
3 (Qa = 0.58Qp)
6.53
0.40
No Good
No Good
4 (Qa = 0.48Qp)
6.22
0.36
No Good
No Good
5 (Qa = 0.45Qp)
4.22
0.12
Accpet
Accpet
6 (Qa = 0.32Qp)
4.04
0.14
Accpet
Accpet
2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토
기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).
따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.
Fig. 6
Maximum velocity on section 1 & 2 according to Qa
Fig. 7
Maximum shear on section 1 & 2 according to Qa
Fig. 8
Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)
Fig. 9
Maximum water surface elevation on section 1 & 2 according to Qa
Table 6.
Numerical results for each cases (Case 7 ~ Case 10)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
7 Qe : 0.50QpQa : 0.50Qp
8.10
6.23
0.64
0.30
No Good
No Good
No Good
No Good
8 Qe : 0.61QpQa : 0.39Qp
8.88
6.41
0.61
0.34
No Good
No Good
No Good
No Good
9 Qe : 0.39QpQa : 0.61Qp
6.22
7.33
0.24
0.35
No Good
No Good
Accept
No Good
10 Qe : 0.42QpQa : 0.58Qp
6.39
4.79
0.30
0.19
No Good
Accept
No Good
Accept
2.3.4 방류량 배분 비율의 허용 방류량 검토
계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).
호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10, Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).
Table 7.
Numerical results for each cases (Case 11 ~ Case 14)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
11 Qe : 0.32QpQa : 0.45Qp
3.63
4.53
0.09
0.26
Accept
Accept
Accept
Accept
12 Qe : 0.35QpQa : 0.48Qp
5.74
5.18
0.23
0.22
No Good
No Good
Accept
Accept
13 Qe : 0.38QpQa : 0.53Qp
6.70
4.21
0.28
0.11
No Good
Accept
Accept
Accept
14 Qe : 0.41QpQa : 0.56Qp
6.54
5.24
0.28
0.24
No Good
No Good
Accept
Accept
Fig. 10
Maximum velocity on section 1 & 2 according to total outflow
Fig. 11
Maximum shear on section 1 & 2 according to total outflow
Fig. 12
Maximum water surface elevation on section 1 & 2 according to total outflow
3. 결 론
본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.
수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.
본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.
Acknowledgements
본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.
References
1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.
2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.
3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.
4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.
5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.
6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.
7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.
9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.
10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593
11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279
12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.
13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.
14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.
15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.
16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230
17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112
Korean References Translated from the English
1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.
2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.
3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.
4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.
5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.
6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.
Simulation of Dam-Break Flood Wave and Inundation Mapping: A Case study of Attabad Lake
Wasim Karam1, Fayaz A. Khan2, Muhammad Alam3, Sajjad Ali4 1Lab. Engineer, Department of Civil Engineering, University of Engineering and Technology Mardan, Pakistan, wasim10karam@gmail.com 2Assistant Professor, National Institute of Urban Infrastructure Planning, University of Engineering and Technology Peshawar, Pakistan, fayazuet@yahoo.com 3,4Assistant Professor, Department of Civil Engineering, University of Engineering and Technology Mardan, Pakistan, emalam82@gmail.com, sajjadali@uetmardan.edu.pk
ABSTRACT
산사태 또는 제방 댐의 파손 연구는 구성이 불확실하고 자연적이며 재해에 대해 적절하게 설계되지 않았기 때문에 다른 자연적 사건에 대한 대응 지식이 부족하기 때문에 더 중요합니다. 이 논문은 댐 파괴의 수력학적 모델링의 다양한 방법을 개선하는 것을 목표로 합니다.
현재 이 연구에서 Attabad 호수의 댐 붕괴는 전산 유체 역학 기술을 사용하여 시뮬레이션됩니다. 수치 모델(FLOW-3D)은 Reynolds 평균 Navier-Stoke 방정식을 완전히 3D로 풀어서 다양한 단면에서의 피크 유량 깊이, 피크 속도, 피크 방전, 피크 깊이까지의 시간 및 피크 방전까지의 시간을 예측하기 위해 개발되었습니다.
표준 RNG 난류 모델을 사용하여 난류를 시뮬레이션한 다음 마을의 흐름에 대한 홍수 범람 지도와 속도 벡터를 그립니다. 결과는 Hunza 강의 수로를 통해 모델링된 홍수파의 대부분이 Hunza 강의 범람원에 포함되지만 Hunza 강의 범람원 내부에 위치한 Miaun 및 chalat와 같은 일부 마을의 경우 더 높은 위험에 있음을 보여줍니다.
그러나 이들 마을의 예상 홍수 도달 시간은 각각 31분과 44분으로 인구를 안전한 지역으로 대피시키기에 충분한 시간인 반면, 알리 아바드에 인접한 하산 아바드와 같은 일부 마을의 경우 침수 위험이 더 높은 반면 마을의 예상 홍수 도착 시간은 12분으로 인구 대피에 충분하지 않으므로 홍수 억제를 위한 추가 홍수 보호 구조가 필요합니다.
최고속도의 추정치는 하천평야의 더 높은 전단응력, 심한 침식의 위험, 농경지 피해, 주거지 및 형태학적 변화가 예상됨을 의미한다. 댐 파손 분석(예: 최고 깊이, 최고 속도, 홍수 도달 시간 및 홍수 범람 지도)은 향후 위험 분석 및 홍수 관리의 지침으로만 사용해야 합니다.
Figure 2: Case Study Location on Map of PakistanFigure 3: Lake Condition 3 months after LandslideFigure 5: 3D Model from the Merged DEMFigure 7: Free Surface Elevation relative to local originFigure 8: Model of lake referenced over Google Earth ImageFigure 9: Meshing in the 3D Terrain ModelFigure 10: Flow Depth Hydrographs of the downstream villages
(A) Karim Abad (B) Ghulmet (C) Thol (D) Chalat (E) NomalFigure 11: Flow Hydrograph at Karim Abad and Nomal BridgeFigure 12: Flood Inundation Map of Karim AbadFigure 13: Flood Inundation Map of GhulmetFigure 14: Flood Inundation Map of ChalatFigure 15: Velocity Vectors of flow at Karim AbadFigure 16: Velocity Vectors of Flow at GhulmetFigure 17: Velocity Vectors of Flow at Chalat
REFERENCES
[1]. Zhang, L. & Peng, M. & Chang, D.S. & Xu, Y. (2015). Dam Failure Mechanisms and Risk Assessment, First Ed. John Wiley and Sons, Singapore 473 pp. 10.1002/9781118558522. [2]. T. L. Wahl, “Dam Breach Modeling – an Overview of Analysis Methods,” 2nd Jt. Fed. Interagency Conf. Las Vegas, NV, pp. 1–12, 2010. [3]. Khosravi K. “Dam Break Analysis and Flood Inundation Mapping : The Case Study of Sefid-Rud Dam,” no. August 2019. DOI: 10.1016/B978-0-12-815998-9.00031-2 [4]. Robb, D. M., & Vasquez, J. A. (2015). Numerical simulation of dam-break flows using depth-averaged hydrodynamic and three-dimensional CFD models. 22nd Canadian Hydrotechnical Conference, (June). [5]. Mohammad Rostami, M. S. (2015). Human Life Saving by Simulation of Dam Break using Flow-3D. Trend in Life Sciences, 4(3), 308–316 [6]. Gharbi, M., Soualmia, A., Dartus, D., & Masbernat, L. (2016). Comparison of 1D and 2D hydraulic models for floods simulation on the Medjerda River in Tunisia. Journal of Materials and Environmental Science, 7(8), 3017–3026. https://doi.org/10.1080/153 [7]. Andrei, A., Robert, B., & Erika, B. (2017). Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software – A case study of Baraolt River, Romania. IOP Conference Series: Materials Science and Engineering, 245(7). https://doi.org/10.1088/1757-899X/245/7/072010 [8]. Henderson, F.M. (1966). Open Channel Flow. MacMillan Company, New York, USA, P. No 304-313 [9]. Betsholtz, A., & Nordlöf, B. (2017). Potentials and limitations of 1D, 2D and coupled 1D-2D flood modeling in HEC-RAS. Lund University, 128. https://doi.org/10.1016/S0300-9440(03)00139-5 [10].Ozmen-Cagatay, H., & Kocaman, S. (2011). Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Engineering Applications of Computational Fluid Mechanics, 5(4), 541–552. https://doi.org/10.1080/19942060.2011.11015393 [11].Toombes, L., & Chanson, H. (2011). Numerical Limitations of Hydraulic Models. 10th Hydraulics Conference, (July), 2322–2329. https://doi.org/10.1016/j.jalz.2016.06.1613 [12].Zarein, M. (2015). Modeling Dam-Break Flows Using a 3d Mike 3 Flow Model, (January). [13].George, A. C., & Nair, B. T. (2015). Dam Break Analysis Using BOSS DAMBRK. Aquatic Procedia, 4(Icwrcoe), 853–860. https://doi.org/10.1016/j.aqpro.2015.02.10 [14].S. Roga and K. M. Pandey, “Computational Analysis of Supersonic Flow Regime Using Ramp Injector with Standard K- ω Turbulence Model” .World Academy of research in Science and Engineering, vol. 2, no. 1, pp. 31–40, 2013.http:// doi.org/10.1.1.348.5862.
Investigating the breach outflow hydrograph is an essential task to conduct mitigation plans and flood warnings. In the present study, the spatial dam breach is simulated by using a three-dimensional computational fluid dynamics model, FLOW-3D. The model parameters were adjusted by making a comparison with a previous experimental model. The different parameters (initial breach shape, dimensions, location, and dam slopes) are studied to investigate their effects on dam breaching. The results indicate that these parameters have a significant impact. The maximum erosion rate and peak outflow for the rectangular shape are higher than those for the V-notch by 8.85% and 5%, respectively. Increasing breach width or decreasing depth by 5% leads to increasing maximum erosion rate by 11% and 15%, respectively. Increasing the downstream slope angle by 4° leads to an increase in both peak outflow and maximum erosion rate by 2.0% and 6.0%, respectively.
유출 유출 수문곡선을 조사하는 것은 완화 계획 및 홍수 경보를 수행하는 데 필수적인 작업입니다. 본 연구에서는 3차원 전산유체역학 모델인 FLOW-3D를 사용하여 공간 댐 붕괴를 시뮬레이션합니다. 이전 실험 모델과 비교하여 모델 매개변수를 조정했습니다.
다양한 매개변수(초기 붕괴 형태, 치수, 위치 및 댐 경사)가 댐 붕괴에 미치는 영향을 조사하기 위해 연구됩니다. 결과는 이러한 매개변수가 상당한 영향을 미친다는 것을 나타냅니다. 직사각형 형태의 최대 침식율과 최대 유출량은 V-notch보다 각각 8.85%, 5% 높게 나타났습니다.
위반 폭을 늘리거나 깊이를 5% 줄이면 최대 침식률이 각각 11% 및 15% 증가합니다. 하류 경사각을 4° 증가시키면 최대 유출량과 최대 침식률이 각각 2.0% 및 6.0% 증가합니다.
Keywords
Spatial dam breach; FLOW-3D; Overtopping erosion; Computational fluid dynamics (CFD)
1. Introduction
There are many purposes for dam construction, such as protection from flood disasters, water storage, and power generation. Embankment failures may have a catastrophic impact on lives and infrastructure in the downstream regions. One of the most common causes of embankment dam failure is overtopping. Once the overtopping of the dam begins, the breach formation will start in the dam body then end with the dam failure. This failure occurs within a very short time, which threatens to be very dangerous. Therefore, understanding and modeling the embankment breaching processes is essential for conducting mitigation plans, flood warnings, and forecasting flood damage.
The analysis of the dam breaching process is implemented by different techniques: comparative methods, empirical models with dimensional and dimensionless solutions, physical-based models, and parametric models. These models were described in detail [1]. Parametric modeling is commonly used to simulate breach growth as a time-dependent linear process and calculate outflow discharge from the breach using hydraulics principles [2]. Alhasan et al. [3] presented a simple one-dimensional mathematical model and a computer code to simulate the dam breaching process. These models were validated by small dams breaching during the floods in 2002 in the Czech Republic. Fread [4] developed an erosion model (BREACH) based on hydraulics principles, sediment transport, and soil mechanics to estimate breach size, time of formation, and outflow discharge. Říha et al. [5] investigated the dam break process for a cascade of small dams using a simple parametric model for piping and overtopping erosion, as well as a 2D shallow-water flow model for the flood in downstream areas. Goodarzi et al. [6] implemented mathematical and statistical methods to assess the effect of inflows and wind speeds on the dam’s overtopping failure.
Dam breaching studies can be divided into two main modes of erosion. The first mode is called “planar dam breach” where the flow overtops the whole dam width. While the second mode is called “spatial dam breach” where the flow overtops through the initial pilot channel (i.e., a channel created in the dam body). Therefore, the erosion will be in both vertical and horizontal directions [7].
The erosion process through the embankment dams occurs due to the shear stress applied by water flows. The dam breaching evolution can be divided into three stages [8], [9], but Y. Yang et al. [10] divided the breach development into five stages: Stage I, the seepage erosion; Stage II, the initial breach formation; Stage III, the head erosion; Stage IV, the breach expansion; and Stage V, the re-equilibrium of the river channel through the breach. Many experimental tests have been carried out on non-cohesive embankment dams with an initial breach to examine the effect of upstream inflow discharges on the longitudinal profile evolution and the time to inflection point[11].
Zhang et al. [12] studied the effect of changing downstream slope angle, sediment grain size, and dam crest length on erosion rates. They noticed that increasing dam crest length and decreasing downstream slope angle lead to decreasing sediment transport rate. While the increase in sediment grain size leads to an increased sediment transport rate at the initial stages. Höeg et al. [13] presented a series of field tests to investigate the stability of embankment dams made of various materials. Overtopping and piping were among the failure tests carried out for the dams composed of homogeneous rock-fill, clay, or gravel with a height of up to 6.0 m. Hakimzadeh et al. [14] constructed 40 homogeneous cohesive and non-cohesive embankment dams to study the effect of changing sediment diameter and dam height on the breaching process. They also used genetic programming (GP) to estimate the breach outflow. Refaiy et al. [15] studied different scenarios for the downstream drain geometry, such as length, height, and angle, to minimize the effect of piping phenomena and therefore increase dam safety.
Zhu et al. [16] examined the effect of headcut erosion on dam breach growth, especially in the case of cohesive dams. They found that the breach growth in non-cohesive embankments is slower than cohesive embankments due to the little effect of headcut. Schmocker and Hager [7] proposed a relationship for estimating peak outflow from the dam breach process.(1)QpQin-1=1.7exp-20hc23d5013H0
where: Qp = peak outflow discharge.
Qin = inflow discharge.
hc = critical flow depth.
d50 = mean sediment diameter.
Ho = initial dam height.
Yu et al. [17] carried out an experimental study for homogeneous non-cohesive embankment dams in a 180° bending rectangular flume to determine the effect of overtopping flows on breaching formation. They found that the main factors influencing breach formation are water level, river discharge, and embankment material diameter.
Wu et al. [18] carried out a series of experiments to investigate the effect of breaching geometry on both non-cohesive and cohesive embankment dams in a U-bend flume due to overtopping flows. In the case of non-cohesive embankments, the non-symmetrical lateral expansion was noticed during the breach formation. This expansion was described by a coefficient ranging from 2.7 to 3.3.
The numerical models of the dam breach can be categorized according to different parameters, such as flow dimensions (1D, 2D, or 3D), flow governing equations, and solution methods. The 1D models are mainly used to predict the outflow hydrograph from the dam breach. Saberi et al. [19] applied the 1D Saint-Venant equation, which is solved by the finite difference method to investigate the outflow hydrograph during dam overtopping failure. Because of the ability to study dam profile evolution and breach formation, 2D models are more applicable than 1D models. Guan et al. [20] and Wu et al. [21] employed both 2D shallow water equations (SWEs) and sediment erosion equations, which are solved by the finite volume method to study the effect of the dam’s geometry parameters on outflow hydrograph and dam profile evolution. Wang et al. [22] also proposed a second-order hybrid-type of total variation diminishing (TVD) finite-difference to estimate the breach outflow by solving the 2D (SWEs). The accuracy of (SWEs) for both vertical flow contraction and surface roughness has been assessed [23]. They noted that the accuracy of (SWEs) is acceptable for milder slopes, but in the case of steeper slopes, modelers should be more careful. Generally, the accuracy of 2D models is still low, especially with velocity distribution over the flow depth, lateral momentum exchange, density-driven flows, and bottom friction[24]. Therefore, 3D models are preferred. Larocque et al. [25] and Yang et al. [26] started to use three-dimensional (3D) models that depend on the Reynolds-averaged Navier-Stokes (RANS) equations.
Previous experimental studies concluded that there is no clear relationship between the peak outflow from the dam breach and the initial breach characteristics. Some of these studies depend on the sharp-crested weir fixed at the end of the flume to determine the peak outflow from the breach, which leads to a decrease in the accuracy of outflow calculations at the microscale. The main goals of this study are to carry out a numerical simulation for a spatial dam breach due to overtopping flows by using (FLOW-3D) software to find an empirical equation for the peak outflow discharge from the breach and determine the worst-case that leads to accelerating the dam breaching process.
2. Numerical simulation
The current study for spatial dam breach is simulated by using (FLOW-3D) software [27], which is a powerful computational fluid dynamics (CFD) program.
2.1. Geometric presentations
A stereolithographic (STL) file is prepared for each change in the initial breach geometry and dimensions. The CAD program is useful for creating solid objects and converting them to STL format, as shown in Fig. 1.
2.2. Governing equations
The governing equations for water flow are three-dimensional Reynolds Averaged Navier-Stokes equations (RANS).
The momentum equation:(3)∂ui∂t+1VFuj∂ui∂xj=1ρ∂∂xj-pδij+ν∂ui∂xj+∂uj∂xi-ρu`iu`j¯
where u is time-averaged velocity,ν is kinematic viscosity, VF is fractional volume open to flow, p is averaged pressure and -u`iu`j¯ are components of Reynold’s stress. The Volume of Fluid (VOF) technique is used to simulate the free surface profile. Hirt et al. [28] presented the VOF algorithm, which employs the function (F) to express the occupancy of each grid cell with fluid. The value of (F) varies from zero to unity. Zero value refers to no fluid in the grid cell, while the unity value refers to the grid cell being fully occupied with fluid. The free surface is formed in the grid cells having (F) values between zero and unity.(4)∂F∂t+1VF∂∂xFAxu+∂∂yFAyv+∂∂zFAzw=0
where (u, v, w) are the velocity components in (x, y, z) coordinates, respectively, and (Ax, Ay, Az) are the area fractions.
2.3. Boundary and initial conditions
To improve the accuracy of the results, the boundary conditions should be carefully determined. In this study, two mesh blocks are used to minimize the time consumed in the simulation. The boundary conditions for mesh block 1 are as follows: The inlet and sides boundaries are defined as a wall boundary condition (wall boundary condition is usually used for bound fluid by solid regions. In the case of viscous flows, no-slip means that the tangential velocity is equal to the wall velocity and the normal velocity is zero), the outlet is defined as a symmetry boundary condition (symmetry boundary condition is usually used to reduce computational effort during CFD simulation. This condition allows the flow to be transferred from one mesh block to another. No inputs are required for this boundary condition except that its location should be defined accurately), the bottom boundary is defined as a uniform flow rate boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure. The boundary conditions for mesh block 2 are as follows: The inlet is defined as a symmetry boundary condition, the outlet is defined as a free flow boundary condition, the bottom and sides boundaries are defined as a wall boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure as shown in Fig. 2. The initial conditions required to be set for the fluid (i.e., water) inside of the domain include configuration, temperature, velocities, and pressure distribution. The configuration of water depends on the dimensions and shape of the dam reservoir. While the other conditions have been assigned as follows: temperature is normal water temperature (25 °c) and pressure distribution is hydrostatic with no initial velocity.
2.4. Numerical method
FLOW-3D uses the finite volume method (FVM) to solve the governing equation (Reynolds-averaged Navier-Stokes) over the computational domain. A finite-volume method is an Eulerian approach for representing and evaluating partial differential equations in algebraic equations form [29]. At discrete points on the mesh geometry, values are determined. Finite volume expresses a small volume surrounding each node point on a mesh. In this method, the divergence theorem is used to convert volume integrals with a divergence term to surface integrals. After that, these terms are evaluated as fluxes at each finite volume’s surfaces.
2.5. Turbulent models
Turbulence is the chaotic, unstable motion of fluids that occurs when there are insufficient stabilizing viscous forces. In FLOW-3D, there are six turbulence models available: the Prandtl mixing length model, the one-equation turbulent energy model, the two-equation (k – ε) model, the Renormalization-Group (RNG) model, the two-equation (k – ω) models, and a large eddy simulation (LES) model. For simulating flow motion, the RNG model is adopted to simulate the motion behavior better than the k – ε and k – ω.
models [30]. The RNG model consists of two main equations for the turbulent kinetic energy KT and its dissipation.εT(5)∂kT∂t+1VFuAx∂kT∂x+vAy∂kT∂y+wAz∂kT∂z=PT+GT+DiffKT-εT(6)∂εT∂t+1VFuAx∂εT∂x+vAy∂εT∂y+wAz∂εT∂z=C1.εTKTPT+c3.GT+Diffε-c2εT2kT
where KT is the turbulent kinetic energy, PT is the turbulent kinetic energy production, GT is the buoyancy turbulence energy, εT is the turbulent energy dissipation rate, DiffKT and Diffε are terms of diffusion, c1, c2 and c3 are dimensionless parameters, in which c1 and c3 have a constant value of 1.42 and 0.2, respectively, c2 is computed from the turbulent kinetic energy (KT) and turbulent production (PT) terms.
2.6. Sediment scour model
The sediment scour model available in FLOW-3D can calculate all the sediment transport processes including Entrainment transport, Bedload transport, Suspended transport, and Deposition. The erosion process starts once the water flows remove the grains from the packed bed and carry them into suspension. It happens when the applied shear stress by water flows exceeds critical shear stress. This process is represented by entrainment transport in the numerical model. After entrained, the grains carried by water flow are represented by suspended load transport. After that, some suspended grains resort to settling because of the combined effect of gravity, buoyancy, and friction. This process is described through a deposition. Finally, the grains sliding motions are represented by bedload transport in the model. For the entrainment process, the shear stress applied by the fluid motion on the packed bed surface is calculated using the standard wall function as shown in Eq.7.(7)ks,i=Cs,i∗d50
where ks,i is the Nikuradse roughness and Cs,i is a user-defined coefficient. The critical bed shear stress is defined by a dimensionless parameter called the critical shields number as expressed in Eq.8.(8)θcr,i=τcr,i‖g‖diρi-ρf
where θcr,i is the critical shields number, τcr,i is the critical bed shear stress, g is the absolute value of gravity acceleration, di is the diameter of the sediment grain, ρi is the density of the sediment species (i) and ρf is the density of the fluid. The value of the critical shields number is determined according to the Soulsby-Whitehouse equation.(9)θcr,i=0.31+1.2d∗,i+0.0551-exp-0.02d∗,i
where d∗,i is the dimensionless diameter of the sediment, given by Eq.10.(10)d∗,i=diρfρi-ρf‖g‖μf213
where μf is the fluid dynamic viscosity. For the sloping bed interface, the value of the critical shields number is modified according to Eq.11.(11)θ`cr,i=θcr,icosψsinβ+cos2βtan2φi-sin2ψsin2βtanφi
where θ`cr,i is the modified critical shields number, φi is the angle of repose for the sediment, β is the angle of bed slope and ψ is the angle between the flow and the upslope direction. The effects of the rolling, hopping, and sliding motions of grains along the packed bed surface are taken by the bedload transport process. The volumetric bedload transport rate (qb,i) per width of the bed is expressed in Eq.12.(12)qb,i=Φi‖g‖ρi-ρfρfdi312
where Φi is the dimensionless bedload transport rate is calculated by using Meyer Peter and Müller equation.(13)Φi=βMPM,iθi-θ`cr,i1.5cb,i
where βMPM,i is the Meyer Peter and Müller user-defined coefficient and cb,i is the volume fraction of species i in the bed material. The suspended load transport is calculated as shown in Eq.14.(14)∂Cs,i∂t+∇∙Cs,ius,i=∇∙∇DCs,i
where Cs,i is the suspended sediment mass concentration, D is the diffusivity, and us,i is the grain velocity of species i. Entrainment and deposition are two opposing processes that take place at the same time. The lifting and settling velocities for both entrainment and deposition processes are calculated according to Eq.15 and Eq.16, respectively.(15)ulifting,i=αid∗,i0.3θi-θ`cr,igdiρiρf-1(16)usettling,i=υfdi10.362+1.049d∗,i3-10.36
where αi is the entrainment coefficient of species i and υf is the kinematic viscosity of the fluid.
2.7. Grid type
Using simple rectangular orthogonal elements in planes and hexahedral in volumes in the (FLOW-3D) program makes the mesh generation process easier, decreases the required memory, and improves numerical accuracy. Two mesh blocks were used in a joined form with a size ratio of 2:1. The first mesh block is coarser, which contains the reservoir water, and the second mesh block is finer, which contains the dam. For achieving accuracy and efficiency in results, the mesh size is determined by using a grid convergence test. The optimum uniform cell size for the first mesh block is 0.012 m and for the second mesh block is 0.006 m.
2.8. Time step
The maximum time step size is determined by using a Courant number, which controls the distance that the flow will travel during the simulation time step. In this study, the Courant number was taken equal to 0.25 to prevent the flow from traveling through more than one cell in the time step. Based on the Courant number, a maximum time step value of 0.00075 s was determined.
2.9. Numerical model validation
The numerical model accuracy was achieved by comparing the numerical model results with previous experimental results. The experimental study of Schmocker and Hager [7] was based on 31 tests with changes in six parameters (d50, Ho, Bo, Lk, XD, and Qin). All experimental tests were conducted in a straight open glass-sided flume. The horizontal flume has a rectangular cross-section with a width of 0.4 m and a height of 0.7 m. The flume was provided with a flow straightener and an intake with a length of 0.66 m. All tested dams were inserted at various distances (XD) from the intake. Test No.1 from this experimental program was chosen to validate the numerical model. The different parameters used in test No.1 are as follows:
(1) uniform sediment with a mean diameter (d50 = 0.31 mm), (2) Ho = 0.2 m, (3) Bo = 0.2 m, (4) Lk = 0.1 m,
(5) XD = 1.0 m, (6) Qin = 6.0 lit/s, (7) Su and Sd = 2:1, (8) mass density (ρs = 2650 kg/m3) (9) Homogenous and non-cohesive embankment dam. As shown in Fig. 2, the simulation is contained within a rectangular grid with dimensions: 3.56 m in the x-direction (where 0.66 m is used as inlet, 0.9 m as dam base width, and 1.0 m as outlet), in y-direction 0.2 m (dam length), and in the z-direction 0.3 m, which represents the dam height (0.2 m) with a free distance (0.1 m) above the dam. There are two main reasons that this experimental program is preferred for the validation process. The first reason is that this program deals with homogenous, non-cohesive soil, which is available in FLOW-3D. The second reason is that this program deals with small-scale models which saves time for numerical simulation. Finally, some important assumptions were considered during the validation process. The flow is assumed to be incompressible, viscous, turbulent, and three-dimensional.
By comparing dam profiles at different time instants for the experimental test with the current numerical model, it appears that the numerical model gives good agreement as shown in Fig. 3 and Fig. 4, with an average error percentage of 9% between the experimental results and the numerical model.
3. Analysis and discussions
The current model is used to study the effects of different parameters such as (initial breach shapes, dimensions, locations, upstream and downstream dam slopes) on the peak outflow discharge, QP, time of peak outflow, tP, and rate of erosion, E.
This study consists of a group of scenarios. The first scenario is changing the shapes of the initial breach according to Singh [1], the most predicted shapes are rectangular and V-notch as shown in Fig. 5. The second scenario is changing the initial breach dimensions (i.e., width and depth). While the third scenario is changing the location of the initial breach. Eventually, the last scenario is changing the upstream and downstream dam slopes.
All scenarios of this study were carried out under the same conditions such as inflow discharge value (Qin=1.0lit/s), dimensions of the tested dam, where dam height (Ho=0.20m), crest width.
(Lk=0.1m), dam length (Bo=0.20m), and homogenous & non-cohesive soil with a mean diameter (d50=0.31mm).
3.1. Dam breaching process evolution
The dam breaching process is a very complex process due to the quick changes in hydrodynamic conditions during dam failure. The dam breaching process starts once water flows reach the downstream face of the dam. During the initial stage of dam breaching, the erosion process is relatively quiet due to low velocities of flow. As water flows continuously, erosion rates increase, especially in two main zones: the crest and the downstream face. As soon as the dam crest is totally eroded, the water levels in the dam reservoir decrease rapidly, accompanied by excessive erosion in the dam body. The erosion process continues until the water levels in the dam reservoir equal the remaining height of the dam.
According to Zhou et al. [11], the breaching process consists of three main stages. The first stage starts with beginning overtopping flow, then ends when the erosion point directed upstream and reached the inflection point at the inflection time (ti). The second stage starts from the end of the stage1 until the occurrence of peak outflow discharge at the peak outflow time (tP). The third stage starts from the end of the stage2 until the value of outflow discharge becomes the same as the value of inflow discharge at the final time (tf). The outflow discharge from the dam breach increases rapidly during stage1 and stage2 because of the large dam storage capacity (i.e., the dam reservoir is totally full of water) and excessive erosion. While at stage3, the outflow values start to decrease slowly because most of the dam’s storage capacity was run out. The end of stage3 indicates that the dam storage capacity was totally run out, so the outflow equalized with the inflow discharge as shown in Fig. 6 and Fig. 7.
3.2. The effect of initial breach shape
To identify the effect of the initial breach shape on the evolution of the dam breaching process. Three tests were carried out with different cross-section areas for each shape. The initial breach is created at the center of the dam crest. Each test had an ID to make the process of arranging data easier. The rectangular shape had an ID (Rec5h & 5b), which means that its depth and width are equal to 5% of the dam height, and the V-notch shape had an ID (V-noch5h & 1:1) which means that its depth is equal to 5% of the dam height and its side slope is equal to 1:1. The comparison between rectangular and V-notch shapes is done by calculating the ratio between maximum dam height at different times (ZMax) to the initial dam height (Ho), rate of erosion, and hydrograph of outflow discharge for each test. The rectangular shape achieves maximum erosion rate and minimum inflection time, in addition to a rapid decrease in the dam reservoir levels. Therefore, the dam breaching is faster in the case of a rectangular shape than in a V-notch shape, which has the same cross-section area as shown in Fig. 8.
Also, by comparing the hydrograph for each test, the peak outflow discharge value in the case of a rectangular shape is higher than the V-notch shape by 5% and the time of peak outflow for the rectangular shape is shorter than the V-notch shape by 9% as shown in Fig. 9.
3.3. The effect of initial breach dimensions
The results of the comparison between the different initial breach shapes indicate that the worst initial breach shape is rectangular, so the second scenario from this study concentrated on studying the effect of a change in the initial rectangular breach dimensions. Groups of tests were carried out with different depths and widths for the rectangular initial breach. The first group had a depth of 5% from the dam height and with three different widths of 5,10, and 15% from the dam height, the second group had a depth of 10% with three different widths of 5,10, and 15%, the third group had a depth of 15% with three different widths of 5,10, and 15% and the final group had a width of 15% with three different heights of 5, 10, and 15% for a rectangular breach shape. The comparison was made as in the previous section to determine the worst case that leads to the quick dam failure as shown in Fig. 10.
The results show that the (Rec 5 h&15b) test achieves a maximum erosion rate for a shorter period of time and a minimum ratio for (Zmax / Ho) as shown in Fig. 10, which leads to accelerating the dam failure process. The dam breaching process is faster with the minimum initial breach depth and maximum initial breach width. In the case of a minimum initial breach depth, the retained head of water in the dam reservoir is high and the crest width at the bottom of the initial breach (L`K) is small, so the erosion point reaches the inflection point rapidly. While in the case of the maximum initial breach width, the erosion perimeter is large.
3.4. The effect of initial breach location
The results of the comparison between the different initial rectangular breach dimensions indicate that the worst initial breach dimension is (Rec 5 h&15b), so the third scenario from this study concentrated on studying the effect of a change in the initial breach location. Three locations were checked to determine the worst case for the dam failure process. The first location is at the center of the dam crest, which was named “Center”, the second location is at mid-distance between the dam center and dam edge, which was named “Mid”, and the third location is at the dam edge, which was named “Edge” as shown in Fig. 11. According to this scenario, the results indicate that the time of peak outflow discharge (tP) is the same in the three cases, but the maximum value of the peak outflow discharge occurs at the center location. The difference in the peak outflow values between the three cases is relatively small as shown in Fig. 12.
The rates of erosion were also studied for the three cases. The results show that the maximum erosion rate occurs at the center location as shown in Fig. 13. By making a comparison between the three cases for the dam storage volume. The results show that the center location had the minimum values for the dam storage volume, which means that a large amount of water has passed to the downstream area as shown in Fig. 14. According to these results, the center location leads to increased erosion rate and accelerated dam failure process compared with the two other cases. Because the erosion occurs on both sides, but in the case of edge location, the erosion occurs on one side.
3.5. The effect of upstream and downstream dam slopes
The results of the comparison between the different initial rectangular breach locations indicate that the worst initial breach location is the center location, so the fourth scenario from this study concentrated on studying the effect of a change in the upstream (Su) and downstream (Sd) dam slopes. Three slopes were checked individually for both upstream and downstream slopes to determine the worst case for the dam failure process. The first slope value is (2H:1V), the second slope value is (2.5H:1V), and the third slope value is (3H:1V). According to this scenario, the results show that the decreasing downstream slope angle leads to increasing time of peak outflow discharge (tP) and decreasing value of peak outflow discharge. The difference in the peak outflow values between the three cases for the downstream slope is 2%, as shown in Fig. 15, but changing the upstream slope has a negligible impact on the peak outflow discharge and its time as shown in Fig. 16.
The rates of erosion were also studied in the three cases for both upstream and downstream slopes. The results show that the maximum erosion rate increases by 6.0% with an increasing downstream slope angle by 4°, as shown in Fig. 17. The results also indicate that the erosion rates aren’t affected by increasing or decreasing the upstream slope angle, as shown in Fig. 18. According to these results, increasing the downstream slope angle leads to increased erosion rate and accelerated dam failure process compared with the upstream slope angle. Because of increasing shear stress applied by water flows in case of increasing downstream slope.
According to all previous scenarios, the dimensionless peak outflow discharge QPQin is presented for a fixed dam height (Ho) and inflow discharge (Qin). Fig. 19 illustrates the relationship between QP∗=QPQin and.
Lr=ho2/3∗bo2/3Ho. The deduced relationship achieves R2=0.96.(17)QP∗=2.2807exp-2.804∗Lr
4. Conclusions
A spatial dam breaching process was simulated by using FLOW-3D Software. The validation process was performed by making a comparison between the simulated results of dam profiles and the dam profiles obtained by Schmocker and Hager [7] in their experimental study. And also, the peak outflow value recorded an error percentage of 12% between the numerical model and the experimental study. This model was used to study the effect of initial breach shape, dimensions, location, and dam slopes on peak outflow discharge, time of peak outflow, and the erosion process. By using the parameters obtained from the validation process, the results of this study can be summarized in eight points as follows.1.
The rectangular initial breach shape leads to an accelerating dam failure process compared with the V-notch.2.
The value of peak outflow discharge in the case of a rectangular initial breach is higher than the V-notch shape by 5%.3.
The time of peak outflow discharge for a rectangular initial breach is shorter than the V-notch shape by 9%.4.
The minimum depth and maximum width for the initial breach achieve maximum erosion rates (increasing breach width, b0, or decreasing breach depth, h0, by 5% from the dam height leads to an increase in the maximum rate of erosion by 11% and 15%, respectively), so the dam failure is rapid.5.
The center location of the initial breach leads to an accelerating dam failure compared with the edge location.6.
The initial breach location has a negligible effect on the peak outflow discharge value and its time.7.
Increasing the downstream slope angle by 4° leads to an increase in both peak outflow discharge and maximum rate of erosion by 2.0% and 6.0%, respectively.8.
The upstream slope has a negligible effect on the dam breaching process.
References
[1]V. SinghDam breach modeling technologySpringer Science & Business Media (1996)Google Scholar[2]Wahl TL. Prediction of embankment dam breach parameters: a literature review and needs assessment. 1998.Google Scholar[3]Z. Alhasan, J. Jandora, J. ŘíhaStudy of dam-break due to overtopping of four small dams in the Czech RepublicActa Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63 (3) (2015), pp. 717-729 View PDFCrossRefView Record in ScopusGoogle Scholar[4]D. FreadBREACH, an erosion model for earthen dam failures: Hydrologic Research LaboratoryNOAA, National Weather Service (1988)Google Scholar[5]J. Říha, S. Kotaška, L. PetrulaDam Break Modeling in a Cascade of Small Earthen Dams: Case Study of the Čižina River in the Czech RepublicWater, 12 (8) (2020), p. 2309, 10.3390/w12082309 View PDFView Record in ScopusGoogle Scholar[6]E. Goodarzi, L. Teang Shui, M. ZiaeiDam overtopping risk using probabilistic concepts–Case study: The Meijaran DamIran Ain Shams Eng J, 4 (2) (2013), pp. 185-197ArticleDownload PDFView Record in ScopusGoogle Scholar[7]L. Schmocker, W.H. HagerPlane dike-breach due to overtopping: effects of sediment, dike height and dischargeJ Hydraul Res, 50 (6) (2012), pp. 576-586 View PDFCrossRefView Record in ScopusGoogle Scholar[8]J.S. Walder, R.M. Iverson, J.W. Godt, M. Logan, S.A. SolovitzControls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen damsWater Resour Res, 51 (8) (2015), pp. 6701-6724View Record in ScopusGoogle Scholar[9]H. Wei, M. Yu, D. Wang, Y. LiOvertopping breaching of river levees constructed with cohesive sedimentsNat Hazards Earth Syst Sci, 16 (7) (2016), pp. 1541-1551 View PDFCrossRefView Record in ScopusGoogle Scholar[10]Y. Yang, S.-Y. Cao, K.-J. Yang, W.-P. LiYang K-j, Li W-p. Experimental study of breach process of landslide dams by overtopping and its initiation mechanismsJ Hydrodynamics, 27 (6) (2015), pp. 872-883ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[11]G.G.D. Zhou, M. Zhou, M.S. Shrestha, D. Song, C.E. Choi, K.F.E. Cui, et al.Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floodsGeomorphology, 334 (2019), pp. 29-43ArticleDownload PDFView Record in ScopusGoogle Scholar[12]J. Zhang, Z.-x. Guo, S.-y. CaoYang F-g. Experimental study on scour and erosion of blocked damWater Sci Eng, 5 (2012), pp. 219-229ArticleDownload PDFView Record in ScopusGoogle Scholar[13]K. Höeg, A. Løvoll, K. VaskinnStability and breaching of embankment dams: Field tests on 6 m high damsInt J Hydropower Dams, 11 (2004), pp. 88-92View Record in ScopusGoogle Scholar[14]H. Hakimzadeh, V. Nourani, A.B. AminiGenetic programming simulation of dam breach hydrograph and peak outflow dischargeJ Hydrol Eng, 19 (4) (2014), pp. 757-768View Record in ScopusGoogle Scholar[15]A.R. Refaiy, N.M. AboulAtta, N.Y. Saad, D.A. El-MollaModeling the effect of downstream drain geometry on seepage through earth damsAin Shams Eng J, 12 (3) (2021), pp. 2511-2531ArticleDownload PDFView Record in ScopusGoogle Scholar[16]Y. Zhu, P.J. Visser, J.K. Vrijling, G. WangExperimental investigation on breaching of embankmentsScience China Technological Sci, 54 (1) (2011), pp. 148-155 View PDFCrossRefView Record in ScopusGoogle Scholar[17]M.-H. Yu, H.-Y. Wei, Y.-J. Liang, Y. ZhaoInvestigation of non-cohesive levee breach by overtopping flowJ Hydrodyn, 25 (4) (2013), pp. 572-579ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[18]S. Wu, M. Yu, H. Wei, Y. Liang, J. ZengNon-symmetrical levee breaching processes in a channel bend due to overtoppingInt J Sedim Res, 33 (2) (2018), pp. 208-215ArticleDownload PDFView Record in ScopusGoogle Scholar[19]O. Saberi, G. ZenzNumerical investigation on 1D and 2D embankment dams failure due to overtopping flowInt J Hydraulic Engineering, 5 (2016), pp. 9-18View Record in ScopusGoogle Scholar[20]M. Guan, N.G. Wright, P.A. Sleigh2D Process-Based Morphodynamic Model for Flooding by Noncohesive Dyke BreachJ Hydraul Eng, 140 (7) (2014), p. 04014022, 10.1061/(ASCE)HY.1943-7900.0000861 View PDFView Record in ScopusGoogle Scholar[21]W. Wu, R. Marsooli, Z. HeDepth-Averaged Two-Dimensional Model of Unsteady Flow and Sediment Transport due to Noncohesive Embankment Break/BreachingJ Hydraul Eng, 138 (6) (2012), pp. 503-516View Record in ScopusGoogle Scholar[22]Z. Wang, D.S. BowlesThree-dimensional non-cohesive earthen dam breach model. Part 1: Theory and methodologyAdv Water Resour, 29 (10) (2006), pp. 1528-1545ArticleDownload PDFView Record in ScopusGoogle Scholar[23]Říha J, Duchan D, Zachoval Z, Erpicum S, Archambeau P, Pirotton M, et al. Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs. J Hydrology Hydromechanics. 2019;67:322-8.Google Scholar[24]C.B. VreugdenhilNumerical methods for shallow-water flowSpringer Science & Business Media (1994)Google Scholar[25]L.A. Larocque, J. Imran, M.H. Chaudhry3D numerical simulation of partial breach dam-break flow using the LES and k–∊ turbulence modelsJ Hydraul Res, 51 (2) (2013), pp. 145-157 View PDFCrossRefView Record in ScopusGoogle Scholar[26]C. Yang, B. Lin, C. Jiang, Y. LiuPredicting near-field dam-break flow and impact force using a 3D modelJ Hydraul Res, 48 (6) (2010), pp. 784-792 View PDFCrossRefView Record in ScopusGoogle Scholar[27]FLOW-3D. Version 11.1.1 Flow Science, Inc., Santa Fe, NM. https://wwwflow3dcom.Google Scholar[28]C.W. Hirt, B.D. NicholsVolume of fluid (VOF) method for the dynamics of free boundariesJ Comput Phys, 39 (1) (1981), pp. 201-225ArticleDownload PDFGoogle Scholar[29]S.V. PatankarNumerical heat transfer and fluid flow, Hemisphere PublCorp, New York, 58 (1980), p. 288View Record in ScopusGoogle Scholar[30]M. Alemi, R. MaiaNumerical simulation of the flow and local scour process around single and complex bridge piersInt J Civil Eng, 16 (5) (2018), pp. 475-487 View PDFCrossRefView Record in ScopusGoogle Scholar
측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 출력 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다. 본 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 7가지 유형의 거칠기 요소를 분기구 입구에 설치하고 4가지 다른 배출(총 84번의 실험을 수행)과 함께 3개의 서로 다른 베드 반전 레벨을 조사했습니다. 또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면, 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.
Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.
Turnouts or intakes are amongst the oldest and most widely used hydraulic structures in irrigation networks. Turnouts are also used in water distribution, transmission networks, power generation facilities, and waste water treatment plants etc. The flows that enter a turnout have a strong momentum in the direction of the main waterway and that is why flow separation occurs inside the turnout. The horizontal vortex formed in the separation area is a suitable place for accumulation and deposition of sediments. The separation zone is a vulnerable area for sedimentation and for reduction of effective flow due to a contracted flow region in the lateral channel. Sedimentaion in the entrance of the intake can gradually be transfered into the lateral channel and decrease the capacity of the higher order channels over time (Jalili et al. 2011). On the other hand, the existence of coarse-grained materials causes erosion and destruction of the waterway side walls and bottom. In addition, sedimentation creates conditions for vegetation to take root and damage the waterway cover, which causes water to leak from its perimeter. Therefore, it is important to investigate the pattern of the flow separation area in turnouts and provide solutions to reduce the dimensions of this area.
The three-dimensional flow structure at turnouts is quite complex. In an experimental study by Neary & Odgaard (1993) in a 90-degree water turnout it was found that the secondary currents and separation zone varies from the bed to the water surface. They also found that at a 90-degree water turnout, the bed roughness and discharge ratio play a critical role in flow structure. They asserted that an explanation of sediment behavior at a diversion entrance requires a comprehensive understanding of 3D flow patterns around the lateral-channel entrance. In addition, they suggested that there is a strong similarity between flow in a channel bend and a diversion channel, and that this similarity can rationalize the use of bend flow models for estimation of 3D flow structures in diversion channels.
Some of the distinctive characteristics of dividing flow in a turnout include a zone of separation immediately near the entrance of the lateral turnout (separation zone), a contracted flow region in the branch channel (contracted flow), and a stagnation point near the downstream corner of the junction (stagnation zone). In the region downstream of the junction, along the continuous far wall, separation due to flow expansion may occur (Ramamurthy et al. 2007), that is, a separation zone. This can both reduce the turnout efficiency and the effective width of flow while increasing the sediment deposition in the turnout entrance (Jalili et al. 2011). Installation of submerged vanes in the turnout entrance is a method which is already applied to reduce the size of flow separation zones. The separation zone draws sediments and floating materials into themselves. This reduces effective cross-section area and reduces transmission capacity. These results have also been obtained in past studies, including by Ramamurthy et al. (2007) and in Jalili et al. (2011). Submerged vanes (Iowa vanes) are designed in order to modify the near-bed flow pattern and bed-sediment motion in the transverse direction of the river. The vanes are installed vertically on the channel bed, at an angle of attack which is usually oriented at 10–25 degrees to the local primary flow direction. Vane height is typically 0.2–0.5 times the local water depth during design flow conditions and vane length is 2–3 times its height (Odgaard & Wang 1991). They are vortex-generating devices that generate secondary circulation, thereby redistributing sediment within the channel cross section. Several factors affect the flow separation zone such as the ratio of lateral turnout discharge to main channel discharge, angle of lateral channel with respect to the main channel flow direction and size of applied submerged vanes. Nakato et al. (1990) found that sediment management using submerged vanes in the turnout entrance to Station 3 of the Council Bluffs plant, located on the Missouri River, is applicable and efficient. The results show submerged vanes are an appropriate solution for reduction of sediment deposition in a turnout entrance. The flow was treated as 3D and tests results were obtained for the flow characteristics of dividing flows in a 90-degree sharp-edged, junction. The main and lateral channel were rectangular with the same dimensions (Ramamurthy et al., 2007).
