Figure 3.4 Upstream View of the Radial Gated-Spillway

방사형 게이트 아래의 흐름에 대한 실험 및 수치 조사

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLOW UNDER RADIAL GATES

submitted by MAHMUT TANYERİ in partial fulfillment of the requirements for
the degree of Master of Science in Civil Engineering, Middle East Technical
University by,
Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Ahmet Türer
Head of the Department, Civil Engineering
Prof. Dr. Mete Köken
Supervisor, Civil Engineering, METU
Prof. Dr. İsmail Aydın
Co-Supervisor, Civil Engineering, METU

Abstract

방사형 게이트는 여수로에서 일반적으로 사용됩니다. 부분 게이트 개구부에서 60년대에 수행된 실험 작업에서 얻은 경험 방정식을 사용하여 통과하는 방전을 계산합니다.

그러나 이러한 방정식에서 얻은 배출 값과 유한 체적 방법 및 수리적 모델을 기반으로 한 수치 계산에서 얻은 값 사이에는 약간의 불일치가 있습니다. 이러한 차이의 원인을 밝히는 것이 목적입니다.

이를 위해 다양한 게이트 구성에 대한 실험과 수치 계산이 수행되었습니다. 수많은 수치 시뮬레이션에서 나온 경향을 활용하여 연구 말미에 새로운 방전 방정식을 도출했습니다.

하나의 수리학적 매개변수와 두 개의 기하학적 매개변수가 있는 제안된 방정식을 사용하면 설계자가 지루한 정격 곡선 없이도 쉽게 배출을 계산할 수 있습니다.

Keywords

Radial Gate, Spillway, Empirical Equations, Discharge Coefficient, Discharge Rating Curve

Introduction

방사형 수문(또는 테인터 수문)은 특히 수두가 높은 댐에서 홍수 방출을 제어하기 위해 광범위하게 사용되는 오버플로 수문 유형 중 하나입니다. 그것은 강철 곡선 리프, 지지 암 및 슈트 채널의 측벽에 장착된 고정 조인트로 구성됩니다.

게이트는 하류의 물 수요를 충족시키거나 상류 수두를 조절하기 위해 원하는 각도로 피벗 지점을 중심으로 쉽게 회전할 수 있습니다. 방사형 게이트는 다른 유형에 비해 많은 장점이 있습니다. 그들의 가장 놀라운 특성은 게이트를 움직이는 데 필요한 호이스트 힘이 적다는 것입니다.

이는 상류의 물이 게이트에 양력을 가할 수 있는 아치형 덕분에 에너지 소비도 감소합니다. 더욱이, 방사형 게이트는 슬롯이 필요하지 않으며, 시간이 지남에 따라 떠다니는 파편이 그 안에 쌓일 수 있기 때문에 때때로 작동 문제를 일으킬 수 있습니다. 그 활용 분야는 여러 가지가 있지만, 본 연구의 범위는 오지형 여수로에만 수반되는 방사형 게이트로 제한됩니다.

부분적으로 열리면 래디얼 게이트 아래를 통과하는 흐름은 다양한 수리적 및 기하학적 요인의 영향을 받습니다. 따라서 정확한 배출 추정은 어려운 문제입니다. 이 문제는 주로 게이트 근처에서 유선형 ​​동작의 복잡성으로 인해 발생합니다.

유동 영역은 고도의 곡선 유선을 포함하기 때문에 유속에 대한 해석적 솔루션이 불가능합니다. 이러한 이유로 방전은 대부분 실험적 모델에서 조사되었으며 이에 따라 실증적 관계가 도출되었습니다.

방전 방정식은 유선의 총 에너지 변환과 관련된 베르누이 방정식을 기반으로 개발되었습니다. 게이트 바로 아래의 평균 속도는 에너지 방정식에서 추론할 수 있으며, 게이트 개방의 순 면적을 곱하면 체적 유량의 이론적인 값을 얻을 수 있습니다.

그러나 실제로는 바닥 게이트 립과 같은 날카로운 모서리를 유선이 완벽하게 따라갈 수 없고 마찰로 인해 이론 속도가 약간 감소하기 때문에 실제로 분사되는 워터젯의 단면적이 수축합니다.

이러한 효과 때문에 실제 배출량을 추정하기 위해 배출 계수라고 하는 경험적 보정 계수가 방정식에 도입됩니다(Tokyay, 2019). 사례 연구로 터키의 민간 엔지니어링 회사인 TEMELSU(2018)에서 수행한 Lower Kaleköy 댐에 속한 방사형 여수로의 수리학적 계산을 조사했습니다.

그들은 세계적으로 인기 있는 수력 설계 책인 ‘Design of Small Dams’에 제공된 배출 계수 등급 곡선을 사용하여 이러한 계산을 수행했습니다. 이러한 곡선을 기반으로 산출된 토출량 값을 CFD(Computational Fluid Dynamics) 프로그램에서 생성한 수치모델 결과와 비교하였다.

게이트가 부분적으로 열린 경우 이러한 결과 사이에 명백한 불일치가 있는 것으로 관찰되었습니다. 일반적으로 제안된 경험식은 시뮬레이션에 비해 최대 20%까지 유량을 과소평가한다.

본 연구의 목적은 크게 두 가지이다. 첫 번째 목표는 언급된 실험식과 수치해석 간의 불일치 이유를 조사하는 것이고, 두 번째 목표는 어떤 수리적 및 기하학적 매개변수가 방사형 게이트 아래의 배출에 실제로 영향을 미치는지 탐구하는 것입니다.

먼저 METU 수력학 연구소에서 건설한 Lower Kaleköy 댐의 물리적 모델에서 미리 결정된 수문 개구부의 배출 값을 측정했습니다. 이러한 실험에서 얻은 데이터 세트를 수치 모델의 결과와 비교하여 일치 여부를 확인했습니다.

이러한 방식으로 수치적 결과를 검증한 후 원래 수력 조건이 동일하게 유지되는 경우 수치 모델의 게이트 위치, 배수로 형상과 같은 다양한 구성을 시뮬레이션했습니다.

분석은 연구 전반에 걸쳐 모델 규모로 수행되었습니다. 상술한 효과와 관련된 연구 결과, 수치해를 기반으로 새로운 방전방정식을 공식화하였다. 마지막으로 기존 실험식과 새로운 공식에서 얻은 결과를 수치해와 비교하여 정확도를 관찰하였다.

Figure 3.3 General View of the Experimental Setup
Figure 3.3 General View of the Experimental Setup
Figure 3.4 Upstream View of the Radial Gated-Spillway
Figure 3.4 Upstream View of the Radial Gated-Spillway
Figure 3.5 Side View of the Radial Gate During Operation
Figure 3.5 Side View of the Radial Gate During Operation
Figure 4.2 Mesh Detail of the 3D Models
Figure 4.2 Mesh Detail of the 3D Models
Figure 4.7 Mesh Details of the 2D Numerical Model
Figure 4.7 Mesh Details of the 2D Numerical Model
Figure 4.12 Velocity Magnitude Contours of T1, T2, T3 and T4 at the Design Head (d=10cm)
Figure 4.12 Velocity Magnitude Contours of T1, T2, T3 and T4 at the Design Head (d=10cm)
Dynamic Pressure at Flip Buckets of Chute Spillways

낙하 배수로의 플립 버킷에서의 동적 압력: 수치 해석

Dynamic Pressure at Flip Buckets of Chute Spillways: A Numerical Study

International Journal of Civil Engineering (2021)Cite this article

Abstract

이 연구는 이러한 구조물의 가장 중요한 설계 매개변수 중 하나인 슈트 여수로의 플립 버킷에서 동적 압력을 조사합니다. 첫째, 압력에 영향을 미치는 무차원 매개변수를 치수해석을 통해 결정하였다.

