Figure 6. Scour depth (in negative value) at different views around pier

Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software

Flow-3D 소프트웨어를 이용한 원형 교각 주변 지역 scour의 3 차원 수치 시뮬레이션

To cite this article: Halah Kais Jalal and Waqed H. Hassan 2020 IOP Conf. Ser.: Mater. Sci. Eng. 745 012150

Halah Kais Jalal1
, Waqed H. Hassan2
1 Graduate student, Civil Engineering Department, University of Kerbala, Kerbala, Iraq.
2 Professor, University of Kerbala, Kerbala, Iraq.
E-mail: halah.q@s.uokerbala.edu.iq, Waaqidh@uokerbala.edu.iq

Abstract

주어진 값의 내부 드리프트를 나타내는 다항식 순서 또는 자체 정의 함수 목록을 제공 할 수 있습니다. 이 드리프트는 kriging 보간 동안 내부적으로 적합합니다. 다음에서는 선형 드리프트가 추가된 인공 데이터를 생성합니다. 그런 다음 결과 샘플은 Universal kriging의 입력으로 사용됩니다. 그런 다음 보간 중에 “선형”드리프트가 추정됩니다. 추정된 평균 / 드리프트에만 액세스하기 위해 호출 루틴에 스위치 only_mean을 제공합니다. 원형 교각 주변의 국부 수색 문제는 Flow-3D 모델을 사용하여 전산 유체 역학 (CFD)에서 국부적 진화를 나타냅니다. 교각 설계에서 중요한 scour 및 scour 구멍의 최대 깊이. 이 연구의 목적은 교각 주변의 수색 깊이를 정확하게 시뮬레이션하고 예측하는 수치 시뮬레이션 모델 Flow-3D의 능력을 검증하는 것입니다. 이 검증은 수치 결과를 Melville 실험실 실험 모델과 비교하여 수행됩니다. 30 분후 수치 결과에서 얻은 원형 부두 주변의 최대 scour 깊이는 3.6cm이고 Melville 모델에서 얻은 scour 깊이는 4cm입니다. 이 결과에 따르면 수치 모델과 실험 모델 간의 오류율 비율은 10 %에 가깝습니다. 결과는 실험 결과와 함께 좋은 검증을 보여주었습니다. 마지막으로 제안 된 Flow-3D 모델은 교각 주변의 수색 깊이를 예측하고 시뮬레이션 하는데 효과적인 도구를 고려하고 잠재적인 결과를 예측하는 경제적인 방법을 고려했습니다.

The problem of local scouring around circular bridge pier has been studied numerically
by Computational Fluid Dynamics (CFD) using Flow-3D model to represent the evolution of local
scour and the maximum depth of the scour hole which is important in the bridge pier design. The
aim of this study is to verify the ability of the numerical simulation model Flow-3D to accurately
simulate and predict the scour depth around the bridge pier. This verification is conducted by
comparison the numerical results with Melville laboratory experimental model. The maximum
scours depth around the circular pier obtained from numerical results after 30 min is 3.6 cm, while
the scouring depth obtained from Melville model is 4 cm. According to these results, the error rate
ratio between the numerical and experimental models is close to 10%. The results showed a good
validation with experimental results. Finally, the proposed Flow-3D model considered an effective
tool in predicting and simulating the scour depth around bridge pier and considered an economic
method to predict potential results.
Keywords: Local scour, Flow-3D, CFD, Verfication

scour은 흐르는 물의 침식 작용으로 정의 할 수 있으며, 이는 가까운 교각 및 교각에서 베드를 제거하고 침식합니다 [1]. 다리의 교각 주변을 scour하는 것은 다리의 실패 원인이 충돌 및 과부하와 함께 엄청난 인명 손실과 경제적 영향으로 이어지는 주요 원인 중 하나로 간주됩니다 [2], 지역 scour 예측, 특히 최대 scour 깊이는 다음과 같습니다.

교량 설계, 유지 보수 및 평가에 필수적입니다. 전 세계의 많은 연구자들은 다양한 관점과 다양한 조건에서 광범위하게 scour 문제를 연구했습니다.

교량 부지에서 만든 scour에는 일반적으로 세 가지 유형이 포함되어 있습니다. 일반 scour, 수축 scour 및 국부 scour [3], 세 가지 scour 유형 중, scour는 다리와 관련된 위험에서 가장 중요한 역할을 하기 때문에, local scour는 이 연구의 중요한 부분으로 간주됩니다.