Keshavarzi & Habibi (2005) carried out experiments on intake with angles of 45, 67, 79 and 90 degrees in different discharge ratios and reported the optimum angle for inlet flow with the lowest flow separation area to be about 55 degrees. The predicted flow characteristics were validated using experimental data. The results indicated that the width and length of the separation zone increases with the increase in the discharge ratio Qr (ratio of outflow per unit width in the turnout to inflow per unit width in the main channel).
Abbasi et al. (2004) performed experiments to investigate the dimensions of the flow separation zone at a lateral turnout entrance. They demonstrated that the length and width of the separation zone decreases with the increasing ratio of lateral turn-out discharge. They also found that with a reducing angle of lateral turnout, the length of the separation zone scales up and width of separation zone reduces. Then they compared their observations with results of Kasthuri & Pundarikanthan (1987) who conducted some experiments in an open-channel junction formed by channels of equal width and an angle of lateral 90 degree turnout, which showed the dimensions of the separation zone in their experiments to be smaller than in previous studies. Kasthuri & Pundarikanthan (1987) studied vortex and flow separation dimensions at the entrance of a 90 degree channel. Results showed that increasing the diversion discharge ratio can reduce the length and width of the vortex area. They also showed that the length and width of the vortex area remain constant at diversion ratios greater than 0.7. Karami Moghaddam & Keshavarzi (2007) analyzed the flow characteristics in turnouts with angles of 55 and 90 degrees. They reported that the dimensions of the separation zone decrease by increasing the discharge ratio and reducing the turnout angle with respect to the main channel. Studies about flow separation zone can be found in Jalili et al. (2011), Nikbin & Borghei (2011), Seyedian et al. (2008).
Jamshidi et al. (2016) measured the dimensions of a flow separation zone in the presence of submerged vanes with five arrangements (parallel, stagger, compound, piney and butterflies). Results showed that the ratio of the width to the length of the separation zone (shape index) was between 0.2 and 0.28 for all arrangements.
Karami et al. (2017) developed a 3D computational fluid dynamic (CFD) code which was calibrated by measured data. They used the model to evaluate flow pattern, diversion ratio of discharge, strength of the secondary flow, and dimensions of the vortex inside the channel in various dikes and submerged vane installation scenarios. Results showed that the diversion ratio of discharge in the diversion channel is dependent on the width of the flow separation area in the main channel. A dike, perpendicular to the flow, doubles the ratio of diverted discharge and reduces the suspended sediment load compared with the base-line situation by creating outer arch conditions. In addition, increasing the longitudinal distance between vanes increases the velocity gradient between the vanes and leads to a more severe erosion of the bed near the vanes.Figure 1VIEW LARGEDOWNLOAD SLIDE
Laboratory channel dimensions.
Al-Zubaidy & Hilo (2021) used the Navier–Stokes equation to study the flow of incompressible fluids. Using the CFD software ANSYS Fluent 19.2, 3D flow patterns were simulated at a diversion channel. Their results showed good agreement using the comparison between the experimental and numerical results when the k-omega turbulence viscous model was employed. Simulation of the flow pattern was then done at the lateral channel junction using a variety of geometry designs. These improvements included changing the intake’s inclination angle and chamfering and rounding the inner corner of the intake mouth instead of the sharp edge. Flow parameters at the diversion including velocity streamlines, bed shear stress, and separation zone dimensions were computed in their study. The findings demonstrated that changing the 90° lateral intake geometry can improve the flow pattern and bed shear stress at the intake junction. Consequently, sedimentation and erosion problems are reduced. According to the conclusions of their study, a branching angle of 30° to 45° is the best configuration for increasing branching channel discharge, lowering branching channel sediment concentration.
The review of the literature shows that most of the studies deal with turnout angle, discharge ratio and implementation of vanes as techniques to reduce the area of the separation zone. This study examines the effect of roughness coefficient and drop implementation at the entrance of a 90-degree lateral turnout on the dimensions of the separation zone. As far as the authors are aware, these two variables have never been studied as a remedy to decrease the separation zone dimensions whilst enhancing turnout efficiency. Additionally, a three-dimensional numerical model is applied to simulate the flow pattern around the turnout. The numerical results are verified against experimental data.
The experiments were conducted in a 90 degree dividing flow laboratory channel. The main channel is 15 m long, 0.5 m wide and 0.4 m high and the branch channel is 3 m long, 0.35 m wide and 0.4 m high, as shown in Figure 1. The tests were carried out at 9.65 m from the beginning of the flume and were far enough from the inlet, so we were sure that the flow was fully developed. According to Kirkgöz & Ardiçlioğlu (1997) the length of the developing region would be approximantly 65 and 72 times the flow depth. In this study, the depth is 9 cm, which makes this condition.
Both the main and lateral channel had a slope of 0.0003 with side walls of concrete. A 100 hp pump discharged the water into a stilling basin at the entrance of the main flume. The discharge was measured using an ultrasonic discharge meter around the discharge pipe. Eighty-four experiments in total were carried out at range of 0.1<Fr<0.4 (Froude numbers in main channel and upstream of turnout). The depth of water in the main channel in the experiments was 9 cm, in which case the effect of surface tension can be considered; according to research by Zolghadr & Shafai Bejestan (2020) and Zolghadr et al. (2021), when the water depth is more than 6 cm, the effect of surface tension is reduced and can be ignored given that the separation phenomenon occurs in the boundary layer, the height of the roughness creates disturbances in growth and development of the boundary layer and, as a result, separation growth is also faced with disruption and its dimensions grow less compared to smooth surfaces. Similar conditions occur in case of drop implementation. A disturbance occurs in the growth of the boundary layer and as a result the separation zone dimensions decrease. In order to investigate the effect of roughness coefficient and drop implementation on the separation zone dimensions, four different discharges (16, 18, 21, 23 l/s) in subcritical conditions, seven Manning (Strickler) roughness coefficients (0.009, 0.011, 0.017, 0.023, 0.028, 0.030, 0.032) as shown in Figure 2 and three invert elevation differences between the main channel and lateral turnout invert (0, 5 and 10 cm) at the entrance of the turnout were considered. The Manning roughness coefficient values were selected based on available and feasible values for real conditions, so that 0.009 is equivalent to galvanized sheet roughness and selected for the baseline tests. 0.011 is for concrete with neat surface, 0.017 and 0.023 are for unfinished and gunite concrete respectively. 0.030 and 0.032 values are for concrete on irregular excavated rock (Chow 1959). The roughness coefficients were created by gluing sediment particles on a thin galvanized sheet which was installed at the upstream side of the lateral turnout. The values of roughness coefficients were calculated based on the Manning-Strickler formula. For this purpose, some uniformly graded sediment samples were prepared and the Manning roughness coefficient of each sample was determined with respect to the median size (D50) value pasted into the Manning-Strickler formula. Some KMnO4 was sifted in the main channel upstream to visualize and measure the dimensions of the separation zone. Consequently, when KMnO4 approached the lateral turnout a photo of the separation zone was taken from a top view. All the experiments were recorded and several photos were taken during the experiment after stablishment of steady flow conditions. The photos were then imported to AutoCAD to measure the separation zone dimensions. Because all the shooting was done with a high-definition camera and it was possible to zoom in, the results are very accurate.Figure 2VIEW LARGEDOWNLOAD SLIDE
Roughness plates.
The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in transverse direction (perpendicular to the flow direction).
The water level was also measured by depth gauges with a accuracy of 0.1 mm, and velocity in one direction with a single-dimensional KENEK LP 1100 with an accuracy of ±0.02 m/s (0–1 m/s), ± 0.04 m/s (1–2 m/s), ± 0.08 m/s (2–4 m/s), ±0.10 m/s (4–5 m/s).
Numerical simulation
ListenA FLOW-3D numerical model was utilized as a solver of the Navier-Stokes equation to simulate the three-dimensional flow field at the entrance of the turnout. The governing equations included continuity momentum equations. The continuity equation, regardless of the density of the fluid in the form of Cartesian coordinates x, y, and z, is as follows:
(1)where u, v, and w represent the velocity components in the x, y, and z directions, respectively; Ax, Ay, and Az are the surface flow fractions in the x, y, and z directions, respectively; VF denotes flow volume fraction; r is the density of the fluid; t is time; and Rsor refers to the source of the mass. Equations (2)–(4) show momentum equations in x, y and z dimensions respectively :
(2)
(3)
(4)where Gx, Gy, and Gz are the accelerations caused by gravity in the x, y, and z directions, respectively; and fx, fy, and fz are the accelerations caused by viscosity in the x, y, and z directions, respectively.
The turbulence models used in this study were the renormalized group (RNG) models. Evaluation of the concordance of the mentioned models with experimental studies showed that the RNG model provides more accurate results.
Two blocks of mesh were used to simulate the main channels and lateral turnout. The meshes were denser in the vicinity of the entrance of the turnout in order to increase the accuracy of computations. Boundary conditions for the main mesh block included inflow for the channel entrance (volumetric flow rate), outflow for the channel exit, ‘wall’ for the bed and the right boundary and ‘symmetry’ for the top (free surface) and left boundaries (turnout). The side wall roughness coefficient was given to the software as the Manning number in surface roughness of any component. Considering the restrictions in the available processor, a main mesh block with appropriate mesh size was defined to simulate the main flow field in the channel, while the nested mesh-block technique was utilized to create a very dense solution field near the roughness plate in order to provide accurate results around the plates and near the entrance of the lateral turnout. This technique reduced the number of required mesh elements by up to 60% in comparison with the method in which the mesh size of the main solution field was decreased to the required extent.
The numerical outputs are verified against experimental data. The hydraulic characteristics of the experiment are shown in Table 1.Table 1
During the experiments, the dimensions of the separation zone were recorded with an HD camera. Some photos were imported to AutoCad software. Then, the separation zones dimensions were measured and compared in different scenarios.
At the beginning, the flow pattern in the separation zone for four different hydraulic conditions was studied for seven different Manning roughness coefficients from 0.009 to 0.032. To compare the obtained results, roughness of 0.009 was considered as the base line. The percentage of reduction in separation zone area in different roughness coefficients is shown in Figure 3. According to this figure, by increasing the roughness of the turnout side wall, the separation zone area ratio reduces (ratio of separation zone area to turnout area). In other words, in any desired Froud number, the highest dimensions of the separation zone area are related to the lowest roughness coefficients. In Figure 3, ‘A’ is the area of the separation zone and ‘Ai’ represents the total area of the turnout.Figure 3VIEW LARGEDOWNLOAD SLIDE
Effect of roughness on separation zone dimensions.Figure 4VIEW LARGEDOWNLOAD SLIDE
Effect of roughness on separation zone dimensions.
It should be mentioned that the separation zone dimensions change with depth, so that the area is larger at the surface than near the bed. This study measured the dimensions of this area at the surface. Figure 4 show exactly where the roughness elements were located.Figure 5VIEW LARGEDOWNLOAD SLIDE
Comparison of separation zone for n=0.023 and n=0.032.
Figure 5 shows images of the separation zone at n=0.023 and n=0.032 as examples, and show that the separation area at n=0.032 is smaller than that of n=0.023.
The difference between the effect of the two 0.032 and 0.030 roughnesses is minor. In other words, the dimensions of the separation zone decreased by increasing roughness up to 0.030 and then remained with negligable changes.
In the next step, the effect of intake invert relative to the main stream (drop) on the dimensions of the separation zone was investigated. To do this, three different invert levels were considered: (1) without drop; (2) a 5 cm drop between the main canal and intake canal; and (3) a 10 cm drop between the main canal and intake canal. The without drop mode was considered as the control state. Figure 6 shows the effect of drop implementation on separation zone dimensions. Tables 2 and 3 show the reduced percentage of separation zone areas in 5 and 10 cm drop compared to no drop conditions as the base line. It was found that the best results were obtained when a 10 cm drop was implemented.Table 2
Decrease percentage of separation zone area in 5 cm drop
Fr
n=0.011
n=0.017
n=0.023
n=0.028
n=0.030
n=0.032
0.08
10.56
11.06
25.27
33.03
35.57
36.5
0.121
7.66
11.14
11.88
15.93
34.59
36.25
0.353
1.38
2.63
8.17
14.39
31.20
31.29
0.362
3
11.54
19.56
25.73
37.89
38.31
Table 3
Decrease percentage of separation zone area in 10 cm drop
Effect of drop implementation on separation zone dimensions.
The combined effect of drop and roughness is shown in Figure 7. According to this figure, by installing a drop structure at the entrance of the intake, the dimensions of the separation zone scales down in any desired roughness coefficient. Results indicated that by increasing the roughness coefficient or drop implementation individually, the separation zone area decreases up to 38 and 25% respectively. However, employing both techniques simultaneously can reduce the separation zone area up to 63% (Table 4). The reason for the reduction of the dimensions of the separation zone area by drop implementation can be attributed to the increase of discharge ratio. This reduces the dimensions of the separation zone area.Table 4
Reduction in percentage of combined effect of roughness and 10 cm drop
Qi
n=0.011
n=0.017
n=0.023
n=0.028
n=0.030
n=0.032
16
32.3
35.07
37.2
45.7
58.01
59.1
18
44.5
34.15
36.18
48.13
54.2
56.18
21
43.18
32.33
42.30
37.79
57.16
63.2
23
40.56
34.5
34.09
46.25
50.12
57.2
Figure 7VIEW LARGEDOWNLOAD SLIDE
Combined effect of roughness and drop on separation zone dimensions.
This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Some other researchers reported that increasing the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007; Ramamurthy et al. 2007). However, these researchers employed other methods to enhance the discharge ratio. Drop implementation is simple and applicable in practice, since there is normally an elevation difference between the main and lateral canal in irrigation networks to ensure gravity flow occurance.
Table 4 depicts the decrease in percentage of the separation zone compared to base line conditions in different arrangements of the combined tests.Figure 8VIEW LARGEDOWNLOAD SLIDE
Velocity profiles for various roughness coefficients along turnout width.
A comparison between the proposed methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. Figure 8 shows the comparison of the results. The comparison shows that the new techniques can be highly influential and still practical. In this research, with no change in structural geometry (enhancement of roughness coefficient) or minor changes with respect to drop implementation, the dimensions of the separation zone are decreased noticeably. The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in a transverse direction (perpendicular to the flow direction). The results are shown in Figure 9.Figure 9VIEW LARGEDOWNLOAD SLIDE
Effect of roughness on separation zone dimensions in numerical study.
This study examined the flow patterns around the entrance of a diversion channel due to various wall roughnesses in the diversion channel. Results indicated that increasing the discharge ratio in the main channel and diversion channel reduces the area of the separation zone in the diversion channel.Figure 10VIEW LARGEDOWNLOAD SLIDE
Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).A laboratory and numerical error rate of 0.2605 was calculated from the following formula,
where Uexp is the experimental result, Unum is the numerical result, and N is the number of data.
Figure 9 shows the effect of roughness on separation zone dimensions in numerical study. Figure 10 compares the vortex area (software output) for three roughnesses, 0.009, 0.023 and 0.032 and Figure 11 shows the flow lines (tecplot output) that indicate the effect of roughness on flow in the separation zone. Numerical analysis shows that by increasing the roughness coefficient, the dimensions of the separation zone area decrease, as shown in Figure 10 where the separation zone area at n=0.032 is less than the separation zone area at n=0.009.Figure 11VIEW LARGEDOWNLOAD SLIDE
Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.Figure 12VIEW LARGEDOWNLOAD SLIDE
Velocity vector for flow condition Q1/422 l/s, near surface.
The velocities intensified moving midway toward the turnout showing that the effective area is scaled down. The velocity values were almost equal to zero near the side walls as expected. As shown in Figure 12 the approach vortex area velocity decreases. Experimental and numerical measured velocity at x=0.15 m of the diversion channel compared in Figure 13 shows that away from the separation zone area, the velocity increases. All longitudinal velocity contours near the vortex area are distinctly different between different roughnesses. The separation zone is larger at less roughness both in length and width.Figure 13VIEW LARGEDOWNLOAD SLIDE
This study introduces practical and feasible methods for enhancing turnout efficiency by reducing the separation zone dimensions. Increasing the roughness coefficient and implementation of inlet drop were considered as remedies for reduction of separation zone dimensions. A data set has been compiled that fully describes the complex, 3D flow conditions present in a 90 degree turnout channel for selected flow conditions. The aim of this numerical model was to compare the results of a laboratory model in the area of the separation zone and velocity. Results showed that enhancing roughness coefficient reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%. Further research is proposed to investigate the effect of roughness and drop implementation on sedimentation pattern at lateral turnouts. The dimensions of the separation zone decreases with the increase of the non-dimensional parameter, due to the reduction ratio of turnout discharge increasing in all the experiments.
This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Other researchers have reported that intensifying the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007; Ramamurthy et al. 2007). However, they employed other methods to enhance the discharge ratio. Employing both techniques simultaneously can decrease the separation zone dimensions up to 63%. A comparison between the new methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. The comparison shows that the new techniques can be highly influential and still practical. The numerical and laboratory models are in good agreement and show that the method used in this study has been effective in reducing the separation area. This method is simple, economical and can prevent sediment deposition in the intake canal. Results show that CFD prediction of the fluid through the separation zone at the canal intake can be predicted reasonably well and the RNG model offers the best results in terms of predictability.
Chendi Zhang1 , Yuncheng Xu1,2, Marwan A Hassan3 , Mengzhen Xu1 , Pukang He1 1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China. 2 College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100081, China. 5 3Department of Geography, University of British Columbia, 1984 West Mall, Vancouver BC, V6T1Z2, Canada. Correspondence to: Chendi Zhang (chendinorthwest@163.com) and Mengzhen Xu (mzxu@mail.tsinghua.edu.cn)
Abstract
스텝 풀 시스템은 계류의 일반적인 기반이며 전 세계의 하천 복원 프로젝트에 활용되었습니다. 스텝 풀 장치는 스텝 풀 기능의 형태학적 진화 및 안정성과 밀접하게 상호 작용하는 것으로 보고된 매우 균일하지 않은 수력 특성을 나타냅니다.
그러나 스텝 풀 형태에 대한 3차원 수리학의 자세한 정보는 측정의 어려움으로 인해 부족했습니다. 이러한 지식 격차를 메우기 위해 SfM(Structure from Motion) 및 CFD(Computational Fluid Dynamics) 기술을 기반으로 하이브리드 모델을 구축했습니다. 이 모델은 CFD 시뮬레이션을 위한 입력으로 6가지 유속의 자연석으로 만든 인공 스텝 풀 장치가 있는 침대 표면의 3D 재구성을 사용했습니다.
하이브리드 모델은 스텝 풀 장치에 대한 3D 흐름 구조의 고해상도 시각화를 제공하는 데 성공했습니다. 결과는 계단 아래의 흐름 영역의 분할, 즉 수면에서의 통합 점프, 침대 근처의 줄무늬 후류 및 그 사이의 고속 제트를 보여줍니다.
수영장에서 난류 에너지의 매우 불균일한 분포가 밝혀졌으며 비슷한 용량을 가진 두 개의 에너지 소산기가 수영장에 공존하는 것으로 나타났습니다. 흐름 증가에 따른 풀 세굴 개발은 점프 및 후류 와류의 확장으로 이어지지만 이러한 증가는 스텝 풀 실패에 대한 임계 조건에 가까운 높은 흐름에서 점프에 대해 멈춥니다.
음의 경사면에서 발달된 곡물 20 클러스터와 같은 미세 지반은 국부 수력학에 상당한 영향을 주지만 이러한 영향은 수영장 바닥에서 억제됩니다. 스텝 스톤의 항력은 가장 높은 흐름이 사용되기 전에 배출과 함께 증가하는 반면 양력은 더 큰 크기와 더 넓은 범위를 갖습니다. 우리의 결과는 계단 풀 형태의 복잡한 흐름 특성을 조사할 때 물리적 및 수치적 모델링을 결합한 하이브리드 모델 접근 방식의 가능성과 큰 잠재력을 강조합니다.
Step-pool systems are common bedforms in mountain streams and have been utilized in river restoration projects around the world. Step-pool units exhibit highly non-uniform hydraulic characteristics which have been reported to closely 10 interact with the morphological evolution and stability of step-pool features. However, detailed information of the threedimensional hydraulics for step-pool morphology has been scarce due to the difficulty of measurement. To fill in this knowledge gap, we established a hybrid model based on the technologies of Structure from Motion (SfM) and computational fluid dynamics (CFD). The model used 3D reconstructions of bed surfaces with an artificial step-pool unit built by natural stones at six flow rates as inputs for CFD simulations. The hybrid model succeeded in providing high-resolution visualization 15 of 3D flow structures for the step-pool unit. The results illustrate the segmentation of flow regimes below the step, i.e., the integral jump at the water surface, streaky wake vortexes near the bed, and high-speed jets in between. The highly non-uniform distribution of turbulence energy in the pool has been revealed and two energy dissipaters with comparable capacity are found to co-exist in the pool. Pool scour development under flow increase leads to the expansion of the jump and wake vortexes but this increase stops for the jump at high flows close to the critical condition for step-pool failure. The micro-bedforms as grain 20 clusters developed on the negative slope affect the local hydraulics significantly but this influence is suppressed at pool bottom. The drag forces on the step stones increase with discharge before the highest flow is used while the lift force has a larger magnitude and wider varying range. Our results highlight the feasibility and great potential of the hybrid model approach combining physical and numerical modeling in investigating the complex flow characteristics of step-pool morphology.
Figure 1: Workflow of the hybrid modeling. SfM-MVS refers to the technology of Structure from Motion with Multi View Stereo.
DSM is short for digital surface model. RNG-VOF is short for Renormalized Group (RNG) k-ε turbulence model coupled with
Volume of Fluid method.Figure 2: Flume experiment settings in Zhang et al., (2020): (a) the artificially built-up step-pool model using natural stones, with
stone number labelled; (b) the unsteady hydrograph of the run of CIFR (continually-increasing-flow-rate) T2 used in this study.Figure 3: Setup of the CFD model: (a) three-dimensional digital surface model (DSM) of the step-pool unit by structure from motion
with multi view stereo (SfM-MVS) method as the input to the 3D computational fluid dynamics (CFD) modeling; (b) extruded bed
160 surface model connected to the extra downstream component (in purple blue) and rectangular columns to fill leaks (in green), with
the boundary conditions shown on mesh planes; (c) recognized geometry with mesh grids of two mesh blocks shown where MS is
short for mesh size; (d) sampling volumes to capture the flow forces acting on each step stone at X, Y, and Z directions; and (e) an
example for the simulated 3D flow over the step-pool unit colored by velocity magnitude at the discharge of 49.9 L/s. The
abbreviations for boundary conditions in (b) are: V for specified velocity; C for continuative; P for specific pressure; and W for wall
165 condition. The contraction section in Figure (e) refers to the edge between the jet and jump at water surface.Figure 4: Distribution of time-averaged velocity magnitude (VM_mean) and vectors in three longitudinal sections. The section at Y = 0 cm goes across the keystone while the other two (Y = -18 and 13.5 cm) are located at the step stones beside the keystone with lower top elevations. Q refers to the discharge at the inlet of the computational domain. The spacing for X, Y, and Z axes are all 10 cm in the plots.Figure 5: Distribution of time-averaged flow velocity at five cross sections which are set according to the reference section (x0). The
reference cross section x0 is located at the downstream end of the keystone (KS). The five sections are located at 18 cm and 6 cm
upstream of the reference section (x0-18 and x0-6), and 2 cm, 15 cm and 40 cm downstream of the reference section (x0+2, x0+15,
x0+40). The spacing for X, Y, and Z axes are all 10 cm in the plots.Figure 6: Distribution of the time-averaged turbulence kinetic energy (TKE) at the five cross sections same with Figure 3.Figure 7: Boxplots for the distributions of the mass-averaged flow kinetic energy (KE, panels a-f), turbulence kinetic energy (TKE,
panels g-l), and turbulent dissipation (εT, panels m-r) in the pool for all the six tested discharges (the plots at the same discharge are
in the same row). The mass-averaged values were calculated every 2 cm in the streamwise direction. The flow direction is from left
to right in all the plots. The general locations of the contraction section for all the flow rates are marked by the dashed lines, except
for Q = 5 L/s when the jump is located too close to the step. The longitudinal distance taken up by negative slope in the pool for the
inspected range is shown by shaded area in each plot.Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity.Figure 9: Time-averaged dynamic pressure (DP_mean) on the bed surface in the step-pool model under the two highest discharges,
with the step numbers marked. The negative values in the plots result from the setting of standard atmospheric pressure = 0 Pa,
whose absolute value is 1.013×105 Pa.Figure 10: Time-averaged shear stress (SS_mean) on bed surface in the step-pool model, with the step numbers marked. The
standard atmospheric pressure is set as 0 Pa.Figure 11: Variation of fluid force components and magnitude of resultant flow force acting on step stones with flow rate. The stone
4 is the keystone. Stone numbers are consistent with those in Fig. 9-10. The upper limit of the sampling volumes for flow force
calculation is higher than water surface while the lower limit is set at 3 cm lower than the keystone crest.Figure 12: Variation of drag (CD) and lift (CL) coefficient of the step stones along with flow rate. Stone numbers are consistent with
those in Fig. 8-9. KS is short for keystone. The negative values of CD correspond to the drag forces towards the upstream while the
negative values of CL correspond to lift forces pointing downwards.Figure 13: Longitudinal distributions of section-averaged and -integral turbulent kinetic energy (TKE) for the jump and wake
vortexes at the largest three discharges. The flow direction is from left to right in all the plots. The general locations of the contraction
sections under the three flow rates are marked by dashed lines in figures (d) to (f).Figure A1: Water surface profiles of the simulations with different mesh sizes at the discharge of 43.6 L/s at the longitudinal sections
at: (a) Y = 24.5 cm (left boundary); (b) Y = 0.3 cm (middle section); (c) Y = -24.5 cm (right boundary). MS is short for mesh size.
The flow direction is from left to right in each plot.Figure A2: Contours of velocity magnitude in the longitudinal section at Y = 0 cm at different mesh sizes (MSs) under the flow
condition with the discharge of 43.6 L/s: (a) 0.50 cm; (b) 0.375 cm; (c) 0.30 cm; (d) 0.27 cm; (e) 0.25 cm; (f) 0.24 cm. The flow direction
is from left to right.Figure A3: Measurements of water surfaces (orange lines) used in model verification: (a) water surface profiles from both sides of
the flume; (b) upstream edge of the jump regime from top view. KS refers to keystone in figure (b).Figure A15. Figure (a) shows the locations of the cross sections and target coarse grains at Q = 49.9 L/s. Figures (b) to (e) show the
distribution of velocity magnitude (VM_mean) in the four chosen cross sections: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5.
G1 to G6 refer to 6 protruding grains in the micro-bedforms in the pool.Figure A16. The distribution of turbulent kinetic energy (TKE) in the same cross sections as in figure S15: (a) x0+8.0; (b) x0+14.0;
(c) x0+21.5; (d) x0+42.5.
References
720 Aberle, J. and Smart, G. M: The influence of roughness structure on flow resistance on steep slopes, J. Hydraul. Res., 41(3), 259-269, https://doi.org/10.1080/00221680309499971, 2003. Abrahams, A. D., Li, G., and Atkinson, J. F.: Step-pool streams: Adjustment to maximum flow resistance. Water Resour. Res., 31(10), 2593-2602, https://doi.org/10.1029/95WR01957, 1995. Adrian, R. J.: Twenty years of particle image velocimetry. Exp. Fluids, 39(2), 159-169, https://doi.org/10.1007/s00348-005- 725 0991-7 2005. Chanson, H.: Hydraulic design of stepped spillways and downstream energy dissipators. Dam Eng., 11(4), 205-242, 2001. Chartrand, S. M., Jellinek, M., Whiting, P. J., and Stamm, J.: Geometric scaling of step-pools in mountain streams: Observations and implications, Geomorphology, 129(1-2), 141-151, https://doi.org/10.1016/j.geomorph.2011.01.020, 2011. 730 Chen, Y., DiBiase, R. A., McCarroll, N., and Liu, X.: Quantifying flow resistance in mountain streams using computational fluid dynamics modeling over structure‐from‐motion photogrammetry‐derived microtopography, Earth Surf. Proc. Land., 44(10), 1973-1987, https://doi.org/10.1002/esp.4624, 2019. Church, M. and Zimmermann, A.: Form and stability of step‐pool channels: Research progress, Water Resour. Res., 43(3), W03415, https://doi.org/10.1029/2006WR005037, 2007. 735 Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.: Meshlab: an open-source mesh processing tool, in: Eurographics Italian chapter conference, Salerno, Italy, 2-4 July 2008, 129-136, 2008.
Comiti, F., Andreoli, A., and Lenzi, M. A.: Morphological effects of local scouring in step-pool streams, Earth Surf. Proc. Land., 30(12), 1567-1581, https://doi.org/10.1002/esp.1217, 2005. Comiti, F., Cadol, D., and Wohl, E.: Flow regimes, bed morphology, and flow resistance in self‐formed step-pool 740 channels, Water Resour. Res., 45(4), 546-550, https://doi.org/10.1029/2008WR007259, 2009. Dudunake, T., Tonina, D., Reeder, W. J., and Monsalve, A.: Local and reach‐scale hyporheic flow response from boulder ‐ induced geomorphic changes, Water Resour. Res., 56, e2020WR027719, https://doi.org/10.1029/2020WR027719, 2020. Flow Science.: Flow-3D Version 11.2 User Manual, Flow Science, Inc., Los Alamos, 2016. Gibson, S., Heath, R., Abraham, D., and Schoellhamer, D.: Visualization and analysis of temporal trends of sand infiltration 745 into a gravel bed, Water Resour. Res., 47(12), W12601, https://doi.org/10.1029/2011WR010486, 2011. Hassan, M. A., Tonina, D., Beckie, R. D., and Kinnear, M.: The effects of discharge and slope on hyporheic flow in step‐pool morphologies, Hydrol. Process., 29(3), 419-433, https://doi.org/10.1002/hyp.10155, 2015. Hirt, C. W. and Nichols, B. D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 201-225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981. 750 Javernick L., Brasington J., and Caruso B.: Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry, Geomorphology, 213(4), 166-182, https://doi.org/10.1016/j.geomorph.2014.01.006, 2014. Lai, Y. G., Smith, D. L., Bandrowski, D. J., Xu, Y., Woodley, C. M., and Schnell, K.: Development of a CFD model and procedure for flows through in-stream structures, J. Appl. Water Eng. Res., 1-15, https://doi.org/10.1080/23249676.2021.1964388, 2021. 755 Lenzi, M. A.: Step-pool evolution in the Rio Cordon, northeastern Italy, Earth Surf. Proc. Land., 26(9), 991-1008, https://doi.org/10.1002/esp.239, 2001. Lenzi, M. A.: Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern Italy, Geomorphology, 45(3-4), 243-260, https://doi.org/10.1016/S0169-555X(01)00157-X, 2002. Lenzi, M. A., Marion, A., and Comiti, F.: Local scouring at grade‐control structures in alluvial mountain rivers, Water Resour. 760 Res., 39(7), 1176, https://doi:10.1029/2002WR001815, 2003. Li, W., Wang Z., Li, Z., Zhang, C., and Lv, L.: Study on hydraulic characteristics of step-pool system, Adv. Water Sci., 25(3), 374-382, https://doi.org/10.14042/j.cnki.32.1309.2014.03.012, 2014. (In Chinese with English abstract) Maas, H. G., Gruen, A., and Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids, 15(2), 133-146. https://doi.org/10.1007/BF00223406, 1993.
765 Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bul., 109(5), 596-611, https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2, 1997. Morgan J. A., Brogan D. J., and Nelson P. A.: Application of structure-from-motion photogrammetry in laboratory flumes, Geomorphology, 276(1), 125-143, https://doi.org/10.1016/j.geomorph.2016.10.021, 2017. Recking, A., Leduc, P., Liébault, F., and Church, M.: A field investigation of the influence of sediment supply on step-pool 770 morphology and stability. Geomorphology, 139, 53-66, https://doi.org/10.1016/j.geomorph.2011.09.024, 2012. Roth, M. S., Jähnel, C., Stamm, J., and Schneider, L. K.: Turbulent eddy identification of a meander and vertical-slot fishways in numerical models applying the IPOS-framework, J. Ecohydraulics, 1-20, https://doi.org/10.1080/24705357.2020.1869916, 2020. Saletti, M. and Hassan, M. A.: Width variations control the development of grain structuring in steep step‐pool dominated 775 streams: insight from flume experiments, Earth Surf. Proc. Land., 45(6), 1430-1440, https://doi.org/10.1002/esp.4815, 2020. Smith, D. P., Kortman, S. R., Caudillo, A. M., Kwan‐Davis, R. L., Wandke, J. J., Klein, J. W., Gennaro, M. C. S., Bogdan, M. A., and Vannerus, P. A.: Controls on large boulder mobility in an ‘auto-naturalized’ constructed step-pool river: San Clemente Reroute and Dam Removal Project, Carmel River, California, USA, Earth Surf. Proc. Land., 45(9), 1990-2003, 780 https://doi.org/10.1002/esp.4860, 2020. Thappeta, S. K., Bhallamudi, S. M., Fiener, P., and Narasimhan, B.: Resistance in Steep Open Channels due to Randomly Distributed Macroroughness Elements at Large Froude Numbers, J. Hydraul. Eng., 22(12), 04017052, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001587, 2017. Thappeta, S. K., Bhallamudi, S. M., Chandra, V., Fiener, P., and Baki, A. B. M.: Energy loss in steep open channels with step785 pools, Water, 13(1), 72, https://doi.org/10.3390/w13010072, 2021. Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.: The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel, Earth Surf. Proc. Land., 34(12), 1661-1673, https://doi.org/10.1002/esp.1855, 2009. Vallé, B. L. and Pasternack, G. B.: Air concentrations of submerged and unsubmerged hydraulic jumps in a bedrock step‐pool 790 channel, J. Geophys. Res.-Earth, 111(F3), F03016. https://doi:10.1029/2004JF000140, 2006. Waldon, M. G.: Estimation of average stream velocity, J. Hydraul. Eng., 130(11), 1119-1122. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1119), 2004. Wang, Z., Melching, C., Duan, X., and Yu, G.: Ecological and hydraulic studies of step-pool systems, J. Hydraul. Eng., 135(9), 705-717, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:9(705), 2009
795 Wang, Z., Qi, L., and Wang, X.: A prototype experiment of debris flow control with energy dissipation structures, Nat. Hazards, 60(3), 971-989, https://doi.org/10.1007/s11069-011-9878-5, 2012. Weichert, R. B.: Bed Morphology and Stability in Steep Open Channels, Ph.D. Dissertation, No. 16316. ETH Zurich, Switzerland, 247pp., 2005. Wilcox, A. C., Wohl, E. E., Comiti, F., and Mao, L.: Hydraulics, morphology, and energy dissipation in an alpine step‐pool 800 channel, Water Resour. Res., 47(7), W07514, https://doi.org/10.1029/2010WR010192, 2011. Wohl, E. E. and Thompson, D. M.: Velocity characteristics along a small step–pool channel. Earth Surf. Proc. Land., 25(4), 353-367, https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5, 2000. Wu, S. and Rajaratnam, N.: Impinging jet and surface flow regimes at drop. J. Hydraul. Res., 36(1), 69-74, https://doi.org/10.1080/00221689809498378, 1998. 805 Xu, Y. and Liu, X.: 3D computational modeling of stream flow resistance due to large woody debris, in: Proceedings of the 8th International Conference on Fluvial Hydraulics, St. Louis, USA, 11-14, Jul, 2346-2353, 2016. Xu, Y. and Liu, X.: Effects of different in-stream structure representations in computational fluid dynamics models—Taking engineered log jams (ELJ) as an example, Water, 9(2), 110, https://doi.org/10.3390/w9020110, 2017. Zeng, Y. X., Ismail, H., and Liu, X.: Flow Decomposition Method Based on Computational Fluid Dynamics for Rock Weir 810 Head-Discharge Relationship. J. Irrig. Drain. Eng., 147(8), 04021030, https://doi.org/10.1061/(ASCE)IR.1943- 4774.0001584, 2021. Zhang, C., Wang, Z., and Li, Z.: A physically-based model of individual step-pool stability in mountain streams, in: Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 801-809, 2016. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., and Wang, Z.: Experimental study on the stability and failure of individual 815 step-pool, Geomorphology, 311, 51-62, https://doi.org/10.1016/j.geomorph.2018.03.023, 2018. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., Wang, Z., and Ma, Z.: Experiment on morphological and hydraulic adjustments of step‐pool unit to flow increase, Earth Surf. Proc. Land., 45(2), 280-294, https://doi.org/10.1002/esp.4722, 2020. Zimmermann A., E.: Flow resistance in steep streams: An experimental study, Water Resour. Res., 46, W09536, 820 https://doi.org/10.1029/2009WR007913, 2010. Zimmermann A. E., Salleti M., Zhang C., Hassan M. A.: Step-pool Channel Features, in: Treatise on Geomorphology (2nd Edition), vol. 9, Fluvial Geomorphology, edited by: Shroder, J. (Editor in Chief), Wohl, E. (Ed.), Elsevier, Amsterdam, Netherlands, https://doi.org/10.1016/B978-0-12-818234-5.00004-3, 2020.
하천횡단구조물이 하천설계기준(2009)대로 설계되었음에도 불구하고, 하류부에서 물받이공 및 바닥보호공의 피해가 발생하여, 구조물 본체에 대한 안전성이 현저하 게 낮아지고 있는 실정이다. 하천설계기준이 상류부의 수리특성을 반영하였다고 하나 하류부의 수리특성인 유속의 변동 성분 또는 압력의 변동성분까지 고려하고 있지는 않다. 현재 많은 선행연구에서 이러한 난류적 특성이 구조물에 미치는 영 향에 대해 제시하고 있는 실정이며, 국내 하천에서의 피해 또한 이와 관련이 있다 고 판단된다. 이에 본 연구에서는 난류성분 특히 압력의 변동성분이 물받이공과 바닥보호공에 미치는 영향을 정량적으로 분석하여, 하천 횡단구조물의 치수 안전 성 증대에 기여하고자 한다. 물받이공과 바닥보호공에 미치는 압력의 변동성분 (pressure fluctuation) 영향을 분석하기 위해 크게 3가지로 연구내용을 분류하였 다. 첫 번째는 압력의 변동으로 순간적인 음압구배(adversed pressure gradient) 가 발생할 경우 바닥보호공의 사석 및 블록이 이탈하는 것이다. 이를 확인하기 위 해 정밀한 압력 측정장치를 통해 압력변이를 측정하여, 사석의 이탈 가능성을 검 토할 것이며, 최종적으로 이탈에 대한 한계조건을 도출할 것이다. 두 번째는 압력 의 변동이 물받이공의 진동을 유발시켜 이를 지지하고 있는 지반에 다짐효과를 가 져와 물받이공과 지반사이에 공극이 발생하는 경우이다. 이러한 공극으로 물받이 공은 자중 및 물의 압력을 받게 되어, 결국 휨에 의한 파괴가 발생할 가능성이 있 게 된다. 본 연구에서는 실험을 통하여 압력의 변동과 물받이공의 진동을 동시에 측정하여, 진동이 발생하지 않을 최소 두께를 제시할 것이다. 세 번째는 압력변이 로 인한 물받이공의 진동이 피로파괴로 연결되는 경우이다. 이 현상 또한 수리실 험을 통해 압력변이-피로파괴의 관계를 정량적으로 분석하여, 한계 조건을 제시할 것이다. 본 연구는 국내 보 및 낙차공에서 발생하는 다양한 Jet의 특성을 수리실 험으로 재현해야 하며, 이를 위해 평면 Jet 분사기(plane Jet injector)를 고안/ 제작하여, 효율적인 수리실험을 수행할 것이다. 또한 3차원 수치해석을 통해 실제 스케일에 적용함으로써 연구결과의 활용도 및 적용성을 높이고자 한다.
Keywords
압력변이, 물받이공, 바닥보호공, 난류, 진동
그림 1 하천횡단구조물 하류부 횡단구조물 파괴그림 2. 시간에 따른 압력의 변동 양상 및 정의 그림 3. 하천횡단구조물 하류부 도수현상시 발생하는 압력변이 분포도, Fr=8.0
상태이며, 바닥(slab)에 양압과 음압이 지속적으로 작용한다. (Fiorotto &
Rinaldo, 2010) 그림 4. 파괴 개념그림 6. PIV 측정 원리(www.photonics.com)그림 7. LED회로판 및 BIV기법 기본개념그림 8. BIV측정기법을 적용한 순간이미지 (Lin et al., 2012)그림 9. 감세공의 분류그림 17 수리실헐 수로시설: (a) 전체수로전경, (b) Weir 보를 포함한 측면도, (c) 도수조건
실험전경그림 18 수리실험 개요도그림 127 난류모형별 압력 Data (측정위치는 그림 125 참조)그림 128 RNG 모형을 이용한 수치모의 결과그림 129 LES 모형을 이용한 수치모의 결과그림 130 압력 Data의 필터링그림 134 Case 1의 흐름특성 분포도 및 그래프
한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발
한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가 기법에 대한 원천기술개발
국토기술연구센터 (1998) 하상유지공의 구조설계 지침.
감사원 (2013) 감사원 결과보고서- 4대강살리기 사업 주요시설물 품질 밑 수질관리 실태. 국토해양부 (2009) 전국 하천횡단 구조물 설치현황 및 어도 실태조사 보고서.
국토해양부 (2012) 보도자료-준공대비 점검결과, 4대강 보 안전 재확인. 국토해양부 (2012) 국가 및 지방하천 종합정비 마스터플랜.
국토교통성 (2008) 하천사방기술기준.
농림부 (1996). 농업생산기반정비사업계획 설계기
류권규(역자) (2009). 난류의 수치모의(원저자 : 梶島岳夫, 1999). 류권규, 마리안 머스테, 로버트 에테마, 윤병만 (2006). “난류 중 부유사의 속도 지체 측정.” 한국수자원학회논문집, 제39권, 제2호, pp.99-108. 배재현, 이경훈, 신종근, 양용수, 이주희 (2011). “입자영상유속계를 이용한 은어의 유영능력 측정.” 제47권, 제4호, pp.411-418. 우효섭 (2001). 하천수리학. 청문각. 한국수자원학회 (2009). 하천설계기준해설. 한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발 한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가 기법에 대한 원천기술개발
Adrian, R. J., Meinhart, C. D., & Tomkins, C. D. (2000). Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 422, 1-54. Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American statistical association, 49(268), 765-769. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609. Barjastehmaleki, S., Fiorotto, V., & Caroni, E. (2016). Spillway stilling basins lining design via Taylor hypothesis. Journal of Hydraulic Engineering, 142(6), 04016010. Beheshti, M. R., Khosrojerdi, A., & Borghei, S. M. (2013). Experimental study of air-water turbulent flow structures on stepped spillways. International Journal of Physical Sciences, 8(25), 1362-1370. Bligh, W. G. (1910). Dams, barrages and weirs on porous foundations. Engineering News, 64(26), 708-710. Bowers, C. E., &Tsai, F. Y. (1969). Fluctuating pressure in spillway stilling basins. Journal of the Hydraulics Division, 95(6), 2071-2080. Brater, E. F., King, H. W., Lindell, J. E., & Wei, C. Y. (1976). Handbook of hydraulics for the solution of hydraulic engineering problems (Vol. 7). New York: McGraw-Hill. Castillo, L. G., Carrillo, J. M., & Sordo-Ward, Á. (2014). Simulation of overflow nappe impingement jets. Journal of Hydroinformatics, 16(4), 922-940
Lin, C., Hsieh, S. C., Lin, I. J., Chang, K. A., & Raikar, R. V. (2012). Flow property and self-similarity in steady hydraulic jumps. Experiments in Fluids, 53(5), 1591-1616
Chanson, H. (1999). The Hydraulics of Open Channel Flow: An Introduction. Physical Modelling of Hydraulics. Chow, V. T. (1959). Open-Channel Hydraulics, McGraw Hill Book Company, Inc., New York. Christensen, B. A. (1984). “Analysis of Partially Filled Circular Storm Sewers.” J. of Hydraulic Engineering, ASCE, Vol. 110, No. 8. El-Ragaby, A., El-Salakawy, E., and Benmokrane, B., “Fatigue Life Evaluation of Concrete Bridge Deck Slabs Reinforced with Glass FRP Composite Bars,” Journal of Composites for Construction, ASCE, Vol. 11, No. 3, 2007, pp. 258-268. (doi: http://dx.doi.org/10.1061/(ASCE) 1090-0268(2007)11:3(258), Fiorotto, V., & Rinaldo, A. (1992). Turbulent pressure fluctuations under hydraulic jumps. Journal of Hydraulic Research, 30(4), 499-520. Flow Science (2015). FLOW-3D User Manual(Release 11.1.0), Los Alamos, New Mexico. González-Betancourt, M. (2016). Uplift force and momenta on a slab subjected to hydraulic jump. Dyna, 83(199), 124-133. Grinstein, L., & Lipsey, S. I. (2001). Encyclopedia of mathematics education. Routledge. Grubbs, F. E., & Beck, G. (1972). Extension of sample sizes and percentage points for significance tests of outlying observations. Technometrics, 14(4), 847-854. Gylltoft K. (1983): Fracture mechanics models for fatigue in concrete structures. Doctoral thesis / Tekniska högskolan i Luleå, 25D, Luleå, 210 pp. Herlina, H. and Jirka, G. H. (2008). “Experiments on gas transfer near the air-water interface in a grid-stirred tank.” Journal of Fluid Mechanics, 594, pp.183-208. IACWD (Interagency Advisory Committee on Water Data). (1982). Guidelines for determining flood flow frequency. Bulletin 17B. JIRKA, G. H. (2008). Experiments on gas transfer at the air–water interface induced by oscillating grid turbulence. Journal of Fluid Mechanics, 594, 183-208. Kadota, A., Suzuki, K., Rummel, A. C., Weitbrecht, V., & Jirka, G. H. (2007). Shallow flow visualization around a single groyne. In Proc. of 7th International Symposium of Particle Image Velocimetry (CD-ROM). Kazemi, F., Khodashenas, S. R., & Sarkardeh, H. (2016). Experimental study of pressure fluctuation in stilling basins. International Journal of Civil Engineering, 14(1), 13-21. Klowak, C., Memon, A., and Mufti, A., “Static and fatigue investigation of second generation steel-free bridge decks,” Cement & Concrete Composites, ScienceDirect, Elsevier, Vol. 28, No.