그 후, 플립 버킷으로 이어지는 슈트 여수로가 있는 선택된 댐의 특성에 따라 플립 버킷으로의 특정 Froude 수 간격과 슈트 경사 각도, 반경 및 플립 버킷 곡률 각도가 분석을 위해 선택되었습니다.

이러한 매개변수의 조합으로 FLOW-3D에서 총 137개 모델을 시뮬레이션하여 플립 버킷의 바닥 압력과 최대 압력 값을 얻었습니다.

다음으로 고려된 무차원 매개변수를 기반으로 다중 회귀 분석을 사용하여 슈트의 플립 버킷 다운스트림에서 바닥 압력과 최대 압력을 결정하기 위한 방정식이 제안되었습니다. 수치 모델링 실행 결과와 다중 회귀 분석을 사용하여 무차원 압력 관계의 미지의 계수를 결정하고 바닥 압력과 최대 압력에 대한 최종 방정식을 제시했습니다.

저압과 최고압을 결정하기 위해 제안된 식의 상관계수와 MAPE(Mean Absolute Percentage Error) 값은 각각 0.94와 0.96, 6.75%와 8.49%였습니다.

이 값은 제안된 방정식의 적절한 정확도를 나타냅니다. 제안된 방정식에서 Froude 수, 상대 곡률, 슈트 경사각, 이륙 각도 및 플립 버킷의 곡률 각도가 각각 저면 압력과 최대 압력에 가장 큰 영향을 미쳤습니다.

This study investigates the dynamic pressure at the flip buckets of chute spillways, which is one of the most important design parameters of these structures. First, the dimensionless parameters affecting pressure were determined by dimensional analysis. Following that, according to the characteristics of selected dams with chute spillways leading to flip buckets, certain Froude number intervals of inflow to the flip bucket, as well as the chute slope angle, radius, and flip bucket curvature angle were selected for analysis. The combination of these parameters resulted in a total of 137 models simulated in FLOW-3D to obtain bottom pressure and maximum pressure values in the flip bucket. Next, based on the dimensionless parameters considered, equations were proposed to determine the bottom pressure and maximum pressure in the flip bucket downstream of the chute, using multiple regression analysis. Using the numerical modeling run results, along with multiple regression analyses, the unknown coefficients of the dimensionless pressure relationship were determined, and final equations for the bottom pressure and maximum pressure were presented. The correlation coefficient and Mean Absolute Percentage Error (MAPE) values of the proposed equations for determining the bottom pressure and maximum pressure were 0.94 and 0.96, and, 6.75% and 8.49%, respectively. These values indicate the appropriate accuracy of the proposed equations. In the proposed equations, the Froude number, relative curvature, chute slope angle, takeoff angle, and flip bucket’s curvature angle, respectively, had the highest impacts on the bottom pressure and maximum pressure.

Keywords

  • Dam spillway
  • Flip bucket
  • Ski jump
  • Dynamic pressure
  • Numerical modeling
  • FLOW-3D
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10

References

  1. 1.Vischer DL, Hager WH (1995) Energy dissipators. Balkema, Rotterdam, The NetherlandsGoogle Scholar 
  2. 2.Khatsuria RM (2005) Hydraulics of spillways and energy dissipators. CRC Press, Dekker, New YorkGoogle Scholar 
  3. 3.Novak P, Moffat AIB, Nalluri C, Narayanan R (2006) Hydraulics structures. Spon, LondonGoogle Scholar 
  4. 4.Chow VT (1959) Open channel hydraulics. McGraw-Hill Book Co., New YorkGoogle Scholar 
  5. 5.Balloffet A (1961) Pressures on spillway flip buckets. J Hydraul Div ASCE 87(5):87–98. https://doi.org/10.1061/JYCEAJ.0000650Article Google Scholar 
  6. 6.Chen TC, Yu YS (1965) Pressure distribution on spillway flip buckets. J Hydraul Div ASCE 91(2):51–63. https://doi.org/10.1061/JYCEAJ.0001228Article Google Scholar 
  7. 7.Lenau CW, Cassidy JJ (1969) Flow through spillway flip bucket. Journal of the Hydraulics Division ASCE 95(2):633–648. https://doi.org/10.1061/JYCEAJ.0002029Article Google Scholar 
  8. 8.Juon R, Hager WH (2000) Flip bucket without and with deflectors. J Hydraul Eng 126(11):837–845. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(837)Article Google Scholar 
  9. 9.Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  10. 10.Heller V, Hager WH, Minor HE (2005) Ski jump hydraulics. J Hydraul Eng 131(5):347–355. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:5(347)Article Google Scholar 
  11. 11.Larese A, Rossi R, Onate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Eng Comput 25(4):385–425. https://doi.org/10.1108/02644400810874976Article MATH Google Scholar 
  12. 12.Steiner R, Heller V, Hager WH, Minor HE (2008) Deflector ski jump hydraulics. J Hydraul Eng 134(5):562–571. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(562)Article Google Scholar 
  13. 13.Kirkgoz MS, Akoz MS, Oner AA (2009) Numerical modeling of flow over a chute spillway. J Hydraul Res 47(6):790–797. https://doi.org/10.3826/jhr.2009.3467Article Google Scholar 
  14. 14.Jorabloo M, Maghsoodi R, Sarkardeh H (2011) 3D simulation of flow over flip buckets at dams. J Am Sci 7(6):931–936Google Scholar 
  15. 15.Nazari O, Jabbari E, Sarkardeh H (2015) Dynamic pressure analysis at chute flip buckets of five dam model studies. Int J Civil Eng 13(1):45–54. http://ijce.iust.ac.ir/article-1-951-en.html
  16. 16.Yamini OA, Kavianpour MR, Movahedi A (2015) Pressure distribution on the bed of the compound flip buckets. J Comput Multiphase Flows 7(3):181–194. https://doi.org/10.1260/1757-482X.7.3.181Article Google Scholar 
  17. 17.Hojjati SH, Mohammadiun S, Salehi Neyshabouri SAA (2016) Effects of different turbulence models on flow over a triangular flip- bucket. Modares Civil Eng J 16(4):69–81 (in Persian)Google Scholar 
  18. 18.Lauria A, Alfonsi G (2020) Numerical investigation of ski jump hydraulics. J Hydraul Eng 146(4):121–127. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001718Article MATH Google Scholar 
  19. 19.Muralha A, Melo J, Ramos HM (2020) Assessment of CFD solvers and turbulent models for water free jets in spillways. Fluids 5(3):104. https://doi.org/10.3390/fluids5030104Article Google Scholar 
  20. 20.Novak P, Cabelka J (1981) Model in hydraulic engineering. Pitman Advanced Publishing Program, LondonGoogle Scholar 
  21. 21.Flow Science, Inc. FLOW-3D User Manual Version 11.2.
  22. 22.Water Research Institute (2003) Hydraulic model of Shafaroud Dam flood control system. Final Report, vol 5. Hydraulic structures Divisions, Tehran, Iran, Chapter 5, pp 1–35 (in Persian)Google Scholar
e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.

