Water-Rock interaction

Using Computational Fluid Dynamics (CFD) Simulation with FLOW-3D to Reveal the Origin of the Mushroom Stone in the Xiqiao Mountain of Guangdong, China

FLOW-3D 기반 CFD 시뮬레이션을 통한 광둥성 시차오산 버섯 돌 형성 원인 분석

연구 목적

  • 본 연구는 FLOW-3D® CFD 시뮬레이션을 활용하여 Xiqiao Mountain(시차오산)의 버섯 돌(Mushroom Stone) 형성 과정을 규명함.
  • 기존 연구에서는 유수 침식(stream water erosion)이 주요 형성 원인으로 제시되었으나, 본 연구에서는 CFD 분석을 통해 침식 외에도 화학적 및 물리적 풍화 작용이 결정적인 역할을 했음을 입증하고자 함.
  • 광물 분석 및 현장 조사와 함께 컴퓨터 시뮬레이션을 수행하여 물리적, 화학적 풍화 작용과 유동 역학 간의 관계를 평가함.

연구 방법

  1. 현장 조사 및 샘플링
    • 드론(DJI Phantom 4 RTK)을 활용하여 버섯 돌의 3D 지형 데이터를 정밀 측정.
    • 암석 시료 7개를 서로 다른 위치에서 채취하여 **광물 분석(mineralogical analysis)**을 수행함.
    • 지질 나침반을 사용하여 버섯 돌 곡면의 방향 및 침식 패턴을 기록함.
  2. FLOW-3D® 기반 CFD 시뮬레이션
    • 자유 표면 유동(Free Surface Flow)을 모델링하여 홍수 시 버섯 돌 주변의 유속 및 압력 분포를 분석.
    • 난류 모델 적용: RANS(Reynolds-Averaged Navier-Stokes) 방정식을 사용하여 난류 효과를 고려함.
    • 모의 홍수 실험을 진행하여 홍수 시기 물의 흐름이 버섯 돌에 미치는 영향을 평가함.
  3. 결과 비교 및 검증
    • 광물 분석 데이터 및 현장 조사 결과를 CFD 시뮬레이션과 비교하여 풍화 및 침식 기작을 검증.
    • 침식 패턴, 유속, 압력 분포 등을 종합 분석하여 버섯 돌 형성의 주요 기작을 도출함.

주요 결과

  1. 홍수 시 버섯 돌 주변 유동 특성
    • 시뮬레이션 결과, 최고 유속은 버섯 돌의 측면에서 발생하며, 전·후면에서는 상대적으로 낮은 유속을 보임.
    • 버섯 돌의 전면(상류 방향)에서는 고압력이 발생하여 아래쪽으로 흐름이 집중됨, 이는 하부 침식을 유도함.
    • 그러나 시뮬레이션 결과, 버섯 돌의 좁은 하부 구조는 단순한 유수 침식만으로 형성될 수 없음을 보여줌.
  2. 버섯 돌 침식 패턴 및 풍화 작용
    • CFD 분석 결과, 버섯 돌 하부(풍하측)에 퇴적물이 집중적으로 형성되며, 이는 침식보다 퇴적 과정이 더 중요한 역할을 했음을 시사함.
    • 실험 데이터와 비교 시, 유수 침식만으로는 현장에서 관찰된 곡면 구조를 재현할 수 없음.
    • 대신, 장기간 퇴적물이 축적되면서 화학적 및 물리적 풍화 작용이 진행되었을 가능성이 높음.
  3. 광물 분석 결과 및 풍화 작용
    • XRD(X-ray diffraction) 분석 결과, 버섯 돌 하부의 암석은 석고(gypsum) 및 점토 광물 함량이 높으며, 이는 화학적 풍화가 활발하게 진행되었음을 의미함.
    • 석고 크리스탈이 성장하면서 암석 내부 균열을 유발하는 할로클래스티(haloclasty) 현상이 관찰됨.
    • 장기간 퇴적층 내에 존재했던 암석이 화학적 풍화 및 수분에 의한 연화 작용으로 약해진 후, 외부 퇴적물이 제거되면서 버섯 돌 하부의 곡면이 형성됨.
  4. 버섯 돌 형성 과정 및 주요 기작 정리
    • 1단계: 버섯 돌이 퇴적물 속에 매립됨 → 장기간 퇴적물 내에서 화학적 풍화가 진행됨.
    • 2단계: 퇴적물 제거 후, 풍화된 암석이 노출되면서 내부 곡면이 형성됨.
    • 3단계: 추가적인 기계적 풍화 및 석고 결정 성장이 내부 균열을 유발하며 현재의 버섯 돌 형태가 완성됨.