10, 2006, pp. 890-897. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2006.07.019), Koca, K., Noss, C., Anlanger, C., Brand, A., & Lorke, A. (2017). Performance of the Vectrino Profiler at the sediment–water interface. Journal of Hydraulic Research, 55(4), 573-581. Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari, Giorn., 4, 83-91. Leon, A., & Alnahit, A. (2016). A Remotely Controlled Siphon System for Dynamic Water Storage Management. Lin, C., Hsieh, S., Chang, K. and Raikar, R. (2012). “Flow property and self-similarity in steady hydraulic jumps.” Experiments in Fluid, 53, pp. 1591-1616. Lopardo, R., Fattor, C. A., Casado, J. M. and Lopardo, M. C. (2004). “Aspects of vibration and fatigue of materials related to coherent structures of macroturbulent flows” International Conference on Hydraulic of Dams and River Structures. Lopardo, R. A., & Romagnoli, M. (2009). Pressure and velocity fluctuations in stilling basins. In Advances in Water Resources and Hydraulic Engineering (pp. 2093-2098). Springer, Berlin, Heidelberg. Sanchez, P. A., Ramirez, G. E., Vergara, R., & Minguillo, F. (1973). Performance of Sulfur-Coated Urea Under Intermittently Flooded Rice Culture in Peru 1. Soil Science Society of America Journal, 37(5), 789-792. Matsui, S., Tokai, D., Higashiyama, H., and Mizukoshi, M., “Fatigue Durability of Fiber Reinforced Concrete Decks Under Running Wheel Load,” Proceedings 3rd International Conference on Concrete Under Severe Conditions, Ed. N. Banthia, Vancouver, Canada, 2001, pp. 982-991., Mohammadi, S. F., Galgoul, N. S., Starossek, U., & Videiro, P. M. (2016). An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure. Marine Structures, 49, 97-115. Pothof, I. (2011). Co-current air-water flow in downward sloping pipes. Stichting Deltares Pothof, I. W. M., & Clemens, F. H. L. R. (2011). Experimental study of air–water flow in downward sloping pipes. International journal of multiphase flow, 37(3), 278-292. Ryu, Y., Chang, K. A., & Lim, H. J. (2005). Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Measurement Science and Technology, 16(10), 1945. Sanjou, M., & Nezu, I. (2009). Turbulence structure and coherent motion in meandering compound open-channel flows. Journal of Hydraulic Research, 47(5), 598-610. Sargison, J. E., & Percy, A. (2009). Hydraulics of broad-crested weirs with varying side slopes. Journal of irrigation and drainage engineering, 135(1), 115-118.
Sobani, A. (2014). Pressure fluctuations on the slabs of stilling basins under hydraulic jump. Song, Y., Chang, K, Ryu, Y. and Kwon, S. (2013). “ Experimental study on flow kinematics and impact pressure in liquid sloshing.”, Experiments in Fluid, 54, pp. 1592. Stagonas, D., Lara, J. L., Losada, I. J., Higuera, P., Jaime, F. F., & Muller, G. (2014). Large scale measurements of wave loads and mapping of impact pressure distribution at the underside of wave recurves. In Proceedings of the HYDRALAB IV Joint User Meeting. Toso, J. W., & Bowers, C. E. (1988). Extreme pressures in hydraulic-jump stilling basins. Journal of Hydraulic Engineering, 114(8), 829-843. Youn, S. G. and Chang, S. P., “Behavior of Composite Bridge Decks Subjected to Static and Fatigue Loading,” Structural Journal, ACI Technical paper, Title No. 95-S23, 1998, pp. 249-258. (doi: http://dx.doi.org/10.14359/543),
The effect of triangular prismatic elements on the hydraulic performance of stepped spillways in the skimming flow regime: an experimental study and numerical modeling
계단식 여수로는 댐의 여수로 위로 흐르는 큰 물의 에너지를 분산시키는 비용 효율적인 유압 구조입니다. 이 연구에서는 삼각주형 요소(TPE)가 계단식 배수로의 수력 성능에 미치는 영향에 초점을 맞췄습니다. 9개의 계단식 배수로 모델이 TPE의 다양한 모양과 레이아웃으로 실험 및 수치적으로 조사되었습니다. 적절한 난류 모델을 채택하려면 RNG k – ε 및 표준 k – ε모델을 활용했습니다. 계산 모델 결과는 계단 표면의 속도 분포 및 압력 프로파일을 포함하여 실험 사례의 계단 여수로에 대한 복잡한 흐름을 만족스럽게 시뮬레이션했습니다. 결과는 계단식 여수로에 TPE를 설치하는 것이 캐비테이션 효과를 줄이는 효과적인 방법이 될 수 있음을 나타냅니다. 계단식 여수로에 TPE를 설치하면 에너지 소실률이 최대 54% 증가했습니다. 계단식 배수로의 성능은 TPE가 더 가깝게 배치되었을 때 개선되었습니다. 또한, 실험 데이터를 이용하여 거칠기 계수( f )와 임계 깊이 대 단차 거칠기( yc / k )의 비율 사이의 관계를 높은 정확도로 얻었다.
Figure 1 | General schematics of laboratory flume facilities.Figure 2 | Different layouts of the selected TPE in the experimental study (y1 and y2 are initial, and sequent depths of hydraulic jump).Figure 3 | Geometry and alignment of TPE in the numerical study.Figure 5 | Comparison of turbulence models in Flow-3D.Figure 6 | Sequent water depths versus unit flow rate in standard stepped spillways and stepped spillways with triangular TPEs of types A
and B.Figure 7 | Energy dissipation for the standard stepped spillway and the stepped spillway with TPEs.Figure 8 | Positions of measurement points to investigate the pressure and velocity distributions on the stepped spillwayFigure 9 | Velocity distributions on the vertical surface of step number 4.Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.Figure 11 | Pressure distribution on the vertical surface of the fourth step.Figure 12 | Horizontal profile of the pressure distribution on the floor of step 4.Figure 13 | Roughness coefficient changes with various unit discharges for stepped spillways.Figure 14 | Variations of sequent depth of downstream with various unit discharges for stepped spillways.Figure 15 | Energy dissipation rate changes with various unit discharges for different stepped spillways.Figure 16 | Roughness coefficients (f ) versus the critical depth to the step roughness ratio (yc/K).
REFERENCES
Abbasi, S. & Kamanbedast, A. A. 2012 Investigation of effect of changes in dimension and hydraulic of stepped spillways for maximization energy dissipation. World Applied Sciences Journal 18 (2), 261–267. Arjenaki, M. O. & Sanayei, H. R. Z. 2020 Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach. Modeling Earth Systems and Environment 1–12. Attarian, A., Hosseini, K., Abdi, H. & Hosseini, M. 2014 The effect of the step height on energy dissipation in stepped spillways using numerical simulation. Arabian Journal for Science and Engineering 39 (4), 2587–2594. Azhdary Moghaddam, M. 1997 The Hydraulics of Flow on Stepped Ogee-Profile Spillways. Doctoral Dissertation, University of Ottawa, Canada. Bakhtyar, R. & Barry, D. A. 2009 Optimization of cascade stilling basins using GA and PSO approaches. Journal of Hydroinformatics 11 (2), 119–132. Barani, G. A., Rahnama, M. B. & Sohrabipoor, N. 2005 Investigation of flow energy dissipation over different stepped spillways. American Journal of Applied Sciences 2 (6), 1101–1105. Boes, R. M. & Hager, W. H. 2003 Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679. Chamani, M. R. & Rajaratnam, N. 1994 Jet flow on stepped spillways. Journal of Hydraulic Engineering 120 (2), 254–259. Chanson, H. 1994 Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. Journal of Hydraulic Research 32 (2), 213–218. Felder, S., Guenther, P. & Chanson, H. 2012 Air-Water Flow Properties and Energy Dissipation on Stepped Spillways: A Physical Study of Several Pooled Stepped Configurations. No. CH87/12. School of Civil Engineering, The University of Queensland. Harlow, F. H. & Nakayama, P. I. 1968 Transport of Turbulence Energy Decay Rate. No. LA-3854. Los Alamos Scientific Lab, N. Mex. Hekmatzadeh, A. A., Papari, S. & Amiri, S. M. 2018 Investigation of energy dissipation on various configurations of stepped spillways considering several RANS turbulence models. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (2), 97–109. Henderson, F. M. 1966 Open Channel Flow. MacMillan Company, New York. Kavian Pour, M. R. & Masoumi, H. R. 2008 New approach for estimating of energy dissipation over stepped spillways. International Journal of Civil Engineering 6 (3), 230–237. Li, S., Li, Q. & Yang, J. 2019 CFD modelling of a stepped spillway with various step layouts. Mathematical Problems in Engineering. Li, S., Yang, J. & Li, Q. 2020 Numerical modelling of air-water flows over a stepped spillway with chamfers and cavity blockages. KSCE Journal of Civil Engineering 24 (1), 99–109. Moghadam, M. K., Amini, A. & Moghadam, E. K. 2020 Numerical study of energy dissipation and block barriers in stepped spillways. Journal of Hydroinformatics. Morovati, K., Eghbalzadeh, A. & Javan, M. 2016 Numerical investigation of the configuration of the pools on the flow pattern passing over pooled stepped spillway in skimming flow regime. Acta Mechanic Journal 227, 353–366. Parsaie, A. & Haghiabi, A. H. 2019 The hydraulic investigation of circular crested stepped spillway. Flow Measurement and Instrumentation 70, 101624. Peng, Y., Zhang, X., Yuan, H., Li, X., Xie, C., Yang, S. & Bai, Z. 2019 Energy dissipation in stepped spillways with different horizontal face angles. Energies 12 (23), 4469. Roushangar, K., Foroudi, A. & Saneie, M. 2019 Influential parameters on submerged discharge capacity of converging ogee spillways based on experimental study and machine learning-based modeling. Journal of Hydroinformatics 21 (3), 474–492. Sarkardeh, H., Marosi, M. & Roshan, R. 2015 Stepped spillway optimization through numerical and physical modeling. International Journal of Energy and Environment 6 (6), 597. Shahheydari, H., Nodoshan, E. J., Barati, R. & Moghadam, M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182. Tabari, M. M. R. & Tavakoli, S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science and Engineering 41 (4), 1215–1224. Toombes, L. & Chanson, H. 2000 Air-water flow and gas transfer at aeration cascades: a comparative study of smooth and stepped chutes. In Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zurich, Switzerland, pp. 22–24. Torabi, H., Parsaie, A., Yonesi, H. & Mozafari, E. 2018 Energy dissipation on rough stepped spillways. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (3), 325–330. Wüthrich, D. & Chanson, H. 2014 Hydraulics, air entrainment, and energy dissipation on a Gabion stepped weir. Journal of Hydraulic Engineering 140 (9), 04014046. Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1 (1), 3–51. Yakhot, V. & Smith, L. M. 1992 The renormalization group, the ɛ-expansion and derivation of turbulence models. Journal of Scientific Computing 7 (1), 35–61.
The Palmer-Bowlus flume was developed in 1936, as an adaptation of the Venturi flume for the use in sewer systems, due to the difficulty in modifying the pipe invert. There are commercially available single-body Palmer-Bowlus flume with their respective discharge curves, which increase the cost of sewer projects. Based on the physical model of the Palmer-Bowlus flume (Torres & Vásquez, 2010), the aim of this research was to carry out the three-dimensional numerical modeling of these flow meters, considering four pipe diameters: 160 mm, 200 mm, 250 mm and 400 mm; the selected diameters are the most used ones, according to the information provided by the Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito (EPMAPS). The discharge curves were calibrated and validated using the FLOW-3D program. Meshing had a great influence on the quality results and duration of the numerical simulation; in contrast, the roughness and turbulence models (RNG y k-e) had little influence. The discharge curves obtained in the numerical modeling have good approximation to those obtained in the physical model.
Palmer-Bowlus 수로는 1936년에 하수도 시스템에 사용하기 위해 Venturi 수로를 개조한 것으로 파이프 인버트를 수정하는 것이 어렵기 때문에 개발되었습니다. 각각의 배출 곡선이 있는 시판되는 단일 몸체 Palmer-Bowlus 수로가 있으며, 이는 하수도 프로젝트 비용을 증가시킵니다.
Palmer-Bowlus 수로의 물리적 모델을 기반으로(Torres & Vásquez, 2010), 이 연구의 목적은 160mm, 200mm, 4개의 파이프 직경을 고려하여 이러한 유량계의 3차원 수치 모델링을 수행하는 것이었습니다. 250mm 및 400mm; Empresa Pública Metropolitana de Agua Potable y Sanaeamiento de Quito(EPMAPS)에서 제공한 정보에 따르면 선택한 지름이 가장 많이 사용되는 지름입니다.
방전 곡선은 FLOW-3D 프로그램을 사용하여 보정 및 검증되었습니다. 메싱은 수치 시뮬레이션의 품질 결과와 기간에 큰 영향을 미쳤습니다. 대조적으로, 거칠기 및 난류 모델(RNG y k-e)은 거의 영향을 미치지 않았습니다. 수치 모델링에서 얻은 방전 곡선은 물리적 모델에서 얻은 것과 유사합니다.
Figura 1. Parámetros del medidor Palmer-BowlusFigura 2. Diagrama de flujo de la modelación del medidor Palmer-Bowlus en FLOW-3DFigura 3. Captura de pantalla del modelo numérico Q=22.047(
𝑙
𝑠
),
Ho=20.038 cm
REFERENCIAS
Aulestia, C. (2017). Modelación numérica en tres dimensiones de flujo en las compuertas de la captación del Proyecto Toachi – Pilatón aplicando dinámica de fluidos computacional (CFD). [Tesis Maestría]. Quito, Ecuador: Escuela Politécnica Nacional. Casa, E. (2016). Modelación numérica del flujo rasante en una rápida escalonada aplicando la dinámica de fluidos computacional (CFD) Programa FLOW-3D. [Tesis maestría]. Quito, Ecuador: Escuela Politécnica Nacional. Chow, V. T. (2004). Hidráulica de canales abiertos (Primera ed.). (J. Saldarriaga, Trad.) Santafé de Bogotá, Colombia: McGrawHill. Domínguez, F. (1999). Hidráulica (Sexta Edición ed.). Santiango de Chile, Chile: Editorial Universitaria. Fernández, J. (2012). Introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos. Barcelona: Editorial Reverté, S.A. Flow Science, Inc. (2016). Flow-3D v11.2 Documentation. Flow Science, Inc. Santa Fe: Flow Science. Ludwig, J., & Ludwig, R. (1951). Design of Palmer-Bowlus Flumes. Sewafe and Insdustrial Wastes, 23(9), 1096-1107. Obtenido de https://www.jstor.org/stable/25031687 Recasens, J. (2014). Modelación tridimensional del glujo de entrada en un sumidero. Barcelona: UPC BARCELONATECH. Sotelo, G. (1997). Hidráulica General Vol. 1. México D.F.: LIMUSA S.A. Torres, C., & Vásquez, E. (2010). Análisis de medidores de caudal para flujo subcrítico en sistemas de alcantarillado. [Tesis ingeniería]. Quito, Ecuador: Escuela Politécnica Nacional. Versteeg, H. K., & Malalasekera, W. (1995). An Introduction to computational fluid dynamics – The finite volume method. New York: John Wiley & Sons.
Comparative study of experimental and CFD analysis for predicting discharge coefficient of compound broad crested weir
ABSTRACT
Present study highlights the behavior of weir crest head and width parameter on the discharge coefficient of compound broad crested (CBC) weir. Computational fluid dynamics model (CFD) is validated with laboratory experimental investigations.
In the discharge analysis through broad crested weirs, the upstream head over the weir crest (h) is crucial, where the result is mainly dependent upon the weir crest length (L) in transverse direction to flow, water depth from channel bed. Currently, minimal investigations are known for CFD validations on compound broad crested weirs.
The hydraulic research for measuring discharge numerically is carried out using FLOW 3D software. The model applies renormalized group (RNG) using volume of fluid (VOF) method for improved accuracy in free surface simulations. Structured hexagonal meshes of cubic elements define discretized meshing.
The comparative analysis of the numerical simulations and experimental observations confirm the performance of CBC weir for precise measurement of a wide range of discharges. Series of CFD model studies and experimental validation have led to constant range of discharg coefficients for various head over weir crest. The correlation coefficient of discharge predictions is 0.999 with mean error of 0.28%.
현재 연구에서는 CBC(compound broad crested) 위어의 배출 계수에 대한 위어 볏 머리 및 너비 매개변수의 거동을 강조합니다. 전산 유체 역학 모델(CFD)은 실험실 실험 조사를 통해 검증되었습니다.
넓은 볏이 있는 둑을 통한 유출 분석에서 둑 마루의 상류 수두(h)가 중요합니다. 여기서 결과는 주로 흐름에 대한 횡 방향의 둑 마루 길이(L), 수로 바닥에서 수심에 따라 달라집니다. . 현재 복합 넓은 볏 둑에 대한 CFD 검증에 대해 최소한의 조사가 알려져 있습니다.
수압 연구는 FLOW 3D 소프트웨어를 사용하여 수치적으로 측정합니다. 이 모델은 자유 표면 시뮬레이션의 정확도 향상을 위해 VOF(유체 체적) 방법을 사용하여 RNG(재정규화 그룹)를 적용합니다. 정육면체 요소의 구조화된 육각형 메쉬는 이산화된 메쉬를 정의합니다.
수치 시뮬레이션과 실험적 관찰의 비교 분석을 통해 광범위한 배출의 정확한 측정을 위한 CBC 둑의 성능을 확인했습니다. 일련의 CFD 모델 연구와 실험적 검증을 통해 다양한 head over weir crest에 대한 일정한 범위의 방전 계수가 나타났습니다. 방전 예측의 상관 계수는 0.999이고 평균 오차는 0.28%입니다.
Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).Figure 4 | CFD Simulation for max discharge (y2 ¼ 13.557 cm, Qmax ¼ 10 lps) and min discharge (y2 ¼ 6.56 cm, Qmin ¼ 2 lps).Figure 5 | (a, b) Velocity profiles corresponding to max discharge (10 lps) and min discharge (2 lps).Table 8 | Range of Froude number, Reynold number and Weber number
Key words
compound weir, flow 3D, flow measurement, numerical technique, open channel
HIGHLIGHTS
• The Head-Discharge relation is established for discharge measurement using compound broad crested weir, experimentally and numerically. • Assessment of head over weir crest for different step widths of proposed weir on discharge coefficient is executed. • Experimental and CFD results of weir performance demonstrate good agreement between the theoretical discharges by traditional rectangular weir formulae keeping Cd constant.
CONCLUSION
The head discharge relationship established for compound rectangular broad crested weir for various discharge ranges was validated by CFD technique. A three dimensional simulation software FLOW 3D was used for this purpose.
Original theoretical compound weir model depicts the relative average error between discharge predictions with Flow 3D simulation as 4.96% which is found less than the predictions made by graphical interpolation technique which is 5.33%.
The standard deviation in Cd parameter for CFD simulation model is less i.e. 0.0146 as compared to experimental output of 0.0502.
The correlation coefficient for physical and CFD studies for modified compound weir model is high, around 0.999 with error in discharge predictions being 0.28% as compared to the accuracy limits of about +3–5% stated in literature so far.
Discharge coefficient by experimental and CFD approach is maintained constant and equal to design input value of 0.6. Thus, the proposed CBC weir can be operated for various discharge ranges by maintaining constant discharge coefficients. Good agreement between the theoretical, experimental and CFD simulation results for obtaining discharge through compound broad crested weir ascertains the fact that CFD model can be used as an effective tool towards modeling flow through compound broad crested weir.
REFERENCES
Abd El-Hady Rady, R. M. 2011 2D 3D modeling of flow over sharp crested weirs. Journal of Applied Sciences Research 7 (12), 2495–2505. ISSN 1819-544X. Ackers, P., White, W. R. & Harrison, A. J. M. 1978 Weirs and Flumes for Flow Measurement. Wiley, New York. Aydin, M. C. 2016 Investigation of a sill effect on rectangular side-weir flow by using CFD. Journal of Irrigation and Drainage Engineering 142 (2), 04015043. Azimi, A. H. & Rajaratnam, N. 2009 Discharge characteristics of weirs of finite crest length. Journal of Hydraulic Engineering 135 (12), 1081–1085. Bijankhan, M., Di Stefano, C., Ferro, V. & Kouchakzadeh, S. 2014 New stage discharge relationship for weirs of finite crest length. Journal of Irrigation and Drainage Engineering 140 (3), 06013006. Boiten, W. & Pitlo, H. R. 1982 The V- shaped broad-crested weir. Journal of Irrigation and Drainage Engineering 108 (2), 142–160. Bos, M. G. 1989 Discharge Measurement Structures, 3rd edn. International Institute for Land Reclamation and Improvement, Publication 20, Wageningen, The Netherlands. Gogus, M., Defne, Z. & Ozkandemir, V. 2006 Broad-crested weirs with rectangular compound cross sections. Journal of Irrigation and Drainage Engineering 132 (3), 272–280.
Gogus, M., Al-Khatib, I. A., Atalay, A. E. & Khatib, J. I. 2016 Discharge prediction in flow measurement flumes with different downstream transition slopes. Flow Measurement and Instrumentation 47, 28–34. Hager, W. H. & Schwalt, M. 1994 Broad – crested weir. Journal of Irrigation and Drainage Engineering 120 (1), 13–25. Harrison, A. J. M. 1967 The streamlined broad-crested weir. Proceedings of the Institution of Civil Engineers 38, 657–678. Hinge, G. A., Balkrishna, S. & Khare, K. C. 2010 Improved design of stilling basin for deficient tail water. Journal of Basic and Applied Scientific Research 1 (1), 31–40. Hinge, G. A., Balkrishna, S. & Khare, K. C. 2011 Experimental and numerical study of compound broad crested weir. International Journal of Fluids Engineering 3 (2), 197–202. Horton, R. E. 1907 Weir Experiments, Coefficients, and Formulas. Dept. of the Interior, U.S. Geological Survey, Water-Supply and Irrigation Paper 200. Government Printing Office, Washington, DC. Khan, L. A., Wicklein, E. A. & Teixeira, E. C. 2006 Validation of a three-dimensional computational fluid dynamics model of a contact tank. Journal of Hydraulic Engineering 132 (7), 741–746. Kindsvater, C. E. & Carter, R. W. 1959 Discharge characteristics of rectangular thin-plate weirs. Paper No. 3001, Transactions, American Society of Civil Engineers 124. Kulin, G. & Compton, P. R. 1975 A Guide to Methods and Standards for the Measurement of Water Flow. Special Publication 421, National Bureau of Standards. Kulkarni, K. H. & Hinge, G. A. 2017 Compound broad crested weir for measurement of discharge – a novel approach. In: Proceedings International Conference Organized by Indian Society of Hydraulics – ISH HYDRO, 21–23 Dec 2017, India, pp. 678–687. Kulkarni, K. H. & Hinge, G. A. 2020 Experimental study for measuring discharge through compound broad crested weir. Flow Measurement Instrumentation 75, 101803. ISSN 0955-5986. Man, C., Zhang, G., Hong, V., Zhou, S. & Feng, Y. 2019 Assessment of turbulence models on bridge-pier scour using flow-3D. World Journal of Engineering and Technology 7, 241–255. ISSN Online: 2331-4249. Omer, B., Cihan, A. M., Emin, E. M. & Miller, C. J. 2018 Experimental and CFD analysis of circular labyrinth weirs. Journal of Irrigation and Drainage Engineering 144 (6), 04018007. RangaRaju, K. G. 1981 Flow Through Open Channels. McGraw-Hill, New York. Roushangar, K., Nouri, A., Shahnazi, S. & Azamathulla, H. M. 2021 Towards design of compound channels with minimum overall cost through grey wolf optimization algorithm. IWA – Journal of Hydroinformatics (In – press). Safarzadeh, A. & Mohajeri, S. H. 2018 Hydrodynamics of rectangular broad-crested porous weir. Journal of Irrigation and Drainage Engineering 144 (10), 04018028. Salmasi, F., Poorescandar, S., Dalir, A. H. & Zadeh, D. F. 2012 Discharge relations for rectangular broad crested weirs. Journal of Agricultural Sciences 17, 324–336. Samadi, A. & Arvanaghi, H. 2014 CFD simulation of flow over contracted compound arched rectangular sharp crested weirs. International Journal of Optimization in Civil Engineering 4 (4), 549–560. Savage, B. M. & Johnson, M. C. 2001 Flow over ogee spillway: physical and numerical model case study. Journal of Hydraulic Engineering 127 (8), 640–649. Swamee, P. K. 1988 Generalized rectangular weir equations. Journal of Hydraulic Engineering 945–952. doi:10.1061/(ASCE),0733-9429 114:8(945). The United States Bureau of Reclamation (USBR) 2001 Water Measurement Manual, Chapter 7 – Weirs. U.S. Government Printing Office, Washington, DC, p. 20402. Available from: http://www/usbr.gov/pmts/hydraulics_lab/pubs/wmm. Zahiri, A. & Azamathulla, H. M. 2014 Comparison between linear genetic programming and M5 tree models to predict flow discharge in compound channels. Neural Computing and Application 24, 413–420.
NesreenTahabMaged M.El-FekyaAtef A.El-SaiadaIsmailFathya aDepartment of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt bLab Manager, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
Abstract
횡단 구조물을 통한 막힘은 안정성을 위협하는 위험한 문제 중 하나입니다. 암거의 막힘 형상 및 하류 세굴 특성에 미치는 영향에 관한 연구는 거의 없습니다.
이 연구의 목적은 수면과 세굴 모두에서 상자 암거를 통한 막힘의 작용을 수치적으로 논의하는 것입니다. 이를 위해 FLOW 3D v11.1.0을 사용하여 퇴적물 수송 모델을 조사했습니다.
상자 암거를 통한 다양한 차단 비율이 연구되었습니다. FLOW 3D 모델은 실험 데이터로 보정되었습니다. 결과는 FLOW 3D 프로그램이 세굴 다운스트림 상자 암거를 정확하게 시뮬레이션할 수 있음을 나타냅니다.
막힌 경우에 대한 속도 분포, 최대 세굴 깊이 및 수심을 플롯하고 비차단된 사례(기본 사례)와 비교했습니다.
그 결과 암거 높이의 70% 차단율은 상류의 수심을 암거 높이의 2.3배 증가시키고 평균 유속은 기본 경우보다 3배 더 증가시키는 것으로 입증되었다. 막힘 비율의 함수로 상대 최대 세굴 깊이를 추정하는 방정식이 만들어졌습니다.
Blockage through crossing structures is one of the dangerous problems that threaten its stability. There are few researches concerned with blockage shape in culverts and its effect on characteristics of scour downstream it.
The study’s purpose is to discuss the action of blockage through box culvert on both water surface and scour numerically. A sediment transport model has been investigated for this purpose using FLOW 3D v11.1.0. Different ratios of blockage through box culvert have been studied. The FLOW 3D model was calibrated with experimental data.
The results present that the FLOW 3D program was capable to simulate accurately the scour downstream box culvert. The velocity distribution, maximum scour depth and water depths for blocked cases have been plotted and compared with the non-blocked case (base case).
The results proved that the blockage ratio 70% of culvert height makes the water depth upstream increases by 2.3 times of culvert height and mean velocity increases by 3 times more than in the base case. An equation has been created to estimate the relative maximum scour depth as a function of blockage ratio.
1. Introduction
Local scour is the removal of granular bed material by the action of hydrodynamic forces. As the depth of scour hole increases, the stability of the foundation of the structure may be endangered, with a consequent risk of damage and failure [1]. So the prediction and control of scour is considered to be very important for protecting the water structures from failure. Most previous studies were designed to study the different factors that impact on scour and their relationship with scour hole dimensions like fluid characteristics, flow conditions, bed properties, and culvert geometry. Many previous researches studied the effect of flow rate on scour hole by information Froude number or modified Froude number [2], [3], [4], [5], [6]. Cesar Mendoza [6] found a good correlation between the scour depth and the discharge Intensity (Qg−.5D−2.5). Breusers and Raudkiv [7] used shear velocity in the outlet-scour prediction procedure. Ali and Lim [8] used the densimetric Froude number in estimation of the scour depth [1], [8], [9], [10], [11], [12], [13], [14]. “The densimetric Froude number presents the ratio of the tractive force on sediment particle to the submerged specific weight of the sediment” [15](1)Fd=uρsρ-1gD50
Ali and Lim [8] pointed to the consequence of tailwater depth on scour behavior [1], [2], [8], [13]. Abida and Townsend [2] indicated that the maximum depth of local scour downstream culvert was varying with the tailwater depth in three ways: first, for very shallow tailwater depths, local scouring decreases with a decrease in tailwater depth; second, when the ratio of tailwater depth to culvert height ranged between 0.2 and 0.7, the scour depth increases with decreasing tailwater depth; and third for a submerged outlet condition. The tailwater depth has only a marginal effect on the maximum depth of scour [2]. Ruff et al. [16] observed that for materials having similar mean grain sizes (d50) but different standard deviations (σ). As (σ) increased, the maximum scour hole depth decreased. Abt et al. [4] mentioned to role of soil type of maximum scour depth. It was noticed that local scour was more dangerous for uniform sands than for well-graded mixtures [1], [2], [4], [9], [17], [18]. Abt et al [3], [19] studied the culvert shape effect on scour hole. The results evidenced that the culvert shape has a limited effect on outlet scour. Under equivalent discharge conditions, it was noted that a square culvert with height equal to the diameter of a circular culvert would reduce scour [16], [20]. The scour hole dimension was also effected by the culvert slope. Abt et al. [3], [21] showed that the culvert slope is a key element in estimating the culvert flow velocity, the discharge capacity, and sediment transport capability. Abt et al. [21], [22] tested experimentally culvert drop height effect on maximum scour depth. It was observed that as the drop height was increasing, the depth of scour was also increasing. From the previous studies, it could have noticed that the most scour prediction formula downstream unblocked culvert was the function of densimetric Froude number, soil properties (d50, σ), tailwater depth and culvert opening size. Blockage is the phenomenon of plugging water structures due to the movement of water flow loaded with sediment and debris. Water structures blockage has a bad effect on water flow where it causes increasing of upstream water level that may cause flooding around the structure and increase of scour rate downstream structures [23], [24]. The blockage phenomenon through was studied experimentally and numerical [15], [25], [26], [27], [28], [29], [30], [31], [32], [33]. Jaeger and Lucke [33] studied the debris transport behavior in a natural channel in Australia. Froude number scale model of an existing culvert was used. It was noticed that through rainfall event, the mobility of debris was impressed by stream shape (depth and width). The condition of the vegetation (size and quantities) through the catchment area was the main factor in debris transport. Rigby et al. [26] reported that steep slope was increasing the ability to mobilize debris that form field data of blocked culverts and bridges during a storm in Wollongong city.
Streftaris et al. [32] studied the probability of screen blockage by debris at trash screens through a numerical model to relate between the blockage probability and nature of the area around. Recently, many commercial computational fluid programs (CFD) such as SSIIM, Fluent, and FLOW 3D are used in the analysis of the scour process. Scour and sediment transport numerical model need to validate by using experimental data or field data [34], [35], [36], [37], [38]. Epely-Chauvin et al. [36] investigated numerically the effect of a series of parallel spur diked. The experimental data were compared by SSIIM and FLOW 3D program. It was found that the accuracy of calibrated FLOW 3D model was better than SSIIM model. Nielsen et al. [35] used the physical model and FLOW 3D model to analyze the scour process around the pile. The soil around the pile was uniform coarse stones in the physical models that were simulated by regular spheres, porous media, and a mixture of them. The calibrated porous media model can be used to determine the bed shear stress. In partially blocked culverts, there aren’t many studies that explain the blockage impact on scour dimensions. Sorourian et al. [14], [15] studied the effect of inlet partial blockage on scour characteristics downstream box culvert. It resulted that the partial blockage at the culvert inlet could be the main factor in estimating the depth of scour. So, this study is aiming to investigate the effects of blockage through a box culvert on flow and scour characteristics by different blockage ratios and compares the results with a non-blocked case. Create a dimensionless equation relates the blockage ratio of the culvert with scour characteristics downstream culvert.
2. Experimental data
The experimental work of the study was conducted in the Hydraulics and Water Engineering Laboratory, Faculty of Engineering, Zagazig University, Egypt. The flume had a rectangular cross-section of 66 cm width, 65.5 cm depth, and 16.2 m long. A rectangular culvert was built with 0.2 m width, 0.2 m height and 3.00 m long with θ = 25° gradually outlet and 0.8 m fixed apron. The model was located on the mid-point of the channel. The sediment part was extended for a distance 2.20 m with 0.66 m width and 0.20 m depth of coarse sand with specific weight 1.60 kg/cm3, d50 = 2.75 mm and σ (d90/d50) = 1.50. The particle size distribution was as shown in Fig. 1. The experimental model was tested for different inlet flow (Q) of 25, 30, 34, 40 l/s for different submerged ratio (S) of 1.25, 1.50, 1.75.
3. Dimensional analysis
A dimensional analysis has been used to reduce the number of variables which affecting on the scour pattern downstream partial blocked culvert. The main factors affecting the maximum scour depth are:(2)ds=f(b.h.L.hb.lb.Q.ud.hu.hd.D50.ρ.ρs.g.ls.dd.ld)
Fig. 2 shows a definition sketch of the experimental model. The maximum scour depth can be written in a dimensionless form as:(3)dsh=f(B.Fd.S)where the ds/h is the relative maximum scour depth.
4. Numerical work
The FLOW 3D is (CFD) program used by many researchers and appeared high accuracy in solving hydrodynamic and sediment transport models in the three dimensions. Numerical simulation with FLOW 3D was performed to study the impacts of blockage ratio through box culvert on shear stress, velocity distribution and the sediment transport in terms of the hydrodynamic features (water surface, velocity and shear stress) and morphological parameters (scour depth and sizes) conditions in accurately and efficiently. The renormalization group (RNG) turbulence model was selected due to its high ability to predict the velocity profiles and turbulent kinetic energy for the flow through culvert [39]. The one-fluid incompressible mode was used to simulate the water surface. Volume of fluid (VOF) method was employed in FLOW 3D to tracks a liquid interface through arbitrary deformations and apply the correct boundary conditions at the interface [40].1.
Governing equations
Three-dimensional Reynolds-averaged Navier Stokes (RANS) equation was applied for incompressible viscous fluid motion. The continuity equation is as following:(4)VF∂ρ∂t+∂∂xρuAx+∂∂yρvAy+∂∂zρwAz=RDIF(5)∂u∂t+1VFuAx∂u∂x+vAy∂u∂y+ωAz∂u∂z=-1ρ∂P∂x+Gx+fx(6)∂v∂t+1VFuAx∂v∂x+vAy∂v∂y+ωAz∂v∂z=-1ρ∂P∂y+Gy+fy(7)∂ω∂t+1VFuAx∂ω∂x+vAy∂ω∂y+ωAz∂ω∂z=-1ρ∂P∂z+Gz+fz
ρ is the fluid density,
VF is the volume fraction,
(x,y,z) is the Cartesian coordinates,
(u,v,w) are the velocity components,
(Ax,Ay,Az) are the area fractions and
RDIF is the turbulent diffusion.
P is the average hydrodynamic pressure,
(Gx, Gy, Gz) are the body accelerations and
(fx, fy, fz) are the viscous accelerations.
The motion of sediment transport (suspended, settling, entrainment, bed load) is estimated by predicting the erosion, advection and deposition process as presented in [41].
The critical shields parameter is (θcr) is defined as the critical shear stress τcr at which sediments begin to move on a flat and horizontal bed [41]:(8)θcr=τcrgd50(ρs-ρ)
The Soulsby–Whitehouse [42] is used to predict the critical shields parameter as:(9)θcr=0.31+1.2d∗+0.0551-e(-0.02d∗)(10)d∗=d50g(Gs-1ν3where:
d* is the dimensionless grain size
Gs is specific weight (Gs = ρs/ρ)
The entrainment coefficient (0.005) was used to scale the scour rates and fit the experimental data. The settling velocity controls the Soulsby deposition equation. The volumetric sediment transport rate per width of the bed is calculated using Van Rijn [43].2.
Meshing and geometry of model
After many trials, it was found that the uniform cell size with 0.03 m cell size is the closest to the experimental results and takes less time. As shown in Fig. 3. In x-direction, the total model length in this direction is 700 cm with mesh planes at −100, 0, 300, 380 and 600 cm respectively from the origin point, in y-direction, the total model length in this direction is 66 cm at distances 0, 23, 43 and 66 cm respectively from the origin point. In z-direction, the total model length in this direction is 120 cm. with mesh planes at −20, 0, 20 and 100 cm respectively.3.
Boundary condition
As shown in Fig. 4, the boundary conditions of the model have been defined to simulate the experimental flow conditions accurately. The upstream boundary was defined as the volume flow rate with a different flow rate. The downstream boundary was defined as specific pressure with different fluid elevation. Both of the right side, the left side, and the bottom boundary were defined as a wall. The top boundary defined as specified pressure with pressure value equals zero.
5. Validation of experimental results and numerical results
The experimental results investigated the flow and scour characteristics downstream culvert due to different flow conditions. The measured value of maximum scour depth is compared with the simulated depth from FLOW 3D model as shown in Fig. 5. The scour results show that the simulated results from the numerical model is quite close to the experimental results with an average error of 3.6%. The water depths in numerical model results is so close to the experimental results as shown in Fig. 6 where the experiment and numerical results are compared at different submerged ratios and flow rates. The results appear maximum error percentage in water depths upstream and downstream the culvert is about 2.37%. This indicated that the FLOW 3D is efficient for the prediction of maximum scour depth and the flow depths downstream box culvert.
6. Computation time
The run time was chosen according to reaching to the stability limit. Hydraulic stability was achieved after 50 s, where the scour development may still go on. For run 1, the numerical simulation was run for 1000 s as shown in Fig. 7 where it mostly reached to scour stability at 800 s. The simulation time was taken 500 s at about 95% of scour stability.
7. Analysis and discussions
Fig. 8 shows the study sections where sec 1 represents to upstream section, sec2 represents to inside section and sec3 represents to downstream stream section. Table 1 indicates the scour hole dimensions at different blockage case. The symbol (B) represents to blockage and the number points to blockage ratio. B0 case signifies to the non-blocked case, B30 is that blockage height is 30% to the culvert height and so on.
Table 1. The scour results of different blockage ratio.
Case
hb cm
B = hb/h
Q lit/s
S
Fd
d50 mm
ds/h measured
ls/h
dd/h
ld/h
ds/h estimated
B0
0
0
35
1.26
1.69
2.5
0.58
1.50
0.27
5.00
0.46
B30
6
0.30
35
1.26
1.68
2.5
0.48
1.25
0.27
4.25
0.40
B50
10
0.50
35
1.22
1.74
2.5
0.45
1.10
0.24
4.00
0.37
B70
14
0.70
35
1.23
1.73
2.5
0.43
1.50
0.16
5.50
0.33
7.1. Scour hole geometry
The scour hole geometry mainly depends on the properties of soil of the bed downstream the fixed apron. From Table 1, the results show that the maximum scour depth in B0 case is about 0.58 of culvert height while the maximum deposition in B0 is 0.27 culvert height. There is a symmetric scour hole as shown in Fig. 9 in B0 case. An asymmetric scour hole is created in B50 and B70 due to turbulences that causes the deviation of the jet direction from the center of the flume where appear in Fig. 11 and Fig. 19.
7.2. Flow water surface
Fig. 10 presents the relative free surface water (hw/h) along the x-direction at center of the box culvert. From the mention Figure, it is easy to release the effect of different blockage ratios. The upstream water level rises by increasing the blockage ratio. Increasing upstream water level may cause flooding over the banks of the waterway. In the 70% blockage case, the upstream water level rises to 2.3 times of culvert height more than the non-blocked case at the same discharge and submerged ratio. The water surface profile shows an increase in water level upstream the culvert due to a decrease in transverse velocity. Because of decreasing velocity downstream culvert, there is an increase in water level before it reaches its uniform depth.
7.3. Velocity vectors
Scour downstream hydraulic structures mainly affects by velocities distribution and bed shear stress. Fig. 11 shows the velocity vectors and their magnitude in xz plane at the same flow conditions. The difference in the upstream water level due to the different blockage ratios is so clear. The maximum water level is in B70 and the minimum level is in B0. The inlet mean velocity value is about 0.88 m/s in B0 increases to 2.86 m/s in B70. As the blockage ratio increases, the inlet velocity increases. The outlet velocity in B0 case makes downward jet causes scour hole just after the fixed apron in the middle of the bed while the blockage causes upward water flow that appears clearly in B70. The upward jet decreases the scour depth to 0.13 culvert height less than B0 case. After the scour hole, the velocity decreases and the flow becomes uniform.
7.4. Velocity distribution
Fig. 12 represents flow velocity (Vx) distribution along the vertical depth (z/hu) upstream the inlet for the different blockage ratios at the same flow conditions. From the Figure, the maximum velocity creates closed to bed in B0 while in blocked case, the maximum horizontal velocity creates at 0.30 of relative vertical depth (z/hu). Fig. 13 shows the (Vz) distribution along the vertical depth (z/hu) upstream culvert at sec 1. From the mentioned Figure, it is easy to note that the maximum vertical is in B70 which appears that as the blockage ratio increases the vertical ratio also increases. In the non-blocked case. The vertical velocity (Vz) is maximum at (z/hu) equals 0.64. At the end of the fixed apron (sec 3), the horizontal velocity (Vx) is slowly increasing to reach the maximum value closed to bed in B0 and B30 while the maximum horizontal velocity occurs near to the top surface in B50 and B70 as shown in Fig. 14. The vertical velocity component along the vertical depth (z/hd) is presented in Fig. 15. The vertical velocity (Vz) is maximum in B0 at vertical depth (z/hd) 0.3 with value 0.45 m/s downward. Figs. 16 and 17 observe velocity components (Vx, Vz) along the vertical depth just after the end of blockage length at the centerline of the culvert barrel. It could be noticed the uniform velocity distribution in B0 case with horizontal velocity (Vx) closed to 1.0 m/s and vertical velocity closed to zero. In the blocked case, the maximum horizontal velocity occurs in depth more than the blockage height.
7.5. Bed velocity distribution
Fig. 18 presents the x-velocity vectors at 1.5 cm above the bed for different blockage ratios from the velocity vectors distribution and magnitude, it is easy to realize the position of the scour hole and deposition region. In B0 and B30, the flow is symmetric so that the scour hole is created around the centerline of flow while in B50 and B70 cases, the flow is asymmetric and the scour hole creates in the right of flow direction in B50. The maximum scour depth is found in the left of flow direction in B70 case where the high velocity region is found.
8. Maximum scour depth prediction
Regression analysis is used to estimate maximum scour depth downstream box culvert for different ratios of blockage by correlating the maximum relative scour by other variables that affect on it in one formula. An equation is developed to predict maximum scour depth for blocked and non-blocked. As shown in the equation below, the relative maximum scour depth(ds/hd) is a function of densimetric Froude number (Fd), blockage ratio (B) and submerged ratio (S)(11)dsh=0.56Fd-0.20B+0.45S-1.05
In this equation the coefficient of correlation (R2) is 0.82 with standard error equals 0·08. The developed equation is valid for Fd = [0.9 to 2.10] and submerged ratio (S) ≥ 1.00. Fig. 19 shows the comparison between relative maximum scour depths (ds/h) measured and estimated for different blockage ratios. Fig. 20 clears the comparison between residuals and ds/h estimated for the present study. From these figures, it could be noticed that there is a good agreement between the measured and estimated relative scour depth.
9. Comparison with previous scour equations
Many previous scour formulae have been produced for calculation the maximum scour depth downstream non-blockage culvert. These equations have been included the effect of flow regime, culvert shape, soil properties and the flow rate on maximum scour depth. Two of previous experimental studies data have been chosen to be compared with the present study results in non-blocked study data. Table 2 shows comparison of culvert shape, densmetric Froude number, median particle size and scour equations for these previous studies. By applying the present study data in these studies scour formula as shown in Fig. 21, it could be noticed that there are a good agreement between present formula results and others empirical equations results. Where that Lim [44] and Abt [4] are so closed to the present study data.
Table 2. Comparison of some previous scour formula.
The present study has shown that the FLOW 3D model can accurately simulate water surface and the scour hole characteristics downstream the box culvert with error percentage in water depths does not exceed 2.37%. Velocities distribution through and outlets culvert barrel helped on understanding the scour hole shape.
The blockage through culvert had caused of increasing of water surface upstream structure where the upstream water level in B70 was 2.3 of culvert height more than non-blocked case at the same discharge that could be dangerous on the stability of roads above. The depth averaged velocity through culvert barrel increased by 3 times its value in non-blocked case.
On the other hand, blockage through culvert had a limited effect on the maximum scour depth. The little effect of blockage on maximum scour depth could be noticed in Fig. 11. From this Figure, it could be noted that the residual part of culvert barrel after the blockage part had made turbulences. These turbulences caused the deviation of the flow resulting in the formation of asymmetric scour hole on the side of channel. This not only but in B70 the blockage height caused upward jet which made a wide far scour hole as cleared from the results in Table 1.