유체 역학 및 응용 유압 분야에서 사용하기 위한 수치 모델링(CFD)을 적용한 가상 실험실 실습 매뉴얼

This manual was developed with the purpose of presenting and executing basic numerical models in the software known as Flow 3D within the virtual laboratories of Fluid Mechanics and Applied Hydraulics, to complement and reinforce what was learned in class, the development of the manual covers a theoretical content and an exemplified práctical part for the handling of the software, besides including some feedback for the students, in order to mark the characteristics that the software has. With the handling of the Flow 3D program, the student will be introduced to the concept of Computational Fluid Dynamics or CFD, and a simple procedure to represent numerically and graphically the behavior of hydraulic structures. The hydraulic structures presented in the laboratory manual are: thin and thick wall orifices, gates with free and submerged discharge, thin and thick wall spillways with free and submerged discharge, WES type spillway, submerged intake with pressure conduction and as a complement, hydrostatic pressures on vertical, curved and inclined walls were added. Each of the mentioned hydraulic structures obtained a práctical verification as a verification within the Flow 3D software, presenting a consistency in the results obtained in both ways.

이 매뉴얼은 Fluid Mechanics 및 Applied Hydraulics의 가상 연구실 내에서 Flow 3D로 알려진 소프트웨어에서 기본 수치 모델을 제시하고 실행하기 위해 개발되었으며, 수업에서 배운 내용을 보완하고 강화하기 위해 개발되었으며, 매뉴얼 개발은 이론적인 내용을 다룹니다. 소프트웨어의 특성을 표시하기 위해 학생들을 위한 일부 피드백을 포함하는 것 외에도 소프트웨어 처리에 대한 내용 및 예시된 실제적인 부분. Flow 3D 프로그램을 다루면서 학생은 전산유체역학(Computational Fluid Dynamics) 또는 CFD의 개념과 수력학적 구조의 거동을 수치 및 그래픽으로 표현하는 간단한 절차를 소개합니다. 실험실 매뉴얼에 제시된 유압 구조는 얇고 두꺼운 벽 오리피스, 자유 및 수중 배출이 있는 수문, 자유 및 수중 배출이 있는 얇고 두꺼운 벽 여수로, WES 유형 방수로, 압력 전도 및 보완으로 수중 유입이 있는 수중 흡입구입니다. 수직, 곡선 및 경사 벽에 추가되었습니다. 언급된 각 수력학적 구조는 Flow 3D 소프트웨어 내에서 검증으로 실제 검증을 획득하여 두 가지 방식에서 얻은 결과의 일관성을 나타냅니다.

Keywords: Flow 3D, numerical modeling, manual, practice, Fluid Mechanics.

e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.
e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.

REFERENCIAS

Anguisa, M., & Maza, X.(2012). Estudio de los procesos de flujo en una obra de
camptación mediante experimentación de un modelo físico de escala reducida.
[Tesis de grado,Universidad de Cuenca]. Archivo Digital
http://dspace.ucuenca.edu.ec/bitstream/123456789/775/1/ti901.pdf
Arreaga, W., & Mantilla, D. (2016). Determinación de coeficientes de descarga en
orificios circulares, de pared delgada en descarga libre para diferentes
diámetros en modelos físicos. [Tesis de grado,Universidad de Guayaquil].
Archivo Digital
http://repositorio.ug.edu.ec/bitstream/redug/15855/1/ARREAGA_WILLIAM_
MANTILLA_DIEGO_TRABAJO_TITULACIÓN_HIDRÁULICA_DICIEMB
RE_2016.pdf
Arrecis, J., (2018). Evaluación de las carácterísticas del prefil tipo Creager. [Tesis de
grado,Universidad de San Carlos de Guatemala]. Archivo Digital
http://www.repositorio.usac.edu.gt/11372/1/Jared%20Alexander%20V%C3%A
9liz%20Arrecis.pdf
Barba, C. A. B. (2020). Modelación numérica (CDF) del flujo combinado superior e
inferior en una compuerta plana con el program Flow 3D. [Tesis de
Maestria,Escuela Politénica Nacional]. Archivo Digital
Bureau of Reclamation, (2007). Traducida por: Martínez, M., Batanero, A., Martínez,
G., Martínez, O., Gonzáles, O.: Diseño de Presas Peuqeñas(3ra ed). España:
Editorial Bellisco.
Calderon, F. V., Cazares, L. G., & Camacho, F. F. (2017). Dificultades conceptuales
para la comprensión de la Ecuación de Bernoulli. Revista Eureka Sobre
Enseñanza y Divulgación de Las Ciencias, 14(12), 339–352.
Fernández, J.(2012).Técnicas numéricas en ingeniería de fluido: Introducción a la
dinámica de fluidos computacional (CFD) por el método de volúmenes
finitos.Barcelona , España.:Editorial Reverté, S.A.
Flow Science. (2008). Manual de Flow 3D.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=r
ja&uact=8&ved=2ahUKEwie6p3mpfTsAhWJpFkKHRWpAHcQFjADegQIBh
AC&url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FAli_Agha7%
2Fpost%2FSomebody_can_recommend_me_the_tutorials_pdf_video_of_Flow_
3d_v101_software%2Fattachment%2F59d6285e79197b8077986bf3%2FAS%2
53A330000659173377%25401455689696420%2Fdownload%2F%255BFlow_
Science%255D_FLOW3D_V9.3_User_Manual%252C_Volume_1%2528BookZZ.org%2529.pdf&usg
=AOvVaw3ALDHf9jsqn-wDYnhAXNB1
Intituto Internacional de la Investigación de Tecnología Educativa INITE. (2006).
Ecuaciones fundamentales de la hidráulica.
https://gc.scalahed.com/recursos/files/r144r/w226w/Problema_2/Problema2_Hi
draulica_Ecuaciones.pdf
Inciso, C. (2016). Análisis comparativo de las descargas en orificios y boquillas en
laboratorio de Hidráulica de un UPN, Cajamarca. [Tesis de grado,Universidad
Privada del Norte, Cajamarca. Perú]. Archivo Digital
https://repositorio.upn.edu.pe/bitstream/handle/11537/9980/Inciso%20Pajares%
20%20Carlos%20Jonathan.pdf?sequence=1&isAllowed=y

Gutiérrez, Y. (2016). Modelación numérica computacional del diseño de un vertedor
de pared delgada de sección compuesta. [Tesis de grado,Universidad Central
Marta Abreu de las Villas]. Archivo Digital
https://dspace.uclv.edu.cu/bitstream/handle/123456789/6671/Tesis%20Yunior%
20Gutierrez.pdf?sequence=1&isAllowed=y
Guncay, K. (2017). Estudio del desempeño hidráulico del canal multipropósito del
laboratorio de hidráulica y dinámica de fluidos LH&DF del campus Balzay.
[Tesis de grado,Universidad de Cuenca]. Archivo Digital
Jiménez, J., Jiménez J. (2018). Elaboración del modelo físico y la guia metodológica
para la práctica: vertederos de pared delgada, de la asignatura Mecánica de
Fluidos de la Universidad de Azuay. [Tesis de grado,Universidad de Cuenca].
Archivo Digital
http://dspace.uazuay.edu.ec/bitstream/datos/8371/1/14091.pdf
Monroy, M. (2010). Medidores De Flujo En Canales Abiertos. [Tesis de
grado,Universidad de San Carlos de Guatemala]. Archivo Digital
http://biblioteca.usac.edu.gt/tesis/08/08_3165_C.pdf
Penagos, D. F. R. (2012). Diseño y modelación de las uniones soldadas de las
compuertas planas para presas. [Tesis de posgrado,Universidad Libre de
Colombia]. Archivo Digital
https://core.ac.uk/download/pdf/198447125.pdf
Sotelo, A. (1997). Hidráulica General, Volumen 1(18va ed). Balderas 95, México,
D.F.: Editorial Limusa, S.A.
Vega, D. (2004). Vertederos de pared delgada.Centro Andino para la gestión y uso
del agua. Cochabamba.
https://www.academia.edu/6129654/Serie_T%C3%A9cnica_Agua_y_Suelo_N_
1_VERTEDEROS_DE_PARED_DELGADA_Rectangular_y_Triangular
Ven Te Chow. (1994). Hidráulica de canales abiertos. Santafé de Bogotá, Colombia.:
Editorial Martha Edna Suárez R.