많은 선행 연구가 경험적 테스트를 사용하여 교량의 국부 scour을 분석하는 기술과 방법론을 목표로 했습니다 [4], [5], [6], [7], [8], [9], [10], [11] . 이러한 경험적 scour 테스트의 대부분은 비용이 많이 들고 노동 집약적이기 때문에 크고 중요한 교량에서 종종 수행됩니다.

그러나 가장 인기 있는 고속도로 교량의 경우 경험적 테스트가 적용되지 않지만 이러한 일반 교량에서 scour이 자주 발생하지만 일부 연구에서는 경제적이고 실용적인 목적으로 교량 scour에 대한 분석 솔루션을 조사했습니다.

지난 몇 년 동안 전산 유체 역학 (CFD를 사용하여 산업 및 환경 응용 분야에서 유체 흐름 동작을 결정하는 데 사용)을 더 많이 사용할 수 있는 컴퓨터 및 소프트웨어의 기능이 증가함에 따라 scour의 3 차원 시뮬레이션 방법이 더욱 널리 보급되었습니다.

FLUENT, CFX, PHOENIX와 같은 CFD 소프트웨어는 실험 설정과 여러면에서 유사하므로 이 수치 시뮬레이션의 원래 개념은 속도계와 같은 확장된 부속품을 사용하여 물리적 모델을 설계하고 구성하는 것입니다. 복잡한 모델 실험실 조건에서 모델링하기 어려운 모델은 수치 시뮬레이션을 사용하여 간단하게 모델링 할 수 있습니다.

좋은 수치 모델은 확실히 모델 테스트를 보완 할 수 있으며 설계 엔지니어가 모델 테스트를 수행 할 수 있는 가장 중요한 사례를 식별하는 데 도움이 될 수 있다는 것이 널리 알려져 있습니다.

복잡한 문제와 대규모 모델 연구를 해결할 수 있는 매력적인 아이디어입니다. 실제 결과를 결정하기 위해 추가 작업자 또는 기존의 대규모 설정이 필요하지 않습니다.

CFD (Computational Fluid Dynamics) 방법은 Navier-Stokes의 이산화 및 해석과 계산 셀의 연속성 방정식을 통해 유동 프로세스 시뮬레이션에 항상 사용됩니다. 현재 연구에서 상용 코드 Flow-3D는 교각 주변의 scour 깊이를 모델링하는 데 사용됩니다.

Flow-3D 모델은 유압 공학 응용을 위한 특수 장치가 있는 CFD 패키지입니다. 수치 기법은 다중 스케일 다중 물리 흐름 문제를 얻기 위해 과도 및 3 차원 솔루션에 대한 유체 운동 방정식을 해결하는 데 사용됩니다.

물리적 옵션과 수치 옵션의 조합을 통해 사용자는 Flow-3D를 광범위한 유체 흐름 및 열 전달 현상에 적용 할 수 있으며 다양한 유압 문제를 해결하는 데 널리 사용됩니다 [12]. Flow-3D에 의한 scour의 수치 시뮬레이션은 많은 연구자들에 의해 제안 되었습니다.

Flow-3D에 의한 Scour의 수치 시뮬레이션은 많은 연구자들에 의해 제안 되었습니다.

예를 들어, [13]은 Scour Hole 내의 원형 브리지 부두의 기초에서 발생하는 흐름을 시뮬레이션하기 위해 Flow-3D를 사용했고, [14]는 조수 아래의 복잡한 브리지 피어에서 국소 스캐닝을 시뮬레이션하기 위해 숫자 모델을 사용했고 [15]는 Flow-3D를 사용했습니다.다양한 조건에서 국부적 골절 깊이의 더미 모양과 [16] CFD 코드를 사용하여 3D 흐름과 다양한 모양의 교량 부두 주위의 국부적 스캐닝을 시뮬레이션했습니다.

이 모든 연구는 맑은 물 조건에서 흐르는 물이 주로 흐름과 강바닥 사이의 대부분의 상호 작용으로 이어진다는 가설을 세웠습니다.

본 논문에서는 [4]의 실험실 모델에 의한 수치 시뮬레이션 검증을 통해 교량 주변의 국부 scour 실험 결과를 CFD 코드 Flow-3D의 수치 시뮬레이션 결과와 비교하여 검증을 목적으로 합니다. 이 검증의 주요 목적은 교량 부두 주변의 scour 깊이를 예측할 때 수치 모델 Flow-3D의 효과를 테스트하는 것입니다.