An empirical equation was developed from the results to estimate the maximum scour depth relative to culvert height function of blockage ratio (B), submerged ratio (S), and densimetric Froude number (Fd). The equation results was compared with some scour formulas at the same densimetric Froude number rang where the present study results was in between the other equations results as shown in Fig. 21.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
[1]P. Sarathi, M. Faruque, R. BalachandarInfluence of tailwater depth, sediment size and densimetric Froude number on scour by submerged square wall jetsJ. Hydraul. Res., 46 (2) (2008), pp. 158-175CrossRefView Record in ScopusGoogle Scholar[2]H. Abida, R. TownsendLocal scour downstream of box-culvert outletsJ. Irrig. Drain. Eng., 117 (3) (1991), pp. 425-440CrossRefView Record in ScopusGoogle Scholar[3]S.R. Abt, C.A. Donnell, J.F. Ruff, F.K. DoehringCulvert Slope and Shape Effects on Outlet ScourTransp. Res. Rec., 1017 (1985), pp. 24-30View Record in ScopusGoogle Scholar[4]S.R. Abt, R.L. Kloberdanz, C. MendozaUnified culvert scour determinationJ. Hydraul. Eng., 110 (10) (1984), pp. 1475-1479CrossRefView Record in ScopusGoogle Scholar[5]J.P. Bohan, Erosion And Riprap Requirements At Culvert And Storm-Drain Outlets, ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS1970.Google Scholar[6]C. Mendoza, S.R. Abt, J.F. RuffHeadwall influence on scour at culvert outletsJ. Hydraul. Eng., 109 (7) (1983), pp. 1056-1060CrossRefView Record in ScopusGoogle Scholar[7]H. Breusers, A. Raudkivi, Scouring, hydraulic structures design manual, vol. 143, IAHR, AA Balkema, Rotterdam, 1991.Google Scholar[8]K. Ali, S. LimLocal scour caused by submerged wall jetsProc. Inst. Civ. Eng., 81 (4) (1986), pp. 607-645CrossRefView Record in ScopusGoogle Scholar[9]O. Aderibigbe, N. RajaratnamEffect of sediment gradation on erosion by plane turbulent wall jetsJ. Hydraul. Eng., 124 (10) (1998), pp. 1034-1042View Record in ScopusGoogle Scholar[10]F.W. Blaisdell, C.L. AndersonA comprehensive generalized study of scour at cantilevered pipe outletsJ. Hydraul. Res., 26 (4) (1988), pp. 357-376CrossRefView Record in ScopusGoogle Scholar[11]Y.-M. Chiew, S.-Y. LimLocal scour by a deeply submerged horizontal circular jetJ. Hydraul. Eng., 122 (9) (1996), pp. 529-532View Record in ScopusGoogle Scholar[12]R.A. Day, S.L. Liriano, W.R. WhiteEffect of tailwater depth and model scale on scour at culvert outletsProc. Instit. Civil Eng. – Water Marit. Eng., 148 (3) (2001), pp. 189-198http://www.icevirtuallibrary.com/doi/10.1680/wame.2001.148.3.189, 10.1680/wame.2001.148.3.189View Record in ScopusGoogle Scholar[13]S. Emami, A.J. SchleissPrediction of localized scour hole on natural mobile bed at culvert outletsScour and Erosion (2010), pp. 844-853CrossRefView Record in ScopusGoogle Scholar[14]S. Sorourian, A. Keshavarzi, J. Ball, B. SamaliStudy of Blockage Effect on Scouring Pattern Downstream of a Box Culvert under Unsteady FlowAustr. J Water Resor. (2013)Google Scholar[15]S. Sorourian, Turbulent Flow Characteristics At The Outlet Of Partially Blocked Box Culverts, in: 36th IAHR World Congress, The Hague, the Netherlands, 2015.Google Scholar[16]J. Ruff, S. Abt, C. Mendoza, A. Shaikh, R. KloberdanzScour at culvert outlets in mixed bed materialsUnited States. Federal Highway Administration. Office of Research and Development (1982)Google Scholar[17]S.A. Ansari, U.C. Kothyari, K.G.R. RajuInfluence of cohesion on scour under submerged circular vertical jetsJ. Hydraul. Eng., 129 (12) (2003), pp. 1014-1019View Record in ScopusGoogle Scholar[18]B. Crookston B. Tullis, Scour and Riprap Protection in a Bottomless Arch Culvert, in: World Environmental and Water Resources Congress 2008: Ahupua’A, 2008, pp. 1–10.Google Scholar[19]S.R. Abt, J. Ruff, F. Doehring, C. DonnellInfluence of culvert shape on outlet scourJ. Hydraul. Eng., 113 (3) (1987), pp. 393-400View Record in ScopusGoogle Scholar[20]Y.H. Chen, Scour at outlets of box culverts, Colorado State University, 1970.Google Scholar[21]S. Abt, P. Thompson, T. LewisEnhancement of the culvert outlet scour estimation equationsTransp. Res. Rec. J. Transp. Res. Board, 1523 (1996), pp. 178-185View Record in ScopusGoogle Scholar[22]F.K. Doehring, S.R. AbtDrop height influence on outlet scourJ. Hydraul. Eng., 120 (12) (1994), pp. 1470-1476CrossRefView Record in ScopusGoogle Scholar[23]W. Weeks, A. Barthelmess, E. Rigby, G. Witheridge, R. Adamson, Australian rainfall and runoff revison project 11: blockage of hydraulic structures, 2009.Google Scholar[24]W. Weeks, G. Witheridge, E. Rigby, A. BarthelmessProject 11: blockage of hydraulic structuresEngineers Australia (2013)Google Scholar[25]S.R. Abt, T.E. Brisbane, D.M. Frick, C.A. McKnightTrash rack blockage in supercritical flowJ. Hydraul. Eng., 118 (12) (1992), pp. 1692-1696View Record in ScopusGoogle Scholar[26]E. Rigby, M. Boyd, S. Roso, P. Silveri, A. Davis, Causes and effects of culvert blockage during large storms, in: Global solutions for urban drainage, 2002, pp. 1–16.Google Scholar[27]S. Roso, M. Boyd, E. Rigby, R. VanDrie“Prediction of increased flooding in urban catchments due to debris blockage and flow diversionsProceedings Novatech (2004), pp. 8-13View Record in ScopusGoogle Scholar[28]C.-D. Jan, C.-L. ChenDebris flows caused by Typhoon Herb in Taiwanin Debris-Flow Hazards and Related Phenomena, Springer (2005), pp. 539-563CrossRefGoogle Scholar[29]L.W. Zevenbergen, P.F. Lagasse, P.E. Clopper, Effects of debris on bridge pier scour, in: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, 2007, pp. 1–10.Google Scholar[30]A. Barthelmess, E. Rigby, Estimating Culvert and Bridge Blockages-a Simplified Procedure, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 39.Google Scholar[31]E. Rigby, A. Barthelmess, Culvert Blockage Mechanisms and their Impact on Flood Behaviour, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 380.Google Scholar[32]G. Streftaris, N. Wallerstein, G. Gibson, S. ArthurModeling probability of blockage at culvert trash screens using Bayesian approachJ. Hydraul. Eng., 139 (7) (2012), pp. 716-726Google Scholar[33]R. Jaeger, T. LuckeInvestigating the relationship between rainfall intensity, catchment vegetation and debris mobilityInt. J. GEOMATE, 12 (33) (2017), pp. 22-29 Download PDFView Record in ScopusGoogle Scholar[34]S. Amiraslani, J. Fahimi, H. Mehdinezhad, The Numerical Investigation of Free Falling Jet’s Effect On the Scour of Plunge Pool, in: XVIII International conference on water resources, Tehran University, Iran, 2008.Google Scholar[35]A.W. Nielsen, X. Liu, B.M. Sumer, J. FredsøeFlow and bed shear stresses in scour protections around a pile in a currentCoast. Eng., 72 (2013), pp. 20-38ArticleDownload PDFView Record in ScopusGoogle Scholar[36]G. Epely-Chauvin, G. De Cesare, S. SchwindtNumerical modelling of plunge pool scour evolution in non-cohesive sedimentsEng. Appl. Comput. Fluid Mech., 8 (4) (2014), pp. 477-487 Download PDFCrossRefView Record in ScopusGoogle Scholar[37]H. Karami, H. Basser, A. Ardeshir, S.H. HosseiniVerification of numerical study of scour around spur dikes using experimental dataWater Environ. J., 28 (1) (2014), pp. 124-134CrossRefView Record in ScopusGoogle Scholar[38]S.-H. Oh, K.S. Lee, W.-M. JeongThree-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plantRenew. Energy, 92 (2016), pp. 462-473ArticleDownload PDFView Record in ScopusGoogle Scholar[39]M.A. Khodier, B.P. TullisExperimental and computational comparison of baffled-culvert hydrodynamics for fish passageJ. Appl. Water Eng. Res. (2017), pp. 1-9CrossRefView Record in ScopusGoogle Scholar[40]F.S. Inc., FLOW-3D user’s manual, Flow Science, Inc., 2009.Google Scholar[41]G. Wei, J. Brethour, M. Grünzner, J. BurnhamSedimentation scour modelFlow Science Report, 7 (2014), pp. 1-29View Record in ScopusGoogle Scholar[42]R. Soulsby, R. Whitehouse, Threshold of sediment motion in coastal environments, in: Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, vol. 1, Centre for Advanced Engineering, University of Canterbury, 1997, pp. 145.Google Scholar[43]L.C.v. RijnSediment transport, part II: suspended load transportJ. Hydraul. Eng., 110 (11) (1984), pp. 1613-1641View Record in ScopusGoogle Scholar[44]S Y LIMScour below unsubmerged full-flowing culvert outletsProc. Instit. Civil Eng. – Water Marit. Energy, 112 (2) (1995), pp. 136-149http://www.icevirtuallibrary.com/doi/10.1680/iwtme.1995.27659, 10.1680/iwtme.1995.27659View Record in ScopusGoogle Scholar
Peer review under responsibility of Faculty of Engineering, Alexandria University.
많은 계단식 배수로 지오메트리 설계 지침이 평평한 단계를 위해 개발되었지만 통합 단계를 설계하는 것이 더 효율적으로 작동하는 배수로에 대한 적절한 대안이 될 수 있습니다.
이 논문은 POOL의 다른 높이에서 공기 연행과 보이드 비율의 시작점을 다루는 것을 목표로 합니다. 그 후, FLOW-3D 소프트웨어를 사용하여 POOL과 경사면의 높이를 다르게 하여 폭기된 지역과 폭기되지 않은 지역에서 압력 분포를 평가했습니다.
얻어진 수치 결과와 실험 결과의 비교는 본 연구에 사용된 모든 방류에 대해 잘 일치했습니다. POOL 높이는 시작 지점 위치에 미미한 영향을 미쳤습니다. 공극률의 값은 높은 방류에 비해 낮은 방전에서 더 많은 영향을 받았습니다.
여수로의 마루(통기되지 않은 지역)에서는 음압이 나타나지 않았으며 각 방류에서 마루를 따라 높이가 15cm인 수영장에서 최대 압력 값이 얻어졌습니다.
모든 사면에서 웅덩이 및 평평한 계단형 여수로의 계단층 부근에서는 음압이 형성되지 않았습니다. 그러나 평단식 여수로에 비해 평단식 여수로의 수직면 부근에서 음압이 더 많이 형성되어 평단식 슈트에서 캐비테이션 현상이 발생할 확률이 증가하였습니다.
Study of inception point, void fraction and pressure over pooled stWhile many stepped spillways geometry design guidelines were developed for flat steps, designing pooled steps might be an appropriate alternative to spillways working more efficiency. This paper aims to deal with the inception point of air-entrainment and void fraction in the different height of the pools. Following that, pressure distribution was evaluated in aerated and non-aerated regions under the effect of different heights of the pools and slopes through the use of the FLOW-3D software. Comparison of obtained numerical results with experimental ones was in good agreement for all discharges used in this study. Pools height had the insignificant effect on the inception point location. The value of void fraction was more affected in lower discharges in comparison with higher ones. Negative pressure was not seen over the crest of spillway (non-aerated region), and the maximum pressure values were obtained for pools with 15 cm height along the crest in each discharge. In all slopes, negative pressure was not formed near the step bed in the pooled and flat stepped spillways. However, negative pressure was formed in more area near the vertical face in the flat stepped spillway compared with the pooled stepped spillway which increases the probability of cavitation phenomenon in the flat stepped chute.
Design/methodology/approach
압력, 공극률 및 시작점을 평가하기 위해 POOL된 계단식 여수로가 사용되었습니다. 또한 POOL의 다른 높이가 사용되었습니다. 이 연구의 수치 시뮬레이션은 Flow-3D 소프트웨어를 통해 수행되었습니다. 얻어진 결과는 풀이 압력, 공극률 및 시작점을 포함한 2상 유동 특성에 영향을 미칠 수 있음을 나타냅니다.
Findings
마루 위에는 음압이 보이지 않았습니다. 압력 값은 사용된 모든 높이와 15cm 높이에서 얻은 최대 값에 대해 다릅니다. 또한, 풀링 스텝은 플랫 케이스에 비해 음압점 감소에 더 효과적인 역할을 하였습니다. 시작 지점 위치는 특히 9 및 15cm 높이에 대해 스키밍 흐름 영역과 비교하여 낮잠 및 전환 흐름 영역에서 더 많은 영향을 받았습니다.
Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h
step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm):
d’ is the water depth above the crest; y’ is the distance normal to the crest invertFigure 2- meshing domain and distribution of blocksFigure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A);
mesh convergence analysis; pooled stepped spillway (slope: 26.6 0
)Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A);
Flat stepped spillway (slope: 0
26 6. )Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled
and flat stepped spillways (slope: 0
9.8 )Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1),
288941 (model 2), 323578 (model 3) and 343154 (model 4)Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with
experimental work conducted by Felder et al. (2012A); (slope 26.60
)Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with
empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical dataFigure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0Figure 10- Comparison of pressure distribution between numerical simulation and experimental work
conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0
45 )Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the
free surface profile along the crest of the spillway.
Note: x’ indicates the longitudinal distance from the starting point of the crest.Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x” indicatesthe
longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y” is the
distance from the intersection of the horizontal and vertical faces in the vertical directionFigure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopesTable1- Used discharges for assessments of mesh convergence analysis and hydraulic
characteristics
Conclusion
본 연구에서는 자유표면을 모사하기 위해 VOF 방법과 k -ε (RNG) 난류 모델을 활용하여 FLOW-3D 소프트웨어를 사용하였고, 계단식 배수로의 유동을 모사하기 위한 목적으로 난류 특성을 모사하였다. 얻은 결과는 수치 모델이 시작점 위치, 보이드 비율 및 압력을 적절하게 시뮬레이션했음을 나타냅니다. 풀의 높이는 공기 유입 위치에 미미한 영향을 미치므로 얻은 결과는 이 문서에서 제시된 상관 관계와 잘 일치했습니다. 즉, 사용 가능한 상관 관계를 서로 다른 풀 높이에 사용할 수 있습니다. 공극률의 결과는 스텝 풀 근처의 나프 유동 영역에서 공극율 값이 다른 배출보다 더 큰 것으로 나타났다. 더욱이 고방출량 .0 113m3/s에서 수영장 높이를 변경해도 수영장 표면 근처의 공극률 값에는 영향을 미치지 않았습니다.
낮잠 및 전환 체제의 압력 분포에 대한 0 및 3cm 높이의 수영장 효과는 많은 지점에서 대부분 유사했습니다. 더욱이 조사된 모든 높이에서 여수로의 마루를 따라 부압이 없었습니다. 여수로 끝단의 바닥 부근의 압력 결과는 평평하고 고인 경우 부압이 발생하지 않았음을 나타냅니다. 수직면 부근의 음압은 웅덩이에 비해 평평한 계단형 여수로의 깊이(w=0 cm)의 대부분에서 발생하였다. 또한 더 큰 사면에 대한 풀링 케이스에서 음압이 제거되었습니다. 평단식 여수로에서는 계단의 수직면에 인접한 더 넓은 지역에서 음압이 발생하였기 때문에 이 여수로에서는 고형단식여수로보다 캐비테이션 현상이 발생할 가능성이 더 큽니다.
In this study, the FLOW-3D software was used through utilizing the VOF method and k −ε (RNG) turbulence model in order to simulate free surface, and turbulence characteristics for the purpose of simulating flow over pooled stepped spillway. The results obtained indicated that the numerical model properly simulated the inception point location, void fraction, and pressure. The height of the pools has the insignificant effect on the location of air entrainment, so that obtained results were in good agreement with the correlations presented in this paper. In other words, available correlations can be used for different pool heights. The results of void fraction showed that the void fraction values in nappe flow regime near the step pool were more than the other discharges. Furthermore in high discharge, 0.113m3/s, altering pool height had no effect on the value of void fraction near the pool surface.
The effect of the pools with 0 and 3 cm heights over the pressure distribution in nappe and transition regimes was mostly similar in many points. Furthermore, in all examined heights there was no negative pressure along the crest of the spillway. The pressure results near the bed of the step at the end of the spillway indicated that negative pressure did not occur in the flat and pooled cases. Negative pressure near the vertical face occurred in the most part of the depth in the flat stepped spillway (w=0 cm) in comparison with the pooled case. Also, the negative pressure was eliminated in the pooled case for the larger slopes. Since negative pressure occurred in a larger area adjacent the vertical face of the steps in the flat stepped spillways, it is more likely that cavitation phenomenon occurs in this spillway rather than the pooled stepped spillways.
References
André, S. (2004), “High velocity aerated flows on stepped chutes with macro-roughness elements.” Ph.D. thesis, Laboratoire de Constructions Hydraulics (LCH), EPFL, Lausanne, Switzerland, 272 pages.
Attarian, A. Hosseini, Kh. Abdi, H and Hosseini, M. (2014), “The Effect of the Step Height on Energy Dissipation in Stepped Spillways Using Numerical Simulation”. Arabian Journal for Science and Engineering, 39(4), 2587-2594.
Bombardelli, F.A. Meireles. I. Matos, J. (2011), “Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways”. Environmental fluid mechanics, 11(3) 263-288.
Chakib, B. (2013), “Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway”. International Journal of Hydraulic Engineering; 2(3): 47-52.
Chakib, B. Mohammed, H. (2015), “Numerical Simulation of Air Entrainment for Flat-Sloped Stepped Spillway. Journal of computational multiphase flows”, Volume 7. Number 1.
Chanson, H. Toombes, L. (2002), “Air–water flows down stepped chutes: turbulence and flow structure observations”. International Journal of Multiphase Flow, 28(11) 1737-1761
Chen, Q. Dai, G. Liu, H. (2002), “Volume of Fluid Model for Turbulence Numerical Simulation of Stepped Spillway Overflow”. DOI: 10.1061/(ASCE)0733-9429128:7(683).
Cheng, X. Chen, Y. Luo, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
Cheng, X. Luo, L. Zhao, W. (2004), “Study of aeration in the water flow over stepped spillway”. In: Proceedings of the world water congress.
Chinnarasri, Ch. Kositgittiwong, D. Julien, Y. (2013), “Model of flow over spillways by computational fluid dynamics”. Proceedings of the ICE – Water Management, Volume 167(3) 164 –175.
Dastgheib, A. Niksokhan, M.H. and Nowroozpour, A.R. (2012), “Comparing of Flow Pattern and Energy Dissipation over different forms of Stepped Spillway”. World Environmental and Water Resources Congress ASCE.
Eghbalzadeh, A. Javan, M. (2012), “Comparison of mixture and VOF models for numerical simulation of air entrainment in skimming flow over stepped spillway”. Procedia Engineering, 28. 657-660.
Felder, S, Chanson, H. (2012), “Free-surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: a Physical study “Free-surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: a Physical study
Felder, S. Fromm, Ch. Chanson, H. (2012B), “Air entrainment and energy dissipation on a 8.9 slope stepped spillway with flat and pooled steps”, School of Civil Engineering, The University of Queensland,. Brisbane, Australia.
Felder, S. Chanson, H. (2014A), Triple decomposition technique in air–water flows: application to instationary flows on a stepped spillway. International Journal of Multiphase Flow, 58, 139-153.
Felder, S. Chanson, H. (2014B), Effects of step pool porosity upon flow aeration and energy dissipation on pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002.
Felder, S. Chanson, H. (2013A), “Air entrainment and energy dissipation on porous pooled stepped spillways”. Paper presented at the International Workshop on Hydraulic Design of Low-Head Structures.
Felder, S. Chanson, H. (2013B), “Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams”. Journal of irrigation and drainage engineering, 139(10) 880-887.
Felder, S. Guenther, Ph. Chanson, H. (2012A). “Air-water flow properties and energy dissipation on stepped spillways: a physical study of several pooled stepped configurations”, School of Civil Engineering, The University of Queensland,. Brisbane, Australia.
Flow Science, (2013). “FLOW-3D user’s manual”, version 10.1. Flow Science, Inc, Los Alamos.
Frizell, K.W. Renna, F.M. Matos, J. (2012), “Cavitation potential of flow on stepped spillways”. Journal of Hydraulic Engineering, 139(6), 630-636.
Gonzalez, C. (2005), “An experimental study of free-surface aeration on embankment stepped chutes”, department of civil engineering, Brisbane, Australia, Phd thesis.
Gonzalez, C.A. Chanson, H. (2008), “Turbulence manipulation in air–water flows on a stepped chute: An experimental study”. European Journal of Mechanics-B/Fluids, 27(4), 388-408.
Guenther, Ph.. Felder, S. Chanson, H. (2013), “Flow aeration, cavity processes and energy dissipation on flat and pooled stepped spillways for embankments”. Environmental fluid mechanics, 13(5) 503-525.
Hamedi, A. Mansoori, A. Malekmohamadi, I. Roshanaei, H. (2011), “Estimating Energy Dissipation in Stepped Spillways with Reverse Inclined Steps and End Sill”. World Environmental and Water Resources Congress, ASCE.
Hirt, C.W. (2003), “Modeling Turbulent Entrainment of Air at a Free Surface”. Flow Science Inc.
Hunt, S.L. Kadavy, K.C. (2013), “Inception point for enbankment dam stepped spillway”. J. Hydraul. Eng., 139(1), 60–64.
Hunt, S.L. Kadavy, K.C. (2010), “Inception Point Relationship for Flat-Sloped Stepped Spillways”. DOI: 10.1061/ASCEHY.1943-7900.0000297.
Matos, J. Quintela, A. (2000), “Air entrainment and safety against cavitation damage in stepped spillways over RCC dams. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways”, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema. 69–76.
Meireles, I. Matos, J. (2009), “Skimming flow in the nonaerated region of stepped spillways over embankment dams”. J. Hydraul. Eng., 135(8), 685–689.
Miang-liang, ZH. Yong-ming, SH. (2008), “Three dimentional simulation of meandering river basin on 3-D RNG k − ε turbulence model”. Journal of hydrodynamics, 20(4): 448-455.
Morovati, Kh. Eghbalzadeh, A. Javan, M. (2015), “Numerical investigation of the configuration of the pools on the flowPattern passing over pooled stepped spillway in skimming flow regime. Acta Mech, DOI 10.1007/s00707-015-1444-x
Morovati, Kh. Eghbalzadeh, A. Soori, S. (2016), “Numerical Study of Energy Dissipation of Pooled Stepped spillway”. Civil Engineering Journal. Vol. 2, No. 5.
Nikseresht, A.H. Talebbeydokhti, N. and Rezaei, M.J. (2013), “Numerical simulation of two-phase flow on steppool spillways”. Scientia Iranica, A 20 (2), 222–230.
Peyras, L. Royet, P. Degoutte, G. (1990), “Flow and energy dissipation over stepped gabion weirs”. ASCE Convention.
Qun, Ch. Guang-qing, D. Feu-qing, Zh. Qing, Y. (2004). “Three-dimensional turbulence numerical simulation of a stepped spillway overflow”. Journal of hydrodynamics, Ser. B, 1, 74-79.
Relvas, A. T. Pinheiro, A. N. (2008), Inception point and air concentration in flows on stepped chutes lined with wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051
Sanchez, M. (2000), “Pressure field in skimming flow over a stepped spillways”. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema, 137–146.
Sarfaraz, M. Attari, J. Pfister, M. (2012), “Numerical Computation of Inception Point Location for Steeply Sloping Stepped Spillways”. 9th International Congress on Civil Engineering, May 8-10. Isfahan University of Technology (IUT), Isfahan, Iran.
Savage, Bruce M. Michael C. Johnson. (2001), “Flow over ogee spillway: Physical and numerical model case study.” Journal of Hydraulic Engineering 127.8:640-649.
Shahhedari, H. Jafari Nodoshan, E. Barati, R. Azhdary moghadam, M. (2014). “Discharge coeficient and energy dissipation over stepped spillway under skimming flow regime”. KSCE Journal of Civil Engineering, DOI 10.1007/s12205-013-0749-3.
Tabbara, M. Chatila, J. Awwad, R. (2005), “Computational simulation of flow over stepped spillways”. Computers & structures, 83(27) 2215-2224.
Thorwarth, J. (2008), “Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen—Selbstinduzierte Abflussinstationaritäten und Energiedissipation” [Hydraulics of pooled stepped spillways— Self-induced unsteady flow and energy dissipation]. Ph.D. thesis, Univ. of Aachen, Aachen, Germany (in German).
WeiLin, XU. ShuJing, LUO, QiuWen, ZH. Jing, LUO. (2015), “Experimental study on pressure and aeration characteristics in stepped chute flows. SCIENCE CHINA. Vol.58 No.4: 720–726. doi: 10.1007/s11431-015- 5783-6.
Xiangju, Ch. Yongcan, C. Lin, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
Zare, K.H. Doering, J.C. (2012), “Inception Point of Air Entrainment and Training Wall Characteristics of Baffles and Sills on Stepped Spillways”. DOI: 10.1061/(ASCE)HY .1943-7900.0000630.
Zhan, J. Zhang, J. Gong, Y. (2016), “Numerical investigation of air-entrainment in skimming flow over stepped spillways”. Theoretical and Applied Mechanics Letters. Volume 6. Pages 139–142.
Zhang, G. Chanson, H. (2016), Hydraulics of the developing flow region of stepped spillways. II: Pressure and velocity fields. Journal of Hydraulic Engineering, 142(7).
Zhenwei, M. Zhiyan, Zh. Tao, Zh. (2012), “Numerical Simulation of 3-D Flow Field of Spillway based on VOF Method”. Procedia Engineering, 28, 808-812.
Zhi-yong, D. Hun-wei, L.J. (2006), “Numerical simulation of skimming flow over mild stepped channel”. Journal of Hydrodynamics, Ser. B, 18(3) 367-371.
ZhongDong, Q. XiaoQing, H. WenXin, H. António, A. (2009), “Numerical simulation and analysis of water flow over stepped spillways”. Science in China Series E: Technological Sciences, 52(7) 1958-1965.
WU Jingxia1 , ZHANG Chunjin2,3 (1. Xi’an Water Conservancy Survey Design Institute, Xi’an 710054, Shaanxi, China; 2. Key Laboratory of Yellow River Sediment Research, M. W. R. , Yellow River Institute of Hydraulic Research, Zhengzhou 450003, Henan, China; 3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, Jiangsu, China)
수치 시뮬레이션을 통해 오지 여수로 터널의 수리적 특성 연구의 타당성을 탐색하기 위해 황하 Xiaolangdi 수질 관리 프로젝트의 2번 오지 여수로 터널을 연구 대상으로 취한 다음 오지의 수리 특성 설계 및 점검 홍수 수준 조건에서 여수로 터널은 RNG k-ε 난류 모델을 사용하여 배출 용량, 터널 크라운 잔류 공간, 단면 유속, 압전 수두, 유동 캐비테이션 수, 제트 흐름 범위 및 1 ∶ 40의 일반 수리 모델과 결합된 세굴 구덩이 깊이, 시뮬레이션 값과 실험 값 모두 비교됩니다.
연구결과 모의실험값이 실험값과 일치하여 오지 여수로터널의 수리적 특성을 수치모사를 통해 탐색할 수 있음을 확인하였다. 여수로터널 내부의 흐름은 안정적이고 터널 크라운 잔류 공간은 개방 흐름과 완전 흐름의 교대 흐름 패턴이 없는 25% 이상입니다.
체크 홍수 수위에서 시뮬레이션 값과 유량 계수의 실험 값은 모두 설계에서보다 높으므로 배출 용량은 홍수 제어 관련 설계 요구 사항을 충족할 수 있습니다. 오지 단면과 플립 단면의 유동 캐비테이션 수는 캐비테이션 손상이 발생할 가능성이 작기 때문에 캐비테이션 침식을 줄이기 위한 적절한 적절한 조치가 채택될 필요가 있습니다.
유압 모델의 고르지 않은 표면에 부압이 발생하면 표면 구조에 관련주의를 기울일 필요가 있습니다. 연구 결과는 여수로 터널의 설계 및 건설에 대한 관련 참고 및 이론적 근거를 제공할 수 있습니다.
Keywords
Xiaolangdi Water Control Project; ogee spillway tunnel; simulative calculation; hydraulic characteristics; turbulent model
Fig. 1 Layout of spillway tunnelFig. 4 Hydraulic modelingFig. 6 Sectional surface profile distributionsFig. 7 Comparison between simulated results and experimental
results for flow velocity of section-cross
参考文献(References)
[1] 谢省宗, 吴一红, 陈文学. 我国高坝泄洪消能新技术的研究和创 新[J]. 水利学报, 2016, 47(3): 324-336. XIE Shengzong, WU Yihong, CHEN Wenxue. New technology and innovation on flood discharge and energy dissipation of high dams in China [J]. Journal of Hydraulic Engineering, 2016, 47( 3): 324- 336. [2] 刘嘉夫, 齐昕. 龙抬头水电站泄洪洞水力特性研究[ J]. 水利水 电技术, 2019, 50(2): 139-143. LIU Jiafu, QI Xin. Study on hydraulic characteristics of ogee spillway tunnel of hydropower station [ J]. Water Resources and Hydropower Engineering, 2019, 50(2): 139-143. [3] 范灵, 张宏伟, 刘之平, 等. 明流泄洪洞布置形式对水力特性影 响的数值研究[J]. 水力发电学报, 2009, 28(3): 126-131. FAN Ling, ZHANG Hongwei, LIU Zhiping, et al. Numerical study on hydraulic characteristic of free surface flow in spillway tunnel with different configuration [ J ]. Journal of Hydroelectric Engineering, 2009, 28(3): 126-131. [4] 张春晋, 李永业, 孙西欢. 明流泄洪洞水力特性的二维数值模拟 与试验研究[J]. 长江科学院院报, 2016, 33(1): 54-60. ZHANG Chunjin, LI Yongye, SUN Xihuan. Two-dimensional numerical simulation and experimental research of hydraulic characteristics in spillway tunnel with free water surface [ J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(1): 54-60. [5] 徐国宾, 章环境, 刘昉, 等. 龙抬头泄洪洞水力特性的数值模拟 [J]. 长江科学院院报, 2015, 32(1): 84-87. XU Guobin, ZHANG Huanjing, LIU Fang, et al. Numerical simulation on hydraulic characteristic of high head ogee spillway tunnel [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(1): 84-87. [6] 陈瑞华, 杨吉健, 马麟, 等. 小湾水电站泄洪洞洞身数值模拟 [J]. 排灌机械工程学报, 2017, 35(6): 488-494. CHEN Ruihua, YANG Jijian, MA Lin, et al. Numerical simulation of tunnel of Xiaowan Hydropower Station [ J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(6): 488-494. [7] 翟保林, 刘亚坤. 高水头明流泄洪洞三维数值模拟[ J]. 水利与 建筑工程学报, 2017, 15(3): 31-34. ZHAI Baolin, LIU Yakun. 3-D Numerical simulation of high water head spillway tunnel with free surface [ J ]. Journal of Water Resources and Architectural Engineering, 2017, 15(3): 31-34. [8] 姜 攀, 尹进步, 何武全, 等. 有压泄洪洞弯道压力特性数值模拟 与试验研究[J]. 水力发电, 2016, 42(2): 49-53. JIANG Pan, YIN Jinbu, HE Wuquan, et al. Numerical simulation and experimental research on pressure characteristic of curved section of pressure spillway tunnel [J]. Water Power, 2016, 42(2): 49-53. [9] 邓 军, 许唯临, 雷军, 等. 高水头岸边泄洪洞水力特性的数值模 拟[J]. 水利学报, 2005(10): 1209-1212. DENG Jun, XU Weilin, LEI Jun, et al. Numerical simulation of hydraulic characteristics of high head spillway tunnel [J]. Journal of Hydraulic Engineering, 2005(10): 1209-1212. [10] 史晓薇, 王长新, 李琳. 高流速泄洪隧洞水力特性的三维数值模 拟[J]. 新疆农业大学学报, 2015, 38(6): 495-501. SHI Xiaowei, WANG Changxin, LI Lin. Three dimensional numerical simulation of hydraulic characteristics of spillway tunnel with high flow velocity [ J]. Journal of Xinjiang Agricultural University, 2015, 38 (6): 495-501. [11] 叶茂, 伍平, 王波, 等. 泄洪洞掺气水流的数值模拟研究[J]. 水 力发电学报, 2014, 33(4): 105-110. YE Mao, WU Ping, WANG Bo, et al. Numerical simulation of aerated flow in hydraulic tunnel [ J ]. Journal of Hydroelectric Engineering, 2014, 33(4): 105-110. [12] 胡涛, 王均星, 杜少磊. 大流量泄洪洞掺气坎水力特性数值模拟 [J]. 武汉大学学报(工学版), 2014, 47(5): 615-620. HU Tao, WANG Junxing, DU Shaolei. Numerical simulation of hydraulic characteristics of aerators in spillway tunnel with large discharge [J]. Engineering Journal of Wuhan University, 2014, 47 (5): 615-620. [13] 孙鹏飞, 姜哲, 崔维成, 等. 基于 CFD 的全海深载人潜水器直航 阻力性能研究[J]. 中国造船, 2019, 60(2): 77-87. SUN Pengfei, JIANG Zhe, CUI Weicheng, et al. Numerical simulation of a full ocean depth manned submersible based on CFD method [J]. Shipbuilding of China, 2019, 60(2): 77-87. [14] 宛鹏翔, 范俊, 韩省思, 等. 冲击射流流动换热超大涡模拟研究 [J]. 推进技术, 2020, 41(10): 2237-2247. WAN Pengxiang, FAN Jun, HAN Xingsi, et al. Very-large eddy simulation of impinging jet flow and heat transfer [ J]. Journal of Propulsion Technology, 2020, 41(10): 2237-2247. [15] 李国杰, 黄萌, 陈斌. 基于 PISO 算法的非结构化网格 VOF 算法 [J]. 工程热物理学报, 2013, 34(3): 476-479. LI Guojie, HUANG Meng, CHEN Bing. VOF method on unstructured grid using PISO algorithm [ J]. Journal of Engineering Thermophysics, 2013, 34(3): 476-479. [16] 董玮, 何庆南, 梁武科, 等. 双蜗壳离心泵泵腔轴向宽度与流动
DONG Wei, HE Qingnan, LIANG Wuke, et al. Relationship between axial width and flow characteristics of pump chamber in double volute centrifugal pump [ J ]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1322-1329. [17] 陈恺, 张震宇, 王同光, 等. 基于 CFD 的水平轴风力机叶尖小翼 增功研究[J]. 太阳能学报, 2021, 42(1): 272-278. CHEN Kai, ZHANG Zhenyu, WANG Tongguang, et al. CFD-Based power enhancement of winglets for horizontal-axis wind turbines [ J]. Acta Energiae Solaris Sinica, 2021, 42(1): 272-278. [18] 张志君, 金柱男, 辛相锦, 等. 基于 VOF 方法的湿式离合器润滑 油路 CFD 数值模拟[J]. 东北大学学报(自然科学版), 2020, 41 (5): 716-722. ZHANG Zhijun, JIN Zhunan, XIN Xiangjin, et al. VOF method based CFD numerical simulation for wet clutch lubricating oil passage [ J]. Journal of Northeastern University (Natural Science), 2020, 41 (5): 716-722. [19] 罗永钦, 刁明军, 何大明, 等. 高坝明流泄洪洞掺气减蚀三维数 值模拟分析[J]. 水科学进展, 2012, 23(1): 110-116. LUO Yongqin, DIAO Mingjun, HE Daming, et al. Numerical simulation of aeration and cavitation in high dam spillway tunnels [ J]. Advances in Water Science, 2012, 23(1): 110-116. [20] 许文海, 党彦, 李国栋, 等. 双洞式溢洪洞三维流动的数值模拟 [J]. 水力发电学报, 2007(1): 56-60. XU Wenhai, DANG Yan, LI Guodong, et al. Three dimensional numerical simulation of the bi-tunnel spillway flow [ J]. Journal of Hydroelectric Engineering, 2007(1): 56-60. [21] 李爱华, 王腾, 刘沛清. 溪洛渡坝区岩石河床冲刷过程数值模拟 [J]. 水力发电学报, 2012, 31(5): 154-158. LI Aihua, WANG Teng, LIU Peiqing. Numerical simulation of rock bed scour behind the dam of Xiluodu hydropower station [J]. Journal of Hydroelectric Engineering, 2012, 31(5): 154-15
Mahdi Feizbahr,1 Navid Tonekaboni,2Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4Show moreAcademic Editor: Mohammad YazdiReceived08 Apr 2021Revised18 Jun 2021Accepted17 Jul 2021Published11 Aug 2021
Abstract
Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.
강의 식생은 거칠기를 증가시키고 평균 유속을 감소시키며, 유속 에너지를 감소시키고 강의 단면에서 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받으므로 홍수시 유동저항에 큰 영향을 미칩니다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건 및 식물에 따라 다르므로 모델은 유속, 흐름 깊이 및 운하를 따라 식생 유형의 영향을 고려하여 현재 속도를 시뮬레이션해야 합니다. 근관의 거칠기의 영향을 조사하기 위해 총 48개의 모델이 시뮬레이션되었습니다. 결과는 유속을 높임으로써 유속을 감소시키는 식생의 영향은 무시할 수 있는 반면, 해류가 더 낮은 유속일 때 유속을 감소시키는 식생의 영향은 분명히 상당함을 나타냈다.
1. Introduction
Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [1–14]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [15–27]. Consequently, it is necessary to study the effects of the passive factors on the active domain [28–36]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [38–41].
One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [43–45]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [47, 48].
Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity is another form of current resistance. The reason for using the ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].
To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].
The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where n, f, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed, = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:
Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.
On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:
By using equation (6), equation (5) is converted as follows:
Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].
Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [45, 55].
One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [47, 57, 58] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [45, 59–61]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [49, 63–66] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.
FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where are mass accelerations in the directions x, y, z and are viscosity accelerations in the directions x, y, z and are obtained from the following equations:
Shear stresses in equation (11) are obtained from the following equations:
The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.
Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.
Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.
In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).Table 1The studied models.
The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After seconds, this model reached a convergence accuracy of .
Figure 1The simulated model and its boundary conditions.
Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.
48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.
Any control and simulation system has some inputs that we should determine to test any technology [70–77]. Determination and true implementation of such parameters is one of the key steps of any simulation [23, 78–81] and computing procedure [82–86]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.
Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [87, 88]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).
Figure 2Modeling the plant with cylindrical tubes at the bottom of the canal.
Figure 3Velocity profiles in positions 2 and 5.
The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.
The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.
The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.
2. Modeling Results
After analyzing the models, the results were shown in graphs (Figures 4–14 ). The total number of experiments in this study was 48 due to the limitations of modeling. (a) (b) (c) (d) (a) (b) (c) (d)Figure 4Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.
Figure 5Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.
Figure 6Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.
Figure 7Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.
Figure 8Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second. (a) (b) (c) (d) (a) (b) (c) (d)Figure 9Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.
Figure 10Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.
Figure 11Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.
Figure 12Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.
Figure 13Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second. (a) (b) (c) (d) (a) (b) (c) (d)Figure 14Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.
To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.
According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.
According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.
According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.
According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5–10, which can be justified by increasing the speed and, of course, increasing the Froude number.
With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 5–8 and 10, 11), which can be justified by increasing the speed and, of course, increasing the Froude number.
According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.
According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.
Figure 15Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.
According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 16Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.
According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 17Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.
According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.
Figure 18Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.
According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds. (a) (b) (c) (a) (b) (c)Figure 19Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.
According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed. (a) (b) (c) (a) (b) (c)Figure 20Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.
According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [2, 7, 8, 15, 18, 89–94]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [95–99]. (a) (b) (c) (a) (b) (c)Figure 21Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.
3. Conclusion
The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.
Nomenclature
n:
Manning’s roughness coefficient
C:
Chézy roughness coefficient
f:
Darcy–Weisbach coefficient
V:
Flow velocity
R:
Hydraulic radius
g:
Gravitational acceleration
y:
Flow depth
Ks:
Bed roughness
A:
Constant coefficient
:
Reynolds number
∂y/∂x:
Depth of water change
S0:
Slope of the canal floor
Sf:
Slope of energy line
Fr:
Froude number
D:
Characteristic length of the canal
G:
Mass acceleration
:
Shear stresses.
Data Availability
All data are included within the paper.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.
References
H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.
CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.
VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.
모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.
Keywords
CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number
Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a review. J. Hydraulic Res. 35 (1), 81e98. Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468. Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647. Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (2010), 111e133. Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using
OpenFOAM. J. Hydroinformatics 17 (4), 662e678. Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees (Paris, France). Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H., Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C., Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013. Characterising performance of environmental models. Environ. Model. Softw. 40, 1e20. Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop Impact: Numerical Simulations and Theoretical Modeling. Imperial College of Science, Technology and Medicine, UK. Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s eance. Le Remou et sur la Propagation des Ondes, 12, pp. 21e112. Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD problems. Elsevier Appl. Numer. Math. 26 (1), 135e151. Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environ. Model. Softw. 33, 1e22. Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ. Fluid Mech. 11 (3), 263e288. Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7. Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in airewater flows. Exp. fluids 48 (1), 17e31. Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid Mech. 286, 1e23. Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759. Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics Division. Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J. heat fluid flow 18 (1), 45e54. Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329. Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress. Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign. Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752. Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130 (7), 1e4. Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909. Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press. Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/ Fluids 26.3(2007) 367e384. Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In: Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor & Francis Group, ABalkema Book. Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44. Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838. Can. J. Civ. Eng. 37 (1), 135e138. Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended load. Taylor & Francis J. Hydraulic Res. 32, 87e101. Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144. Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607. Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis J. Hydraulic Res. 51 (3), 223e243. Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media. Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface. Environ. Model. Softw. 13 (3), 247e255. Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New York. Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic calculations. Elsevier J. Comput. Phys. 4 (1), 97e117. De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173. Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int. Conf. Hydroinformatics 1, 63e70. Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep. N. 81, 26429. Fawer, C., 1937. Etude de quelquesecoulements permanents a filets courbes (‘Study of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French). Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3), 217e238. Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a hydraulic jump. J. Hydraulic Res. 48 (4), 504e508. Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2), 101e113. Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer. Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic Res. 27 (5), 565e583. Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal modelling code in fluvial environments. Environ. Model. Softw. 26 (12), 1685e1695. Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1. Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201e225. Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D. Nonlinear Phenom. 12 (1), 396e407. Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load discharge formulations for transient flow in 1D and 2D situations. J. Hydroinformatics 15 (4). Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations. Elsevier. Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG keε turbulence model. Atmos. Environ. 38 (19), 3039e3048. Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158. Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520. Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. : http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February 27th 2014. Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218. Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat Mass Transf. 47 (8), 911e919. Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods 2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58. Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385. McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional Gas Turbine Cascades. Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of Hydraulic Research. Taylor &Francis 37 (4), 541e558. Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers. Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159. Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685. Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154. Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids 11, 1581e1595. Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28-July 2. 1976 Twente University, Enschede, pp. 330e340. Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves: laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97. Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman Institute for Fluid Dynamics. Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70. OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free Software Foundation Inc. Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water resources technical publication. Eng. Monogr. 25. Pope, S.B., 2000. Turbulent Flows. Cambridge university press. Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215. Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow. Cambridge University Press. Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91 (HY5), 107e132. Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps. Taylor & Francis J. Hydraulic Res. 10 (4), 409e430. Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a hydraulic jump (original title, in Spanish: “Simulacioncomputacional del resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672. Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966. Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at High Phase Fractions. Imperial College of Science, Technology and Medicine, UK. Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec application aux crues des riviereset a l’introduction de mareesdansleurslits. Comptesrendus des seances de l’Academie des Sciences. Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer. Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21 (3), 252e263. Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4. Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study. University of Stavanger, Norway. Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces. Imperial College of Science, Technology and Medicine, UK. Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/ 10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water. Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands). Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys 23 (3), 263e275. Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76. Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16 (DOI: 10.1007/s00348-014-1847-9). Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/ s00348-014-1775-8. Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE) HY.1943-7900.0001010. Paper 04015010, 10 pages. Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The Netherlands. Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620e631. Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA). Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www. sciencedirect.com/science/article/pii/S0301932215000336. Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands. Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520. Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics code. Tech. Rep. 44 (92), 35e35. Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environ. fluid Mech. 13 (2), 189e204. Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble velocities in free hydraulic jumps for small to intermediate froude numbers. J. Hydraulic Eng.
Hyung Ju Yoo1 Sung Sik Joo2 Beom Jae Kwon3 Seung Oh Lee4* 유 형주1 주 성식2 권 범재3 이 승오4* 1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University2Director, Water Resources & Environment Department, HECOREA3Director, Water Resources Department, ISAN4Professor, Dept. of Civil & Environmental Engineering, Hongik University 1홍익대학교 건설환경공학과 박사과정 2㈜헥코리아 수자원환경사업부 이사 3㈜이산 수자원부 이사 4홍익대학교 건설환경공학과 교수*Corresponding Author
ABSTRACT
최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다.
그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다.
이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다.
수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다.
따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다.
이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다.
그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.
키워드
보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력
Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.KeywordsAuxiliary spillway FLOW-3D Numerical simulation Revetment stability Shear stress
1. 서 론
최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.
기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006; Kim, 2007; Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.
그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.
2. 본 론
2.1 이론적 배경
2.1.1 3차원 수치모형의 기본이론
FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.
2.1.2 유동해석의 지배방정식
1) 연속 방정식(Continuity Equation)
FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1), (2)와 같다.
(1)
∇·v=0
(2)
∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.
2) 운동량 방정식(Momentum Equation)
각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3), (4), (5)와 같다.
여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.
2.1.3 소류력 산정
호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6), (7)과 같다.
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.
2) Manning 조도계수를 고려한 공식
Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.
(7)
τ=γn2V2R1/3
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.
FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.
2.2 하천호안 설계기준
하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.
Table 1.
Standard of Permissible Velocity and Shear on Revetment
Country (Reference)
Material
Permissible velocity (Vp, m/s)
Permissible Shear (τp, kN/m2)
Korea
River Construction Design Practice Guidelines (MOLIT, 2016)
Vegetated
5.0
0.50
Stone
5.0
0.80
USA
ASTM D’6460
Vegetated
6.1
0.81
Unvegetated
5.0
0.28
JAPAN
Dynamic Design Method of Revetment
–
5.0
–
2.3. 보조여수로 운영에 따른 하류하천 영향 분석
2.3.1 모형의 구축 및 경계조건
본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2, Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).