Fig. 1  Layout of spillway tunnel

Experimental study and numerical simulation of hydraulic characteristics of ogee spillway tunnel

WU Jingxia1
, ZHANG Chunjin2,3
(1. Xi’an Water Conservancy Survey Design Institute, Xi’an  710054, Shaanxi, China; 2. Key Laboratory of
Yellow River Sediment Research, M. W. R. , Yellow River Institute of Hydraulic Research, Zhengzhou 
450003, Henan, China; 3. State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing  210098, Jiangsu, China)

수치 시뮬레이션을 통해 오지 여수로 터널의 수리적 특성 연구의 타당성을 탐색하기 위해 황하 Xiaolangdi 수질 관리 프로젝트의 2번 오지 여수로 터널을 연구 대상으로 취한 다음 오지의 수리 특성 설계 및 점검 홍수 수준 조건에서 여수로 터널은 RNG k-ε 난류 모델을 사용하여 배출 용량, 터널 크라운 잔류 공간, 단면 유속, 압전 수두, 유동 캐비테이션 수, 제트 흐름 범위 및 1 ∶ 40의 일반 수리 모델과 결합된 세굴 구덩이 깊이, 시뮬레이션 값과 실험 값 모두 비교됩니다.

연구결과 모의실험값이 실험값과 일치하여 오지 여수로터널의 수리적 특성을 수치모사를 통해 탐색할 수 있음을 확인하였다. 여수로터널 내부의 흐름은 안정적이고 터널 크라운 잔류 공간은 개방 흐름과 완전 흐름의 교대 흐름 패턴이 없는 25% 이상입니다.

체크 홍수 수위에서 시뮬레이션 값과 유량 계수의 실험 값은 모두 설계에서보다 높으므로 배출 용량은 홍수 제어 관련 설계 요구 사항을 충족할 수 있습니다. 오지 단면과 플립 단면의 유동 캐비테이션 수는 캐비테이션 손상이 발생할 가능성이 작기 때문에 캐비테이션 침식을 줄이기 위한 적절한 적절한 조치가 채택될 필요가 있습니다.

유압 모델의 고르지 않은 표면에 부압이 발생하면 표면 구조에 관련주의를 기울일 필요가 있습니다. 연구 결과는 여수로 터널의 설계 및 건설에 대한 관련 참고 및 이론적 근거를 제공할 수 있습니다.

Keywords

Xiaolangdi Water Control Project; ogee spillway tunnel; simulative calculation; hydraulic characteristics; turbulent
model

Fig. 1  Layout of spillway tunnel
Fig. 1  Layout of spillway tunnel
Fig. 4  Hydraulic modeling
Fig. 4  Hydraulic modeling
Fig. 6  Sectional surface profile distributions
Fig. 6  Sectional surface profile distributions
Fig. 7  Comparison between simulated results and experimental results for flow velocity of section-cross
Fig. 7  Comparison between simulated results and experimental results for flow velocity of section-cross

参考文献(References)

[1]  谢省宗, 吴一红, 陈文学. 我国高坝泄洪消能新技术的研究和创
新[J]. 水利学报, 2016, 47(3): 324-336.
XIE Shengzong, WU Yihong, CHEN Wenxue. New technology and
innovation on flood discharge and energy dissipation of high dams in
China [J]. Journal of Hydraulic Engineering, 2016, 47( 3): 324-
336.
[2]  刘嘉夫, 齐昕. 龙抬头水电站泄洪洞水力特性研究[ J]. 水利水
电技术, 2019, 50(2): 139-143.
LIU Jiafu, QI Xin. Study on hydraulic characteristics of ogee spillway
tunnel of hydropower station [ J]. Water Resources and Hydropower
Engineering, 2019, 50(2): 139-143.
[3]  范灵, 张宏伟, 刘之平, 等. 明流泄洪洞布置形式对水力特性影
响的数值研究[J]. 水力发电学报, 2009, 28(3): 126-131.
FAN Ling, ZHANG Hongwei, LIU Zhiping, et al. Numerical study
on hydraulic characteristic of free surface flow in spillway tunnel with
different configuration [ J ]. Journal of Hydroelectric Engineering,
2009, 28(3): 126-131.
[4]  张春晋, 李永业, 孙西欢. 明流泄洪洞水力特性的二维数值模拟
与试验研究[J]. 长江科学院院报, 2016, 33(1): 54-60.
ZHANG Chunjin, LI Yongye, SUN Xihuan. Two-dimensional numerical simulation and experimental research of hydraulic characteristics
in spillway tunnel with free water surface [ J]. Journal of Yangtze
River Scientific Research Institute, 2016, 33(1): 54-60.
[5]  徐国宾, 章环境, 刘昉, 等. 龙抬头泄洪洞水力特性的数值模拟
[J]. 长江科学院院报, 2015, 32(1): 84-87.
XU Guobin, ZHANG Huanjing, LIU Fang, et al. Numerical simulation on hydraulic characteristic of high head ogee spillway tunnel [J].
Journal of Yangtze River Scientific Research Institute, 2015, 32(1):
84-87.
[6]  陈瑞华, 杨吉健, 马麟, 等. 小湾水电站泄洪洞洞身数值模拟
[J]. 排灌机械工程学报, 2017, 35(6): 488-494.
CHEN Ruihua, YANG Jijian, MA Lin, et al. Numerical simulation
of tunnel of Xiaowan Hydropower Station [ J]. Journal of Drainage
and Irrigation Machinery Engineering, 2017, 35(6): 488-494.
[7]  翟保林, 刘亚坤. 高水头明流泄洪洞三维数值模拟[ J]. 水利与
建筑工程学报, 2017, 15(3): 31-34.
ZHAI Baolin, LIU Yakun. 3-D Numerical simulation of high water
head spillway tunnel with free surface [ J ]. Journal of Water
Resources and Architectural Engineering, 2017, 15(3): 31-34.
[8]  姜 攀, 尹进步, 何武全, 等. 有压泄洪洞弯道压力特性数值模拟
与试验研究[J]. 水力发电, 2016, 42(2): 49-53.
JIANG Pan, YIN Jinbu, HE Wuquan, et al. Numerical simulation
and experimental research on pressure characteristic of curved section
of pressure spillway tunnel [J]. Water Power, 2016, 42(2): 49-53.
[9]  邓 军, 许唯临, 雷军, 等. 高水头岸边泄洪洞水力特性的数值模
拟[J]. 水利学报, 2005(10): 1209-1212.
DENG Jun, XU Weilin, LEI Jun, et al. Numerical simulation of
hydraulic characteristics of high head spillway tunnel [J]. Journal of
Hydraulic Engineering, 2005(10): 1209-1212.
[10] 史晓薇, 王长新, 李琳. 高流速泄洪隧洞水力特性的三维数值模
拟[J]. 新疆农业大学学报, 2015, 38(6): 495-501.
SHI Xiaowei, WANG Changxin, LI Lin. Three dimensional numerical
simulation of hydraulic characteristics of spillway tunnel with high flow
velocity [ J]. Journal of Xinjiang Agricultural University, 2015, 38
(6): 495-501.
[11] 叶茂, 伍平, 王波, 等. 泄洪洞掺气水流的数值模拟研究[J]. 水
力发电学报, 2014, 33(4): 105-110.
YE Mao, WU Ping, WANG Bo, et al. Numerical simulation of
aerated flow in hydraulic tunnel [ J ]. Journal of Hydroelectric
Engineering, 2014, 33(4): 105-110.
[12] 胡涛, 王均星, 杜少磊. 大流量泄洪洞掺气坎水力特性数值模拟
[J]. 武汉大学学报(工学版), 2014, 47(5): 615-620.
HU Tao, WANG Junxing, DU Shaolei. Numerical simulation of
hydraulic characteristics of aerators in spillway tunnel with large
discharge [J]. Engineering Journal of Wuhan University, 2014, 47
(5): 615-620.
[13] 孙鹏飞, 姜哲, 崔维成, 等. 基于 CFD 的全海深载人潜水器直航
阻力性能研究[J]. 中国造船, 2019, 60(2): 77-87.
SUN Pengfei, JIANG Zhe, CUI Weicheng, et al. Numerical simulation of a full ocean depth manned submersible based on CFD method
[J]. Shipbuilding of China, 2019, 60(2): 77-87.
[14] 宛鹏翔, 范俊, 韩省思, 等. 冲击射流流动换热超大涡模拟研究
[J]. 推进技术, 2020, 41(10): 2237-2247.
WAN Pengxiang, FAN Jun, HAN Xingsi, et al. Very-large eddy
simulation of impinging jet flow and heat transfer [ J]. Journal of
Propulsion Technology, 2020, 41(10): 2237-2247.
[15] 李国杰, 黄萌, 陈斌. 基于 PISO 算法的非结构化网格 VOF 算法
[J]. 工程热物理学报, 2013, 34(3): 476-479.
LI Guojie, HUANG Meng, CHEN Bing. VOF method on unstructured
grid using PISO algorithm [ J]. Journal of Engineering Thermophysics, 2013, 34(3): 476-479.
[16] 董玮, 何庆南, 梁武科, 等. 双蜗壳离心泵泵腔轴向宽度与流动