Figure 1. Plan view of Melville experimental setup [4]
Figure 1. Plan view of Melville experimental setup [4]
Figure 2. Geometry of the numerical model configured by the FLOW-3D
Figure 2. Geometry of the numerical model configured by the FLOW-3D
Figure 3. Effect of Cell Size on Scour Depth
Figure 3. Effect of Cell Size on Scour Depth
Figure 4. Meshing Plane Structure Around a Circular Pier
Figure 4. Meshing Plane Structure Around a Circular Pier
Figure 6. Scour depth (in negative value) at different views around pier
Figure 6. Scour depth (in negative value) at different views around pier
Figure 7. Contour Lines Represented the Depth of Scour Around Circular Bridge Pier for Melville Model
Figure 7. Contour Lines Represented the Depth of Scour Around Circular Bridge Pier for Melville Model
Figure 8. Contour Lines Represented the Depth of Scour Around the bridge Pier for the Numerical model
Figure 8. Contour Lines Represented the Depth of Scour Around the bridge Pier for the Numerical model
Figure 9. Scour depth against time around cylindrical pier.
Figure 9. Scour depth against time around cylindrical pier.
Figure 10. Contour map of flow velocity around a pier at 30 min resulted by Melville [4]
Figure 10. Contour map of flow velocity around a pier at 30 min resulted by Melville [4]
Figure 11. Contour map of flow velocity distribution around a pier at 30 min resulted by numerical simulation.
Figure 11. Contour map of flow velocity distribution around a pier at 30 min resulted by numerical simulation.

Conclusion

이 연구는 교각에서 scour깊이의 발달을 예측하는 데 있어 이 수치 시뮬레이션의 효과를 검증하는 것을 목표로 합니다. 검증은 30 분의 scour 깊이 공식화 후 Flow-3D의 수치 결과를 Melville 실험 모델과 비교하여 결론을 내립니다.

결과의 비교는 최대 수세공 깊이에 대한 오류율이 10 %임을 나타내며,이 관찰은 수치 및 실험 작업 사이에 좋은 검증을 보여 주므로 수치 시뮬레이션은 scour 깊이를 성공적으로 재현합니다.

이러한 결과에 따르면 제안된 수치 모델 Flow-3D는 교각 주변의 scour 깊이와 유동장을 시뮬레이션하고 예측하는데 효과적인 도구로 간주되었습니다.