수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.
(8)
n=ks1/68.1g1/2
여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.
시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.
Table 2.
Mesh sizes and numerical conditions
Mesh
Numbers
49,102,500 EA
Increment (m)
Direction
Existing Spillway
Auxiliary Spillway
∆X
0.99 ~ 4.30
1.00 ~ 4.30
∆Y
0.99 ~ 8.16
1.00 ~ 5.90
∆Z
0.50 ~ 1.22
0.50 ~ 2.00
Boundary Conditions
Xmin / Ymax
Inflow / Water Surface Elevation
Xmax, Ymin, Zmin / Zmax
Wall / Symmetry
Turbulence Model
RNG model
Table 3.
Case of numerical simulation (Qp : Design flood discharge)
Case
Existing Spillway (Qe, m3/s)
Auxiliary Spillway (Qa, m3/s)
Remarks
1
Qp
0
Reference case
2
0
Qp
3
0
0.58Qp
Review of discharge capacity on auxiliary spillway
4
0
0.48Qp
5
0
0.45Qp
6
0
0.32Qp
7
0.50Qp
0.50Qp
Determination of optimal division ratio on Spillways
8
0.61Qp
0.39Qp
9
0.39Qp
0.61Qp
10
0.42Qp
0.58Qp
11
0.32Qp
0.45Qp
Determination of permissible division on Spillways
12
0.35Qp
0.48Qp
13
0.38Qp
0.53Qp
14
0.41Qp
0.56Qp
Table 4.
Roughness coefficient and roughness height
Criteria
Roughness coefficient (n)
Roughness height (ks, m)
Structure (Concrete)
0.014
0.00061
River
0.033
0.10496
Fig. 1
Layout of spillway and river in this study
2.3.2 보조 여수로의 방류능 검토
본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.
보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.
하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.
Fig. 2
Region of interest in this study
Fig. 3
Maximum velocity and location of Vmax according to Qa
Fig. 4
Maximum shear according to Qa
Fig. 5
Maximum water surface elevation and location of ηmax according to Qa
Table 5.
Numerical results for each cases (Case 1 ~ Case 6)
Case
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
1 (Qa = 0)
9.15
0.54
No Good
No Good
2 (Qa = Qp)
8.87
0.56
No Good
No Good
3 (Qa = 0.58Qp)
6.53
0.40
No Good
No Good
4 (Qa = 0.48Qp)
6.22
0.36
No Good
No Good
5 (Qa = 0.45Qp)
4.22
0.12
Accpet
Accpet
6 (Qa = 0.32Qp)
4.04
0.14
Accpet
Accpet
2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토
기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).
따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.
Fig. 6
Maximum velocity on section 1 & 2 according to Qa
Fig. 7
Maximum shear on section 1 & 2 according to Qa
Fig. 8
Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)
Fig. 9
Maximum water surface elevation on section 1 & 2 according to Qa
Table 6.
Numerical results for each cases (Case 7 ~ Case 10)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
7 Qe : 0.50QpQa : 0.50Qp
8.10
6.23
0.64
0.30
No Good
No Good
No Good
No Good
8 Qe : 0.61QpQa : 0.39Qp
8.88
6.41
0.61
0.34
No Good
No Good
No Good
No Good
9 Qe : 0.39QpQa : 0.61Qp
6.22
7.33
0.24
0.35
No Good
No Good
Accept
No Good
10 Qe : 0.42QpQa : 0.58Qp
6.39
4.79
0.30
0.19
No Good
Accept
No Good
Accept
2.3.4 방류량 배분 비율의 허용 방류량 검토
계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).
호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10, Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).
Table 7.
Numerical results for each cases (Case 11 ~ Case 14)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
11 Qe : 0.32QpQa : 0.45Qp
3.63
4.53
0.09
0.26
Accept
Accept
Accept
Accept
12 Qe : 0.35QpQa : 0.48Qp
5.74
5.18
0.23
0.22
No Good
No Good
Accept
Accept
13 Qe : 0.38QpQa : 0.53Qp
6.70
4.21
0.28
0.11
No Good
Accept
Accept
Accept
14 Qe : 0.41QpQa : 0.56Qp
6.54
5.24
0.28
0.24
No Good
No Good
Accept
Accept
Fig. 10
Maximum velocity on section 1 & 2 according to total outflow
Fig. 11
Maximum shear on section 1 & 2 according to total outflow
Fig. 12
Maximum water surface elevation on section 1 & 2 according to total outflow
3. 결 론
본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.
수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.
본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.
Acknowledgements
본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.
References
1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA. 2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York. 3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM. 4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731. 5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608. 6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81. 7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537 8 K-water (2021). Regulations of Dam Management. Daejeon: K-water. 9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT. 10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593 11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279 12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT. 13 MOLIT (2019). Standards of River Design. Sejong: MOLIT. 14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS. 15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7. 16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230 17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112
Korean References Translated from the English
1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부. 2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실. 3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부. 4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부. 5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608. 6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537 7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81. 8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청. 9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731. 10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.
Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션
by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater2021, 13(5), 674; https://doi.org/10.3390/w13050674
Abstract
The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.
수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.
이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.
내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.
Introduction
격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].
베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.
Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.
Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.
그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.
Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.
자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.
Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.
Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.
Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.
-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jump
CL = 9 CW = 0.295 CH = 0.32
-Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)
-Smooth and rough beds-Rectangular channel-Free and submerged jump
CL = 4.50 CW = 0.75 CH = 0.70
-Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)
1.70–9.30
-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
Present study
Rectangular channel Smooth and rough beds Submerged jump
CL = 4.50 CW = 0.75 CH = 0.70
-Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)
1.70–9.30
-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss
이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.
베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.
다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.
CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].
본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.
Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
Table 2. Effective parameters in the numerical model.
Bed Type
Q (l/s)
I (cm)
T (cm)
d (cm)
y1 (cm)
y4 (cm)
Fr1= u1/(gy1)0.5
S
Re1= (u1y1)/υ
Smooth
30, 45
–
–
5
1.62–3.83
9.64–32.10
1.7–9.3
0.26–0.50
39,884–59,825
Triangular macroroughnesses
30, 45
4, 8, 12, 16, 20
4
5
1.62–3.84
6.82–30.08
1.7–9.3
0.21–0.44
39,884–59,825
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).
Models
Bed Type
Q (l/s)
d (cm)
y1 (cm)
u1 (m/s)
Fr1
Numerical and Physical
Smooth
45
5
1.62–3.83
1.04–3.70
1.7–9.3
T/I = 0.5
45
5
1.61–3.83
1.05–3.71
1.7–9.3
T/I = 0.25
45
5
1.60–3.84
1.04–3.71
1.7–9.3
Figure 3. The boundary conditions governing the simulations.Figure 4. Sketch of mesh setup.
Table 4. Characteristics of the computational grids.
Mesh
Nested Block Cell Size (cm)
Containing Block Cell Size (cm)
1
0.55
1.10
2
0.65
1.30
3
0.85
1.70
Table 5. The numerical results of mesh convergence analysis.
Parameters
Amounts
fs1 (-)
7.15
fs2 (-)
6.88
fs3 (-)
6.19
K (-)
5.61
E32 (%)
10.02
E21 (%)
3.77
GCI21 (%)
3.03
GCI32 (%)
3.57
GCI32/rp GCI21
0.98
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
Conclusions
본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.
References
White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci.1979, 19, 81–128. [Google Scholar] [CrossRef]
McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids2012, 34, 35–46. [Google Scholar] [CrossRef]
Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A2013, 94, 83–87. [Google Scholar] [CrossRef]
Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech.2016, 797, 60–94. [Google Scholar] [CrossRef]
Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc.2016, 108, 425–432. [Google Scholar] [CrossRef]
Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng.2017, 42, 3751–3760. [Google Scholar] [CrossRef]
De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech.2018, 18, 849–870. [Google Scholar] [CrossRef]
Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng.2002, 128, 656–663. [Google Scholar] [CrossRef]
Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res.2009, 3, 109–117. [Google Scholar] [CrossRef]
Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci.2009, 2, 436–445. [Google Scholar] [CrossRef]
Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci.2007, 7, 1164–1169. [Google Scholar] [CrossRef]
Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng.2017, 64, 396–407. [Google Scholar] [CrossRef]
Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform.2020, 22, 1554–1572. [Google Scholar] [CrossRef]
Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS2010, 10, 37–47. [Google Scholar]
Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng.2013, 40, 841–847. [Google Scholar] [CrossRef]
Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J.2014, 5, 1033–1042. [Google Scholar] [CrossRef]
Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water2019, 11, 28. [Google Scholar] [CrossRef]
Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng.2016, 142, 04015037. [Google Scholar] [CrossRef]
Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng.2017, 143, 04016091. [Google Scholar] [CrossRef]
Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div.1965, 91, 107–132. [Google Scholar] [CrossRef]
Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res.1990, 28, 437–460. [Google Scholar] [CrossRef]
Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.1981, 39, 201–225. [Google Scholar] [CrossRef]
Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng.2020, 1–9. [Google Scholar] [CrossRef]
Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water2019, 11, 235. [Google Scholar] [CrossRef]
Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol.2016, 34, 186–190. [Google Scholar]
Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res.2008, 46, 739–752. [Google Scholar] [CrossRef]
Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw.2016, 80, 322–335. [Google Scholar] [CrossRef]
Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids2020, 5, 182. [Google Scholar] [CrossRef]
Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā2019, 44, 216. [Google Scholar] [CrossRef]
Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water2020, 12, 1992. [Google Scholar] [CrossRef]
Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput.1986, 1, 3–51. [Google Scholar] [CrossRef] [PubMed]
Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water2016, 8, 545. [Google Scholar] [CrossRef]
Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour.2020, 4, 425–436. [Google Scholar] [CrossRef]
Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev.2009, 62. [Google Scholar] [CrossRef]
Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water2021, 13, 14. [Google Scholar] [CrossRef]
Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng.2008, 130, 0780011–0780013. [Google Scholar]
Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis.2006, 9, 57–68. [Google Scholar] [CrossRef]
Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math.2020, 1–13. [Google Scholar] [CrossRef]
Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res.2012, 27, 100–111. [Google Scholar] [CrossRef]
Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng.2015, 105, 160–175. [Google Scholar] [CrossRef]
Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng.2014, 39, 6969–6981. [Google Scholar] [CrossRef]
Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng.1996, 122, 540–548. [Google Scholar] [CrossRef]
De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res.2017, 15, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode
Abstract
국내․외에서 다양한 형태의 석유 대체에너지는 온실효과 가스를 배출하지 않는 청정에너지로 개발되고 있으며, 특히 해상풍력은 풍력 자원이 풍부하고 육상보다 풍력 감소가 상대적으로 작아 다양하게 연구되고 있다. 본 연구에서는 해상 풍력기초의 세굴현상을 분석하기 위해서 Flow-3D 모형을 이용하여 모노 파일과 삼각대 파일 기초에 대하여 수치모의를 수행 하였다. 직경이 다른(D=5.0 m, d=1.69 m) 모노 파일 형식과 직경이 동일한(D=5.0 m) 모노파일에 대하여 세굴현상을 평가하 였다. 수치해석 결과, 동일한 직경을 가진 모노파일에서 하강류가 증가되었으며, 최대세굴심은 약 1.7배 이상 발생하였다. 삼각대 파일에 대하여 관측유속과 극치파랑 조건을 상류경계조건으로 각각 적용한 후 세굴현상을 평가하였다. 극치파랑조건 을 적용한 경우 최대 세굴심은 약 1.3배 정도 깊게 발생하였다. LES 모형을 적용하였을 경우 세굴심은 평형상태에 도달한 반면, RNG 모형은 해석영역 내 전반적으로 세굴현상이 발생하였으며, 세굴심은 평형상태에 도달하지 않았다. 해상풍 력기초에 대하여 세굴현상을 평가하기 위해서 수치모형 적용시 파랑조건 및 LES 난류모형을 적용하는 것이 타당할 것으로 판단된다.
Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.
지구환경문제에 대한 관심이 증가되고 있는 현실에 서, 풍력발전은 석유 대체에너지로서 뿐만 아니라, 이산 화탄소 등 온실효과 가스를 배출하지 않는 청청에너지의 발전방식으로 국내․외에서 개발이 증가되고 있다. 특 히, 해상풍력은 풍력 자원이 풍부하고, 육상보다 풍력 감 소가 상대적으로 작아 전기 출력량이 크기 때문에 신재 생에너지원 확보 차원에서 국내․외 해상풍력단지 사업 계획이 수립되어 추진되고 있는 실정이다. Fig. 1은 세계 최대 네델란드 해상풍력단지인 Nysted Offshore Wind Farm의 사진이다.
Fig. 1. Nysted Offshore Wind Farm
하천 내 교각 주변에서 세굴 현상은 발생하며 교각의 안정성 측면에서 세굴보호공을 설치한다. 해양에서 해상 풍력발전 기초를 설치할 경우 구조물로 인해 교란된 흐 름은 세굴을 유발시킨다. 따라서 해상풍력기초를 계획할 경우 안정성 측면에서 세굴현상을 검토할 필요가 있다. 특히 하천의 경우 교각 세굴보호공에 대하여 다양한 공 법들이 설계에 반영되고 있으나, 해양구조물 기초에 대 한 연구는 미흡한 상태이다.
이에 본 연구에서는 수치모 형을 이용하여 해상풍력기초에 대한 세굴현상을 분석하 였다. 수치모형을 이용하여 세굴현상을 예측함에 있어서 본 연구와 연관된 연구동향으로는 양원준과 최성욱(2002) 은 FLOW-3D 모형을 이용하여 세굴영향 평가를 함에 있어서 난류모형을 비교․분석 하였다. 전반적으로 수리 모형실험 자료와 좀 더 잘 일치하는 난류모형은 LES 모 형으로 분석되었다[1]. 여창건 등(2010)은 세굴영향 평 가를 위해 FLOW-3D 모형을 이용할 경우 세굴에 미치 는 중요한 인자에 대하여 매개변수 민감도분석을 수행하 였다.
검토결과, 세굴에 민감한 변수는 유사의 입경, 세 굴조절계수, 안식각 등의 순서로 민감한 것으로 검토되 었다[2]. 오명학 등(2012)은 해상풍력발전기초 시설 주 변에서 FLOW-3D 모형을 이용하여 세굴영향 검토를 수 행하였다. 오명학 등이 검토한 지역은 본 연구 지역과 동 일한 지역이나 경계조건 및 세굴평가에서 가장 중요한 평균입경이 다르다. 세굴검토를 위해 수치모형에 입력한 경계조건은 대조기 창조 최강유속 1.0 m/s을 상류경계조 건으로, 평균입경은 0.0353 mm를 적용하였다. 이와 같은 조건에서 모노파일에서 발생하는 최대세굴심은 약 5.24 m로 분석되었다[3].
Stahlmann과 Schlurmann(2010)은 본 과업에서 적용할 해상풍력기초와 유사한 기초를 가진 구조물에 대하여 수리모형실험을 수행하였다. 연구대상 지역은 독일 해안가에 의한 해상풍력단지에 대하여 삼각 대 형식의 해상풍력기초에 대하여 1/40과 1/12 축척으로 각각 수리모형실험을 수행하였다. 1/40과 1/12 축척에 따라서 세굴분포양상 및 최대세굴심의 위치가 다르게 관 측되었다[4].
본 연구에서는 3차원 수치모형인 Flow-3D를 이용하 여 세굴현상을 평가함에 있어서, 파일 형상 변화, 경계조 건이 다른 경우 및 서로 다른 난류모형을 적용하였을 경 우에 대하여 수치해석이 국부세굴 현상에 미치는 영향을 검토하였다. 이와 같은 연구는 향후 수치모형을 이용하 여 해상풍력발전 기초에 대하여 세굴현상을 평가함에 있 어서 기초 자료로 활용될 수 있을 것으로 판단된다.
Fig. 2. Shape of PileFig. 3. Boundary Area and Grid of Flow-3DFig. 4. Scour around MonopileFig. 5. Velocity Development around MonopileFig. 6. Flow Phenomenon and Scour around Tripod Pile FoundationFig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)
결론
본 연구에서는 해상풍력기초 형식이 모노파일과 삼각 대 파일일 경우 세굴현상을 평가하기 위해서 3차원 수치 모형인 Flow-3D를 이용하였다. 직경이 서로 다른(D=5.0 m, d=1.69 m) 모노파일과 직경이 동일한(D=5.0 m) 모노파일에 대하여 LES 모형 을 적용하여 세굴현상을 평가하였다. 서로 다른 직경을 가진 모노파일 주변에서 최대 세굴심은 4.13 m, 동일한 직경을 가진 모노파일 주변에서는 7.13 m의 최대 세굴 심이 발생하였다. 또한 동일한 직경을 가진 파일에서 하 강류가 증가되어 최대세굴심이 증가된 것으로 분석되었 다. 수치해석 결과, 세굴에 대한 기초의 안정성 측면에서 서로 다른 직경을 가진 기초 형식이 유리한 것으로 분석 되었다. 수치모형을 이용하여 세굴현상을 평가함에 있어서 경 계조건 및 난류모형의 선정은 중요하다. 본 연구에서는 서로 다른 직경을 가진 삼각대 형식의 해상풍력기초에 대하여 상류경계조건으로 관측유속과 극치파랑조건을 각각 적용하였을 경우 세굴현상을 평가하였다. 극치파랑 조건을 적용하였을 경우가 최대세굴심이 약 1.3배 정도 깊게 발생하였다. 또한 극치파랑조건에서 RNG 과 LES 모형을 적용하여 세굴현상을 평가하였다. LES 모 형을 적용하였을 경우 파일 주변에서 세굴현상이 발생하 였으며, 세굴심은 일정시간이 경과된 후에는 증가되지 않는 평형상태에 도달하였다. 그러나 RNG 모형을 적용한 경우는 평형상태에 도달하지 않고 계속해서 세굴 이 진행되어 세굴심을 평가할 수 없었다. 현재 해양구조 물 기초에 대한 세굴현상 연구는 미흡한 상태로 하천에 서 교각 세굴현상을 검토하기 위해서 적용되는 경계조건 을 적용하기보다는 해상 조건인 파랑조건을 적용하여 검 토하는 것이 기초의 안정성 측면에서 유리할 것으로 판 단된다. 또한 정확한 세굴현상을 예측하기 위해서는 RNG 모형보다는 LES 모형을 적용하는 것이 타당 할 것으로 판단된다. 향후 해상풍력기초에 대한 세굴관측을 수행하여 수치 모의 결과와 비교․분석이 필요하며, 또한 다양한 파랑 조건에서 난류모형에 대한 비교․분석이 필요할 것으로 생각된다.
References
[1] W. J. Yang, S. U. Choi. “Three- Dimensional Numerical Simulation of Local Scour around the Bridge Pier using Large Eddy Simulation”, Journal of KWRA, vol. 22, no. 4-B, pp. 437-446, 2002. [2] C. G. Yeo, J. E. Lee, S. O. Lee, J. W. Song. “Sensitivity Analysis of Sediment Scour Model in Flow-3D”, Proceedings of KWRA, pp. 1750-1754, 2010. [3] M. H. Oh, O. S. Kwon, W. M. Jeong, K. S. Lee. “FLOW-3D Analysis on Scouring around Offshore Wind Foundation”, Journal of KAIS, vol. 13, no. 3, pp. 1346-1351, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.3.1346
[4] A. Stahlmann, T. Schlurmann, “Physical Modeling of Scour around Tripod Foundation Structures for Offshore Wind Energy Converters”, Proceedings of 32nd Conference on Coastal Engineering, Shanghai, China, no. 32, pp. 1-12, 2010. [5] Flow Science. Flow-3D User’s Manual. Los Alamos, NM, USA, 2016. [6] KEPRI. 『Test Bed for 2.5GW Offshore Wind Farm at Yellow Sea』 Interim Design Report(in Korea), 2014. [7] Germanischer Lloyd. Guideline for the Certification of Offshore Wind Turbines. Hamburg, Germany, 2005. [8] B. M. Sumer, J. Fredsøe, The Mechanics of Scour in the Marine Environment. World Scientific Publishing Co. Pte. Ltd. 2002. [9] S. J. Ahn, U. Y. Kim, J. K. Lee. “Experimental Study for Scour Protection around Bridge Pier by Falling-Flow Interruption”, Journal of KSCE, vol. 19, no. II-1, pp. 57-65, 1999. [10] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique”, Physics of Fluids, vol. 4, no. 7, pp. 1510-1520, 1992. DOI: https://doi.org/10.1063/1.858424
Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham****
토목공학의 수치해석법
Abstract
The main purpose of this study is to provide a method to increase energy dissipation on an inclined drop. Therefore, three types of rough elements with cylindrical, triangular and batshaped geometries are used on the inclined slope in the relative critical depth range of 0.128 to 0.36 and the effect of the geometry of these elements is examined using Flow 3D software. The results showed demonstrate that the downstream relative depth obtained from the numerical analysis is in good agreement with the laboratory results. The application of rough elements on the inclined drop increased the downstream relative depth and also the relative energy dissipation. The application of rough elements on the sloping surface of the drop significantly reduced the downstream Froude number, so that the Froude number in all models ranging from 4.7~7.5 to 1.45~3.36 also decreased compared to the plain drop. Bat-shaped elements are structurally smaller in size, so the use of these elements, in addition to dissipating more energy, is also economically viable.
이 연구의 주요 목적은 경사진 낙하에서 에너지 소산을 증가시키는 방법을 제공하는 것입니다. 따라서 0.128 ~ 0.36의 상대 임계 깊이 범위에서 경사면에 원통형, 삼각형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거친 요소가 사용되며 이러한 요소의 형상의 영향은 Flow 3D 소프트웨어를 사용하여 조사됩니다. 결과는 수치 분석에서 얻은 하류 상대 깊이가 실험실 결과와 잘 일치함을 보여줍니다. 경 사진 낙하에 거친 요소를 적용하면 하류 상대 깊이와 상대 에너지 소산이 증가했습니다. 낙차 경사면에 거친 요소를 적용하면 하류의 Froude 수를 크게 감소시켜 4.7~7.5에서 1.45~3.36 범위의 모든 모델에서 Froude 수도 일반 낙차에 비해 감소했습니다. 박쥐 모양의 요소는 구조적으로 크기가 더 작기 때문에 더 많은 에너지를 분산시키는 것 외에도 이러한 요소를 사용하는 것이 경제적으로도 가능합니다.
Keywords: Downstream depth, Energy dissipation, Froude number, Inclined drop, Roughness elements
Introduction
급수 네트워크 시스템, 침식 수로, 수처리 시스템 및 경사가 큰 경우 흐름 에너지를 더 잘 제어하기 위해 경사 방울을 사용할 수 있습니다. 낙하 구조는 지반의 자연 경사를 설계 경사로 변환하여 에너지 소산, 유속 감소 및 수심 증가를 유발합니다. 따라서 흐름의 하류 에너지를 분산 시키기 위해 에너지 분산 구조를 사용할 수 있습니다. 난기류와 혼합된 물과 공기의 형성은 에너지 소비를 증가 시키는 효과적인 방법입니다. 흐름 경로에서 거칠기 요소를 사용하는 것은 에너지 소산을 위한 알려진 방법입니다. 이러한 요소는 흐름 경로에 배치됩니다. 그들은 종종 에너지 소산을 증가시키기 위해 다른 기하학적 구조와 배열을 가지고 있습니다. 이 연구의 목적은 직사각형 경사 방울에 대한 거칠기 요소의 영향을 조사하는 것입니다.
Fig. 1: Model made in Ardabil, IranFig. 2: Geometric and hydraulic parameters of an inclined drop
equipped with roughness elementsFig. 3: Views of the incline with (a) Bat-shaped, (b)
Cylindrical, (c) Triangular roughness elementsFig. 4: Geometric profile of inclined drop and boundary
conditions with the bat-shape roughness elementFig. 5: Variation of the RMSE varying cell sizeFig. 6: Numerical and laboratory comparison of the
downstream relative depthFig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a)
Without roughness elements; (b) Bat-shaped roughness
element; (c) Cylindrical roughness element; (d) Triangular
roughness elementFig. 8: Relative edge depth versus the relative critical depthFlow on the inclined drop with bat-shaped elements: (a)
Non-submerged flowFig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flowFig. 10: Relative downstream depth versus the relative
critical depthFig. 11: Relative downstream depth versus the relative critical
depth
Conclusions
현재 연구에서 FLOW-3D 소프트웨어를 사용하여 한 높이, 한 각도, 밀도 15% 및 지그재그 배열에서 삼각형, 원통형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거칠기 요소를 사용하여 경사 낙하 수리학적 매개변수에 대한 거칠기 요소 형상의 영향 평가되었다. VOF 방법을 사용하여 자유 표면 흐름을 시뮬레이션하고 초기에 3개의 난류 모델 RNG, k-ɛ 및 kω를 검증에 사용하고 이를 검토한 후 RNG 방법을 사용하여 다른 모델을 시뮬레이션했습니다. 1- 수치 결과에서 얻은 부드러운 경사 방울의 하류 상대 깊이는 실험실 데이터와 매우 좋은 상관 관계가 있으며 원통형 요소가 장착 된 경사 방울의 상대 에지 깊이 값이 가장 높았습니다. 2- 하류 상대깊이는 임계상대깊이가 증가함에 따라 상승하는 경향을 나타내어 박쥐형 요소를 구비한 경사낙하와 완만한 경사낙하가 각각 하류상대깊이가 가장 높고 가장 낮았다. 3- 하류 깊이의 증가로 인해 상대적 임계 깊이가 증가함에 따라 상대적 에너지 소산이 감소합니다. 한편, 가장 높은 에너지 소산은 박쥐 모양의 요소가 장착된 경사 낙하와 관련이 있으며 가장 낮은 에너지 소산은 부드러운 낙하와 관련이 있습니다. 삼각형, 원통형 및 박쥐 모양의 거친 요소가 장착된 드롭은 부드러운 드롭보다 각각 65%, 76% 및 85% 더 많은 흐름 에너지를 소산합니다. 4- 낙차의 경사면에 거친 요소를 적용하여 다운 스트림 Froude 수를 크게 줄여 4.7 ~ 7.5에서 1.45 ~ 3.36까지의 모든 모델에서 Froude 수가 부드러운 낙하에 비해 감소했습니다. 또한, 다른 원소보다 부피가 작은 박쥐 모양의 거칠기의 부피로 인해 이러한 유형의 거칠기를 사용하는 것이 경제적입니다.
References
References: [1] Abbaspour, A., Shiravani, P., and Hosseinzadeh dalir, A., “Experimental study of the energy dissipation on the rough ramps”, ISH journal of hydraulic engineering, 2019, p. 1-9. [2] Abraham, J.P., Sparrow, E.M., Gorman, J.M., Zhao, Y., and Minkowycz, W.J., “Application of an Intermittency model for laminar, transitional, and turbulent internal flows”, Journal of Fluids Engineering, vol. 141, 2019, paper no. 071204. [3] Ahmad, Z., Petappa, N.M., and Westrich, B., “Energy dissipation on block ramps with staggered boulders”, Journal of hydraulic engineering, vol. 135(6), 2009, p. 522-526. [4] Babaali, H.R., Shamsai, A., and Vosoughifar, H.R., “Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes”, Arabian Journal for Science and Engineering, vol. 40(2), 2014, p. 381-395. [5] Castillo, L.G., Carrillo, J.M., and Cacía, J.T., “Numerical simulations and laboratory measurements in hydraulic jumps”, International conference on hydroinformatics. (2014, August) New York city. [6] Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S., and Abraham, J., “Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions”, Journal of groundwater science and engineering, vol. 8(4), 2020a, p. 396-406. [7] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., and Abraham, J., “Three-dimensional investigation of hydraulic properties of vertical drop in the presence of step and grid dissipators”, Symmetry, vol. 13 (5), 2021a, p. 895. [8] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., and Bagherzadeh, M., “SVM performance for predicting the effect of horizontal screen diameters on the hydraulic parameters of a vertical drop”, Applied sciences, vol. 11 (9), 2021b, p. 4238. [9] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R., and Abraham, J. “Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens”, Water supply, vol 21(1), 2021c, p. 217-231. [10] Daneshfaraz, R., and Ghaderi, A., “Numerical investigation of inverse curvature ogee spillways”, Civil engineering journal, vol. 3(11), 2017, p. 1146-1156. [11] Daneshfaraz, R., Majedi Asl, M., and Bagherzadeh, M., “Experimental Investigation of the Energy Dissipation and the Downstream Relative Depth of Pool in the Sloped Gabion Drop and the Sloped simple Drop”, AUT Journal of Civil Engineering, 2020b (In persian). [12] Daneshfaraz, R., Majedi Asl, M., Bazyar, A., Abraham, J., Norouzi, R., “The laboratory study of energy dissipation in inclined drops equipped with a screen”, Journal of Applied Water Engineering and Research, 2020c, p. 1-10. [13] Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and Ghaderi, A., “3-D Numerical simulation of water flow over a broad-crested weir with openings”, ISH Journal of Hydraulic Engineering, 2019, p.1-9. [14] Daneshfaraz, R., Sadeghfam, S., and Kashani, M., “Numerical simulation of flow over stepped spillways”, Research in civil engineering and environmental engineering, vol. 2(4), 2014, p. 190-198. [15] Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M., “Efficiency of trapezoidal labyrinth shaped stepped spillways”, Flow measurement and instrumentation, vol. 72, 2020a. [16] Ghaderi, A., Daneshfaraz, R., Dasineh, M., and Di Francesco, S., “Energy dissipation and hydraulics of flow over trapezoidaltriangular labyrinth weirs”, Water, vol. 12(7), 2020b, p. 1-18. [17] Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, and Azamathulla, H.M. “Experimental investigation on effective scouring parameters downstream from stepped spillways”, Water supply, vol. 20(4), 2020c, p. 1-11. [18] Ghare, A.D., Ingle, R.N., Porey, P.D., and Gokhale, S.S. “Block ramp design for efficient energy dissipation”, Journal of energy dissipation, vol. 136(1), 2010, p. 1-5. [19] Gorman, J.M., Sparrow, E.M., Smith, C.J., Ghoash, A., Abraham, J.P., Daneshfaraz, R., Rezezadeh, J., “In-bend pressure drop and post-bend heat transfer for a bend with partial blockage at its inlet”, Numerical Heat Transfer A, vol, 73, 2018, p. 743-767. [20] Jamil, M., and Khan, S.A., “Theorical study of hydraulic jump in circular channel section”, ISH journal of hydraulic engineering, vol. 16(1), 2010, p. 1-10. [21] Katourani, S., and Kashefipour, S.M., “Effect of the geometric characteristics of baffle on hydraulic flow condition in baffled apron drop”, Irrigation sciences and engineering, vol. 37(2), 2012, p. 51-59. [22] Lai, Y.G., and Wu, K.A., “Three-dimensional flow and sediment transport model for free surface open channel flow on unstructured flexible meshes”, Fluids, vol. 4(1), 2019, p. 1-19.
[23] Nayebzadeh, B., Lotfollahi yaghin, M.A., and Daneshfaraz, R., “Numerical investigation of hydraulic characteristics of vertical drops with screens and gradually wall expanding”, Amirkabir journal of civil engineering, 2020 (In Persian). [24] Nurouzi, R., Daneshfaraz, R., and Bazyar, A., “The study of energy dissipation due to the use of vertical screen in the downstream of inclined drop by adaptive Neuro-Fuzzy inference system (ANFIS)”, AUT journal of civil engineering, 2019, (In Persian). [25] Ohtsu, I., and Yasuda, Y., “Hydraulic jump in sloping channel”, Journal of hydraulic engineering, vol. 117(7), 1991, p. 905-921. [26] Olsen, L., Abraham, J.P., Cheng, L.K., Gorman, J.M., and Sparrow, E.M., “Summary of forced-convection fluid flow and heat transfer for square cylinders of different aspect ratios ranging from the cube to a two-dimensional cylinder”, Advances in Heat Transfer, Vol. 51, 2019, p. 351-457. [27] Pagliara, S., Das, R., and Palermo, M., “Energy dissipation on submerged block ramps”, Journal of irrigation and drainage engineering, vol. 134(4), 2008, p.527-532. [28] Pagliara, S., and Palermo, M., “Effect of stilling basin geometry on the dissipative process in the presence of block ramps”, Journal of irrigation and drainage engineering, vol. 138(11), 2012, p. 1027-1031. [29] Simsek, O., Akoz, M.S, and Soydan, N.G., “Numerical validation of open channel flow over a curvilinear broad-creasted weir”, Progress in computational fluid dynamics an international journal, vol. 16(6), 2016, p. 364-378. [30] Sharif, N., and Rostami, A., “Experimental and numerical study of the effect of flow sepration on dissipating energy in compound bucket”, APCBEE procedia, vol. 9, 2014, p. 334-338. [31] Sparrow, E.M., Tong, J.C.K., and Abraham, J.P., “Fluid flow in a system with separate laminar and turbulent zones”, Numerical Heat Transfer A, vol. 53(4), 2008, p. 341-353. [32] Sparrow, E.M., Gorman, J.M., Abraham, J.P., and Minkowycz, W.J., “Validation of turbulence models for numerical simulation of fluid flow and convective heat transfers”, Advances in Heat Transfer, vol. 49, 2017, p. 397-421. [33] Wagner, W.E., “Hydraulic model studies of the check intake structure-potholes East canal”, Bureau of reclamation hydraulic laboratory report hyd, 1956, 411.
1 Professor, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran. 2 M.sc student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran. 3 M.sc student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran
Abstract
One of the methods of controlling and reducing flow energy is the use of energy dissipating structures and the formation of hydraulic jumps. One of these types of structures is the constriction elements in the flow path, which leads to a decrease in the energy of the passing flow. In the present study, the effect of crescent-shaped contraction as an energy dissipating structure in the supercritical flow path has been investigated using FLOW-3D software. Examining the simulation results, the RNG turbulence model due to its higher accuracy and lower relative error and absolute error percentage than other models, among the RNG turbulence models, k-ε, k-ω and LES was selected. In this study, the amplitude of the Froude number after the gate as the most effective dimensionless parameter in energy dissipation varied from 2.8 to 7.5 and the values of stenosis on both sides are 5 and 7.5 cm. The results show that in all cases of using the crescent-shaped contractions, the energy consumption due to the contraction is 5 and 7.5 cm, respectively, based on the energy drop relative to the upstream of 24.62% and 29.84% and compared to the downstream 46.14% and 48.42% more than the classic free jump. Also, by examining the obtained results, it was observed that the crescent-shaped contractions have a better performance in terms of energy loss compared to the sudden contraction, obtained from the studies of previous researchers. Based on the simulation results, with increasing the upstream Froude number, the relative energy dissipation to the upstream and downstream crescent-shaped contraction increased so that the use of contraction elements reduces the downstream Froude number of the contracted section in the range of 1.6 to 3/2.
흐름 에너지를 제어하고 줄이는 방법 중 하나는 에너지 소산 구조를 사용하고 유압 점프를 형성하는 것입니다. 이러한 유형의 구조 중 하나는 흐름 경로의 수축 요소로, 통과하는 흐름의 에너지를 감소시킵니다. 현재 연구에서는 초 임계 유동 경로에서 에너지 소산 구조로서 초승달 모양의 수축 효과가 FLOW-3D 소프트웨어를 사용하여 조사되었습니다. 시뮬레이션 결과를 살펴보면 RNG 난류 모델 중 k-ε, k-ω, LES 중에서 다른 모델보다 정확도가 높고 상대 오차와 절대 오차 비율이 낮은 RNG 난류 모델을 선택했습니다. 이 연구에서 에너지 소산에서 가장 효과적인 무 차원 매개 변수 인 게이트 뒤의 Froude 수의 진폭은 2.8에서 7.5까지 다양했으며 양쪽의 협착 값은 5cm와 7.5cm입니다. 결과는 초승달 모양의 수축을 사용하는 모든 경우에서 수축으로 인한 에너지 소비는 각각 5cm와 7.5cm로 상류에 비해 에너지 강하가 24.62 % 및 29.84 %이고 하류와 비교됩니다. 고전적인 자유 점프보다 46.14 % 및 48.42 % 더 많습니다. 또한 얻어진 결과를 살펴보면 초승달 모양의 수축이 이전 연구자들의 연구에서 얻은 갑작스런 수축에 비해 에너지 손실 측면에서 더 나은 성능을 보이는 것으로 나타났습니다. 시뮬레이션 결과에 따르면 상류 Froude 수를 증가 시키면 상류 및 하류 초승달 모양의 수축에 대한 상대적 에너지 소산이 증가하여 수축 요소를 사용하면 수축 된 부분의 하류 Froude 수가 1.6 ~ 3/2 범위에서 감소합니다. .
Open Journal of Marine Science Vol.06 No.02(2016), Article ID:65874,6 pages 10.4236/ojms.2016.62026
FLOW-3D 소프트웨어를 사용하여 다양한 조건에서 Seawalls의 흐름 속도 변경 모델링
Maryam Deilami-Tarifi1, Mehdi Behdarvandi-Askar2*, Vahid Chegini3, Sadegh Haghighi-Pour4 1Department of Coastal Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
방파벽은 파도힘의 수준을 감소시키고 다른 구조물로부터 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 이와 관련하여 이러한 구조에 대한 보다 정확한 조사는 다른 관점에서 매우 중요합니다. 이 연구는 다른 레이아웃과 경사면에서 장애물을 고려하여 방파제 크라운의 속도 변화를 조사합니다. FLOW-3D는 모델링을 위한 이 연구에서 사용되었습니다. 모델링의 결과는 장애물의 존재가 방파벽의 크라운의 유량을 줄이는 결정적인 역할을 한다는 것을 보여줍니다. 또한, 예상대로, 상류 방파의 경사계는 벽의 가장 낮은 속도가 D-상태 레이아웃과 45°의 경사에서 발생하므로 이 속도를 줄이는 데 매우 결정적입니다.
방파벽은 파도의 속도를 감소시키고 다른 구조물을 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 등대는 일반적으로 방파벽에 의해 보호되는 구조 중 하나입니다. 따라서, 방파성상에 통과하는 물의 부피의 중요성 외에도, 이 구조물에 대한 크라운의 통과-흐름의 속도는 이러한 벽 뒤에 있는 구조물에 추진력과 충동을 만드는 속도 요인의 중요성 때문에 매우 중요하다. 기본적으로 업스트림 경사면에서 장애물을 생성하고 업스트림 경사의 속도는 이 속도의 양을 줄이는 데 매우 효과적일 수 있습니다. 그러나 특정 경사면에서 최적의 장애물 레이아웃에 도달하기 위해 모델링하여 이 문제를 정확하게 조사해야 합니다. 본 연구에서는, FLOW-3D의 3차원 모델이 언급된 문제점을 조사하는 데 사용된다 [1].
여러 연구는 파도가 해양 구조물을 덮어 넘나는 데 초점을 맞추고 있습니다. 이러한 방법은 지속적으로 바다 파도로부터 해안을 보호하기 위해 구조물의 오버 토핑을 정확하게 예측했다. 2002년까지 거의 6,500건의 시험이 실시되었습니다. 일반 파도의 물리적 모델도 미국에서 수행되었습니다 [2] . 무작위 파도의 가장 완벽한 세트는 오웬에 의해 완료되었다 (1980). 오웬은 오버 토핑과 바다 벽의 높이와 오버 토핑의 정도 사이의 관계를 연구하기 위해 물리적 모델 테스트의 번호를 수행 [3] . 그는 오버 토핑의 정도는 파도 높이 및 파도 기간과 같은 환경 조건뿐만 아니라 구조 재료의 기하학 및 유형에 따라 달라지며 있음을 보여주었습니다. 이러한 요인의 조합을 조사해야 합니다. 폰 마이어와 듀발 (1992) 연구의 또 다른 시리즈를 수행 [4] .
이 연구에서는 68개의 다양한 형상이 모델링용 소프트웨어에 제공되며 다음 표 1에간단히 소개됩니다. 이 68 개의 다른 기하학에는 4 개의 다른 슬로프, 4 개의 다른 레이아웃 및 4 개의 다른 장애물 높이및 장애물이없는 4 개의 상태및 다른 경사에서만 포함 [5] . 그런 다음, 이러한 서로 다른 형상 및 상태는 FLOW-3D 3차원 모델을 사용하여 동일한 조건에서 평가 및 분석됩니다.
FLOW-3D 소프트웨어는 3차원 유동 필드 분석을 통해 유체 역학 분야에서 강력한 유압 시뮬레이터 응용 프로그램입니다. 모델에서 지배하는 방정식은 다른 유사한 모델과 마찬가지로 Navier-Stokes 방정식과 질량 방정식의 보존[6]입니다.
이 응용 프로그램의 채널을 모델링하려면 일반 조건(모든 시스템의 시뮬레이션 포함), 물리적 조건, 형상 및 모델 해결 네트워크, 출력 및 관련 옵션을 조정해야 합니다. 온도도는 시스템 단위, SI 및 온도에 대해 선택되었습니다.
물리적 인 측면에서, 소프트웨어는 현상을 지배하는 물리학의 원칙에 따라 관련 조건을 선택할 수 있습니다. 이 연구를 지배하는 물리적 조건은 중력과 점도와 난기류입니다. 이 소프트웨어의 난기류는 5 가지 모델에 의해 자극되고이 연구에 사용되는 모델은 재정상화 그룹 (RNG)이었습니다. 난기류의 이 모델에서, K-모델에서 실험적으로 계산된 상수값은 암시적으로 파생된다[7].
그 후 유체를 정의해야 합니다. 이 연구의 선택된 유체는 섭씨 20도물[ 8]이다.
다음 단계는 형상을 정의하고 시뮬레이션에서 중요한 네트워크를 해결하는 것입니다 [9]. FLOW3D를 사용하면 소프트웨어에서 사용할 수 있는 도구로 많은 유체 현상을 묘사할 수 있습니다. 채널 형상을 정의하면 네트워크를 해결해야 합니다. 소프트웨어의 정의된 해결 네트워크는 네트워크 크기, 셀 수 및 X, Y 및 Z 및 경계 조건의 세 가지 좌표에서 해당 치수를 포함한 일반(입방) 해결 네트워크의 형태입니다. 네트워크 셀 치수의 크기가 작을수록 시뮬레이션을 위한 프로그램의 기능과 정밀도가 높을수록[10]이됩니다.
다른 그림에서 관찰할 수 있으므로 다이어그램은 두 가지 유형으로, 먼저 그림 1-4를 포함하는 소프트웨어의 직접 출력과 다른 숫자 5-7을 변경 프로세스의 다이어그램으로 포함합니다. 그러나 그림 1-4에서는 경사면 중 하나에서 출력이 소프트웨어 출력에서 직접 가져온다는 점을 언급해야 합니다.
언급된 수치와 관련하여, 이러한 속도는 장애물없이 상태의 상류 경사면에서 최대인 반면 방파제의 상류 경사면에서 가장 높은 속도 비율이 발생한다는 것을 이해할 수 있다. 흥미로운 점은 가장 낮은 속도는 일반적으로 방파제 크라운에 존재한다는 것입니다.
그림 5-8에서 볼 수 있듯이, 상류 방파제의 모든 다른 경사 상태에서, 가장 높은 유량 속도는 10cm 높이와 가장 낮은 속도의 장애물과 관련이 있으며 50cm 높이의 장애물과 관련이 있다. 그 이유는 장애물과의 충돌로 인해 잠재적 에너지로 변환되는 유동 운동 에너지의 가치가 장애물의 높이를 증가시켜 증가하기 때문입니다. 따라서, 높이가
해당 유동 운동 에너지는 각 장애물에 대한 흐름의 충돌에서 잠재적 에너지의 해당 높이로 변환되며, 흐름 속도가 잠시 0이 되고 장애물을 건너면 속도가 증가한다. 장애물의 높이가 낮은 것이든, 순간적인 제로 속도 상태가 줄어들고 흐름은 더 높은 속도와 함께 계속 움직입니다.
Also, as it can be observed, the highest difference of velocity in all the figures is between the obstacles with 10 cm height and the obstacles with 50 cm height. Also, this amount of difference in velocity for difference between the obstacles with 10 cm and 20 cm heights is higher than that of the differences in the obstacles with 20 cm and 30 cm heights which can be related to the special conditions in flow hydraulic in that range of height.
또한, 관찰할 수 있으므로 모든 수치에서 속도의 가장 높은 차이는 높이 가 10cm의 장애물과 높이가 50cm인 장애물 사이에 있습니다. 또한, 10cm와 20cm 높이의 장애물 사이의 차이에 대한 속도차이는 20cm 및 30cm 높이의 장애물의 차이보다 높으며, 이는 그 높이 범위에서 유압의 특별한 조건과 관련이 있을 수 있다.
메리암 데일라미-타리피, 메디 베다르반디-아스카르, 바히드 체기니, 사데 그 하그하이-부어(2016) FLOW-3D 소프트웨어를 사용하여 다양한 조건하에서 해벽에 흐르는 속도의 변화를 모델링한다. 해양 과학의 오픈 저널,06,317-322. doi: 10.4236/ojms.2016.62026
1. Owen, M.W. (1980) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England. [Citation Time(s):1]
2. van der Meer, J.W. and Janssen, J.P.F.M. (1995) Wave Run-Up and Wave Overtopping at Dikes. In: Kobayashi, N. and Demirbilek, Z., Eds., Wave Forces on Inclined and Vertical Wall Structures, ASCE, New York. [Citation Time(s):1]
3. CIRIA/CUR (1995) Manual on the Use of Rock in Hydraulic Engineering. CUR/RWS Report 169, A.A. Balkema, Rotterdam. [Citation Time(s):1]
4. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007) EurOtop— Wave Overtopping of Seadefences and Related Structures Assessment Manual. http://www.overtopping-manual.com/manual.html? [Citation Time(s):1]
5. De Wall, J.P. and Van der Meer, J.W. (1992) Wave Run-Up and Overtopping at Coastal Structures. ASCE, Proceeding of 23rd ICCE, Venice, 1758-1771. [Citation Time(s):1]
6. De Gerloni, M., Franco, L. and Passoni, G. (1991) The Safety of Breakwaters against Wave Overtopping. Proceedings of ICE Conference on Breakwaters and Coastal Structures, Thomas Telford, London. [Citation Time(s):1]
8. Owen, M.W. (1982) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England. [Citation Time(s):1]
9. Allsop, W., Bruce, T., Pearson, J. and Besley, P. (2006) Wave Overtopping at Vertical and Steep Seawall. [Citation Time(s):1]
10. TAW (1974) Technical Advisory Committee on Protection against Inundation, Wave Run-Up and Overtopping. Government Publishing Office, The Hague. [Citation Time(s):1]
S. Noruzi1 and J. Ahadiyan2* 1– M.Sc. Student, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran. 2*-Corresponding Author, Associate Professor, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
Abstract
The discharge coefficient of morning glory spillway is decreased with eddies created by vortex at the inlet part of weir. However, a series of specific blades can reduce vortices which result in the spillway efficiency is increased. Hence, in this research numerical modeling of installed breaker blade on morning glory spillway was evaluated using Flow-3D model. To achieve these purposes, morning glory spillway was modeled without and with blades 3, 4 and 6 blades at 45 degree angle. To simulate the turbulence fluctuations, the modified k-e model (RNG k-e) was used and its results were compared to the experimental data. Results showed that by installing blades, the discharge coefficient increases up to 42 percent with 25 percent decreasing in the upstream water level. Moreover, among the three different arrangements of blades, the six-blade model was found to have more satisfactory results than other models. In comparison to control model, for H/D between 0 to 0.1 and 0.1 to 0.2 the discharge coefficient has been increased 40 and 57 percent for six-blade arrangement, respectively.