결론

  • 유수 침식만으로 버섯 돌이 형성되었다는 기존 가설은 CFD 시뮬레이션 결과와 일치하지 않음.
  • 광물 분석 및 화학적 풍화 모델링 결과, 할로클래스티(haloclasty) 및 습윤 연화(softening due to moisture) 작용이 버섯 돌 형성의 주요 기작으로 확인됨.
  • CFD 시뮬레이션을 통한 수력학적 해석과 광물 분석을 결합하여 자연 암석 형성 기작을 정량적으로 분석하는 새로운 접근법을 제시함.
  • 향후 연구에서는 장기적인 풍화 속도 및 추가적인 유체-암석 상호작용 모델링을 수행해야 함.

Reference

  1. Arem J (1983) Rocks and minerals, 5th printing. The Ridge Press, New York, USA.
  2. Bagnold RA (1941) The Physics of Blown Sand and Desert Dunes. Methuen, London.
  3. Barker DS (2007). Origin of cementing calcite in “carbonatite” tuffs. Geology 35: 371-374. https://doi.org/10.1130/G22957A.1
  4. Berner EK, Berner RA (1989). The Global Water Cycle, Geochemistry and Environment. Environ Conserv 16: 190 – 191. https://doi.org/10.1017/S0376892900009206
  5. Bryan K (1925) Pedestal rocks in stream channels. Bull US Geol Surv 760-D: 123-128. https://doi.org/10.5962/bhl.title.45744
  6. Castor SB, Weiss SI (1992) Contrasting styles of epithermal precious- metal mineralization in the southwestern Nevada volcanic field, USA. Ore Geol Rev 7: 193-223. https://doi.org/10.1016/0169-1368(92)90005-6
  7. Collier JS, Oggioni F, Gupta S, et al. (2015) Streamlined islands and the English Channel megaflood hypothesis. Glob Planet Change 135: 190-206. https://doi.org/10.1016/j.gloplacha.2015.11.004
  8. Czerewko MA, Cripps JC (2019) The Consequences of Pyrite Degradation During Construction—UK Perspective. In: Shakoor A, Cato K (ed.), IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018 – Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-93127-2_21
  9. Dill HG, Buzatu A, Balaban SI, et al. (2020) The “badland trilogy” of the Desierto de la Tatacoa, upper Magdalena Valley,Colombia, a result of geodynamics and climate: With a review of badland landscapes. Catena 194:1-20. https://doi.org/10.1016/j.catena.2020.104696
  10. Drikakis D (2003) Advances in turbulent flow computations using high-resolution methods. Prog Aerosp Sci 39: 405–424. https://doi.org/10.1016/S03760421(03)00075-7.
  11. Fusi L, Primicerio M, Monti A (2015) A model for calcium carbonate neutralization in the presence of armoring. Appl Math Model 39: 348-362. https://doi.org/10.1016/j.apm.2014.05.037
  12. Ghasemi M, Soltani G S (2017) The Scour Bridge Simulation around a Cylindrical Pier Using Flow-3D. JHE 1: 46-54.https://doi.org/10.22111/JHE.2017.3357
  13. Graf WH, Yulistiyanto B (1998) Experiments on flow around a cylinder; the velocity and vorticity fields. J Hydraul Res 36:637-653. https://doi.org/10.1080/00221689809498613
  14. Guan X, Gao Q (1992) Annals of Xiqiao Mountain. Guangdong People’s Publishing House. (In Chinese)
  15. Guemou B, Seddini A, Ghenim AN (2016) Numerical investigations of the round-nosed bridge pier length effects on the bed shear stress. Prog Comput Fluid Dyn 16: 313-321. https://doi.org/10.1504/PCFD.2016.078753
  16. Hawkins AB, Pinches GM (1987) Cause and significance of heave at Llandough Hospital, Cardiff—a case history of ground floor heave due to gypsum growth. QJ Eng Geol Hydrogeol 20: 41–57. https://doi.org/10.1144/GSL.QJEG.1987.020.01.05
  17. Hercod DJ, Brady PV, Gregory RT (1998) Catchment-scale coupling between pyrite oxidation and calcite weathering. Chem Geol 151: 259–276. https://doi.org/10.1016/S0009-2541(98)00084-9
  18. Huang R, Wang W (2017) Microclimatic, chemical, and mineralogical evidence for tafoni weathering processes on the Miaowan Island, South China. J Asian Earth Sci 134: 281–292. https://doi.org/10.1016/j.jseaes.2016.11.023
  19. Islam MR, Stuart R, Risto A, et al. (2002) Mineralogical changes during intense chemical weathering of sedimentary rocks in Bangladesh. J Asian Earth Sci 20: 889-901. https://doi.org/10.1016/S1367-9120(01)00078-5
  20. Istiyato I, Graf WH (2001) Experiments on flow around a cylinder in a scoured channel bed. Int J Sediment Res 16: 431- 444. https://doi.org/CNKI:SUN:GJNS.0.2001-04-000
  21. Jafari M, Ayyoubzadeh SA, Esmaeili-Varaki M, et al. (2017) Simulation of Flow Pattern around Inclined Bridge Group Pier using FLOW-3D Software. J Water Soil 30: 1860-1873. https://doi.org/10.22067/jsw.v30i6.47112