References
[1] Breusers Nicollet and Shen 1977 Local scour around cylindrical piers Journal of Hydraulic
Research, IAHR,15 (3): 211-252.
[2] Shepherd R. and Frost J D 1995 Failures in civil engineering: Structural, foundation and
geoenvironmental case studies Journal of Hydraulic Engineering, Puolisher ASCE.
[3] Cheremisinoff N P and Cheng S L 1987 Hydraulic mechanics 2 Civil Engineering Practice,
Technomic Published Company, Lancaster, Pennsylvania, U.S.A. 780 p.
[4] Melville B W 1975 Local scour at bridge sites University of Auckland, New Zealand, phd. Thesis,
Dept. of Civil eng., Rep. No. 117.
[5] Abdul-Nour M 1990 Scouring depth around multiple M.Sc. Thesis , Department of Irrigation and
Drainage , University of Baghdad.
[6] Hosny M M 1995 Experimental study of local scour around circular bridge piers in cohesive soils
Colorado State University, Fort Collins.
[7] Ansari S A Kothyari U C and Ranga Raju K G 2002 Influence of cohesion on scour around bridge
piers Journal of Hydraulic Research, IAHR, pp. 40(6): 717-729.
[8] Khsaf S I 2010 A study of scour around Al-Kufa bridge piers Kufa Engineering
Journal.Vol.1No.1,2010, University of Kufa / College Engineering / Civil Department.
[9] Hassan W H Jassem M H and Mohammed S S 2018 A GA-HP Model for the Optimal Design of
Sewer Networks Water Resour. Manag., vol. 32, no. 3, pp. 865–879.
[10] Hassan W H 2017 Application of a genetic algorithm for the optimization of a cutoff wall under
hydraulic structures J. Appl. Water Eng. Res., vol. 5, no. 1, pp. 22–30, Jan.
[11] Ataie-Ashtiani B 2013 Flow field around single and tandem piers Flow Turbulence and Combustion
Journal of Hydraulic Engineering,volume 9429.
[12] Flow -3D manual 2014 Flow-3D user manual version 11, Flow Science Santa Fe, NM.
[13] Richardson J E and Panchang V G 1998 Three-Dimensional Simulation of Scour Inducing Flow at
Bridge Piers Journal of Hydraulic Engineering, 124(5), pp. 530–540. doi: 10.1061/(asce)0733-
9429(1998)124:5(530).
[14] Vasquez J and Walsh B 2009 CFD simulation of local scour in complex piers under tidal flow
Proceedings of the thirty-third IAHR Congress: Water Engineering for a Sustainable Environment,
(604), pp. 913–920.
[15] W H H and Halah k Jalal 2019 Effect of Bridge Pier Shape on Depth of Scour Iop, Conf. Ser.,(under
puplication).
[16] Obeid Z H 2016 3D numerical simulation of local scouring and velocity distributions around bridge
piers with different shapes A Peer Reviewed International Journal of Asian Academic Research
Associates, 20(16), p. 2801. doi: 10.1186/1757-7241-20-67.
[17] Drikakis D 2003 Advances in turbulent flow computations using high-resolution methods Progress
in Aerospace Sciences, 39(6–7), pp. 405–424. doi: 10.1016/S03760421(03)00075-7.
[18] Yakhot and Orszag 1986 Renormalization Group Analysis of Turbulence, Basic Theory Journal of
Scientific Computing, pp. 3–51. 1, pp. 3–51.
[19] Mastbergen D R and Van Den Berg J H 2003 Breaching in fine sands and the generation of
sustained turbidity currents in submarine canyons Sedimentology, 50(4), pp. 625–637. doi:
10.1046/j.1365-3091.2003.00554.x.
[20] Soulsby R L and Whitehouse R J S W 1997 Threshold of sediment motion in Coastal Environments
Proc. Combined Australian Coastal Engineering and Port Conference, EA, pp. 149-154.
[21] Meyer-Peter E and Müller R 1948 Formulas for bed-load transport Proceedings of the 2nd Meeting
of the International Association for Hydraulic Structures Research, 39– 64.
[22] Wei G Brethour J Grünzner M and Burnham J 2014 Sedimentation Scour Model Flow Science
Report 03-14.

The Sedimentation Scour Model [침전 세굴(쇄굴) 모델]

1. Introduction
The three-dimensional sediment scour model for non-cohesive soils was first introduced to FLOW-3D in Version 8.0 to simulate sediment erosion and deposition (Brethour, 2003). It was coupled with the three-dimensional fluid dynamics and considered entrainment, drifting and settling of sediment grains. In Version 9.4 the model was improved by introducing bedload transport and multiple sediment species (Brethour and Burnham, 2010). Although applications were successfully simulated, a major limitation of the model was the approximate treatment of the interface between the packed and suspended sediments. The packed bed was represented by scalars rather than FAVORTM (Fractional Area Volume Obstacle Representation, the standard treatment for solid components in FLOW-3D). As a result, limited information about the packed bed interface was available. That made accurate calculation of bed shear stress, a critical factor determining the model accuracy, challenging.

In this work, the 3D sediment scour model is mostly redeveloped and rewritten. The model is still fully coupled with fluid flow, allows multiple non-cohesive species and considers entrainment, deposition, bedload transport and suspended load transport. The fundamental difference from the old model is that the packed bed is described by the FAVORTM technique. At each time step, area and volume fractions describing the packed sediments are calculated throughout the domain. In the mesh cells at the bed interface, the location, orientation and area of the interface are calculated and used to determine the bed shear stress, the critical Shields parameter, the erosion rate and the bedload transport rate. Bed shear stress is evaluated using the standard wall function with consideration of bed surface roughness that is related to the median grain size d50. A sub-mesh method is developed and implemented to calculate bedload transport. Computation of erosion considers entrainment and deposition simultaneously in addition to bedload transport.

Furthermore, a shallow-water sediment scour model is developed in this work by adapting the new 3D model. It is coupled with the 2D shallow water flows to calculate depth-averaged properties for both suspended and packed sediments. Its main differences from the 3D model are 1) the settling velocity of grains is calculated using an existing equation instead of the drift-flux approach in the 3D model, and 2) turbulent bed shear stress is calculated using a well-accepted quadratic law rather than the log wall function. The drag coefficient for the bed shear stress is either user-given or locally evaluated using the water depth and the bed surface roughness that is proportional to d50 of the bed material. The following sections present the sediment theory used in the model and application and validation cases.