모닝 글로리의 방류계수는 위어 입구 부분의 와류에 의해 생성된 소용돌이로 감소합니다. 그러나 일련의 특정 블레이드는 와류를 줄여 여수로 효율성을 높일 수 있습니다. 따라서 본 연구에서는 모닝 글로리 여수로에 설치된 브레이커 블레이드의 수치 모델링을 FLOW-3D 모델을 사용하여 평가했습니다. 이러한 목적을 달성하기 위해 모닝 글로리 여수로는 45도 각도로 블레이드 3, 4 및 6 블레이드 있는 모델과 없는 모델로 모델링되었습니다. 난류 변동을 시뮬레이션하기 위해 수정된 k-e 모델 (RNG k-e)을 사용하고 그 결과를 실험 데이터와 비교했습니다. 결과에 따르면 블레이드를 설치하면 상류 수위가 25 % 감소하면서 배출 계수가 42 %까지 증가합니다. 또한 3 개의 서로다른 블레이드 배열 중 6 개 블레이드 모델이 다른 모델보다 더 만족스러운 결과를 나타냈다. 기본 모델과 비교하여 H / D가 0 ~ 0.1 및 0.1 ~ 0.2 인 경우, 6개 블레이드 배열에서 방류계수가 각각 40 % 및 57 % 증가했습니다.
Figure 1 – Dimensions of the vortex bladeFigure 3 – A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.Figure 5 – Modeling a simple lotus overflow symmetrically in FLOW-3D softwareFigure 7 – Comparison of Ashley flow chart with numerical model and laboratoryFigure 8 – Comparison of flow coefficient diagram – immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades
Reference
1 -حیدری ارجلو، س.، موسوی جهرمی، س. ح. و ادیب، ا. 1386 .بررسی تاثیر شیب بر تعداد بهینه پلکانها در سرریزهای پلکانی، مجله علوم و مهندسی .)123-136 :)2(33 ،كشاورزی علمی )آبیاری 2 -حاجیپور، گ. 1363 .بررسی آزمایشگاهی تأثیر تیغههای گردابشکن بر هیدرولیک جریان سرریز نیلوفری. پایاننامه كارشناسی ارشد رشته سازههای آبی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز. 3 -رنجبر ملکشاه، م.، 1363 .بررسی رفتار سرریز نیلوفری با پایین دست تاج پلکانی بوسیله مدلسازی رایانهای، پایاننامه كارشناسی ارشد مهندسی عمران، دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی. 4 -رمضانی، س. كاویانپور، م ر. و ع. حسنی نژاد. 1362 .بررسی پارامترهای مؤثر بر آبگذری سرریزهای نیلوفری. هفتمین كنگره ملی مهندسی عمران، دانشکده مهندسی شهید نیکبخت، زاهدان. 1 -سامانی، م. 1331 .طراحی سازههای هیدرولیکی. انتشارات شركت مهندسی مشاور دز آب اهواز 1 -قاسمزاده، ف. 1362 .شبیه سازی مسائل هیدرولیکی در 3D-FLOW .تهران، نوآور. 3 -كمانبدست، 1 ،.موسوی، س.ر. 1361 .مطالعه آزمایشگاهی تأثیر تعداد و زاویه گرداب شکن بر مشخصات جریان در سرریز نیلوفری مربعی، نشریه علوم آب و خاک )غعلوم و فنون كشاورزی و منابع طبیعی(، سال بیستم، شماره 38 ،صفحه 182-131 . 8 -نظری پوركیانی، ع ا. 1363 .بررسی فشار و سرعت جریان در سرریز نیلوفری سد البرز با استفاده از نرمافزار 3D-FLOW .اولین كنفرانس سراسری توسعه محوری مهندسی عمران، معماری، برق و مکانیک ایران. 6 -نوحانی، ا.، جمالی امام قیس، ر. 1364 .بررسی آزمایشگاهی تأثیرشکل تیغه های ضد گرداب برراندمان تخلیهی سرریزهای نیلوفری، نشریه آبیاری و زهکشی ایران، جلد 6 ،شماره 1 ،صفحه 346-341 . 10-Akbari, A A., Nohani, E and A. Afrous. 2015. Numerical study of the effect of anti-vortex plates on the inflow pattern in shaft spillways. Indian Journal of Fundamental and Applied Life Sciences, 5(S1): 3819-3826. 11-Anonymous, 1965. Design of Small Dams. Water Resources Technical publication, U.S Department of the interior Bureau of Reclamation. 12-Bagheri, A., Shafai Bajestan, M., Mousavi Jahromi, H., Kashkuli, H. and H. Sedghi. 2010. Hydraulic evaluation of the flow over polyhedral morning glory spillways. Word Applied Sciences Journal, 9(7): 712-717. 13- Fattor, C. A. and J. D. Bacchiega. 2003. Analysis of instabilities in the charge of regime in morning glory spillways. Journal of Hydraulic Research, 40(4): 114-123. 14- Khatsuria, R. M. 2005. Hydraulics of spillways and energy dissipaters. Marcel Dekker. Department of Civil and Environmental Engineering Georgia, Institute of Technology Atlanta, Newyork, USA. 15-Mousavi. S. R., Kamanbedast, A.A., and H. Fathian. 2013. Experimental investigation of the effect of number of anti-vortex piers on submergence threshold in morning glory spillway with square inlet. Technical Journal of Engineering and Applied Sciences, 3(24): 3534-3540. 16- Novak, P. 2007. Hydraulic Structures, Fourth edition published by Taylor and Francis. University of New Castle upon, Tyne, UK, Landon and Network. 17-Tavana, M H., Mousavi Jahromi, H., Shafai Bajestan, M., Masjedi, A. R. and H. Sedghi. 2011. Optimization of number and direction of vortex breakers in the morning glory spillway using physical model. Economy, Environmental and Conservation Journal, 17(2): 435-440. 18-Vresteeg. H. K and W. Malalasekera. 1995. An introduction to computational fluid dynamics. Longman Scientific and Technical. New York. 19-Yakhot. V and L. M. Smith. 1992. The renormalization group. The e-expansion and of turbulence models. Journal of Computing, 7(1): 35-61.
FLOW-3D 수치 모델을 이용하여 미로 위어 평면도의 형상 변화가 유량 계수 증가에 미치는 영향 연구
E. Zamiri 1 , H. Karami 2* and S. Farzin3 1- M.S. Student, Department of Civil Engineering, Semnan University, Semnan, Iran. 2 *
Corresponding Author, Assistant Professor, Department of Civil Engineering, Semnan University, Semnan, Iran. (hkarami@semnan.ac.ir). 3- Assistant Professor, Department of Civil Engineering, Semnan University, Semnan, Iran.
Weirs are hydraulic structures used to measure, regulate and control the water levels and are fixed upon open channels and rivers width. Growing magnitude of probable maximum flood events (PMF) has highlighted the demand for increasing discharge capacity. Application of labyrinth weir has been suggested as a solution for increasing discharge capacity. Tullis et al. (1995) evaluated the effective parameters in determining the capacity of a labyrinth weir. They introduced total head, the effective crest length and the discharge coefficient as parameters influencing the discharge capacity of a labyrinth weir. Khode et al. (2011) experimentally studied the parameters of a flow-over labyrinth weir for different side wall angles (α) from 8 to 30°. They found that discharge coefficient increases by growing side wall angle values. Crookston and Tullis (2012a) studied performance of different labyrinth weirs by making differences between geometric shapes of weirs in plan. The results indicated that discharge capacity of the arced labyrinth weirs is more than the discharge capacity of horseshoe weirs. Seo et al. (2016) investigated the effect of weir shapes on discharge of weirs. It was shown that the discharge of the labyrinth weir had an increase of approximately 71% in comparison with the linear ogee weir. In this research, labyrinth weir with sidewall angle equal to 6° was simulated through Flow3D model, using experimental results of previous researchers. After validation, the changes of discharge coefficient of weir with angles of 45° and 85° and apex shapes of triangular and halfcircular shapes were analyzed.
Weirs는 수위를 측정, 조절 및 제어하는 데 사용되는 수력 구조물이며 열린 수로 및 강 폭에 고정됩니다. 예상되는 최대 홍수 사건 (PMF)의 규모가 커짐에 따라 배출 용량 증가에 대한 요구가 강조되었습니다. 미로 위어 (labyrinth weir)의 적용은 배출 용량을 증가시키기 위한 해결책으로 제안 되었습니다.
Tullis et al. (1995)는 미로 위어의 용량을 결정하는데 효과적인 매개 변수를 평가했습니다. 그들은 미로 위어의 배출 용량에 영향을 미치는 매개 변수로 총 수두, 유효 문장 길이 및 배출 계수를 도입했습니다.
Khode et al. (2011)은 8 ~ 30 °의 다양한 측벽 각도 (α)에 대한 유동-오버 래비 린스 위어의 매개 변수를 실험적으로 연구했습니다.
그들은 측벽 각도 값이 증가함에 따라 방전 계수가 증가한다는 것을 발견했습니다. Crookston과 Tullis (2012a)는 평면에서 위어의 기하학적 모양을 차이를 만들어 서로 다른 미로 위어의 성능을 연구했습니다.
결과는 호형 미로 위어의 배출 용량이 말굽 위어의 배출 용량보다 더 많다는 것을 나타냅니다. Seo et al. (2016)은 위어의 배출에 대한 위어 모양의 영향을 조사했습니다. 미로 위어의 배출량은 선형 오지 위어에 비해 약 71 % 증가한 것으로 나타났습니다.
이 연구에서는 이전 연구자들의 실험 결과를 사용하여 Flow3D 모델을 통해 측벽 각도가 6 ° 인 미로 위어를 시뮬레이션했습니다. 검증 후 각 45 °, 85 °의 위어의 배출 계수 변화와 삼각형 및 반원 형태의 정점 형태를 분석 하였다.
Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflowFig.2- Richard Dam overflow in AmericaFig.3- Plan of geometric parameters of
congressional overflowFig. 4- The boundary conditions of the congressional overflow modelFig.5- View of a simulated congressional overflowFig. 6- Comparison of discharge coefficients resulted from numerical and experimental
modelsFig.7- The relationship between Cd and Q for different angles of the congressional
overflow wallFig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wallTable 3- The correlation of Q and HT/p with Cd for different angles of the overflow wallFig. 9- The congressional overflow with linear, semicircular and triangular spansFig. 10- The relationship between Cd and Q for different forms of congressional overflowFig. 11- The relationship of Cd and HT/p under different forms of congressional overflowFig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflowFig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relationFig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflowFig. 15- The relationship between the discharge coefficient and HT/p for 6
◦ angle
congressional overflow
Results
오버행의 넘침 흐름을 증가시키는 것이 중요하기 때문에 본 연구에서는 넘침 벽의 돌출부에 6, 45 및 85 도의 세 가지 값을 채점하고 넘침 개구부에 삼각형 및 반원 모양을 제안함으로써 , 오버 플로우의 오버 플로우 계수를 변경하여 3D 숫자 래치를 사용하십시오.
Irene Par Vahsh Bareh에서 얻은 결과는 다음과 같습니다.
1- 흐름을 따라 포병의 범람 벽 각도를 늘리면 방출 계수가 증가합니다. 벽 각도가 85도 및 45 도인 포병의 범람 계수는 벽 각도가 6 도인 범람 계수 평균의 2.28 및 1.24 배입니다.
2-구부러진 양고기를 먹은 상태에서 배수로 모양의 변화는 배출 계수를 증가시킨다. 삼각형과 비 삼각형 개구부가있는 오버플로의 배출 계수는 온대 개구부가있는 오버플로의 배출 계수에 비해 양고기가 50.29 및 4.16 % 증가했습니다.
3- 오버플로 양 (p / HT)의 부하와 함께 부하 부하의 무 차원 비율 값을 늘리면 혼잡 한 오버플로의 방전 계수가 감소합니다. 또한 p <HT / 0.5의 값에서 세 가지 형태의 오버플로 개구에 대한 배출 계수의 값은 서로 가깝고 오버플로 모양의 각 끝은 값에서 동일한 기능을 갖습니다. p / HT <0.5. 4-유량이 증가함에 따라 유량 계수가 감소합니다.
References
1- Azhdary Moghaddam, M. and Jafari Nodoushan, E., 2013. Optimization of Geometry of trapezoidallabyrinth Spillway with using ANFIS Models and Genetic Algorithms (Ute Dam Case Study in the United States of America). Journal of Civil Engineering. 24(2), pp. 129-138. (In Persian). 2- Canholi, J. F., Canholi, A. P. and Sobral, V., 2011. Hydraulic Design of a Labyrinth Weir in Aclimação´s Lake. 12nd International Conference on Urban Drainage, Porto Alegre/Brazil. 3- Crookston, B. M. and Tullis, B. P., 2012a. Arced labyrinth weirs. Journal of Hydraulic Engineering. 138(6), pp.555-562. 4- Crookston, B. M. and Tullis, B. P., 2012b, Hydraulic design and analysis of labyrinth weirs. I: Discharge relationships. Journal of Irrigation and Drainage Engineering. 139(5), pp.363-370. 5- Esmaeili Varaki, M. and Safarrazavi Zadeh, M., 2013. Study of Hydraulic Features of Flow Over Labyrinth Weir with Semi-circular Plan form. Journal of Water and Soil. 27(1), pp. 224-234. (In Persian). 6- Farzin, S., Karami, H. and Zamiri, E., 2016. Study of the Flow over Rubber Dam Using Computational Hydrodynamics. Journal of Dam and Hydroelectric Powerplant. 3(9), pp.1-11. (In Persian). 7- Hirt, C. W. and Richardson, J. E., 1999. The modeling of shallow flows, Flow Science, Technical Notes. 48, pp.1-14. 8- Hosseini, K., Tajnesaie, M. and Jafari Nodoush, E., 2015. Optimization of the Geometry of Triangular Labyrinth Spillways, Using Fuzzy‐Neural System and Differential Evolution Algorithm. Journal of Civil and Environmental Engineering. 45(1), PP.81-91. (In Persian). 9- Khode, B. V., Tembhurkar, A. R., Porey, P. D. and Ingle, R. N., 2011. Experimental studies on flow over labyrinth weir. Journal of Irrigation and Drainage Engineering. 138(6), pp.548-552. 10- Nezami, F., Farsadizadeh, D., Hosseinzadeh Delir, A. and Salmasi, F., 2012. Experimental Study of Discharge Coefficient of Trapezoidal Labyrinth Side-Weirs. Journal of Water and Soil Science. 23(1), PP.247-257. (In Persian). 11- Nikpiek, P. and Kashefipour, S. M., 2014. Effect of the hydraulic conditions and structure geometry on mathematical modelling of discharge coefficient for duckbill and oblique weirs. Journal of Irrigation Science and Engineering. 39(1), pp.1-10. (In Persian). 12- Noori, B. M. and Aaref, N. T., 2017. Hydraulic Performance of Circular Crested Triangular Plan Form Weirs. Arabian Journal for Science and Engineering. pp.1-10. 13- Noruzi, S. and Ahadiyan, J., 2016. Effect of Vortex Breaker Blades 45 Degree on Discharge Coefficient of Morning Glory Spillway Using Flow-3D. Journal of Irrigation Science and Engineering. 39(4), PP. 47-58. (In Persian). 14- Paxson, G. and Savage, B., 2006. Labyrinth spillways: comparison of two popular USA design methods and consideration of non-standard approach conditions and geometries. Proceedings of the international junior researcher and engineer workshop on hydraulic structures, Montemor-o-Novo, Portugal, Division of Civil Engineering, 37. 15- Payri, R., Tormos, B., Gimeno, J. and Bracho, G., 2010. The potential of Large Eddy Simulation (LES) code for the modeling of flow in diesel injectors. Mathematical and Computer Modelling. 52(7), pp.1151-1160. 16- Rezaee, M., Emadi, A. and Aqajani Mazandarani, Q., 2016. Experimental Study of Rectangular Labyrinth Weir. Journal of Water and Soil. 29(6), pp. 1438-1446. (In Persian). 17- Seo, I. W., Do Kim, Y., Park, Y. S. and Song, C. G. 2016, Spillway discharges by modification of weir shapes and overflow surroundings. Environmental Earth Sciences. 75(6), pp.1-13. 18- Suprapto, M., 2013. Increase spillway capacity using Labyrinth Weir. Procedia Engineering. 54, pp. 440-446. 19- Tullis, J. P., Amanian, N. and Waldron, D., 1995. Design of labyrinth spillways. Journal of Hydraulic Engineering. 121(3), pp.247-255. 20- Zamiri, E., Karami, H. and Farzin, S., 2016. Numerical Study of Labyrinth Weir Using RNG Turbulence Model. 15th Iranian Hydraulic Conference, Imam Khomeini International University, Qazvin, Iran. (In Persian).
Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.
배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.
세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.
수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.
댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.
수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.
그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).
계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.
계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.
또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).
CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.
Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 % 더 적다는 것을 관찰했습니다.
Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.
Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.
Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.
Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.
METHODOLOGY
ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.
(1)
(2)where is the velocity in xi direction, t is the time, is the fractional area open to flow in the subscript directions, is the volume fraction of fluid in each cell, p is the hydrostatic pressure, is the density, is the gravitational force in subscript directions and is the Reynolds stresses.
Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.
The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation it solves an additional transport equation:
(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is
(4)where u, v and w are the x, y and z coordinates of the fluid velocity; , , and , are FLOW-3D’s FAVORTM defined terms; and are turbulence due to shearing and buoyancy effects, respectively. R and are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production () and turbulent kinetic energy ().The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from
(5)where : is the turbulent kinematic viscosity. is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for in Equation (3), since this equation could produce a value for very close to zero and also because the physical value of may approach to zero in such cases, the value of is calculated from the following equation:
(6)where : the turbulent length scale.
VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume
(7)
(8)
(9)where is the density of the fluid, is a turbulent diffusion term, is a mass source, is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ). in the x-direction is the fractional area open to flow, and are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.
The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.
In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.
The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1
Location of pressure sensors on horizontal step faces
Θ(°)
L(m)
x/l (–)
50.0
0.050
0.35
0.64
–
–
–
30.0
0.104
0.17
0.50
0.84
–
–
18.6
0.178
0.10
0.30
0.50
0.7
0.88
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2
Variables used in test runs
Test no.
Θ1 (°)
Θ2 (°)
h(m)
d0
q (m3s−1)
dc/h (–)
1
50
18.6
0.06
0.045
0.1
2.6
2
50
18.6
0.06
0.082
0.235
4.6
3
50
30.0
0.06
0.045
0.1
2.6
4
50
30.0
0.06
0.082
0.235
4.6
Table 2 Variables used in test runs
For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.
The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.
Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.
There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).
The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.
The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.
Figure 4
Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
VIEW LARGEDOWNLOAD SLIDE
Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.
The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.
Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.
Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.
Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.
The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.
이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.
Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.
Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.
Author Svoboda, Jiří Contributors Jandora, Jan (advisor); Holomek, Petr (referee)
Abstract
이 학위 논문의 주제는 Boskovice 상수도의 안전 배수로에서 유량 수치 모델링 솔루션입니다. 디플로마 논문의 소개에서는 기본 오버플로를 일반적으로 설명하고 모양과 유형에 따라 구분합니다. 수역에 사용되는 안전 배수로도 있습니다. 그 다음에는 오버 플로우 계산에 대한 설명, 수학적 모델링 및 사용 된 난류 모델에 대한 설명이 이어집니다. 또한이 작업은 Boskovice 상수도에 대한 기술적 설명, AutoCAD 2020 소프트웨어의 안전 배수로, 경사 및 미끄러짐의 가상 3D 모델 생성, Blender 소프트웨어에서의 검사 및 수리를 다룹니다. 결론적으로 Flow-3D 소프트웨어의 흐름 수치 모델링 결과와 토목 공학부 유압 공학과에서 수행 된 유압 모델 연구와의 후속 비교가 제시됩니다.
The goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.
상수도 (VD)는 인구에게 식수 공급, 홍수 방지, 발전 등과 같은 긍정적 인 효과만 있는 것이 아닙니다. 안타깝게도 물 작업, 특히 더 많은 양의 물이 남아있는 작업도 중요한 위협 요소가 될 수 있습니다. 수술 중에 자연의 힘이나 심지어 인적 요인의 실패로 인해 사고가 발생할 수 있습니다. 흐름의 수치 모델링을 위해 안전 배수로를 선택한 VD Boskovice의 경우,이 작업은 1 차 범주에 포함됩니다.
이론적 사고는 극도로 높은 경제적 피해를 입히고 환경에 피해를 줄 수 있으며 국가 규모에 사회적 영향을 미치고 큰 인명 손실을 초래할 수 있습니다. 가설적인 사고는 여러 가지 이유로 발생할 수 있습니다. 예를 들어, 홍수가 극심한 동안의 배수로에서 배수로의 마루가 넘쳐 댐의 공기 경사면이 표면 침식으로 이어지고 이후 배수로가 파열 될 수 있습니다.
이러한 사고를 방지하기 위해 VD에 안전 유출 구조물을 구축하고 있으며, 유출이 넘치지 않도록 관련 VD 범주에 해당하는 충분한 용량이 있어야 합니다. 안타깝게도 VD 운영의 역사에서 안전 배수로에 충분한 용량이 없었고 극심한 홍수 흐름 중에 댐이 유출되고 VD 댐이 파열되는 경우가 있습니다. 이러한 이유로 안전 배수로를 설계하는 것은 비용과 시간이 많이 드는 프로세스입니다.
설계 중에는 설계 홍수파 (NPV) 및 제어 홍수파 (KPV)를 안전하게 전달하기 위해 충분한 용량이 사용됩니다. 적절한 설계를 확인하기 위해 안전 배수로의 흐름 모델링이 사용되며, 여기서 물리적 모델이 일반적으로 사용되며 실험실에서 축소 된 규모로 생성됩니다. 수년 동안 컴퓨터 기술 사용 가능성이 증가함에 따라 다양한 소프트웨어에서 수치 모델링을 사용하여 CFD (유체 흐름 시뮬레이션)를 사용하여 안전 배수로의 흐름을 모델링하여 재정 비용을 크게 줄일 수 있었습니다.
<중략>………….
Figure 1: Basic type of sharp-edged overflow (Bazin’s overflow) [1]Figure 3: Overflow with a wide crown [1]Figure 4: Schematic longitudinal section of shaft overflow [14]Figure 5: Overflow over overflow of general cross-section [1]Figure 6: Imperfect overflow [1]Figure 7: Types of overflows according to floor plan [1]Figure 8: Lateral contraction and lateral constriction coefficient of pillars [1]Figure 9: Schematic comparison of a pressureless jet surface with a pressure and vacuum surface [22]Figure 14: Situation of external relations of VD Boskovice [17]Figure 15: Air slope of VD Boskovice [24]Figure 16: Guide slope of VD Boskovice [24]Figure 17: Sampling tower of VD Boskovice [24]Figure 18: Fountain front safety spillway [24]Figure 19: Sliding of the security object VD Boskovice [24]Figure 20: Slip and divergent broth of the security object VD Boskovice [24]Figure 21: Probable course of the theoretical PV10 000 in Bělá in the profile of the VD Boskovice dam [6]Figure 22: Floor plan of the safety spillway and part of the VD Boskovice slip [12]Figure 23: Longitudinal section of BP and slope in the plane of symmetry [12]Figure 24: Modified floor plan of the overflow and chute of VD Boskovice for the creation of a 3D modelFigure 25: Created overflow structure without modificationFigure 26: Created overflow structure after treatmentFigure 27: Detail of the modified overflow shapeFigure 33: 3D model with normals shown in blueFigure 37: Improperly selected mesh block sizeFigure 45: Flow profile in Flow-3D without 3D model displayedFigure 47: The course of the level on the physical model [22]Figure 51: Comparison of levels in PFm4aFigure 52: Isoline of overflow pressures at flow Q = 173.49 m3/s
결론
이 학위 논문에서는 Flow-3D 소프트웨어에서 Boskovice 상수도의 계획된 안전 오버플로 흐름을 시뮬레이션했습니다. 계획된 안전 범람의 범람 가장자리 길이는 21.99m입니다. 그러나 VD Boskovice의 재건 내에서 VD Boskovice [7]의 수력 학적 모델 연구 결과에 따라 안전 개체 VD Boskovice [7]의 결론에 따라 24.60m로 증가했습니다.
MBH 수준 (해발 432.30m)에서는 최고 유량 Q10 000 = 186.5 m3 / s로 제어 홍수 파 KPV10 000의 안전한 전송이 없지만 유량 Q = 167.0 m3 / s 만 있기 때문에 에스. 이 진술은 Flow-3D에서 난류 RNG k – ε 모델을 사용한 수치 적 흐름 모델링에 의해 확인되었으며 MBH에서 173.49 m3 / s의 유속을보고했습니다.
따라서 수력학적 모델 연구 [7]와 Flow3D의 수치 적 흐름 모델링 간의 차이는 약 3.7 % 였는데, 이는 물리적 모델의 형상 또는 생성 된 형상의 가능한 오류와 같은 다양한 요인으로 인한 것일 수 있습니다. 가상 3D 모델. 또한 실제 모델에서 측정하는 동안 발생할 수 있는 오류 (예 : 오버플로 높이 또는 흐름 값을 결정할 때의 장치 오류). 수치 모델의 경우 차이는 사용 된 셀 네트워크 셀 크기, 거칠기, 전류 폭기의 무시, 수치 적 방법에 의해 주어진 불확실성 또는 3D 모델의 단순화로 인한 것일 수 있습니다.
이러한 요소는 Flow-3D 소프트웨어에서 시뮬레이션 된 레벨의 과정에 영향을 미칠 수 있습니다. 일부 영역에서는 유압 모델 연구 [7]의 현재 깊이와 센티미터 단위 만 다릅니다. 그러나 일부 영역에서는 이러한 차이가 수십 센티미터 정도, 예외적으로 1m 측벽에서 더 두드러지며 이는 Flow-3D 소프트웨어의 유동 시뮬레이션에서는 발생하지 않았습니다.
Flow-3D의 흐름에 의한 수치 모델링에 따르면, Q10 000 = 186.5 m3 / s의 피크 흐름을 가진 제어 홍수 파 KPV10 000은 해발 432.40 m의 탱크 레벨에서만 안전 오버플로를 통해 전송됩니다. 즉, MBH 레벨보다 10cm 높음. 이 계산은 오버플로 가장자리 21.99m의 너비에 대해 수행되었지만 이미 재구성 된 안전 오버플로 VD Boskovice의 너비는 24.60m입니다.
이전 평가에서 생성 된 항목에 수치 모델링 만 사용하는 것이 완전히 신뢰할 수있는 것은 아님이 분명합니다. 민감도 분석 및 물리적 모델에 대한 수리적 연구와의 후속 비교가 없는 가상 3D 모델. 그러나 향후 몇 년 동안 물리적 모델로 평가할 필요 없이 수치 적 흐름 모델링의 결과가 충분히 신뢰할 수 있다면 실험실에서 수행되는 더 많은 비용이 드는 수력학적 모델 연구를 점진적으로 대체 할 수 있습니다.
Reference
[1] JANDORA, Jan a Jan ŠULC. Hydraulika: Modul 01. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, 2007. ISBN 978-80-7204-512-9. [2] BOOR, B., J. KUNŠTÁTSKÝ a C. PATOČKA. Hydraulika pro vodohospodářské stavby. Praha: SNTL, 1968. ISBN 04-710-68. [3] STARA, Vlastimil a Helena KOUTKOVÁ. 3. Vodohospodářská konference s mezinárodní účastí: Součinitel přepadu přelivu s kruhově zaoblenou korunou z fyzikálních experimentů. Brno, 2003. ISBN 80-86433-26-9. [4] ŘÍHA, Jaromír. Hydrotechnické stavby II: Modul 01 Přehrady. Studijní opora. FAST VUT v Brně 2006. [5] JANDORA, Jan. Matematické modelování ve vodním hospodářství. VUT v Brně, 2008. [6] KŘÍŽ, Tomáš. Manipulační řád pro vodní dílo Boskovice na toku Bělá v km 7,400. Brno, 2020. [7] ŠULC, Jan a Michal ŽOUŽELA. Hydraulický modelový výzkum bezpečnostního objektu VD Boskovice na ÚVS Stavební fakulty VUT v Brně. Výzkumná zpráva, LVV-ÚVSFAST VUT v Brně, 2013 [8] Autodesk® AutoCAD® 2020 [Počítačový software]. (2019). https://www.autodesk.cz/ [9] Blender v2.90 [Počítačový software]. (2020). https://www.blender.org/ [10] FLOW-3D® verze 11.0.4 [Počítačový software]. (2015). Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com [11] Why FLOW-3D? Flow-3D [online]. [cit. 2020-11-03]. Dostupné z: https://www.flow3d.com/products/flow-3d/why-flow-3d/ [12] Podklady poskytnuté Ing. Petrem Holomkem (Povodí Moravy, s. p.) [13] CHANSON, H. a J.S. MONTES. Journal of Irrigation and Drainage Engineering: Overflow Characteristics of Circular Weirs: Effcets of Inflow Conditions. 3. Reston: The American Society of Civil Engineers, 1998. ISBN 0733-9437. [14] KRATOCHVÍL, Jiří, Miloš JANDA a Vlastimil STARA. Projektování přehrad: Komplexní projekt HT. Brno: Vysoké učení technické v Brně, 1988. [15] STUDNIČKA, Tomáš. Matematické modelování odlehčovacích komor na stokových sítích. Brno, 2013. Disertační práce. Vysoké učení technické v Brně, Fakulta stavební. Vedoucí práce Ing. Petr Prax, Ph.D. [16] ŘÍHA, Jaromír. Hydraulika podzemních vod: Modul 01. Studijní opora. FAST VUT v Brně 2006.
Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D
J Korean Soc Coast Ocean Eng. 2015;27(6):373-381Publication date (electronic) : 2015 December 31doi : https://doi.org/10.9765/KSCOE.2015.27.6.373Dong Hui Ko*, Shin Taek Jeong,**, Nam Sun Oh****Hae Poong Engineering Inc.**Department of Civil and Environmental Engineering, Wonkwang University***Ocean·Plant Construction Engineering, Mokpo Maritime National University 고동휘*, 정신택,**, 오남선***
*(주)해풍기술**원광대학교 토목환경공학과***목포해양대학교 해양·플랜트건설공학과
Abstract
해상풍력 기기, 해상 플랫폼과 같은 구조물이 해상에서 빈번하게 설치되면서 세굴에 관한 영향도 중요시되고 있다. 이러한 세굴 영향을 검토하기 위해 세굴 수치모의 실험을 수행한다. 일반적으로 수치모의 조건은 일방향 흐름에 대해서만 검토가 이뤄지고 있으며 서해안과 같은 왕복성 조류 흐름에 대해서는 검토되지 않는다. 본 연구에서는 서해안에 설치된 HeMOSU-1호 해상 자켓구조물 주변에서 발생하는 세굴 현상을 FLOW-3D를 이용하여 수치모의하였다. 해석 조건으로는 일방향 흐름과 조석현상을 고려한 왕복성 흐름을 고려하였으며, 이를 현장 관측값과 비교하였다. 10,000초 동안의 수치모의 결과, 일방향의 흐름 조건에서는 1.32 m의 최대 세굴심이 발생하였으며, 양방향 흐름 조건에서는 1.44 m의 최대 세굴심이 발생하였다. 한편, 현장 관측값의 경우 약 1.5~2.0 m의 세굴심이 발생하여 양방향의 흐름에 대한 해석 결과와 근사한 값을 보였다.
As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bi-directional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.
1. 서 론
최근 해상풍력기기, 해상플랫폼과 같은 해상구조물 설치가 빈번해지면서 해상구조물의 안정성을 저하시키는 요인에 대한 대응 연구가 필요하다. 특히 해상에서의 구조물 설치는 육상과 달리 수력학적 하중이 작용하게 되기 때문에 파랑에 의한 구조물과의 진동, 세굴 현상에 대하여 철저한 사전 검토가 요구된다. 특히, 해상 기초에서 발생하는 세굴은 조류 및 파랑 등 유체 흐름과 구조물 사이의 상호작용으로 인해 해저 입자가 유실되는 현상으로 정의할 수 있으며 해상 외력 조건에 포함되어 설계시 고려하도록 제안하고 있다(IEC, 2009).구조물을 해상에 설치하게 되면 구조물이 흐름을 방해하는 장애요인으로 작용하여 구조물 주위에 부분적으로 더 빠른 유속이 발생하게 된다. 이러한 유속 변화는 압력 분포 변화에 기인하게 되어 해양구조물 주위에 아래로 흐르는 유속(downflow), 말굽형 와류(horseshoe vortex) 그리고 후류 와류(wake vortex)가 나타난다. 결국, 유속과 흐름의 변화를 야기하고 하상전단응력과 유사이동 능력을 증가시켜 해저 입자를 유실시키며 구조물의 안정성을 위협하는 요인으로 작용하게 된다. 이러한 세굴 현상이 계속 진행되면 해상풍력 지지구조물 기초의 지지력이 감소하게 될 뿐만 아니라 지지면의 유실로 상부반력 작용에 편심을 유발하여 기초의 전도를 초래한다. 또한 세굴에 의한 기초의 부등 침하가 크게 발생하면 상부 해상풍력 지지구조물에 보다 큰 단면력이 작용하므로 세굴에 의한 붕괴가 발생할 수 있다. 이처럼 세굴은 기초지지구조물을 붕괴하고, 침하와 얕은 기초의 변형을 초래하며, 구조물의 동적 성능을 변화시키기 때문에 설계 및 시공 유지관리시 사전에 세굴심도 산정, 세굴 완화 대책 등을 고려하여야 한다.또한 각종 설계 기준서에서는 세굴에 대해 다양하게 제시하고 있다. IEC(2009), ABS(2013), BSH(2007), MMAF(2005)에서는 세굴에 대한 영향을 검토할 것을 주문하지만 심도 산정 등 세굴에 대한 구체적인 내용은 언급하지 않고 전반적인 내용만 수록하고 있다. 그러나 DNV(2010), CEM(2006)에서는 경험 공식을 이용한 세굴 심도 산정 등 구체적인 내용을 광범위하게 수록하고 있어 세굴에 대한 영향 검토시 활용가능하다. 그 외의 기준서에서는 수치 모델 등을 통한 세굴 검토를 주문하고 있어 사용자들이 직접 판단하도록 제안하고 있다.그러나 세굴은 유속, 수심, 구조물 폭, 형상, 해저입자 등에 의해 결정되기 때문에 세굴의 영향 정도를 정확하게 예측하기란 쉽지 않지만 수리 모형 실험 또는 CFD(Computational Fluid Dynamics)를 이용한 수치 해석을 통해 지반 침식 및 퇴적으로 인한 지형변화를 예측할 수 있다. 한편, 침식과 퇴적 등 구조물 설치로 인한 해저 지형 변화를 예측하는 모델은 다양하지만, 본 연구에서는 Flowscience의 3차원 유동해석모델인 Flow-3D 모델을 사용하였다.해상 구조물은 목적에 따라 비교적 수심이 낮은 지역에 설치가 용이하다. 국내의 경우, 서남해안과 같이 비교적 연안역이 넓고 수심이 낮은 지역에 구조물을 설치하는 것이 비용 및 유지관리 측면에서 유리할 수 있다. 그러나 국내 서남해안 지역은 왕복성 흐름, 즉 조류가 발생하는 지역으로 흐름의 방향이 시간에 따라 변화하게 된다. 따라서, 세굴 수치 모의시 이러한 왕복성 흐름을 고려해야한다. 그러나 대부분의 수치 모델 적용시 조류가 우세한 지역에서도 일방향의 흐름에 대해서만 검토하며 왕복성 흐름에 의한 지층의 침식과 퇴적작용으로 인해 발생하는 해저 입자의 상호 보충 효과는 배제되게 된다. 또한 이로 인해 수치모델 결과에 많은 의구심이 발생하게 되며 현실성이 결여된 해석으로 보여질 수 있다. 이러한 왕복흐름의 영향을 검토하기 위해 Kim and Gang(2011)은 조류의 왕복류 흐름을 고려하여 지반의 수리 저항 성능 실험을 수행하였으며, 양방향이 일방향 흐름보다 세굴이 크게 발생하는 것을 발표하였다. 또한 Kim et al.(2012)은 흐름의 입사각에 따른 수리저항 실험을 수행하였으며 입사각이 커짐에 따라 세굴률이 증가하는 것으로 나타났다.본 연구에서는 단일방향 고정유속 그리고 양방향 변동유속조건에서 발생하는 지형 변화와 세굴 현상을 수치 모의하였으며, 이러한 비선형성 흐름변화에 따른 세굴 영향 정도를 검토하였다. 더불어 현장 관측 자료와의 비교를 통해 서남해안과 같은 왕복성 흐름이 발생하는 지역에서의 세굴 예측시 적절한 모델 수립 방안을 제안하고자 한다.
2. 수치해석 모형
본 연구에서는 Autodesk의 3D max 프로그램을 이용하여 지지구조물 형상을 제작하였으며, 수치해석은 미국 Flowscience가 개발한 범용 유동해석 프로그램인 FLOW-3D(Ver. 11.0.4.5)를 사용하였다. 좌표계는 직교 좌표계를 사용하였으며 복잡한 3차원 형상의 표현을 위하여 FAVOR 기법(Fractional Area/Volume Obstacle Representation Method)을 사용하였다. 또한 유한차분법에 FAVOR 기법을 도입한 유한체적법의 접근법을 사용하였으며 직교좌표계 에서 비압축성 유체의 3차원 흐름을 해석하기 위한 지배방정식으로는 연속방정식과 운동방정식이 사용되었다. 난류모형으로는 RNG(renormalized group)모델을 사용하였다.
2.1 FLOW-3D의 지배방정식
수식은 MathML 표현문제로 본 문서의 하단부의 원문바로가기 링크를 통해 원문을 참고하시기 바랍니다.
2.1.1 연속방정식
직교좌표계 (x,y,z)에서 비압축성 유체는 압축성 유체의 연속방정식에서 유도될 수 있으며 다음 식 (1)과 같다.
(1)
∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ 여기서, u, v, w는 (x,y,z) 방향별 유체속도, Ax, Ay, Az는 각 방향별 유체 흐름을 위해 확보된 면적비 (Area fraction), ρ는 유체 밀도, RSOR은 질량생성/소멸(Mass source/sink)항이다.
2.1.2 운동방정식
본 모형은 3차원 난류모형이므로 각각의 방향에 따른 운동량 방정식은 다음 식(2)~(4)와 같다.
ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}여기서, wsx, wsy, wsz는 벽전단응력이며, 벽전단응력은 벽 근처에서 벽 법칙 (law of the wall)을 따르며, 식 (8)~(13)에 의해 표현되어진다.
Flow-3D 모델에서 사용하는 sediment scour model은 해저입자의 특성에 따라 해저 입자의 침식, 이송, 전단과 흐름 변화로 인한 퇴적물의 교란 그리고 하상 이동을 계산한다.
2.1.3.1 The critical Shields parameter
무차원 한계소류력(the dimensionless critical Shields parameter)은 Soulsby-Whitehouse 식에 의해 다음 식 (14)와 같이 나타낼 수 있다(Soulsby, 1997).
(14)
θcr,i=0.31+1.2R∗i+0.055[1−exp(−0.02R∗i)]θcr,i=0.31+1.2Ri*+0.055[1−exp(−0.02Ri*)]여기서 무차원 상수, R∗iRi*는 다음 식 (15)와 같다.
(15)
R∗i=ds,i0.1(ρs,i−ρf)ρf∥g∥ds,i−−−−−−−−−−−−−−−−−−−√μfRi*=ds,i0.1(ρs,i−ρf)ρf‖g‖ds,iμf여기서 ρs, i는 해저 입자의 밀도, ρf는 유체 밀도, ds, i는 해저입자 직경, g는 중력가속도이다.한편, 안식각에 따라 한계소류력은 다음 식 (16)과 같이 표현될 수 있다.
(16)
θ′cr,i=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2β−−−−−−−−−−−−−−−−−−−−√tanψiθcr,i′=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2βtanψi여기서, β는 하상 경사각, ψi는 해저입자의 안식각, ψ는 유체와 해저경사의 사잇각이다.또한 local Shields number는 국부 전단응력, τ에 기초하여 다음 식 (17)과 같이 계산할 수 있다.
(17)
θi=τ∥g∥ds,i(ρs,i−ρf)θi=τ‖g‖ds,i(ρs,i−ρf)여기서, ||g||g 는 중력 벡터의 크기이며, τ는 식 (8)~(13)의 벽 법칙을 이용하여 계산할 수 있다.
2.1.3.2 동반이행(Entrainment)과 퇴적
다음 식은 해저 지반과 부유사 사이의 교란을 나타내는 동반이행과 퇴적 현상을 계산한다. 해저입자의 동반이행 속도의 계산식은 다음 식 (18)과 같으며 부유사로 전환되는 해저의 양을 계산한다.
(18)
ulift,i=αinsd0.3∗(θi−θ′cr,i)1.5∥g∥ds,i(ρs,i−ρf)ρf−−−−−−−−−−−−−−√ulift,i=αinsd*0.3(θi−θcr,i′)1.5‖g‖ds,i(ρs,i−ρf)ρf여기서, αi는 동반이행 매개변수이며, ns는 the packed bed interface에서의 법선벡터, µ는 유체의 동점성계수 그리고 d*은 무차원 입자 직경으로 다음 식 (19)와 같다.
(19)
d∗=ds,i[ρf(ρs,i−ρf)∥g∥μ2]1/3d*=ds,i[ρf(ρs,i−ρf)‖g‖μ2]1/3또한 퇴적 모델에서 사용하는 침강 속도 식은 다음 식 (20)같이 나타낼 수 있다.
하상이동 모델은 해저면에 대한 단위 폭당 침전물의 체적흐름을 예측하는데 사용되며 다음 식 (21)과 같이 표현되어진다.
(21)
Φi=βi(θi−θ′cr,i)1.5Φi=βi(θi−θcr,i′)1.5여기서 Φi는 무차원 하상이동률이며 βi는 일반적으로 8.0의 값을 사용한다(van Rijn, 1984).단위 폭당 체적 하상이동률, qi는 다음 식 (22)와 같이 나타낼 수 있다.
(22)
qb,i=fb,i Φi[∥g∥(ρs,i−ρfρf)d3s,i]1/2qb,i=fb,i Φi[‖g‖(ρs,i−ρfρf)ds,i3]1/2여기서, fb, i는 해저층의 입자별 체적률이다.또한 하상이동 속도를 계산하기 위해 다음 식 (23)에 의해 해저면층 두께를 계산할 수 있다.
(23)
δi=0.3ds,id0.7∗(θiθ′cr,i−1)0.5δi=0.3ds,id*0.7(θiθcr,i′−1)0.5그리고 하상이동 속도 식은 다음 식 (24)와 같이 계산되어진다.
Fig. 1.Iso-water depth contour map in western sea of Korea.
본 해석 대상 해역은 서해안의 조석 현상이 뚜렷한 지역으로 조류 흐름이 지배적이며 위도의 조화분석의 결과를 보면 조석형태수가 0.21로서 반일주조 형태를 취한다. 또한 북동류의 창조류와 남서류의 낙조류의 특성을 보이며 조류의 크기는 대상 영역에서 0.7~1 m/s의 최강유속 분포를 보이는 것으로 발표된 바 있다. 또한 대상 해역의 시추조사 결과를 바탕으로 해저조건은 0.0353 mm 로 설정하였고(KORDI, 2011), 수위는 등수심도를 바탕으로 15 m로 하였다.한편, 풍황자원 분석을 통한 단지 세부설계 기초자료 제공, 유속, 조류 등 해양 환경변화 계측을 통한 환경영향평가 기초자료 제공을 목적으로 Fig. 2와 같이 해상기상탑(HeMOSU-1호)을 설치하여 운영하고 있다. HeMOSU-1호는 평균해수면 기준 100 m 높이이며, 중량은 100 톤의 자켓구조물로 2010년 설치되었다. 본 연구에서는 HeMOSU-1호의 제원을 활용하여 수치 모의하였으며, 2013년 7월(설치 후 약 3년 경과) 현장 관측을 수행하였다.
Fig. 2.A photo of HeMOSU-1.
2.2.2 모델 구성
본 연구에서는 왕복성 조류의 영향을 살펴보기 위해 2 case에 대하여 해석하였다. 먼저, Case 1은 1 m/s의 고정 유속을 가진 일방향 흐름에 대한 해석이며, Case 2는 -1~1 m/s의 유속분포를 가진 양방향 흐름에 대한 해석이다. 여기서 (-)부호는 방향을 의미한다. Fig. 3은 시간대별 유속 분포를 나타낸 것이다.
Fig. 3.Comparison of current speed conditions.
2.2.3 구조물 형상 및 격자
HeMOSU-1호 기상 타워 자켓 구조물 형상은 Fig. 4, 격자 정보는 Table 1과 같으며, 본 연구에서는 총 2,883,000 개의 직교 가변 격자체계를 구성하였다.