DONG Wei, HE Qingnan, LIANG Wuke, et al. Relationship
between axial width and flow characteristics of pump chamber in
double volute centrifugal pump [ J ]. Journal of Northwestern
Polytechnical University, 2020, 38(6): 1322-1329.
[17] 陈恺, 张震宇, 王同光, 等. 基于 CFD 的水平轴风力机叶尖小翼
增功研究[J]. 太阳能学报, 2021, 42(1): 272-278.
CHEN Kai, ZHANG Zhenyu, WANG Tongguang, et al. CFD-Based
power enhancement of winglets for horizontal-axis wind turbines [ J].
Acta Energiae Solaris Sinica, 2021, 42(1): 272-278.
[18] 张志君, 金柱男, 辛相锦, 等. 基于 VOF 方法的湿式离合器润滑
油路 CFD 数值模拟[J]. 东北大学学报(自然科学版), 2020, 41
(5): 716-722.
ZHANG Zhijun, JIN Zhunan, XIN Xiangjin, et al. VOF method
based CFD numerical simulation for wet clutch lubricating oil passage
[ J]. Journal of Northeastern University (Natural Science), 2020, 41
(5): 716-722.
[19] 罗永钦, 刁明军, 何大明, 等. 高坝明流泄洪洞掺气减蚀三维数
值模拟分析[J]. 水科学进展, 2012, 23(1): 110-116.
LUO Yongqin, DIAO Mingjun, HE Daming, et al. Numerical simulation of aeration and cavitation in high dam spillway tunnels [ J].
Advances in Water Science, 2012, 23(1): 110-116.
[20] 许文海, 党彦, 李国栋, 等. 双洞式溢洪洞三维流动的数值模拟
[J]. 水力发电学报, 2007(1): 56-60.
XU Wenhai, DANG Yan, LI Guodong, et al. Three dimensional
numerical simulation of the bi-tunnel spillway flow [ J]. Journal of
Hydroelectric Engineering, 2007(1): 56-60.
[21] 李爱华, 王腾, 刘沛清. 溪洛渡坝区岩石河床冲刷过程数值模拟
[J]. 水力发电学报, 2012, 31(5): 154-158.
LI Aihua, WANG Teng, LIU Peiqing. Numerical simulation of rock
bed scour behind the dam of Xiluodu hydropower station [J]. Journal
of Hydroelectric Engineering, 2012, 31(5): 154-15

Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

Flow-3D 수치 모델링 결과를 기반으로 하는 슈트 여수로의 캐비테이션 발생 확률적 조사

Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

Amin Hasanalipour Shahrabadi1*, Mehdi Azhdary Moghaddam2

1-University of Sistan and Baluchestan،amin.h.shahrabadi@gmail.com

2-University of Sistan and Baluchestan،Mazhdary@eng.usb.ac.ir

Abstract

Probabilistic designation is a powerful tool in hydraulic engineering. The uncertainty caused by random phenomenon in hydraulic design may be important. Uncertainty can be expressed in terms of probability density function, confidence interval, or statistical torques such as standard deviation or coefficient of variation of random parameters. Controlling cavitation occurrence is one of the most important factors in chute spillways designing due to the flow’s high velocity and the negative pressure (Azhdary Moghaddam & Hasanalipour Shahrabadi, ۲۰۲۰). By increasing dam’s height, overflow velocity increases on the weir and threats the structure and it may cause structural failure due to cavitation (Chanson, ۲۰۱۳). Cavitation occurs when the fluid pressure reaches its vapor pressure. Since high velocity and low pressure can cause cavitation, aeration has been recognized as one of the best ways to deal with cavitation (Pettersson, ۲۰۱۲). This study, considering the extracted results from the Flow-۳D numerical model of the chute spillway of Darian dam, investigates the probability of cavitation occurrence and examines its reliability. Hydraulic uncertainty in the design of this hydraulic structure can be attributed to the uncertainty of the hydraulic performance analysis. Therefore, knowing about the uncertainty characteristics of hydraulic engineering systems for assessing their reliability seems necessary (Yen et al., ۱۹۹۳). Hence, designation and operation of hydraulic engineering systems are always subject to uncertainties and probable failures. The reliability, ps, of a hydraulic engineering system is defined as the probability of safety in which the resistance, R, of the system exceeds the load, L, as follows (Chen, ۲۰۱۵): p_s=P(L≤R) (۱) Where P(۰) is probability. The failure probability, p_f, is a reliability complement and is expressed as follows: p_f=P[(L>R)]=۱- p_s (۲) Reliability development based on analytical methods of engineering applications has come in many references (Tung & Mays, ۱۹۸۰ and Yen & Tung, ۱۹۹۳). Therefore, based on reliability, in a control method, the probability of cavitation occurrence in the chute spillway can be investigated. In reliability analysis, the probabilistic calculations must be expressed in terms of a limited conditional function, W(X)=W(X_L ,X_R)as follows: p_s=P[W(X_L ,X_R)≥۰]= P[W(X)≥۰] (۳) Where X is the vector of basic random variables in load and resistance functions. In the reliability analysis, if W(X)> ۰, the system will be secure and in the W(X) <۰ system will fail. Accordingly, the eliability index, β, is used, which is defined as the ratio of the mean value, μ_W, to standard deviation, σ_W, the limited conditional function W(X) is defined as follows (Cornell, ۱۹۶۹): β=μ_W/σ_W (۴) The present study was carried out using the obtained results from the model developed by ۱:۵۰ scale plexiglass at the Water Research Institute of Iran. In this laboratory model, which consists of an inlet channel and a convergent thrower chute spillway, two aerators in the form of deflector were used at the intervals of ۲۱۱ and ۲۷۰ at the beginning of chute, in order to cope with cavitation phenomenon during the chute. An air duct was also used for air inlet on the left and right walls of the spillway. To measure the effective parameters in cavitation, seven discharges have been passed through spillway. As the pressure and average velocity are determined, the values of the cavitation index are calculated and compared with the values of the critical cavitation index, σ_cr. At any point when σ≤σ_cr, there is a danger of corrosion in that range (Chanson, ۱۹۹۳). In order to obtain uncertainty and calculate the reliability index of cavitation occurrence during a chute, it is needed to extract the limited conditional function. Therefore, for a constant flow between two points of flow, there would be the Bernoulli (energy) relation as follows (Falvey, ۱۹۹۰): σ= ( P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) (۵) Where P_atm is the atmospheric pressure, γ is the unit weight of the water volume, θ is the angle of the ramp to the horizon, r is the curvature radius of the vertical arc, and h cos⁡θ is the flow depth perpendicular to the floor. Therefore, the limited conditional function can be written as follows: W(X)=(P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) -σ_cr (۶) Flow-۳D is a powerful software in fluid dynamics. One of the major capabilities of this software is to model free-surface flows using finite volume method for hydraulic analysis. The spillway was modeled in three modes, without using aerator, ramp aerator, and ramp combination with aeration duct as detailed in Flow-۳D software. For each of the mentioned modes, seven discharges were tested. According to Equation (۶), velocity and pressure play a decisive and important role in the cavitation occurrence phenomenon. Therefore, the reliability should be evaluated with FORM (First Order Reliable Method) based on the probability distribution functions For this purpose, the most suitable probability distribution function of random variables of velocity and pressure on a laboratory model was extracted in different sections using Easy fit software. Probability distribution function is also considered normal for the other variables in the limited conditional function. These values are estimated for the constant gravity at altitudes of ۵۰۰ to ۷۰۰۰ m above the sea level for the unit weight, and vapor pressure at ۵ to ۳۵° C. For the critical cavitation index variable, the standard deviation is considered as ۰.۰۱. According to the conducted tests, for the velocity random variable, GEV (Generalized Extreme Value) distribution function, and for the pressure random variable, Burr (۴P) distribution function were presented as the best distribution function. The important point is to not follow the normal distribution above the random variables. Therefore, in order to evaluate the reliability with the FORM method, according to the above distributions, they should be converted into normal variables based on the existing methods. To this end, the non-normal distributions are transformed into the normal distribution by the method of Rackwitz and Fiiessler so that the value of the cumulative distribution function is equivalent to the original abnormal distribution at the design point of x_(i*). This point has the least distance from the origin in the standardized space of the boundary plane or the same limited conditional function. The reliability index will be equal to ۰.۴۲۰۴ before installing the aerator. As a result, reliability, p_s, and failure probability, p_f, are ۰.۶۶۲۹ and ۰.۳۳۷۱, respectively. This number indicates a high percentage for cavitation occurrence. Therefore, the use of aerator is inevitable to prevent imminent damage from cavitation. To deal with cavitation as planned in the laboratory, two aerators with listed specifications are embedded in a location where the cavitation index is critical. In order to analyze the reliability of cavitation occurrence after the aerator installation, the steps of the Hasofer-Lind algorithm are repeated. The modeling of ramps was performed separately in Flow-۳D software in order to compare the performance of aeration ducts as well as the probability of failure between aeration by ramp and the combination of ramps and aeration ducts. Installing an aerator in combination with a ramp and aerator duct greatly reduces the probability of cavitation occurrence. By installing aerator, the probability of cavitation occurrence will decrease in to about ۴ %. However, in the case of aeration only through the ramp, the risk of failure is equal to ۱۰%.