  22. Jalal HK, Hassan WH (2020) Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software. 2020 IOP Conf Ser: Mater Sci Eng 745 012150. https://doi.org/10.1088/1757-899X/745/1/012150
  23. Knippers J (2017) The Limits of Simulation: Towards a New Culture of Architectural Engineering. Technol Archit Des 1: 155-162. https://doi.org/10.1080/24751448.2017.1354610
  24. Komar PD (1983) Shapes of streamlined islands on Earth and Mars — experiments and analyses of the minimum-drag form. Geology 11: 651–654. https://doi.org/10.1130/0091-7613(1983)112.0.CO;2
  25. Li JC, Wang W, Zheng YM (2019). Origin of the Mushroom Stone Forest at the southeastern foot of the Little Sangpu Mountain in eastern Guangdong, China: A palaeo-sea-level indicator or not? J Mt Sci 116: 487-503. https://doi.org/10.1007/s11629-018-5181-1
  26. Luo CK, Zhou YH, Yang XQ, et al. (2004) Formation, classification and synthetical evolution of the geological tourism landscapes at the XiQiao Hill, Guangdong. Trop Geogr 24: 387-390. https://doi.org/10.13284/j.cnki.rddl.000864 (In Chinese)
  27. Mcbride EF, Picard MD (2000) Origin and development of tafoni in tunnel spring tuff, crystal peak, Utah, USA. Earth Surf Process Landf 25: 869-879. https://doi.org/10.1002/1096-9837(200008)25::8<869:AIDESP104>3.0.CO;2-F
  28. Melville BM, Raudkivi A (1977) Flow characteristics in local scour at bridge piers. J Hydraul Res 15: 373-380. https://doi.org/10.1080/00221687709499641
  29. Mendonca ISP, Canilho HDL, Fael CMS (2019) Flow-3D Modelling of the Debris Effect on Maximum Scour Hole Depth at Bridge Piers. 38th IAHR World Congress. Panama City, Panama 1-6. https://doi.org/10.3850/38WC092019-1850
  30. Migon P (2006) Granite Landscapes of the World. Oxford University Press, New York. pp 24-131, 218-235. Pugh CE, Hossener LE, Dixon JB (1981) Pyrite and marcasite surface area as influenced by morphology and particle diameter. Soil Sci Soc Am J 45: 979–982. https://doi.org/10.2136/sssaj1981.03615995004500050033x
  31. Segev E (2010) Google and the Digital Divide – Users and uses of Google’s information. pp 75–110. https://doi.org/10.1016/b978-1-84334-565-7.50004-6
  32. Taylor RK, Cripps JC (1984) Mineralogical controls on volume change. In: Attewell PB, Taylor RK (ed.), Ground Movements and their Effects on Structures. Surrey Uni Press, UK. pp. 268–302
  33. Twidale CR, Romani JRV (2005) Landforms and Geology of Granite Terrains. Taylor and Francis, London. pp 81-107, 173- 257.
  34. Wang W, Huang R (2018) The origin of the “Fairy Stone” on the coast of Dapeng Penisula, Guangdong, China. Quat Sci 38: 427-448. (In Chinese) https://doi.org/10.3760/j.issn:0412-4030.2006.11.029
  35. Wedekind W, López-Doncel R, Dohrmann, R, et al. (2013) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci 69: 1203–1224. https://doi.org/10.1007/s12665-012-2158-1
  36. Wei G, Brethour J, Grünzner M, et al. (2014) Sedimentation scour model in FLOW-3D. Flow Sci Rep 03-14: 1-29.
  37. Whipple KX, Hancock GS, Anderson RS (2000) River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Geol Soc Am Bull 112: 490–503. https://doi.org/10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2
  38. White AF (2003) Natural Weathering Rates of Silicate Minerals. In: Drever JI (ed.), Treatise on Geochemistry: Surface and Ground Water, Weathering and Soils. Elsevier Science, pp. 133–168. https://doi.org/10.1016/B0-08-043751-6/05076-3
  39. Wu CY, Ren J, Bao Y, et al. (2007) A long-term hybrid morphological modeling study on the evolution of the Pearl River delta network system and estuarine bays since 6000 aBP. In: Harff J, Hay WW, Tetzlaff DF (ed.), Coastline Changes: Interrelation of Climate and Geological Processes; Special Papers – Geological Society of America Spec. Pap 426: 199-214.https://doi.org/10.1130/2007.2426(14)
  40. Zhao L, Zhu Q, Jia S, et al. (2017) Origin of minerals and critical metals in an argillized tuff from the Huayingshan Coalfield, Southwestern China. Minerals 2017: 7: 92. https://doi.org/10.3390/min7060092