계산영역의 경계 조건으로, Case 1의 경우, 유입부는 유속 조건을 주었으며 유출부는 outflow 조건을 적용하였다. 그리고 Case 2의 경우, 왕복성 흐름을 표현하기 위해 유입부와 유출부 조건을 유속 조건으로 설정하였다. 또한 2가지 경우 모두 상부는 자유수면을 표현하기 위해 pressure로 하였으며 하부는 지반 조건의 특성을 가진 wall 조건을 적용하였다. 양측면은 Symmetry 조건으로 대칭면으로 정의하여 대칭면에 수직한 방향의 에너지와 질량의 유출입이 없고 대칭면에 평행한 방향의 유동저항이 없는 경우로 조건을 설정하였다. 본 연구에서 케이스별 입력 조건을 다음 Table 2에 정리하였다.
Table 2.
Basic information of two scour simulation tests
Case
Structure type
Velocity
Direction
Analysis time
Case 1
Jacket
1 m/s
Unidirectional
10,000 sec
Case 2
−1~1 m/s
Bidirectional
FLOW-3D는 자유표면을 가진 유동장의 계산에서 정상상태 해석이 불가능하므로 비정상유동 난류해석을 수행하게 되는데 정지 상태의 조건은 조위를 설정하였다. 또한 유속의 초기 흐름은 난류상태의 비정상흐름이 되므로 본 해석에서는 정상상태의 해석 수행을 위해 1,000초의 유동 해석을 수행하였으며 그 후에 10,000초의 sediment scour 모델을 수행하였다. 해수의 밀도는 1,025 kg/m3의 점성유체로 설정하였으며 RNG(renormalized group) 난류 모델을 적용하였다.Go to :
3. 수치모형 실험 결과
3.1 Case 1
본 케이스에서는 1 m/s의 유속을 가진 흐름이 구조물 주변을 흐를 때, 발생하는 세굴에 대해서 수치 모의하였다. Fig. 6은 X-Z 평면의 유속 분포도이고 Fig. 7은 X-Y 평면의 유속 분포이다. 구조물 주변에서 약간의 유속 변화가 발생했지만 전체적으로 1 m/s의 정상 유동 상태를 띄고 있다.
Fig. 6.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Z plane).
Fig. 7.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Y plane).
이러한 흐름과 구조물과의 상호 작용에 의한 세굴 현상이 발생되며 Fig. 8에 구조물 주변 지형 변화를 나타내었다. 유속이 발생하는 구조물의 전면부는 대체로 침식이 일어나 해저지반이 초기 상태보다 낮아진 것을 확인할 수 있으며, 또한 전면부의 지반이 유실되어 구조물 후면부에 최대 0.13 m까지 퇴적된 것을 확인할 수 있다.
Fig. 8.Sea-bed elevation change of case 1 at t = 10,000 sec.
일방향 흐름인 Case 1의 경우에는 Fig. 9와 같이 10,000초 후 구조물 주변에 최대 1.32 m의 세굴이 발생하는 것으로 나타났다. 또한 구조물 뒤쪽으로는 퇴적이 일어났으며, 구조물 전면부에는 침식작용이 일어나고 있다.
Fig. 9.Scour phenomenon around jacket substructure(Case 1).
3.2 Case 2
서해안은 조석현상으로 인해 왕복성 조류 흐름이 나타나고 있으며 대상해역은 -1~1 m/s의 유속분포를 가지고 있다. 본 연구에서는 이러한 특성을 고려한 왕복성 흐름에 대해서 수치모의하였다.다음 Fig. 10은 X-Z 평면의 유속 분포도이며 Fig. 11은 X-Y 평면의 유속 분포도이다.
Fig. 10.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Z plane).
Fig. 11.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Y plane).
양방향 흐름인 Case 2의 경우에는 Fig. 12와 같이 10,000초후 구조물 주변에 최대 1.44 m의 세굴이 발생하는 것으로 나타났다. 특히 구조물 내부에 조류 흐름 방향으로 침식 작용이 일어나고 있는 것으로 나타났다.
Fig. 12.Sea-bed elevation change of case 2 at t = 10,000 sec.
Fig. 13.Scour phenomenon around jacket substructure(Case 2).
3.3 현장 관측
본 연구에서는 수치모의 실험의 검증을 위해 HeMOSU-1호 기상 타워를 대상으로 하여 2013년 7월 1일 수심 측량을 실시하였다.HeMOSU-1호 주변의 수심측량은 Knudsen sounder 1620과 미국 Trimble사의 DGPS를 이용하여 실시하였다. 매 작업시 Bar-Check를 실시하고, 수중 음파속도는 1,500 m/s로 결정하여 조위 보정을 통해 수심을 측량하였다. 측량선의 해상위치자료는 DGPS를 사용하여 UTM 좌표계로 변환을 실시하였다. 한편, 수심측량은 해면이 정온할 때 실시하였으며 관측 자료의 변동성을 제거하기 위해 2013년 7월 1일 10시~13시에 걸쳐 수심 측량한 자료를 동시간대에 국립해양조사원에서 제공한 위도 자료를 활용해 조위 보정하였다. 다음 Fig. 14는 위도 조위 관측소의 현장관측시간대 조위 시계열 그래프이다.
Fig. 14.Time series of tidal data at Wido (2013.7.1).
2013년 7월 1일 오전 10시부터 오후 1시에 걸쳐 수심측량한 결과를 이용하여 0.5 m 간격으로 등수심도를 작성하였으며 그 결과는 Fig. 15와 같다. 기상탑 내부 해역은 선박이 접근할 수 없기 때문에 측량을 실시하지 않고 Blanking 처리하였다.
Fig. 15.Iso-depth contour map around HeMOSU-1.
대상 해역의 수심은 대부분 -15 m이나 4개의 Jacket 구조물 주변에서는 세굴이 발생하여 수심의 변화가 나타났다. 특히 L-3, L-4 주변에서 최대 1.5~2.0 m의 세굴이 발생한 것으로 보였으며, L-4 주변에서는 넓은 범위에 걸쳐 세굴이 발생하였다. 창조류는 북동, 낙조류는 남서 방향으로 흐르는 조류 방향성을 고려하였을 때, L-4 주변은 조류방향과 동일하게 세굴이 발생하고 있었으며, 보다 상세한 세굴형태는 원형 구조물 내부 방향의 세굴 심도를 측정하여 파악하여야 할 것으로 판단된다.관측결과 최대 1.5~2.0 m인 점을 고려하면 양방향 흐름을 대상으로 장기간에 걸쳐 모의실험을 진행하는 경우, 실제 현상에 더 근접하는 결과를 얻을 수 있을 것으로 사료된다.Go to :
4. 결론 및 토의
본 연구에서는 자켓구조물인 해상기상탑 HeMOSU-1 주변에서 발생하는 세굴현상을 검토하기 위하여 2013년 7월 1일 현장 관측을 수행하고, FLOW-3D를 이용하여 수치모의 실험을 수행하였다. 실험 조건으로는 먼저 1 m/s의 유속을 가진 일방향 흐름과 -1~1 m/s의 흐름 분포를 가진 왕복성 흐름에 대해서 수치모의를 수행하였다. 그 결과 일방향 흐름의 경우, 10,000 초에 이르렀을 때 1.32 m, 왕복성 흐름의 경우 동일 시간에서 1.44 m의 최대 세굴심도가 발생하였다. 동일한 구조물에 대해서 현장 관측 결과는 1.5~2.0 m로 관측되어 일방향 흐름보다 왕복성 흐름의 경우 실제 현상에 더 근사한 것으로 판단되었다. 이는 일방향 흐름의 경우, Fig. 8에서 보는 바와 같이 구조물 후면에 퇴적과 함께 해저입자의 맞물림이 견고해져 해저 지반의 저항력이 커지는 현상에 기인한 것으로 판단된다. 반면 양방향 흐름의 경우, 흐름의 변화로 인해 맞물림이 약해지고 이로 인해 지반의 저항력이 일방향 흐름보다 약해져 세굴이 더 크게 발생하는 것으로 판단되었다.또한 장시간에 걸쳐 모델링을 수행하는 경우, 보다 근사한 결과를 얻을 수 있을 것을 사료되며, 신형식 기초 구조물을 개발하여 세굴을 저감할 수 있는 지 여부를 판단하는 등의 추가 연구가 필요하다.Go to : International Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.
감사의 글
본 연구는 지식경제 기술혁신사업인 “승강식 해상플랫폼을 가진 수직 진자운동형 30kW급 파력발전기 개발(과제번호 :20133010071570)”와 첨단항만건설기술개발사업인 “해상풍력 지지구조 설계기준 및 콘크리트 지지구조물 기술 개발(과제번호:20120093)”의 일환으로 수행되었습니다.Go to :
References
American Bureau of Shipping (ABS). (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.
API RP 2A WSD. (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, API.
Det Norske Veritas (DNV). (2010). OS-J101 Design of Offshore Wind Turbine Structures.
Federal Maritime and Hydrographic Agency (BSH). (2007). Standard. Design of Offshore Wind Turbines.
FLOW SCIENCE. (2014). FLOW-3D User’s Manual, Version 11.0.4.5.
International Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.
International Organization for Standardization (ISO). (2007). ISO 19902: Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures.
Kim, YS, Kang, GO. (2011). Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow, Journal of Korean Society of Coastal and Ocean Engineers. 23(1):118-125 (in Korean). Kim, YS, Han, BD, Kang, GO. (2012). Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil, Journal of Korean Society of Coastal and Ocean Engineers. 24(1):26-35 (in Korean). KORDI. (2011). BSPN64710-2275-2. An Analysis on the Marine Characteristics and Design Supporting for Offshore Wind Power Plant (in Korean).
Ministry of Maritime Affairs and Fisheries. (2005). Harbor and fishery design criteria (in Korean).
Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications, London.
U.S. Army Corps of Engineers. (2006). Coastal Engineering Manual, Part II : Coastal Hydrodynamics, Chapter II–2, Meteorology and Wave Climate.
van Rijn, L. (1984). Sediment transport, Part II:bed load transport, Journal of Hydraulic Engineering, 110(10):1431-1456.
터널 배수로는 높은 자유 표면 유속이 설정되는 배수로 유형 중 하나입니다. 회전 가속과 난류 흐름의 불규칙성으로 인해 오목한 수직 굽힘에서 압력이 증가합니다. 물리적 모델은 이 현상을 분석하는 가장 좋은 도구입니다.
모든 실제 프로토 타입 상태 분석을 포괄하는 데 필요한 물리적 모델의 수가 너무 많아 배치 및 비용 측면에서 비실용적입니다. 따라서 FLOW-3D 소프트웨어는 가능한 모든 실제 대안을 포괄하는 오목한 굴곡 터널의 난류 흐름 데이터베이스를 분석하고 생성하기 위해 선택되었습니다.
이 소프트웨어는 방전과 형상이 다른 다양한 터널을 시뮬레이션했습니다. 수치 결과는 Alborz Dam 터널 배수로의 건설 된 물리적 모델의 실험 결과로 검증되었으며 만족스러운 동의를 얻었습니다. 차원 분석은 문제의 관련 변수를 차원 없는 매개 변수로 그룹화하는 데 사용됩니다.
이러한 매개 변수는 인공 신경망 시뮬레이션에 사용됩니다. 결과는 Flow-3D 소프트웨어로 얻은 무 차원 매개 변수와 신경망에 의해 예측된 변수 사이의 상관 계수 R2 = 0.95를 보여 주었으며, 이와 관련하여 난류 모델링을 통해 얻은 데이터베이스를 기반으로 한 인공 신경망이 결론을 내릴 수있었습니다. 압력 예측을 위한 강력한 도구입니다.
Figure 1. Flow in a concave curvatureFigure 2. Flow in the curvature of the flip bucketFigure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in
Alborz DamFigure 4. Structure of artificial neural network [37]Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the
validation stageFigure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation
stageFigure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)
현재 연구에서 FLOW-3D 소프트웨어는 처음에 다양한 크기와 배출의 터널 배수로에서 난류 흐름을 시뮬레이션하는데 사용되었습니다. 결과는 이란 에너지부 물 연구소에서 제공한 Alborz 저장 댐에서 얻은 실제 데이터와 비교하여 검증되었습니다.
시뮬레이션에는 다양한 난류 모델이 사용되었으며 RNG 방법이 관찰된 실제 결과와 가장 잘 일치하는 것으로 나타났습니다. 직경이 3 ~ 15m 인 다양한 터널 배수로, 곡률 반경 3 개, 거의 모든 실제 사례를 포괄하는 3개의 배출이 시뮬레이션에 사용되었습니다.
차원 분석을 사용하여 무 차원 매개 변수를 생성하고 문제의 변수 수를 줄였으며 마지막으로 두 개의 주요 무 차원 그룹이 결정되었습니다. 이러한 무 차원 변수 간의 관계를 얻기 위해 신경망을 사용하고 터널 배수로의 오목한 굴곡에서 압력 예측 단계에서 0.95의 상관 계수를 얻었습니다.
압력 계산 결과는 다른 일반적인 방법으로 얻은 결과와 비교되었습니다. 비교는 신경망 결과가 훨씬 더 정확하고 배수로 터널의 오목한 곡률에서 압력을 예측하는 강력한 도구로 간주 될 수 있음을 나타냅니다.
References
Kim, D. G., & Park, J. H. (2005). Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. KSCE Journal of Civil Engineering, 9(2), 161-169.
Sabbagh-Yazdi, S. R., Rostami, F., & Mastorakis, N. E. (2008, March). Simulation of selfaeration at steep chute spillway flow using VOF technique in a 3D finite volume software. In Am. Conf. on Appl. Maths. Harvard, Mass, 24-28.
Nohani, E. (2015). Numerical simulation of the flow pattern on morning glory spillways. International Journal of Life Sciences, 9(4): 28-31.
Parsaie, A., Dehdar-Behbahani, S., & Haghiabi, A. H. (2016). Numerical modeling of cavitation on spillway’s flip bucket. Frontiers of Structural and Civil Engineering, 10(4), 438-444.
Teuber, K., Broecker, T., Bay´on, A., N¨utzmann, G. and Hinkelmann, R. (2019) ‘CFDmodelling of free surface flows in closed conduits’, Progress in Computational Fluid Dynamics, 19(6), 368–380.
Ghazanfari-Hashemi, R.S., Namin, M.M., Ghaeini-Hessaroeyeh, M. and Fadaei-Kermani, E., 2020. A Numerical Study on Three-Dimensionality and Turbulence in Supercritical Bend Flow. International Journal of Civil Engineering, 18(3), 381-391.
Sha, H. F., Wu, S. Q., & Zhou, H. (2009). Flow characteristics in a circular-section bend of high head spillway tunnel. Advances in Water Science, (6), 14.
Liu, Z., Zhang, D., Zhang, H., & Wu, Y. (2011). Hydraulic characteristics of converse curvature section and aerator in high-head and large discharge spillway tunnel. Science China Technological Sciences, 54(1), 33-39.
Zheng, Q. W., Luo, S. J., & Zhang, F. X. (2012). The Effect of Concave Types on the Hydraulic Characteristics in Spillway Tunnels with High-Speed Velocity. China Rural Water and Hydropower, 4.
Hongmin, G. U. O., Jiang, L. I., Shan, Q. I. N., & Yang, X. I. E. (2014). Three-Dimensional Numerical Simulation on Spillway Tunnel of Pankou Hydropower Station. Water Resources and Power, (4), 22.
Wan, W., Liu, B., & Raza, A. (2018). Numerical Prediction and Risk Analysis of Hydraulic Cavitation Damage in a High-Speed-Flow Spillway. Shock and Vibration, 2018.
Wei, W., Deng, J. and Xu, W. (2020). Numerical investigation of air demand by the free surface tunnel flows. Journal of Hydraulic Research, 1-8.
Xu, W., Dang, Y., Li, G., Shao, J. and Chen, G. (2007) ‘Three-dimensional numerical simulation of the bi-tunnel spillway flow [J] ‘, Journal of Hydroelectric Engineering, 1, 56- 60.
Huang, H.Y., Gong, A.M., Qiu, Y. and Wangliang, Z.A. (2015) ‘ 3D Numerical Simulation and Experimental Analysis of Spillway Tunnel’ In Applied Mechanics and Materials. Trans Tech Publications Ltd. 723, 171-175.
Li, S., Zhang, J. M., Xu, W. L., Chen, J. G., Peng, Y., Li, J. N., & He, X. L. (2016). Simulation and experiments of aerated flow in curve-connective tunnel with high head and large discharge. International Journal of Civil Engineering, 14(1), 23-33.
Shilpakar, R., Hua, Z., Manandhar, B., Shrestha, N., Zafar, M. R., Iqbal, T., & Hussain, Z. (2017, August). Numerical simulation on tunnel spillway of Jingping-I hydropower project with four aerators. In IOP Conference Series: Earth and Environmental Science. 82, 012013.
Song, C. C., & Zhou, F. (1999). Simulation of free surface flow over spillway. Journal of Hydraulic Engineering, 125(9), 959-967.
Fais, L.M.C.F., Filho, J.G.D., Genovez, A.I.B. (2015). Geometry influence and discharge curve correction in morning glory spillways. Proceedings of the 36th IAHR World Congress.
Falvey, H. T. (1990). Cavitation in chutes and spillways. Denver: US Department of the Interior, Bureau of Reclamation. 49-57.
Chaudhry, M. H. (2007). Open-channel flow. Springer Science & Business Media.
Novak, P., Moffat, A. I. B., Nalluri, C., & Narayanan, R. (2007). Hydraulic structures. Fourth Edition, Taylor & Francis, New York , 246–265.
Jorabloo, M., Maghsoodi, R., Sarkardeh, H., & Branch, G. (2011). 3D simulation of flow over flip buckets at dams. Journal of American Science, 7(6), 931-936.
Khani, S., Moghadam, M. A., & Nikookar, M. (2017). Pressure Fluctuations Investigation on the Curve of Flip Buckets Using Analytical and Numerical Methods. Vol. 03(04), 165- 171.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
Wu,C.L. Huang, B. Xie, C.B. (2008) . Comparison of calculation methods for irrigation district water inlet, China Rural Water and Hydropower ,5 (71) ,74–77.
Qiu,J. Huang, B.S. . Lai, G.W. (2002). Research and application of discharge coefficient of wide crest weir, China Rural Water and Hydropower ,9 ,41–42.
Xiang, H.Q .Ba,D.D. Liu, J.J. (2012) . Acquiring of curved practical weir flow coefficient by curve-fitting based on Matlab, Hydropower Energy Sci. 3 ,97–99.
Ye,Y.T. He,J.J.(2013).Experimental study on hydraulic calculation of discharge under plane gate on broad-crested weir, J. Water Resour. Archit. Eng. 11 (2), 138–141.
Salmasi, F., Yıldırım, G., Masoodi, A., & Parsamehr, P. (2013). Predicting discharge coefficient of compound broad-crested weir by using genetic programming (GP) and artificial neural network (ANN) techniques. Arabian Journal of Geosciences, 6(7), 2709- 2717.
Noori, R.; Hooshyaripor, F. (2014). Effective prediction of scour downstream of ski-jump buckets using artificial neural networks. Water Resour. 41, 8–18.
Flow-Science. (2014). FLOW-3D user manual. version11. In: Flow Science Santa Fe, NM.
Yakhot, V. S. A. S. T. B. C. G., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520.
Report on the hydraulic model of Alborz dam reservoir. (2001). Iran Water Research Institute
Lippman, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine, 4(2), pp.4-22.
Baylar, A., Ozgur, K.I.S.I. and Emiroglu, M.E. (2009). Modeling air entrainment rate and aeration efficiency of weirs using ANN approach. Gazi University Journal of Science, 22(2), 107-116.
Maureen, C. and Caudill, M. (1989). Neural network primer: Part I. AI Expert, 2(12), p.1987.
Shun-Chung Tsung • Jihn-Sung Lai • Der-Liang Young
sharp-crested weir에서 속도 분포 및 배출 계산
개방 수로의 harp-crested 위어는 수두-방류 관계를 통해 방류를 계산하는데 유용한 장치입니다. 그러나 수위 측정 사이트와 배출 계수는 배출 계산 정확도에 큰 영향을 미칩니다. 따라서 본 연구는 각각 16MHz MicroADV와 FLOW-3D를 사용하여 위어 부분의 속도 분포를 측정하고 시뮬레이션합니다. 감마 확률 밀도 함수를 사용하여 속도 분포를 특성화하기 위해 위어 섹션의 수심 및 표면 속도가 선택됩니다. 본 연구에서는 측정된 수심과 수면 속도에서 도출된 속도 분포를 기반으로 속도-면적 통합 방법으로 정확한 배출을 계산합니다. 이 연구의 주요 기여는 정확한 측정 사이트를 제공하고, 속도 분포와 방류를 연결하고, 방류 계수 영향을 피하고, 방류 계산 정확도를 향상시키는 것입니다.
A sharp-crested weir in open channel is a useful device to calculate discharge via head-discharge relationship. However, water stage measurement site and discharge coefficient significantly influence discharge calculation accuracy. Therefore, this study measures and simulates velocity distribution at the weir section using 16-MHz MicroADV and FLOW-3D, respectively. The water depth and surface velocity at the weir section are selected to characterize velocity distribution using gamma probability density function. In this study, accurate discharge is calculated by velocity–area integration method based on velocity distribution derived from measured water depth and surface velocity. The main contributions of this study are to give an exact measurement site, link velocity distribution and discharge, avoid discharge coefficient influence, and improve discharge calculation accuracy.
Fig. 1 Fixed staff gauge for head measurement at the upstream side
of the Yuanshanzi Flood Diversion Work in the Keelung River,
Taiwan
References
Ackers P, White WR, Perkins JA, Harrison AJM (1978) Weirs and flumes for flow measurement. Wiley, New York
Bagheri S, Heidarpour M (2010) Application of free vortex theory to estimating discharge coefficient for sharp-crested weirs. Biosyst Eng 105:423–427
Chanson H, Montes JS (1998) Overflow characteristics of circular weirs: effects of inflow conditions. J Irrig Drain Eng 124(3):152–162
Costa JE, Cheng RT, Haeni FP, Melcher N, Spicer KR, Hayes E, Plant W, Hayes K, Teague C, Barrick D (2006) Use of radars to monitor stream discharge by noncontact methods. Water Resour Res 42:1–14
Ferrari A (2010) SPH simulation of free surface flow over a sharpcrested weir. Adv Water Resour 33:270–276
Ghodsian M (2003) Supercritical flow over a rectangular side weir. Can J Civ Eng 30:596–600
Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225
Hirt CW, Sicilian JM (1985) A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int. Conf. Ship Hydrodynamics, National Academy of Science, Washington, DChttp://www.flow3d.com/. Accessed 20 Nov 2012
Kindsvater CE, Carter R (1957) Discharge characteristics of rectangular thin-plate weirs. J Hydraul Div 83(3):1–36
Lai JS, Tsorng SC, Tan YC, Hwang CY (2008) Measurements and analysis of flow field over sharp-crested weir. Taiwan Water Conservancy 56(1):49–59 (in Chinese)
Lin C, Huang WY, Suen HF, Hsieh SC (2002) Study on the characteristics of velocity field of free overfalls over a vertical drop. In: Proc. Hydraul Meas Exp Methods Conf, Estes Park, CO, USA
Muson BR, Young DF, Okiishi TH (1990) Fundamentals of fluid mechanics. Wiley, New York
Qu J, Ramamurthy AS, Tadayon R, Chen Z (2009) Numerical simulation of sharp-crested weir flows. Can J Civ Eng 36:1530–1534
Rajaratnam N, Muralidhar D (1971) Pressure and velocity distribution for sharp-crested weirs. J Hydraul Res 9(2):241–248
Ramamurthy AS, Tim US, Rao MV (1987) Flow over sharp-crested weirs. J Irrig Drain Eng 113(2):163–172
Rehbock T (1929) Discussion of ‘‘precise weir measurements’’ by Schoder EW and Turner KB Trans ASCE 93: 1143–1162
Rouse H (1936) Discharge characteristics of the free overfall. Civ Eng ASCE 6(4):257–260
Samani AK, Ansari A, Borghei SM (2010) Hydraulic behaviour of flow over an oblique weir. J Hydraul Res 48(5):669–673
Sargisonl JE, Percy A (2009) Hydraulics of broad-crested weirs with varying side slopes. J Irrig Drain Eng 135(1):115–118
Subramanya K (1986) Flow in open channels. Tata McGraw-Hill, New Delhi
Amini, A; Parto, AA Amini, A (reprint author), AREEO, Kurdistan Agr & Nat Resources Res & Educ Ctr, Sanandaj, Iran. , 2017; 65 (6): 1243
Abstract
이 연구에서는, 파일 그룹 주위의 흐름 패턴과 국소적 스크루 메커니즘을 식별하기 위해, 플로우 필드를 FLOW-3D 소프트웨어를 사용해 시뮬레이션했다. 편평한 침대 채널에 나란히 배열되어 있는 한 쌍의 말뚝이 조사되었다. Navier-Stokes 방정식을 확립하기 위해 RNGk-epsilon 난류 모델을 사용하였고 실험 데이터를 사용하여 결과를 검증하였다. FLOW-3D 기능의 경우, 소프트웨어가 파일 그룹 간의 예상 상호작용을 적절히 시뮬레이션할 수 있는 것으로 확인되었다. 플로우 필드 시뮬레이션 결과는 레이놀즈 숫자와 말뚝 간격이 vortices 형성에 가장 큰 영향을 미치는 변수라는 것을 보여주었다. 탠덤 더미 주변의 흐름과 웨이크 바이크 주변의 하향 흐름은 측면 배치와 단일 더미에 비해 더 강렬하고 복잡했다.
In this study to identify the flow pattern and local scour mechanism around pile groups, the flow field was simulated using FLOW-3D software. A pair of pile on a flat-bed channel with side by side and tandem arrangements was investigated. To establish Navier–Stokes equations, the RNGk-e turbulence model was used and the results were verified using experimental data. In case of FLOW-3D capability, it was found that the software was able to properly simulate the expected interaction between the pile groups. The results of flow field simulation showed that Reynolds number and the pile spacing are the most influential variables in forming vortices. The flow around tandem pile and the downward flow around wake vortices were more intense and complicate in comparison with side by side arrangements and single pile.
Keywords : Bridge, Sediment, Flow pattern, Pile group, Local scour
Fig. 1 General view of the
channel and measured points a
side by side b tandem
arrangementFig. 2 Meshing around the two side by side piles: a plan and b side
viewFig. 3 Meshing around the two tandem piles: a plan and b side viewFig. 4 Current lines in the horizontal level in: a 0.70 and b 14 cm
from the streambed in tandem piesFig. 5 Current lines in the horizontal level in: a 0.70 cm, and b
14 cm from the streambed in side by side pilesFig. 6 Comparing iso-velocity line in longitudinal direction (u): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d
simulated in 14 cmFig. 7 Comparing iso-velocity line in latitudinal direction (v): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated
in 14 cmFig. 8 3D velocity profiles in
x–z plane in the center of the
pile (Y = 0): a x = – 1.65D; b
x = – 6.59D; c x = 0.69D; d
x = 1.32D; e x = 3.69D and f
x = 7.60DFig. 9 Comparison of simulated and observed velocity in x–y plane in center of piles
References
Akilli AA, Karakus C (2004) Flow characteristics of circular cylinders arranged side-by- side in shallow water. Flow Meas Instrum 15(4):187–189
Amini A, Mohammad TM (2017) Local scour prediction in complex pier. Mar Georesour Geotechnol 35(6):857–864
Amini A, Melville B, Thamer M, Halim G (2012) Clearwater local scour around pile groups in shallow-water flow. J Hydraul Eng (ASCE) 138(2):177–185
Amini A, Mohd TA, Ghazali H, Bujang H, Azlan A (2011) A local scour prediction method for pile cap in complex piers. ICE-water Manag. 164(2):73–80
Aslani A (2008) Experimental evaluation of flow pattern around double piles. MSc thesis, Sharif University, Tehran
Gu ZF, Sun TF (1999) On interference between two circular cylinders in staged arrangement at high sub-critical Reynolds numbers. J Wind Eng Ind Aerodyn 80:287–309
Hang-Wook P, Hyun P, Yang-Ki C (2014) Evaluation of the applicability of pier local scour formulae using laboratory and field data. Mar Georesour Geotechnol. https://doi.org/10.1080/ 1064119X.2014.954658
Hannah CR (1978) Scour at pile groups. Research Rep. No. 78-3, Civil Engineering, Univ. of Canterbury, Christchurch
Hosseini R, Amini A (2015) Scour depth estimation methods around pile groups. J Civ Eng KSCE 19(7):2144–2156
Mohamed HI (2013) Numerical simulation of flow and local scour at two submerged-emergent tandem cylindrical piers. J Eng Sci 41(1):1–19
Palau-Salvador G, Stoesser T, Rodi W (2008) LES of the flow around two cylinders in tandem. J Fluids Struct 24(8):1304–1312
Papaionannou GV, Yuea DKP, Triantafylloua MS, Karniadakis GE (2008) On the effect of spacing on the vortex-induced vibrations of tandem cylinders. J Fluids Struct 24:833–854
Price SJ, Paidoussis MP (1989) The flow induced response of a single flexible cylinder in an in-line array of rigid cylinder. J Fluid Struct 3:61–82
Raudkivi AJ (1998) Loose boundary hydraulics. A. A. Balkema, Rotterdam, pp 8–28. https://doi.org/10.1080/02508069608686502
Salim MS, Cheah SC (2009) Wall y ? strategy for dealing with wallbounded turbulent flows. In: Proceedings of the international multiconference of engineers and computer scientists, vol II, IMECS, Hong Kong
Shin JH, Park HI (2010) Neural network formula for local scour at piers using field data. Mar Georesour Geotechnol 28(1):37–48
Sicilian JM, Hirt CW, Harper RP (1987) FLOW-3D. Computational modeling power for scientists and engineers. Report FSI-87-00-Flow Science. Los Alamos, NM
Solaimani N, Amini A, Banejad H, Taheri P (2017) The effect of pile spacing and arrangement on bed formation and scour hole dimensions in pile groups. Int J River Basin Manag 15(2):219–225
Sumer BM, Fredsøe J (2002) The mechanics of scour in the marine environment. World Scientific, Farrer Road, Singapore
Sumer B, Chua L, Cheng N, Fredsøe J (2003) Influence of turbulence on bed load sediment transport. J Hydraul Eng. https://doi.org/ 10.1061/(ASCE)0733-9429(2003)129:8(585)
Sun TF, Gu ZF, He DX, Zhang LL (1992) Fluctuating pressure on two circular cylinder at high Reynolds number. J Wind Eng Ind Aero. 42:577–588
1 Faculty of Water Resources Engineering, Thuyloi University, 175 Tay Son, Dong Da, Ha Noi 116705, Vietnam 2 Hydraulic Construction Institute, 3/95 Chua Boc, Dong Da, Ha Noi 116705, Vietnam * Author to whom correspondence should be addressed. Academic Editor: Costanza Aricò Water 2021, 13(3), 344;
Abstract
본 논문의 목적은 일부 2D 및 3D 수치 모델이 침수 지역에 고립된 건물 또는 건물 배열이 있는 곳에서 홍수 파동을 시뮬레이션하는 능력을 조사하는 것이었습니다.
먼저, 제안된 2D 수치 모델은 구조화된 메시에서 2D 천수(shallow water) 방정식(2D-SWEs)을 해결하기 위한 유한 볼륨 방법(FVM)을 기반으로 했습니다.
FDS (flux-difference splitting)은 정확한 질량 균형을 얻기 위해 사용되었고 Roe 체계는 Riemann 문제를 근사하기 위해 호출되었습니다.
둘째, 상업적으로 이용 가능한 3D CFD 소프트웨어 패키지가 선택되었으며, 여기에는 두 가지 난류 모델이 포함된 Flow 3D 모델이 포함되어 있습니다.
RNG(Renormalized Group) 및 LES(Large-eddy Simulation)를 사용하는 레이놀즈 평균 Navier-Stokes(RAN)입니다. 댐 붕괴 흐름으로 인한 장애물에 대한 충격력의 수치 결과는 3D 솔루션이 2D 솔루션보다 훨씬 낫다는 것을 보여주었습니다.
건물 배열에 작용하는 충격력의 3D 수치 힘 결과를 보유하고 있는 실험 데이터와 비교함으로써, 속도 유도력이 동적 힘에 미치는 영향은 Froude 숫자의 함수와 사고 파동의 수심 함수에 의해 정량화 되었습니다. 또한, 우리는 힘의 강도의 피크 값의 3D 계산 결과에 대한 초기 물 단계와 댐 붕괴 폭의 영향을 조사했습니다.
The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.
건물 또는 건물 그룹에 대한 홍수 파동의 영향에 대한 연구는 하류 지역에 대한 조기 경고 또는 안전 의식 향상에 중요한 역할을 했습니다. 기본적으로 댐 파괴 흐름에 대한 연구는 실험 측정이나 수치 시뮬레이션을 통해 추정 할 수 있습니다 [1,2,3,4,5,6].
컴퓨터 처리 능력의 증가로 인해 불연속 흐름에 대한 수치 연구가 비용 효율적이되었습니다. 지난 10 년 동안 천수(shallow water) 솔버는 정확성과 계산 능력면에서 크게 향상되었습니다. 침수 가능 지역의 수심 및 속도 프로파일과 같은 유체 역학적 매개 변수에 많은주의를 기울였습니다 [1,2,3,4,5,6,7,8].
Migot et al. [9]는 도시 홍수의 실험적 모델링에 관한 많은 기사를 검토했습니다. 그 논문에 언급 된 45 개의 작품 중 단 4 개의 프로젝트 만이 장애물에 가해지는 일정한 또는 비정상적인 흐름의 힘 또는 압력을 측정했습니다.
또한 물리적 및 2D 수치 모델에서 건물 또는 건물 그룹에 돌발 홍수가 미치는 영향에 대한 연구는 거의 없었습니다. 천수(shallow water) 모델은 [10,11]에서 고립된 장애물에 대한 충격의 힘을 예측하는데 사용되었습니다.
한편 Shige-eda [12]는 액체와 건물 배열 간의 상호 작용을 결정하기 위해 물리적 모델과 2D 수치 체계를 선택했습니다. Aureli와 Shige-eda는 수직 속도와 가속도를 무시하기 때문에 댐 파괴 흐름의 힘을 추정하기 위한 2D 천수(shallow water) 방정식 (SWE)의 단점을 보여주었습니다 [10,12].
Migot [9]은 또한 장애물 주변의 시뮬레이션된 홍수 흐름에 대한 2D SWE에 대한 여러 출판물이 있었지만 이 주제에 대한 3D 수치 모델에 대한 연구는 거의 없다고 지적했습니다. 최근 전산 유체 역학 (CFD) 3D 시뮬레이션은 유체 흐름과 관련된 문제를 해결하기위한 광범위한 도구가되었습니다.
댐 파괴 파의 특성은 [13,14,15,16]에 의해 주목되었고 Issakhov [17]는 다양한 종류의 장애물이 압력 분포에 미치는 영향을 조사하기 위해 CFD 방법을 사용했습니다. 그들은 분포가 댐 표면에서 3 배 더 낮다는 것을 밝혔다.
Aureli [10]는 댐 파괴 파가 구조물에 미치는 영향의 정적 힘을 평가하기 위해 실험 테스트와 2D 및 3D 수치 모델을 사용했습니다. Mokarani [18]는 댐 브레이크 흐름 영향의 VOF 시뮬레이션에서 피크 압력 안정성 조건을 연구했습니다.
앞서 언급한 작품에서 구조물이나 구조물 군에 작용하는 힘은 압력에 의한 정 수력 또는 정력이었다. 한편, 급류에서 속도로 인한 힘은 압력 력보다 크거나 같았습니다 [19]. Armanini [20]는 정상 흐름에 대해이 항을 추정하기 위한 분석적 표현 만을 제시했습니다. 우리가 아는 한, 건물 그룹에 작용하는 비정상 흐름의 동적 힘을 생성하기 위해 2D 및 3D 수학적 모델을 모두 사용하는 작업은 없습니다.
따라서 본 연구에서는 제안된 2D 수치 모델과 3D 수학적 모델 모두에 의해 고립 된 장애물 또는 장애물 그룹에 대한 급격한 비정상 흐름의 테스트 사례를 재현했습니다. 수심 및 유속 수문 그래프와 같은 몇 가지 수력 학적 특성이 추정되었으며 측정 된 데이터와 매우 잘 일치했습니다.
특히 댐 브레이크 흐름이 서로 다른 건물에 가하는 동적인 힘도 시뮬레이션했습니다. 속도 유도 힘이 동적 힘에 미치는 영향 수준을 나타내는 매개 변수는 Froude 수와 입사 파동의 수심의 함수인 것으로 밝혀졌습니다. 또한 붕괴된 댐 사이트 폭 (b)과 초기 수위 (h0)는 충격력의 최대 값에 영향을 미치는 변수로 고려되었습니다.
Figure 1. (a) Configuration of experiment test (dimension in meters); (b) Gauges on the vertical front face of building.Figure 2. (a) Distributed pressure profiles at centerline of front face of column; (b) Comparison of load-time histories simulated by different numerical modelsFigure 3. Group of buildings in flooded area.Figure 4. Water depth and u-velocity profiles at gauge b.Figure 5. Water hydrographs at gauges a and c.Figure 6. Velocity component profiles at gauges a and c.Figure 7. Formation of incident and reflected waves.Figure 8. Snapshots of streamlines of Froude number at different times: 1.0 s, 2.0 s, 5.0 s and 10 s.Figure 9. Force in the flow direction exerted on 6 buildings.Figure 10. The linear regression between forces per unit width (F) and q2b/h0.
Conclusions
댐 붕괴 흐름으로 인한 홍수 파도는 높은 속도 또는 큰 깊이가 관련되었을 때 건물에 큰 영향을 미칩니다. 본 논문에서는 2D 및 3D 수치 모델의 건물 및 건물 그룹에 대한 빠른 흐름에 의해 발생하는 유압 특성과 충격 부하를 추정할 수 있는 능력을 조사했습니다. 천수(shallow water) 방정식에 기초한 2D 수학 모델은 FDS 방법으로 해결되었으며, FDS 방법은 최신 버전의 Flow 3D 유체 역학 모델과 함께 사용되었습니다. 연구의 주요 발견은 다음과 같습니다. (1) 수심 또는 속도 프로파일을 공식화하기 위해 2D 및 3D 수치 솔루션은 모두 매우 유사합니다. 제안된 2D 수치 모델은 정적 힘의 최대 값 뿐만 아니라 수심 및 속도 구성 요소를 포함하는 유압 특성을 예측하는 데 적합합니다. 그러나 LES 및 RAN 난류 모듈이 포함된 3D 유체역학 모델은 2D 얕은 흐름 모델이 1개만 제공하는 동안 두 개의 최고 충격 부하를 잘 포착할 수 있습니다. 일반적으로 3D 결과는 실험 결과와 더 가깝습니다. (2) 여러 건물에 대한 정적 및 동적 힘은 모두 LES 모듈을 사용하여 Flow 3D에 의해 계산되었습니다. 건물에서 속도에 의한 힘과 압력의 역할은 위치에 따라 다릅니다. 댐 현장 근처에서, 속도 유도 힘은 댐 파괴 파동의 주 방향에서 멀리 떨어져 있거나 두 번째 배열에서 압력 힘이 더 중요합니다. 속도 유도 힘의 영향은 매개 변수 α에 의해 정량화되며, 이는 사고파의 Froude 숫자와 수심 함수로 수행됩니다. q2b/h0과 정적 힘과 동적 힘의 피크 강도 사이의 선형 회귀 관계는 합리적인 R-제곱 양으로 해결됩니다.
추가 연구에서, 제시된 2D 수치 모델의 견고성과 효과는 더 명확하게 드러날 것입니다. 대규모 도메인에 대한 홍수 흐름을 시뮬레이션하는 데 쉽게 적용할 수 있습니다. 또한, α 매개변수의 제안된 방정식(21)은 실제 사례 연구에서 다운스트림 영역의 건물에 대한 속도 유도 힘의 영향을 정확하게 평가하기 위한 매우 의미가 있습니다. 이 매개 변수의 정확도 수준을 높이려면 서로 다른 조건에서 장애물에 작용하는 여러 가지 힘 실험이 구현되어야 합니다.
Testa, G.; Zuccala, D.; Alcrudo, F.; Mulet, J.; Frazao, S.S. Flash flood flow experiment in a simplifed urban district. J. Hydraul. Res.2007, 45, 37–44. [Google Scholar] [CrossRef]
Soares-Frazao, S.; Zech, Y. Dam-break flow through an idealized city. J. Hydraul. Res.2008, 46, 648–665. [Google Scholar] [CrossRef]
Soares-Frazão, S.; Zech, Y. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res.2007, 45, 27–36. [Google Scholar] [CrossRef]
Soares-Frazão, S. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res.2007, 45, 19–26. [Google Scholar] [CrossRef]
di Cristo, C.; Evangelista, S.; Greco, M.; Iervolino, M.; Leopardi, A.; Vacca, A. Dam-break waves over an erodible embankment: Experiments and simulations. J. Hydraul. Res.2018, 56, 196–210. [Google Scholar] [CrossRef]
Evangelista, S. Experiments and numerical simulations of dike erosion due to a wave impact. Water2015, 7, 5831–5848. [Google Scholar] [CrossRef]
Li, Y.L.; Yu, C.H. Research on dam break flow induced front wave impacting a vertical wall based on the CLSVOF and level set methods. Ocean Eng.2019, 178, 442–462. [Google Scholar] [CrossRef]
Özgen, I.; Zhao, J.; Liang, D.; Hinkelmann, R. Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity. J. Hydrol.2016, 541, 1165–1184. [Google Scholar] [CrossRef]
Mignot, E.; Li, X.; Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol.2019, 568, 334–342. [Google Scholar] [CrossRef]
Aureli, F.; Dazzi, A.; Maranzoni, A.; Mignosa, P.; Vacondio, R. Experimental and numerical evaluation of the force due to the impact of a dam break wave on a structure. Adv. Water Resour.2015, 76, 29–42. [Google Scholar] [CrossRef]
Milanesi, L.; Pilotti, M.; Belleri, A.; Marini, A.; Fuchs, S. Vulnerability to flash floods: A simplified structural model for masonry buldings. Water Resour. Res.2018, 54, 7177–7197. [Google Scholar] [CrossRef]
Shige-eda, M.; Akiyama, J. Numerical and experimental study on two dimensional flood flows with and without structures. J. Hydraul. Eng.2003, 129, 817–821. [Google Scholar] [CrossRef]
Cagatay, H.O.; Kocaman, S. Dam break flows during initial stage using SWE and RANs approaches. J. Hydraul. Res.2010, 48, 603–611. [Google Scholar] [CrossRef]
Yang, S.; Yang, W.; Qin, S.; Li, Q.; Yang, B. Numerical study on characteristics of dam break wave. Ocean Eng.2018, 159, 358–371. [Google Scholar] [CrossRef]
Robb., D.M.; Vasquez., J.A. Numerical simulation of dam break flows using depth averaged hydrodynamic and three dimensional CFD models. In Proceedings of the 22nd Canadian Hydrotechnical Conference, Ottawa, ON, Canada, 28–30 April 2015. [Google Scholar]
Kocaman, S.; Evangelista, S.; Viccione, G.; Guzel, H. Experimental and Numerical analysis of 3D dam break waves in an enclosed domain with a single oriented obstacles. Environ. Sci. Proc.2020, 2, 35. [Google Scholar] [CrossRef]
Issakhov, A.; Zhandaulet, Y.; Nogaeva, A. Numerical simulation of dambreak flow for various forms of the obstacle by VOF method. Int. J. Multiph. Flow2018, 109, 191–206. [Google Scholar] [CrossRef]
Mokarani, C.; Abadie, S. Conditions for peak pressure stability in VOF simulations of dam break flow impact. J. Fluids Struct.2016, 62, 86–103. [Google Scholar] [CrossRef]
Liu, L.; Sun, J.; Lin, B.; Lu, L. Building performance in dam break flow—an experimental sudy. Urban Water J.2018, 15, 251–258. [Google Scholar] [CrossRef]
Armanini, A.; Larcher, M.; Odorizzi, M. Dynamic impact of a debris flow front against a vertical wall. In Proceedings of the 5th international conference on debris-flow hazards mitigation: Mechanics, prediction and assessment, Padua, Italy, 14–17 June 2011. [Google Scholar] [CrossRef]
Hubbard, M.E.; Garcia Navarro, P. Flux difference splitting and the balancing of source terms and flux gradients. J. Comput. Phys.2000, 165, 89–125. [Google Scholar] [CrossRef]
Roe, P.L. A basis for upwind differencing of the two-dimensional unsteady Euler equations. In Numerical Methods in Fluids Dynamics II; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
Bradford, S.F.; Sander, B. Finite volume model for shallow water flooding of arbitrary topography. J. Hydraul. Eng. (ASCE)2002, 128, 289–298. [Google Scholar] [CrossRef]
Brufau, P.; Garica-Navarro, P. Two dimensional dam break flow simulation. Int. J. Numer. Meth. Fluids2000, 33, 35–57. [Google Scholar] [CrossRef]
Hien, L.T.T. 2D Numerical Modeling of Dam-Break Flows with Application to Case Studies in Vietnam. Ph.D. Thesis, Brescia University, Brescia, Italy, 2014. [Google Scholar]
Hien, L.T.T.; Tomirotti, M. Numerical modeling of dam break flows over complex topography. Case studies in Vietnam. In Proceedings of the 19th IAHR-APD Congress 2014, Hanoi, Vietnam, 21–24 September 2014; ISBN 978-604-82-1383-1. [Google Scholar]
Flow-3D, Version 12.0; User Mannual; Flow Science Inc.: Santa Fe, NM, USA, 2020.