확률적 지정은 수력 공학에서 강력한 도구입니다. 유압 설계에서 임의 현상으로 인한 불확실성이 중요할 수 있습니다. 불확실성은 확률 밀도 함수, 신뢰 구간 또는 표준 편차 또는 무작위 매개변수의 변동 계수와 같은 통계적 토크로 표현될 수 있습니다. 캐비테이션 발생을 제어하는 ​​것은 흐름의 높은 속도와 음압으로 인해 슈트 여수로 설계에서 가장 중요한 요소 중 하나입니다(Azhdary Moghaddam & Hasanalipour Shahrabadi, ۲۰۲۰). 댐의 높이를 높이면 둑의 범람속도가 증가하여 구조물을 위협하고 캐비테이션으로 인한 구조물의 파손을 유발할 수 있다(Chanson, ۲۰۱۳). 캐비테이션은 유체 압력이 증기압에 도달할 때 발생합니다. 높은 속도와 낮은 압력은 캐비테이션을 유발할 수 있으므로, 통기는 캐비테이션을 처리하는 가장 좋은 방법 중 하나로 인식되어 왔습니다(Pettersson, ۲۰۱۲). 본 연구에서는 Darian 댐의 슈트 여수로의 Flow-۳D 수치모델에서 추출된 결과를 고려하여 캐비테이션 발생 확률을 조사하고 그 신뢰성을 조사하였다. 이 수력구조의 설계에서 수력학적 불확실성은 수력성능 해석의 불확실성에 기인할 수 있다. 따라서 신뢰성을 평가하기 위해서는 수력공학 시스템의 불확도 특성에 대한 지식이 필요해 보인다(Yen et al., ۱۹۹۳). 따라서 수력 공학 시스템의 지정 및 작동은 항상 불확실성과 가능한 고장의 영향을 받습니다. 유압 공학 시스템의 신뢰성 ps는 저항 R, 시스템의 부하 L은 다음과 같이 초과됩니다(Chen, ۲۰۱۵): p_s=P(L≤R)(۱) 여기서 P(۰)은 확률입니다. 고장 확률 p_f는 신뢰도 보완이며 다음과 같이 표현됩니다. Mays, ۱۹۸۰ 및 Yen & Tung, ۱۹۹۳). 따라서 신뢰성을 기반으로 제어 방법에서 슈트 여수로의 캐비테이션 발생 확률을 조사할 수 있습니다. 신뢰도 분석에서 확률적 계산은 제한된 조건부 함수 W(X)=W(X_L , X_R)은 다음과 같습니다. p_s=P[W(X_L,X_R)≥۰]= P[W(X)≥۰] (۳) 여기서 X는 부하 및 저항 함수의 기본 랜덤 변수 벡터입니다. 신뢰도 분석에서 W(X)> ۰이면 시스템은 안전하고 W(X) <۰에서는 시스템이 실패합니다. 따라서 표준편차 σ_W에 대한 평균값 μ_W의 비율로 정의되는 신뢰도 지수 β가 사용되며, 제한된 조건부 함수 W(X)는 다음과 같이 정의됩니다(Cornell, ۱۹۶۹). β= μ_W/σ_W (۴) 본 연구는 이란 물연구소의 ۱:۵۰ scale plexiglass로 개발된 모델로부터 얻은 결과를 이용하여 수행하였다. 이 실험 모델에서, 입구 수로와 수렴형 투수 슈트 여수로로 구성되며 슈트 중 캐비테이션 현상에 대처하기 위해 슈트 초기에 ۲۱۱과 ۲۷۰ 간격으로 편향기 형태의 2개의 에어레이터를 사용하였다. 여수로 좌우 벽의 공기 유입구에도 공기 덕트가 사용되었습니다. 캐비테이션의 효과적인 매개변수를 측정하기 위해 7번의 배출이 방수로를 통과했습니다. 압력과 평균 속도가 결정되면 캐비테이션 지수 값이 계산되고 임계 캐비테이션 지수 σ_cr 값과 비교됩니다. σ≤σ_cr일 때 그 범위에서 부식의 위험이 있다(Chanson, ۱۹۹۳). 슈트 중 캐비테이션 발생의 불확실성을 구하고 신뢰도 지수를 계산하기 위해서는 제한된 조건부 함수를 추출할 필요가 있다. 따라서 두 지점 사이의 일정한 흐름에 대해 다음과 같은 Bernoulli(에너지) 관계가 있습니다(Falvey, ۱۹۹۰). σ= ( P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗 ^۲/۲g) (۵) 여기서 P_atm은 대기압, γ는 물의 단위 중량, θ는 수평선에 대한 경사로의 각도, r은 수직 호의 곡률 반경, h cos⁡ θ는 바닥에 수직인 흐름 깊이입니다. 따라서 제한된 조건부 함수는 다음과 같이 쓸 수 있습니다. W(X)=(P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) -σ_cr (۶) Flow-۳D는 유체 역학의 강력한 소프트웨어. 이 소프트웨어의 주요 기능 중 하나는 수리학적 해석을 위해 유한 체적 방법을 사용하여 자유 표면 흐름을 모델링하는 것입니다. 방수로는 Flow-۳D 소프트웨어에 자세히 설명된 바와 같이 폭기 장치, 램프 폭기 장치 및 폭기 덕트가 있는 램프 조합을 사용하지 않고 세 가지 모드로 모델링되었습니다. 언급된 각 모드에 대해 7개의 방전이 테스트되었습니다. 식 (۶)에 따르면 속도와 압력은 캐비테이션 발생 현상에 결정적이고 중요한 역할을 합니다. 따라서 확률분포함수에 기반한 FORM(First Order Reliable Method)으로 신뢰도를 평가해야 한다 이를 위해 실험실 모델에 대한 속도와 압력의 확률변수 중 가장 적합한 확률분포함수를 Easy fit을 이용하여 구간별로 추출하였다. 소프트웨어. 확률 분포 함수는 제한된 조건부 함수의 다른 변수에 대해서도 정상으로 간주됩니다. 이 값은 단위 중량의 경우 해발 ۵۰۰ ~ ۷۰۰۰ m 고도에서의 일정한 중력과 ۵ ~ ۳۵ ° C에서의 증기압으로 추정됩니다. 임계 캐비테이션 지수 변수의 표준 편차는 ۰.۰۱으로 간주됩니다. . 수행된 시험에 따르면 속도 확률변수는 GEV(Generalized Extreme Value) 분포함수로, 압력변수는 Burr(۴P) 분포함수가 가장 좋은 분포함수로 제시되었다. 중요한 점은 확률 변수 위의 정규 분포를 따르지 않는 것입니다. 따라서 FORM 방법으로 신뢰도를 평가하기 위해서는 위의 분포에 따라 기존 방법을 기반으로 정규 변수로 변환해야 합니다. 이를 위해, 비정규분포를 Rackwitz와 Fiiessler의 방법에 의해 정규분포로 변환하여 누적분포함수의 값이 x_(i*)의 설계점에서 원래의 비정상분포와 같도록 한다. 이 점은 경계면의 표준화된 공간 또는 동일한 제한된 조건부 함수에서 원점으로부터 최소 거리를 갖습니다. 신뢰성 지수는 폭기 장치를 설치하기 전의 ۰.۴۲۰۴과 같습니다. 그 결과 신뢰도 p_s와 고장확률 p_f는 각각 ۰.۶۶۲۹과 ۰.۳۳۷۱이다. 이 숫자는 캐비테이션 발생의 높은 비율을 나타냅니다. 따라서 캐비테이션으로 인한 즉각적인 손상을 방지하기 위해 폭기 장치의 사용이 불가피합니다. 실험실에서 계획한 대로 캐비테이션을 처리하기 위해, 나열된 사양을 가진 두 개의 폭기 장치는 캐비테이션 지수가 중요한 위치에 내장되어 있습니다. 폭기장치 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 폭기 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 폭기장치 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다.

Keywords

Aerator Probable Failure Reliability Method FORM Flow ۳D. 

Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.
Stability and deformations of deposited layers in material extrusion additive manufacturing

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Md TusherMollah, Raphaël Comminal, Marcin P.Serdeczny, David B.Pedersen, Jon Spangenberg
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract

This paper presents computational fluid dynamics simulations of the deposition flow during printing of multiple layers in material extrusion additive manufacturing. The developed model predicts the morphology of the deposited layers and captures the layer deformations during the printing of viscoplastic materials. The physics is governed by the continuity and momentum equations with the Bingham constitutive model, formulated as a generalized Newtonian fluid. The cross-sectional shapes of the deposited layers are predicted, and the deformation of layers is studied for different constitutive parameters of the material. It is shown that the deformation of layers is due to the hydrostatic pressure of the printed material, as well as the extrusion pressure during the extrusion. The simulations show that a higher yield stress results in prints with less deformations, while a higher plastic viscosity leads to larger deformations in the deposited layers. Moreover, the influence of the printing speed, extrusion speed, layer height, and nozzle diameter on the deformation of the printed layers is investigated. Finally, the model provides a conservative estimate of the required increase in yield stress that a viscoplastic material demands after deposition in order to support the hydrostatic and extrusion pressure of the subsequently printed layers.

이 논문은 재료 압출 적층 제조에서 여러 레이어를 인쇄하는 동안 증착 흐름의 전산 유체 역학 시뮬레이션을 제공합니다. 개발된 모델은 증착된 레이어의 형태를 예측하고 점소성 재료를 인쇄하는 동안 레이어 변형을 캡처합니다.

물리학은 일반화된 뉴턴 유체로 공식화된 Bingham 구성 모델의 연속성 및 운동량 방정식에 의해 제어됩니다. 증착된 층의 단면 모양이 예측되고 재료의 다양한 구성 매개변수에 대해 층의 변형이 연구됩니다. 층의 변형은 인쇄물의 정수압과 압출시 압출압력으로 인한 것임을 알 수 있다.

시뮬레이션에 따르면 항복 응력이 높을수록 변형이 적은 인쇄물이 생성되는 반면 플라스틱 점도가 높을수록 증착된 레이어에서 변형이 커집니다. 또한 인쇄 속도, 압출 속도, 층 높이 및 노즐 직경이 인쇄된 층의 변형에 미치는 영향을 조사했습니다.

마지막으로, 이 모델은 후속 인쇄된 레이어의 정수압 및 압출 압력을 지원하기 위해 증착 후 점소성 재료가 요구하는 항복 응력의 필요한 증가에 대한 보수적인 추정치를 제공합니다.

Stability and deformations of deposited layers in material extrusion additive manufacturing
Stability and deformations of deposited layers in material extrusion additive manufacturing

Keywords

Viscoplastic MaterialsMaterial Extrusion Additive Manufacturing (MEX-AM)Multiple-Layers DepositionComputational Fluid Dynamics (CFD)Deformation Control

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

기계 학습 기술에 의한 불확실성 하에서 다중 이해 관계자 계단형 배수로 설계의 충돌 해결

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Mehrdad GhorbaniMooseluaMohammad RezaNikoobParnian HashempourBakhtiaribNooshin BakhtiariRayanicAzizallahIzadyd
aDepartment of Engineering Sciences, University of Agder, Norway
bDepartment of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
cSchool of Engineering, Department of Civil and Environmental Engineering, Shiraz University, Shiraz, IrandWater Research Center, Sultan Qaboos University, Muscat, Oman

Abstract

The optimal spillway design is of great significance since these structures can reduce erosion downstream of the dams. This study proposes a risk-based optimization framework for a stepped spillway to achieve an economical design scenario with the minimum loss in hydraulic performance. Accordingly, the stepped spillway was simulated in the FLOW-3D® model, and the validated model was repeatedly performed for various geometric states.