Guney, M.S.; Tayfur, G.; Bombar, G.; Elci, S. Distorted physical model to study sudden partial dam break flow in an urban area. J. Hydraul. Eng.2014, 140, 05014006. [Google Scholar] [CrossRef]
Shige-eda, M.; Akiyama, J. Discussion and Closure to “Numerical and experimental study on two dimensional flood flows with and without structures” by Mirei Shige-eda and Juichiro Akiyama. J. Hydraul. Eng.2005, 131, 336–337. [Google Scholar] [CrossRef]
Ritter, A. Die Fortpflanzung der Wasserwelle (Generation of the water wave). Z. Ver. Dtsch. Ing.1892, 36, 947–954. [Google Scholar]
난소암에 대한 일관된 3차원 모델에서 카보플라틴에 대한 유동에 의한 전단응력변화에 관한 연구
Abstract
A key reason for the persistently grim statistics associated with metastatic ovarian cancer is resistance to conventional agents, including platinum-based chemotherapies. A major source of treatment failure is the high degree of genetic and molecular heterogeneity, which results from significant underlying genomic instability, as well as stromal and physical cues in the microenvironment. Ovarian cancer commonly disseminates via transcoelomic routes to distant sites, which is associated with the frequent production of malignant ascites, as well as the poorest prognosis. In addition to providing a cell and protein-rich environment for cancer growth and progression, ascitic fluid also confers physical stress on tumors. An understudied area in ovarian cancer research is the impact of fluid shear stress on treatment failure. Here, we investigate the effect of fluid shear stress on response to platinum-based chemotherapy and the modulation of molecular pathways associated with aggressive disease in a perfusion model for adherent 3D ovarian cancer nodules. Resistance to carboplatin is observed under flow with a concomitant increase in the expression and activation of the epidermal growth factor receptor (EGFR) as well as downstream signaling members mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK). The uptake of platinum by the 3D ovarian cancer nodules was significantly higher in flow cultures compared to static cultures. A downregulation of phospho-focal adhesion kinase (p-FAK), vinculin, and phospho-paxillin was observed following carboplatin treatment in both flow and static cultures. Interestingly, low-dose anti-EGFR photoimmunotherapy (PIT), a targeted photochemical modality, was found to be equally effective in ovarian tumors grown under flow and static conditions. These findings highlight the need to further develop PIT-based combinations that target the EGFR, and sensitize ovarian cancers to chemotherapy in the context of flow-induced shear stress.
전이성 난소 암과 관련된 지속적으로 암울한 통계의 주요 이유는 백금 기반 화학 요법을 포함한 기존 약제에 대한 내성 때문입니다. 치료 실패의 주요 원인은 높은 수준의 유전적 및 분자적 이질성이며, 이는 중요한 기본 게놈 불안정성과 미세 환경의 기질 및 물리적 단서로 인해 발생합니다.
난소 암은 흔히 transcoelomic 경로를 통해 먼 부위로 전파되며, 이는 악성 복수의 빈번한 생산과 가장 나쁜 예후와 관련이 있습니다. 암 성장 및 진행을위한 세포 및 단백질이 풍부한 환경을 제공하는 것 외에도 복수 액은 종양에 물리적 스트레스를 부여합니다. 난소 암 연구에서 잘 연구되지 않은 분야는 유체 전단 응력이 치료 실패에 미치는 영향입니다.
여기, 우리는 백금 기반 화학 요법에 대한 반응과 부착 3D 난소 암 결절에 대한 관류 모델에서 공격적인 질병과 관련된 분자 경로의 변조에 대한 유체 전단 응력의 효과를 조사합니다.
카르보플라틴에 대한 내성은 상피 성장 인자 수용체 (EGFR)의 발현 및 활성화의 수반되는 증가 뿐만 아니라 다운 스트림 신호 구성원인 미토겐 활성화 단백질 키나제/세포 외 신호 조절 키나제 (MEK) 및 세포 외 신호 조절과 함께 관찰됩니다. 키나아제 (ERK). 3D 난소 암 결절에 의한 백금 흡수는 정적 배양에 비해 유동 배양에서 상당히 높았습니다.
포스 포-포컬 접착 키나제 (p-FAK), 빈 쿨린 및 포스 포-팍 실린의 하향 조절은 유동 및 정적 배양 모두에서 카보 플 라틴 처리 후 관찰되었습니다. 흥미롭게도, 표적 광 화학적 양식 인 저용량 항 EGFR 광 면역 요법 (PIT)은 유동 및 정적 조건에서 성장한 난소 종양에서 똑같이 효과적인 것으로 밝혀졌습니다.
이러한 발견은 EGFR을 표적으로하는 PIT 기반 조합을 추가로 개발하고 흐름 유도 전단 응력의 맥락에서 화학 요법에 난소 암을 민감하게 할 필요성을 강조합니다.
Figure 1
(A) A schematic of ovarian cancer metastases involving tumor cells or clusters (yellow) shedding from a primary site and disseminating along ascitic currents of peritoneal fluid (green arrows) in the abdominal cavity. Ovarian cancer typically disseminates in four common abdomino-pelvic sites: (1) cul-de-sac (an extension of the peritoneal cavity between the rectum and back wall of the uterus); (2) right infracolic space (the apex formed by the termination of the small intestine of the small bowel mesentery at the ileocecal junction); (3) left infracolic space (superior site of the sigmoid colon); (4) Right paracolic gutter (communication between the upper and lower abdomen defined by the ascending colon and peritoneal wall). (B) The schematic of a perfusion model used to study the impact of sustained fluid flow on treatment resistance and molecular features of 3D ovarian cancer nodules (Top left). A side view of the perfusion model and growth of ovarian cancer nodules to a stromal bed (Top right). The photograph of a perfusion model used in the experiments (Bottom left) and depth-informed confocal imaging of ovarian cancer nodules in channels with and without carboplatin treatment (Bottom right). The perfusion model is 24 × 40 mm, with three channels that are 4 × 30 mm each and a height of 254 μm. The inlet and outlet ports of channels are 2.2 mm in diameter and positioned 5 mm from the edge of the chip. (C) A schematic of a 24-well plate model used to study the treatment resistance and molecular features of 3D ovarian cancer nodules under static conditions (without flow) (Top left). A side view of the static models and growth of ovarian cancer nodules on a stromal bed (Top right). Confocal imaging of 3D ovarian cancer nodules in a 24-well plate without and with carboplatin treatment (Bottom). Scale bars: 1 mm.Figure 2
(A) Geometry of the micronodule located at the center of the microchannel. The flow velocity is in the X-direction. The nodule is modeled as an ellipse with a semi-minor axis of 40 μm in the Z-direction. The semi-major axis varies from 40-100 μm in the X-direction. The section over which the fluid dynamics are studied is the middle part of the channel with dimensions 4 mm along the Y-axis and 250 μm along the Z-axis. The nodule is located at (0, 20 μm). The black dotted line shows the centerline of the largest nodule. (B) Shear stress distribution over the surface of the solid micro-nodule on the XZ-plane. (C) Shear stress distribution over the surface of the porous micro-nodule on the XZ-plane. (D) Flow flux distribution over the centerline of the porous micro-nodule on the XZ-plane. The flux enters the surface at the left and leaves at the right.Figure 3
Cytotoxic response in carboplatin-treated 3D OVCAR-5 cultures under static conditions. (A) Representative confocal images of 3D tumors treated with carboplatin (0-500 μM) for 96 h showing a dose-dependent reduction in viable tumor (calcein signal). (B) Image-based quantification of normalized viable tumor area in 3D OVCAR-5 cultures following treatment with increasing doses of carboplatin. A minimum nodule size cut-off of 2000 µm2 (clusters of ~15–20 cells) was applied to the fluorescence images for quantitative analysis of the normalized viable tumor area. (One-way ANOVA with Dunnett’s post hoc test; n.s., not significant; * p < 0.05; *** p < 0.001; N = 9) (C) Inductively coupled plasma mass spectrometry (ICP-MS)-based quantification of carboplatin uptake in static 3D OVCAR-5 tumors shows a dose-dependent increase in platinum levels, up to 9774 ± 3,052 ng/mg protein at an incubation concentration of 500 μM carboplatin. (One-way ANOVA with Dunn’s multiple comparisons test; n.s., not significant; * p < 0.05; ** p < 0.01; N = 3). Results are expressed as mean ± standard error of mean (SEM). Scale bars: 500 μm.Figure 4 flow-induced chemo-resistanceFigure 5
The effects of flow-induced shear stress on 3D ovarian cancer biology. (A) Western blot analysis of OVCAR-5 tumors was performed 7 days after culture under static or flow conditions. A flow-induced increase in EGFR and p-ERK, compared to static cultures, was observed. Conversely, a reduction in p-FAK, p-Paxillin, and Vinculin was observed under flow, relative to static conditions. (B) Western blot analysis of 3D OVCAR-5 tumors was performed 11 days after culture under static or flow conditions, including 4 days of treatment with 500 µM carboplatin, and respective controls. In both static and flow 3D cultures, carboplatin treatment resulted in downregulation of EGFR, FAK, p-Paxillin, Paxillin, and Vinculin. Upregulation of p-ERK was observed after carboplatin treatment in both static and flow 3D cultures. (C) Baseline levels of EGFR activity and expression are maintained by a complex array of factors, including recycling and degradation of the activated receptor complex. Flow-induced shear stress has been shown to cause a posttranslational up-regulation of EGFR expression and activation, likely resulting from increased receptor recycling and decreased EGFR degradation. Activation of EGFR results in ERK phosphorylation to induce gene expression, ultimately leading to cell proliferation, survival, and chemoresistance. FAK and other tyrosine kinases are activated by the engagement of integrins with the ECM. Subsequent phosphorylation of paxillin by FAK not only influences the remodeling of the actin cytoskeleton, but also modulates vinculin activation to regulate mitogen-activated protein kinase (MAPK) cascades, thereby stimulating pro-survival gene expression.
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. [PubMed] [CrossRef] [Google Scholar]
Foley O.W., Rauh-Hain J.A., Del Carmen M.G. Recurrent epithelial ovarian cancer: An update on treatment. Oncology. 2013;27:288–294, 298. [PubMed] [Google Scholar]
Kipps E., Tan D.S., Kaye S.B. Meeting the challenge of ascites in ovarian cancer: New avenues for therapy and research. Nat. Rev. Cancer. 2013;13:273–282. doi: 10.1038/nrc3432. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Tan D.S., Agarwal R., Kaye S.B. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 2006;7:925–934. doi: 10.1016/S1470-2045(06)70939-1. [PubMed] [CrossRef] [Google Scholar]
Ahmed N., Stenvers K.L. Getting to know ovarian cancer ascites: Opportunities for targeted therapy-based translational research. Front. Oncol. 2013;3:256. doi: 10.3389/fonc.2013.00256. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Shield K., Ackland M.L., Ahmed N., Rice G.E. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol. Oncol. 2009;113:143–148. doi: 10.1016/j.ygyno.2008.11.032. [PubMed] [CrossRef] [Google Scholar]
Naora H., Montell D.J. Ovarian cancer metastasis: Integrating insights from disparate model organisms. Nat. Rev. Cancer. 2005;5:355–366. doi: 10.1038/nrc1611. [PubMed] [CrossRef] [Google Scholar]
Lengyel E. Ovarian cancer development and metastasis. Am. J. Pathol. 2010;177:1053–1064. doi: 10.2353/ajpath.2010.100105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Javellana M., Hoppenot C., Lengyel E. The road to long-term survival: Surgical approach and longitudinal treatments of long-term survivors of advanced-stage serous ovarian cancer. Gynecol. Oncol. 2019;152:228–234. doi: 10.1016/j.ygyno.2018.11.007. [PubMed] [CrossRef] [Google Scholar]
Al Habyan S., Kalos C., Szymborski J., McCaffrey L. Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer. Oncogene. 2018;37:5127–5135. doi: 10.1038/s41388-018-0317-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Kim S., Kim B., Song Y.S. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 2016;107:1173–1178. doi: 10.1111/cas.12987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Hoppenot C., Eckert M.A., Tienda S.M., Lengyel E. Who are the long-term survivors of high grade serous ovarian cancer? Gynecol. Oncol. 2018;148:204–212. doi: 10.1016/j.ygyno.2017.10.032. [PubMed] [CrossRef] [Google Scholar]
Zhao Y., Cao J., Melamed A., Worley M., Gockley A., Jones D., Nia H.T., Zhang Y., Stylianopoulos T., Kumar A.S., et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl. Acad. Sci. USA. 2019;116:2210–2219. doi: 10.1073/pnas.1818357116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ayantunde A.A., Parsons S.L. Pattern and prognostic factors in patients with malignant ascites: A retrospective study. Ann. Oncol. 2007;18:945–949. doi: 10.1093/annonc/mdl499. [PubMed] [CrossRef] [Google Scholar]
Latifi A., Luwor R.B., Bilandzic M., Nazaretian S., Stenvers K., Pyman J., Zhu H., Thompson E.W., Quinn M.A., Findlay J.K., et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: Molecular phenotype of chemoresistant ovarian tumors. PLoS ONE. 2012;7:e46858. doi: 10.1371/journal.pone.0046858. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ahmed N., Greening D., Samardzija C., Escalona R.M., Chen M., Findlay J.K., Kannourakis G. Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells. Sci. Rep. 2016;6:30061. doi: 10.1038/srep30061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Gjorevski N., Boghaert E., Nelson C.M. Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues. Cancer Microenviron. 2012;5:29–38. doi: 10.1007/s12307-011-0076-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Polacheck W.J., Charest J.L., Kamm R.D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. USA. 2011;108:11115–11120. doi: 10.1073/pnas.1103581108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Polacheck W.J., German A.E., Mammoto A., Ingber D.E., Kamm R.D. Mechanotransduction of fluid stresses governs 3D cell migration. Proc. Natl. Acad. Sci. USA. 2014;111:2447–2452. doi: 10.1073/pnas.1316848111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Swartz M.A., Lund A.W. Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nat. Rev. Cancer. 2012;12:210–219. doi: 10.1038/nrc3186. [PubMed] [CrossRef] [Google Scholar]
Pisano M., Triacca V., Barbee K.A., Swartz M.A. An in vitro model of the tumor-lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integr. Biol. 2015;7:525–533. doi: 10.1039/C5IB00085H. [PubMed] [CrossRef] [Google Scholar]
Follain G., Herrmann D., Harlepp S., Hyenne V., Osmani N., Warren S.C., Timpson P., Goetz J.G. Fluids and their mechanics in tumour transit: Shaping metastasis. Nat. Rev. Cancer. 2020;20:107–124. doi: 10.1038/s41568-019-0221-x. [PubMed] [CrossRef] [Google Scholar]
Rizvi I., Gurkan U.A., Tasoglu S., Alagic N., Celli J.P., Mensah L.B., Mai Z., Demirci U., Hasan T. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl. Acad. Sci. USA. 2013;110:E1974–E1983. doi: 10.1073/pnas.1216989110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Novak C., Horst E., Mehta G. Mechanotransduction in ovarian cancer: Shearing into the unknown. APL Bioeng. 2018;2 doi: 10.1063/1.5024386. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Carmignani C.P., Sugarbaker T.A., Bromley C.M., Sugarbaker P.H. Intraperitoneal cancer dissemination: Mechanisms of the patterns of spread. Cancer Metastasis Rev. 2003;22:465–472. doi: 10.1023/A:1023791229361. [PubMed] [CrossRef] [Google Scholar]
Sugarbaker P.H. Observations concerning cancer spread within the peritoneal cavity and concepts supporting an ordered pathophysiology. Cancer Treatment Res. 1996;82:79–100. [PubMed] [Google Scholar]
Feki A., Berardi P., Bellingan G., Major A., Krause K.H., Petignat P., Zehra R., Pervaiz S., Irminger-Finger I. Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit. Rev. Oncol./Hematol. 2009;72:1–9. doi: 10.1016/j.critrevonc.2008.12.003. [PubMed] [CrossRef] [Google Scholar]
Holm-Nielsen P. Pathogenesis of ascites in peritoneal carcinomatosis. Acta Pathol. Microbiol. Scand. 1953;33:10–21. doi: 10.1111/j.1699-0463.1953.tb04805.x. [PubMed] [CrossRef] [Google Scholar]
Ahmed N., Riley C., Oliva K., Rice G., Quinn M. Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br. J. Cancer. 2005;92:1475–1485. doi: 10.1038/sj.bjc.6602495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Woodburn J.R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther. 1999;82:241–250. doi: 10.1016/S0163-7258(98)00045-X. [PubMed] [CrossRef] [Google Scholar]
Servidei T., Riccardi A., Mozzetti S., Ferlini C., Riccardi R. Chemoresistant tumor cell lines display altered epidermal growth factor receptor and HER3 signaling and enhanced sensitivity to gefitinib. Int. J. Cancer J. Int. Cancer. 2008;123:2939–2949. doi: 10.1002/ijc.23902. [PubMed] [CrossRef] [Google Scholar]
Chen A.P., Zhang J., Liu H., Zhao S.P., Dai S.Z., Sun X.L. Association of EGFR expression with angiogenesis and chemoresistance in ovarian carcinoma. Zhonghua zhong liu za zhi [Chinese journal of oncology] 2009;31:48–52. [PubMed] [Google Scholar]
Alper O., Bergmann-Leitner E.S., Bennett T.A., Hacker N.F., Stromberg K., Stetler-Stevenson W.G. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J. Natl. Cancer Inst. 2001;93:1375–1384. doi: 10.1093/jnci/93.18.1375. [PubMed] [CrossRef] [Google Scholar]
Zeineldin R., Muller C.Y., Stack M.S., Hudson L.G. Targeting the EGF receptor for ovarian cancer therapy. J. Oncol. 2010;2010:414676. doi: 10.1155/2010/414676. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Alper O., De Santis M.L., Stromberg K., Hacker N.F., Cho-Chung Y.S., Salomon D.S. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells. Int. J. Cancer. 2000;88:566–574. doi: 10.1002/1097-0215(20001115)88:4<566::AID-IJC8>3.0.CO;2-D. [PubMed] [CrossRef] [Google Scholar]
Posadas E.M., Liel M.S., Kwitkowski V., Minasian L., Godwin A.K., Hussain M.M., Espina V., Wood B.J., Steinberg S.M., Kohn E.C. A phase II and pharmacodynamic study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer. Cancer. 2007;109:1323–1330. doi: 10.1002/cncr.22545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Psyrri A., Kassar M., Yu Z., Bamias A., Weinberger P.M., Markakis S., Kowalski D., Camp R.L., Rimm D.L., Dimopoulos M.A. Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer. Clin. Cancer Res. 2005;11:8637–8643. doi: 10.1158/1078-0432.CCR-05-1436. [PubMed] [CrossRef] [Google Scholar]
Dimou A., Agarwal S., Anagnostou V., Viray H., Christensen S., Gould Rothberg B., Zolota V., Syrigos K., Rimm D. Standardization of epidermal growth factor receptor (EGFR) measurement by quantitative immunofluorescence and impact on antibody-based mutation detection in non-small cell lung cancer. Am. J. Pathol. 2011;179:580–589. doi: 10.1016/j.ajpath.2011.04.031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Del Carmen M.G., Rizvi I., Chang Y., Moor A.C., Oliva E., Sherwood M., Pogue B., Hasan T. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J. Natl. Cancer Inst. 2005;97:1516–1524. doi: 10.1093/jnci/dji314. [PubMed] [CrossRef] [Google Scholar]
Armstrong D.K., Bundy B., Wenzel L., Huang H.Q., Baergen R., Lele S., Copeland L.J., Walker J.L., Burger R.A., Gynecologic Oncology G. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 2006;354:34–43. doi: 10.1056/NEJMoa052985. [PubMed] [CrossRef] [Google Scholar]
Verwaal V.J., Van Ruth S., De Bree E., Van Sloothen G.W., Van Tinteren H., Boot H., Zoetmulder F.A. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J. Clin. Oncol. 2003;21:3737–3743. doi: 10.1200/JCO.2003.04.187. [PubMed] [CrossRef] [Google Scholar]
Van Driel W.J., Koole S.N., Sikorska K., Schagen van Leeuwen J.H., Schreuder H.W.R., Hermans R.H.M., De Hingh I., Van der Velden J., Arts H.J., Massuger L., et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N. Engl. J. Med. 2018;378:230–240. doi: 10.1056/NEJMoa1708618. [PubMed] [CrossRef] [Google Scholar]
Verwaal V.J., Bruin S., Boot H., Van Slooten G., Van Tinteren H. 8-year follow-up of randomized trial: Cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann. Surg. Oncol. 2008;15:2426–2432. doi: 10.1245/s10434-008-9966-2. [PubMed] [CrossRef] [Google Scholar]
DeLaney T.F., Sindelar W.F., Tochner Z., Smith P.D., Friauf W.S., Thomas G., Dachowski L., Cole J.W., Steinberg S.M., Glatstein E. Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Int. J. Radiat. Oncol. Biol. Phys. 1993;25:445–457. doi: 10.1016/0360-3016(93)90066-5. [PubMed] [CrossRef] [Google Scholar]
Celli J.P., Spring B.Q., Rizvi I., Evans C.L., Samkoe K.S., Verma S., Pogue B.W., Hasan T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010;110:2795–2838. doi: 10.1021/cr900300p. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Spring B.Q., Rizvi I., Xu N., Hasan T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci. 2015;14:1476–1491. doi: 10.1039/C4PP00495G. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Liang B.J., Pigula M., Baglo Y., Najafali D., Hasan T., Huang H.C. Breaking the Selectivity-Uptake Trade-Off of Photoimmunoconjugates with Nanoliposomal Irinotecan for Synergistic Multi-Tier Cancer Targeting. J. Nanobiotechnol. 2020;18:1. doi: 10.1186/s12951-019-0560-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Huang H.C., Rizvi I., Liu J., Anbil S., Kalra A., Lee H., Baglo Y., Paz N., Hayden D., Pereira S., et al. Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery. Cancer Res. 2018;78:558–571. doi: 10.1158/0008-5472.CAN-17-1700. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Huang H.C., Mallidi S., Liu J., Chiang C.T., Mai Z., Goldschmidt R., Ebrahim-Zadeh N., Rizvi I., Hasan T. Photodynamic Therapy Synergizes with Irinotecan to Overcome Compensatory Mechanisms and Improve Treatment Outcomes in Pancreatic Cancer. Cancer Res. 2016;76:1066–1077. doi: 10.1158/0008-5472.CAN-15-0391. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Cengel K.A., Glatstein E., Hahn S.M. Intraperitoneal photodynamic therapy. Cancer Treat. Res. 2007;134:493–514. [PubMed] [Google Scholar]
Obaid G., Broekgaarden M., Bulin A.-L., Huang H.-C., Kuriakose J., Liu J., Hasan T. Photonanomedicine: A convergence of photodynamic therapy and nanotechnology. Nanoscale. 2016;8:12471–12503. doi: 10.1039/C5NR08691D. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ogata F., Nagaya T., Nakamura Y., Sato K., Okuyama S., Maruoka Y., Choyke P.L., Kobayashi H. Near-infrared photoimmunotherapy: A comparison of light dosing schedules. Oncotarget. 2017;8:35069–35075. doi: 10.18632/oncotarget.17047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Mitsunaga M., Ogawa M., Kosaka N., Rosenblum L.T., Choyke P.L., Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011;17:1685–1691. doi: 10.1038/nm.2554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Huang H.C., Pigula M., Fang Y., Hasan T. Immobilization of Photo-Immunoconjugates on Nanoparticles Leads to Enhanced Light-Activated Biological Effects. Small. 2018:e1800236. doi: 10.1002/smll.201800236. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Spring B.Q., Abu-Yousif A.O., Palanisami A., Rizvi I., Zheng X., Mai Z., Anbil S., Sears R.B., Mensah L.B., Goldschmidt R., et al. Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc. Natl. Acad. Sci. USA. 2014;111:E933–E942. doi: 10.1073/pnas.1319493111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Abu-Yousif A.O., Moor A.C., Zheng X., Savellano M.D., Yu W., Selbo P.K., Hasan T. Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett. 2012;321:120–127. doi: 10.1016/j.canlet.2012.01.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Rizvi I., Dinh T.A., Yu W., Chang Y., Sherwood M.E., Hasan T. Photoimmunotherapy and irradiance modulation reduce chemotherapy cycles and toxicity in a murine model for ovarian carcinomatosis: Perspective and results. Israel J. Chem. 2012;52:776–787. doi: 10.1002/ijch.201200016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Quirk B.J., Brandal G., Donlon S., Vera J.C., Mang T.S., Foy A.B., Lew S.M., Girotti A.W., Jogal S., LaViolette P.S., et al. Photodynamic therapy (PDT) for malignant brain tumors–where do we stand? Photodiagnosis Photodyn. Ther. 2015;12:530–544. doi: 10.1016/j.pdpdt.2015.04.009. [PubMed] [CrossRef] [Google Scholar]
Eljamel M.S., Goodman C., Moseley H. ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: A single centre Phase III randomised controlled trial. Lasers Med. Sci. 2008;23:361–367. doi: 10.1007/s10103-007-0494-2. [PubMed] [CrossRef] [Google Scholar]
Varma A.K., Muller P.J. Cranial neuropathies after intracranial Photofrin-photodynamic therapy for malignant supratentorial gliomas-a report on 3 cases. Surg. Neurol. 2008;70:190–193. doi: 10.1016/j.surneu.2007.01.060. [PubMed] [CrossRef] [Google Scholar]
Akimoto J. Photodynamic Therapy for Malignant Brain Tumors. Neurol. Medico-Chirurgica. 2016;56:151–157. doi: 10.2176/nmc.ra.2015-0296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Kercher E.M., Nath S., Rizvi I., Spring B.Q. Cancer Cell-targeted and Activatable Photoimmunotherapy Spares T Cells in a 3D Coculture Model. Photochem. Photobiol. 2019 doi: 10.1111/php.13153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Savellano M.D., Hasan T. Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem. Photobiol. 2003;77:431–439. doi: 10.1562/0031-8655(2003)077<0431:TCTOTE>2.0.CO;2. [PubMed] [CrossRef] [Google Scholar]
Molpus K.L., Hamblin M.R., Rizvi I., Hasan T. Intraperitoneal photoimmunotherapy of ovarian carcinoma xenografts in nude mice using charged photoimmunoconjugates. Gynecol. Oncol. 2000;76:397–404. doi: 10.1006/gyno.1999.5705. [PubMed] [CrossRef] [Google Scholar]
Savellano M.D., Hasan T. Photochemical targeting of epidermal growth factor receptor: A mechanistic study. Clin. Cancer Res. 2005;11:1658–1668. doi: 10.1158/1078-0432.CCR-04-1902. [PubMed] [CrossRef] [Google Scholar]
Nath S., Saad M.A., Pigula M., Swain J.W.R., Hasan T. Photoimmunotherapy of Ovarian Cancer: A Unique Niche in the Management of Advanced Disease. Cancers. 2019;11:1887. doi: 10.3390/cancers11121887. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Calibasi Kocal G., Guven S., Foygel K., Goldman A., Chen P., Sengupta S., Paulmurugan R., Baskin Y., Demirci U. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow. Sci. Rep. 2016;6:38221. doi: 10.1038/srep38221. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Tasoglu S., Gurkan U.A., Wang S., Demirci U. Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem. Soc. Rev. 2013;42:5788–5808. doi: 10.1039/c3cs60042d. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Moon S., Gurkan U.A., Blander J., Fawzi W.W., Aboud S., Mugusi F., Kuritzkes D.R., Demirci U. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients. PLoS ONE. 2011;6:e21409. doi: 10.1371/journal.pone.0021409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Luo Q., Kuang D., Zhang B., Song G. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. Biochim Biophys Acta. 2016;1860:1953–1960. doi: 10.1016/j.bbagen.2016.06.010. [PubMed] [CrossRef] [Google Scholar]
Sarntinoranont M., Rooney F., Ferrari M. Interstitial Stress and Fluid Pressure Within a Growing Tumor. Ann. Biomed. Eng. 2003;31:327–335. doi: 10.1114/1.1554923. [PubMed] [CrossRef] [Google Scholar]
Baxter L.T., Jain R.K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 1989;37:77–104. doi: 10.1016/0026-2862(89)90074-5. [PubMed] [CrossRef] [Google Scholar]
Malik R., Khan A.P., Asangani I.A., Cieślik M., Prensner J.R., Wang X., Iyer M.K., Jiang X., Borkin D., Escara-Wilke J., et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 2015;21:344. doi: 10.1038/nm.3830. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Nath S., Christian L., Tan S.Y., Ki S., Ehrlich L.I., Poenie M. Dynein Separately Partners with NDE1 and Dynactin To Orchestrate T Cell Focused Secretion. J. Immunol. 2016;197:2090–2101. doi: 10.4049/jimmunol.1600180. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Celli J.P., Rizvi I., Evans C.L., Abu-Yousif A.O., Hasan T. Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model. J. Biomed. Opt. 2010;15:051603. doi: 10.1117/1.3483903. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Rizvi I., Celli J.P., Evans C.L., Abu-Yousif A.O., Muzikansky A., Pogue B.W., Finkelstein D., Hasan T. Synergistic Enhancement of Carboplatin Efficacy with Photodynamic Therapy in a Three-Dimensional Model for Micrometastatic Ovarian Cancer. Cancer Res. 2010;70:9319–9328. doi: 10.1158/0008-5472.CAN-10-1783. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Glidden M.D., Celli J.P., Massodi I., Rizvi I., Pogue B.W., Hasan T. Image-Based Quantification of Benzoporphyrin Derivative Uptake, Localization, and Photobleaching in 3D Tumor Models, for Optimization of PDT Parameters. Theranostics. 2012;2:827–839. doi: 10.7150/thno.4334. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Celli J.P., Rizvi I., Blanden A.R., Massodi I., Glidden M.D., Pogue B.W., Hasan T. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci. Rep. 2014;4:3751. doi: 10.1038/srep03751. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Bulin A.L., Broekgaarden M., Hasan T. Comprehensive high-throughput image analysis for therapeutic efficacy of architecturally complex heterotypic organoids. Sci. Rep. 2017;7:16645. doi: 10.1038/s41598-017-16622-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Rahmanzadeh R., Rai P., Celli J.P., Rizvi I., Baron-Luhr B., Gerdes J., Hasan T. Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer. Cancer Res. 2010;70:9234–9242. doi: 10.1158/0008-5472.CAN-10-1190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Anbil S., Rizvi I., Celli J.P., Alagic N., Pogue B.W., Hasan T. Impact of treatment response metrics on photodynamic therapy planning and outcomes in a three-dimensional model of ovarian cancer. J. Biomed. Opt. 2013;18:098004. doi: 10.1117/1.JBO.18.9.098004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Di Pasqua A.J., Goodisman J., Dabrowiak J.C. Understanding how the platinum anticancer drug carboplatin works: From the bottle to the cell. Inorg. Chim. Acta. 2012;389:29–35. doi: 10.1016/j.ica.2012.01.028. [CrossRef] [Google Scholar]
Rabik C.A., Dolan M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 2007;33:9–23. doi: 10.1016/j.ctrv.2006.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ozols R.F. Carboplatin and paclitaxel in ovarian cancer. Semin. Oncol. 1995;22:78–83. [PubMed] [Google Scholar]
Neijt J.P., Lund B. Paclitaxel with carboplatin for the treatment of ovarian cancer. Semin. Oncol. 1996;23:2–4. [PubMed] [Google Scholar]
Subauste C.M., Pertz O., Adamson E.D., Turner C.E., Junger S., Hahn K.M. Vinculin modulation of paxillin–FAK interactions regulates ERK to control survival and motility. J. Cell Biol. 2004;165:371–381. doi: 10.1083/jcb.200308011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Eke I., Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin. Cancer Biol. 2015;31:65–75. [PubMed] [Google Scholar]
McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Wong E.W., Chang F., Lehmann B., Terrian D.M., Milella M., Tafuri A., et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta. 2007;1773:1263–1284. doi: 10.1016/j.bbamcr.2006.10.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Duska L.R., Hamblin M.R., Miller J.L., Hasan T. Combination photoimmunotherapy and cisplatin: Effects on human ovarian cancer ex vivo. J. Natl. Cancer Inst. 1999;91:1557–1563. doi: 10.1093/jnci/91.18.1557. [PubMed] [CrossRef] [Google Scholar]
Spring B., Mai Z., Rai P., Chang S., Hasan T. Theranostic nanocells for simultaneous imaging and photodynamic therapy of pancreatic cancer. Proc. SPIE. 2010;7551:755104. [Google Scholar]
Kessel D., Oleinick N.L. Photodynamic therapy and cell death pathways. Methods Mol. Biol. 2010;635:35–46. doi: 10.1007/978-1-60761-697-9_3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Van Dongen G.A., Visser G.W., Vrouenraets M.B. Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv. Drug Deliv. Rev. 2004;56:31–52. doi: 10.1016/j.addr.2003.09.003. [PubMed] [CrossRef] [Google Scholar]
Ayhan A., Gultekin M., Taskiran C., Dursun P., Firat P., Bozdag G., Celik N.Y., Yuce K. Ascites and epithelial ovarian cancers: A reappraisal with respect to different aspects. Int. J. Gynecol. Cancer. 2007;17:68–75. doi: 10.1111/j.1525-1438.2006.00777.x. [PubMed] [CrossRef] [Google Scholar]
Shen-Gunther J., Mannel R.S. Ascites as a predictor of ovarian malignancy. Gynecol. Oncol. 2002;87:77–83. doi: 10.1006/gyno.2002.6800. [PubMed] [CrossRef] [Google Scholar]
Pourgholami M.H., Ataie-Kachoie P., Badar S., Morris D.L. Minocycline inhibits malignant ascites of ovarian cancer through targeting multiple signaling pathways. Gynecol. Oncol. 2013;129:113–119. doi: 10.1016/j.ygyno.2012.12.031. [PubMed] [CrossRef] [Google Scholar]
Shender V., Arapidi G., Butenko I., Anikanov N., Ivanova O., Govorun V. Peptidome profiling dataset of ovarian cancer and non-cancer proximal fluids: Ascites and blood sera. Data Brief. 2019;22:557–562. doi: 10.1016/j.dib.2018.12.056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Becker G., Galandi D., Blum H.E. Malignant ascites: Systematic review and guideline for treatment. Eur. J. Cancer. 2006;42:589–597. doi: 10.1016/j.ejca.2005.11.018. [PubMed] [CrossRef] [Google Scholar]
Huang H., Li Y.J., Lan C.Y., Huang Q.D., Feng Y.L., Huang Y.W., Liu J.H. Clinical significance of ascites in epithelial ovarian cancer. Neoplasma. 2013;60:546–552. doi: 10.4149/neo_2013_071. [PubMed] [CrossRef] [Google Scholar]
Blagden S.P. Harnessing Pandemonium: The Clinical Implications of Tumor Heterogeneity in Ovarian Cancer. Front. Oncol. 2015;5:149. doi: 10.3389/fonc.2015.00149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Ahmed N., Latifi A., Riley C.B., Findlay J.K., Quinn M.A. Neuronal transcription factor Brn-3a(l) is over expressed in high-grade ovarian carcinomas and tumor cells from ascites of patients with advanced-stage ovarian cancer. J. Ovarian Res. 2010;3:17. doi: 10.1186/1757-2215-3-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Mahmood N., Mihalcioiu C., Rabbani S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018;8:24. doi: 10.3389/fonc.2018.00024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Jeffrey B., Udaykumar H.S., Schulze K.S. Flow fields generated by peristaltic reflex in isolated guinea pig ileum: Impact of contraction depth and shoulders. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285:G907–G918. doi: 10.1152/ajpgi.00062.2003. [PubMed] [CrossRef] [Google Scholar]
Nagy J.A., Herzberg K.T., Dvorak J.M., Dvorak H.F. Pathogenesis of malignant ascites formation: Initiating events that lead to fluid accumulation. Cancer Res. 1993;53:2631–2643. [PubMed] [Google Scholar]
Ahmed N., Abubaker K., Findlay J., Quinn M. Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr. Cancer Drug Targets. 2010;10:268–278. doi: 10.2174/156800910791190175. [PubMed] [CrossRef] [Google Scholar]
Latifi A., Abubaker K., Castrechini N., Ward A.C., Liongue C., Dobill F., Kumar J., Thompson E.W., Quinn M.A., Findlay J.K., et al. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J. Cell Biochem. 2011;112:2850–2864. doi: 10.1002/jcb.23199. [PubMed] [CrossRef] [Google Scholar]
Chan D.W., Hui W.W., Cai P.C., Liu M.X., Yung M.M., Mak C.S., Leung T.H., Chan K.K., Ngan H.Y. Targeting GRB7/ERK/FOXM1 signaling pathway impairs aggressiveness of ovarian cancer cells. PLoS ONE. 2012;7:e52578. doi: 10.1371/journal.pone.0052578. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Mebratu Y., Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 2009;8:1168–1175. doi: 10.4161/cc.8.8.8147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Zebisch A., Czernilofsky A.P., Keri G., Smigelskaite J., Sill H., Troppmair J. Signaling through RAS-RAF-MEK-ERK: From basics to bedside. Curr. Med. Chem. 2007;14:601–623. doi: 10.2174/092986707780059670. [PubMed] [CrossRef] [Google Scholar]
Jo H., Sipos K., Go Y.M., Law R., Rong J., McDonald J.M. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J. Biol. Chem. 1997;272:1395–1401. doi: 10.1074/jbc.272.2.1395. [PubMed] [CrossRef] [Google Scholar]
Surapisitchat J., Hoefen R.J., Pi X., Yoshizumi M., Yan C., Berk B.C. Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proc. Natl. Acad. Sci. USA. 2001;98:6476–6481. doi: 10.1073/pnas.101134098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Kim C.H., Jeung E.B., Yoo Y.M. Combined Fluid Shear Stress and Melatonin Enhances the ERK/Akt/mTOR Signal in Cilia-Less MC3T3-E1 Preosteoblast Cells. Int. J. Mol. Sci. 2018;19:2929. doi: 10.3390/ijms19102929. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Persons D.L., Yazlovitskaya E.M., Cui W., Pelling J.C. Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: Inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin. Cancer Res. 1999;5:1007–1014. [PubMed] [Google Scholar]
Hayakawa J., Ohmichi M., Kurachi H., Ikegami H., Kimura A., Matsuoka T., Jikihara H., Mercola D., Murata Y. Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line. J. Biol. Chem. 1999;274:31648–31654. doi: 10.1074/jbc.274.44.31648. [PubMed] [CrossRef] [Google Scholar]
Yeh P.Y., Chuang S.E., Yeh K.H., Song Y.C., Ea C.K., Cheng A.L. Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NF kappa B activation. Biochem. Pharmacol. 2002;63:1423–1430. doi: 10.1016/S0006-2952(02)00908-5. [PubMed] [CrossRef] [Google Scholar]
Wang X., Martindale J.L., Holbrook N.J. Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 2000;275:39435–39443. doi: 10.1074/jbc.M004583200. [PubMed] [CrossRef] [Google Scholar]
Qin X., Liu C., Zhou Y., Wang G. Cisplatin induces programmed death-1-ligand 1(PD-L1) over-expression in hepatoma H22 cells via Erk /MAPK signaling pathway. Cell Mol. Biol. 2010;56:OL1366-72. doi: 10.1170/156. [PubMed] [CrossRef] [Google Scholar]
Basu A., Tu H. Activation of ERK during DNA damage-induced apoptosis involves protein kinase Cdelta. Biochem. Biophys. Res. Commun. 2005;334:1068–1073. doi: 10.1016/j.bbrc.2005.06.199. [PubMed] [CrossRef] [Google Scholar]
Nowak G. Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J. Biol. Chem. 2002;277:43377–43388. doi: 10.1074/jbc.M206373200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Chaudhury A., Tan B.J., Das S., Chiu G.N. Increased ERK activation and cellular drug accumulation in the enhanced cytotoxicity of folate receptor-targeted liposomal carboplatin. Int. J. Oncol. 2012;40:703–710. doi: 10.3892/ijo.2011.1262. [PubMed] [CrossRef] [Google Scholar]
Lok G.T., Chan D.W., Liu V.W., Hui W.W., Leung T.H., Yao K.M., Ngan H.Y. Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS ONE. 2011;6:e23790. doi: 10.1371/journal.pone.0023790. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Lafky J.M., Wilken J.A., Baron A.T., Maihle N.J. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim. Biophys. Acta. 2008;1785:232–265. doi: 10.1016/j.bbcan.2008.01.001. [PubMed] [CrossRef] [Google Scholar]
Secord A.A., Blessing J.A., Armstrong D.K., Rodgers W.H., Miner Z., Barnes M.N., Lewandowski G., Mannel R.S., Gynecologic Oncology G. Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: A Gynecologic Oncology Group study. Gynecol. Oncol. 2008;108:493–499. doi: 10.1016/j.ygyno.2007.11.029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Bae G.-Y., Choi S.-J., Lee J.-S., Jo J., Lee J., Kim J., Cha H.-J. Loss of E-cadherin activates EGFR-MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer. Oncotarget. 2013;4:2512. doi: 10.18632/oncotarget.1463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Pece S., Gutkind J.S. Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J. Biol. Chem. 2000;275:41227–41233. doi: 10.1074/jbc.M006578200. [PubMed] [CrossRef] [Google Scholar]
Lifschitz-Mercer B., Czernobilsky B., Feldberg E., Geiger B. Expression of the adherens junction protein vinculin in human basal and squamous cell tumors: Relationship to invasiveness and metastatic potential. Hum. Pathol. 1997;28:1230–1236. doi: 10.1016/S0046-8177(97)90195-7. [PubMed] [CrossRef] [Google Scholar]
Raz A., Geiger B. Altered organization of cell-substrate contacts and membrane-associated cytoskeleton in tumor cell variants exhibiting different metastatic capabilities. Cancer Res. 1982;42:5183–5190. [PubMed] [Google Scholar]
Fukada T., Sakajiri H., Kuroda M., Kioka N., Sugimoto K. Fluid shear stress applied by orbital shaking induces MG-63 osteosarcoma cells to activate ERK in two phases through distinct signaling pathways. Biochem. Biophys. Rep. 2017;9:257–265. doi: 10.1016/j.bbrep.2017.01.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Wu D.W., Wu T.C., Wu J.Y., Cheng Y.W., Chen Y.C., Lee M.C., Chen C.Y., Lee H. Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression. Oncogene. 2014;33:4385–4395. doi: 10.1038/onc.2013.389. [PubMed] [CrossRef] [Google Scholar]
Kessel D. Apoptosis and associated phenomena as a determinants of the efficacy of photodynamic therapy. Photochem. Photobiol. Sci. 2015;14:1397–1402. doi: 10.1039/C4PP00413B. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011;61:250–281. doi: 10.3322/caac.20114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Sorrin A.J., Ruhi M.K., Ferlic N.A., Karimnia V., Polacheck W.J., Celli J.P., Huang H.C., Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem. Photobiol. 2020 doi: 10.1111/php.13209. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Niu C.J., Fisher C., Scheffler K., Wan R., Maleki H., Liu H., Sun Y., C A.S., Birngruber R., Lilge L. Polyacrylamide gel substrates that simulate the mechanical stiffness of normal and malignant neuronal tissues increase protoporphyin IX synthesis in glioma cells. J. Biomed. Opt. 2015;20:098002. doi: 10.1117/1.JBO.20.9.098002. [PubMed] [CrossRef] [Google Scholar]
Perentes J.Y., Wang Y., Wang X., Abdelnour E., Gonzalez M., Decosterd L., Wagnieres G., Van den Bergh H., Peters S., Ris H.B., et al. Low-Dose Vascular Photodynamic Therapy Decreases Tumor Interstitial Fluid Pressure, which Promotes Liposomal Doxorubicin Distribution in a Murine Sarcoma Metastasis Model. Transl. Oncol. 2014;7 doi: 10.1016/j.tranon.2014.04.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Leunig M., Goetz A.E., Gamarra F., Zetterer G., Messmer K., Jain R.K. Photodynamic therapy-induced alterations in interstitial fluid pressure, volume and water content of an amelanotic melanoma in the hamster. Br. J. Cancer. 1994;69:101–103. doi: 10.1038/bjc.1994.15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Foster T.H., Murant R.S., Bryant R.G., Knox R.S., Gibson S.L., Hilf R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res. 1991;126:296–303. doi: 10.2307/3577919. [PubMed] [CrossRef] [Google Scholar]
Foster T.H., Hartley D.F., Nichols M.G., Hilf R. Fluence rate effects in photodynamic therapy of multicell tumor spheroids. Cancer Res. 1993;53:1249–1254. [PubMed] [Google Scholar]
Nichols M.G., Foster T.H. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids. Phys. Med. Biol. 1994;39:2161–2181. doi: 10.1088/0031-9155/39/12/003. [PubMed] [CrossRef] [Google Scholar]
Cavin S., Wang X., Zellweger M., Gonzalez M., Bensimon M., Wagnieres G., Krueger T., Ris H.B., Gronchi F., Perentes J.Y. Interstitial fluid pressure: A novel biomarker to monitor photo-induced drug uptake in tumor and normal tissues. Lasers Surg. Med. 2017;49:773–780. doi: 10.1002/lsm.22687. [PubMed] [CrossRef] [Google Scholar]
Garcia Calavia P., Chambrier I., Cook M.J., Haines A.H., Field R.A., Russell D.A. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J. Colloid Interface Sci. 2018;512:249–259. doi: 10.1016/j.jcis.2017.10.030. [PubMed] [CrossRef] [Google Scholar]
Kato T., Jin C.S., Ujiie H., Lee D., Fujino K., Wada H., Hu H.P., Weersink R.A., Chen J., Kaji M., et al. Nanoparticle targeted folate receptor 1-enhanced photodynamic therapy for lung cancer. Lung Cancer. 2017;113:59–68. doi: 10.1016/j.lungcan.2017.09.002. [PubMed] [CrossRef] [Google Scholar]
Sebak A.A., Gomaa I.E.O., ElMeshad A.N., AbdelKader M.H. Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma. Photodiagnosis Photodyn. Ther. 2018;23:181–189. doi: 10.1016/j.pdpdt.2018.05.017. [PubMed] [CrossRef] [Google Scholar]
Fernandes S.R.G., Fernandes R., Sarmento B., Pereira P.M.R., Tome J.P.C. Photoimmunoconjugates: Novel synthetic strategies to target and treat cancer by photodynamic therapy. Org. Biomol. Chem. 2019;17:2579–2593. doi: 10.1039/C8OB02902D. [PubMed] [CrossRef] [Google Scholar]
Hamblin M.R., Miller J.L., Hasan T. Effect of charge on the interaction of site-specific photoimmunoconjugates with human ovarian cancer cells. Cancer Res. 1996;56:5205–5210. [PubMed] [Google Scholar]
Flont M., Jastrzebska E., Brzozka Z. Synergistic effect of the combination therapy on ovarian cancer cells under microfluidic conditions. Anal. Chim. Acta. 2020;1100:138–148. doi: 10.1016/j.aca.2019.11.047. [PubMed] [CrossRef] [Google Scholar]
CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.
“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아 주 피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .
흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!
예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.
Giving Mixing Its Due
“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .
이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.
“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.
이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.
동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.
CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.
컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .
그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.
반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.
“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.