The results were used to form a Multilayer Perceptron artificial neural network (MLP-ANN) surrogate model. Then, a risk-based optimization model was formed by coupling the MLP-ANN and NSGA-II. The concept of conditional value at risk (CVaR) was utilized to reduce the risk of the designed spillway malfunctions in high flood flow rates, while minimizing the construction cost and the loss in hydraulic performance.

Lastly, given the conflicting objectives of stakeholders, the non-cooperative graph model for conflict resolution (GMCR) was applied to achieve a compromise on the Pareto optimal solutions. Applicability of the suggested approach in the Jarreh Dam, Iran, resulted in a practical design scenario, which simultaneously minimizes the loss in hydraulic performance and the project cost and satisfies the priorities of decision-makers.

Keywords

Stepped spillway, FLOW-3D® ,CVaR-based optimization model, GMCR-plus, NSGA-II

최적의 배수로 설계는 이러한 구조가 댐 하류의 침식을 줄일 수 있기 때문에 매우 중요합니다. 본 연구에서는 유압 성능 손실을 최소화하면서 경제적인 설계 시나리오를 달성하기 위해 계단형 여수로에 대한 위험 기반 최적화 프레임워크를 제안합니다. 따라서 FLOW-3D® 모델에서 계단식 배수로를 시뮬레이션하고 다양한 기하학적 상태에 대해 검증된 모델을 반복적으로 수행했습니다.

결과는 다층 퍼셉트론 인공 신경망(MLP-ANN) 대리 모델을 형성하는 데 사용되었습니다. 그런 다음 MLP-ANN과 NSGA-II를 결합하여 위험 기반 최적화 모델을 구성했습니다. 위험 조건부 값(CVaR)의 개념은 높은 홍수 유량에서 설계된 방수로 오작동의 위험을 줄이는 동시에 건설 비용과 수리 성능 손실을 최소화하기 위해 활용되었습니다.

마지막으로 이해관계자의 상충되는 목표를 고려하여 파레토 최적해에 대한 절충안을 달성하기 위해 갈등 해결을 위한 비협조적 그래프 모델(GMCR)을 적용하였다. 이란 Jarreh 댐에서 제안된 접근 방식의 적용 가능성은 수력 성능 손실과 프로젝트 비용을 동시에 최소화하고 의사 결정자의 우선 순위를 만족시키는 실용적인 설계 시나리오로 귀결되었습니다.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions

류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

Hyung Ju Yoo1 Sung Sik Joo2 Beom Jae Kwon3 Seung Oh Lee4*
유 형주1 주 성식2 권 범재3 이 승오4*
1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University2Director, Water Resources & Environment Department, HECOREA3Director, Water Resources Department, ISAN4Professor, Dept. of Civil & Environmental Engineering, Hongik University
1홍익대학교 건설환경공학과 박사과정
2㈜헥코리아 수자원환경사업부 이사
3㈜이산 수자원부 이사
4홍익대학교 건설환경공학과 교수*Corresponding Author

ABSTRACT

최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다.

그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다.

이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다.

수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다.

따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다.

이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다.

그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.

키워드

보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력

Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.KeywordsAuxiliary spillway FLOW-3D Numerical simulation Revetment stability Shear stress

1. 서 론

최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.

기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006Kim, 2007Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.

그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.

2. 본 론

2.1 이론적 배경

2.1.1 3차원 수치모형의 기본이론

FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.

2.1.2 유동해석의 지배방정식

1) 연속 방정식(Continuity Equation)

FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1)(2)와 같다.

(1)

∇·v=0

(2)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ

여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.

2) 운동량 방정식(Momentum Equation)

각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3)(4)(5)와 같다.

(3)

∂u∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂x+Gx+fx-bx-RSORρVFu

(4)

∂v∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂y+Gy+fy-by-RSORρVFv

(5)

∂w∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂z+Gz+fz-bz-RSORρVFw

여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.

2.1.3 소류력 산정

호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6)(7)과 같다.

1) Schoklitsch 공식

Schoklitsch(1934)는 Chezy 유속계수를 적용하여 소류력을 산정하였다.

(6)

τ=γRI=γC2V2

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.

2) Manning 조도계수를 고려한 공식

Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.

(7)

τ=γn2V2R1/3

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.

FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.

2.2 하천호안 설계기준

하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.

Table 1.

Standard of Permissible Velocity and Shear on Revetment

Country (Reference)MaterialPermissible velocity (Vp, m/s)Permissible Shear (τp, kN/m2)
KoreaRiver Construction Design Practice Guidelines
(MOLIT, 2016)
Vegetated5.00.50
Stone5.00.80
USAASTM D’6460Vegetated6.10.81
Unvegetated5.00.28
JAPANDynamic Design Method of Revetment5.0

2.3. 보조여수로 운영에 따른 하류하천 영향 분석

2.3.1 모형의 구축 및 경계조건

본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).

수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.

(8)

n=ks1/68.1g1/2

여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.

시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.

Table 2.

Mesh sizes and numerical conditions

MeshNumbers49,102,500 EA
Increment (m)DirectionExisting SpillwayAuxiliary Spillway
∆X0.99 ~ 4.301.00 ~ 4.30
∆Y0.99 ~ 8.161.00 ~ 5.90
∆Z0.50 ~ 1.220.50 ~ 2.00
Boundary ConditionsXmin / YmaxInflow / Water Surface Elevation
Xmax, Ymin, Zmin / ZmaxWall / Symmetry
Turbulence ModelRNG model
Table 3.

Case of numerical simulation (Qp : Design flood discharge)

CaseExisting Spillway (Qe, m3/s)Auxiliary Spillway (Qa, m3/s)Remarks
1Qp0Reference case
20Qp
300.58QpReview of discharge capacity on
auxiliary spillway
400.48Qp
500.45Qp
600.32Qp
70.50Qp0.50QpDetermination of optimal division
ratio on Spillways
80.61Qp0.39Qp
90.39Qp0.61Qp
100.42Qp0.58Qp
110.32Qp0.45QpDetermination of permissible
division on Spillways
120.35Qp0.48Qp
130.38Qp0.53Qp
140.41Qp0.56Qp
Table 4.

Roughness coefficient and roughness height

CriteriaRoughness coefficient (n)Roughness height (ks, m)
Structure (Concrete)0.0140.00061
River0.0330.10496
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F1.jpg
Fig. 1

Layout of spillway and river in this study

2.3.2 보조 여수로의 방류능 검토

본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.

보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.

하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F2.jpg
Fig. 2

Region of interest in this study

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F3.jpg
Fig. 3

Maximum velocity and location of Vmax according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F4.jpg
Fig. 4

Maximum shear according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F5.jpg
Fig. 5

Maximum water surface elevation and location of ηmax according to Qa

Table 5.

Numerical results for each cases (Case 1 ~ Case 6)

CaseMaximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation
in terms of Vp
Evaluation
in terms of τp
1
(Qa = 0)
9.150.54No GoodNo Good
2
(Qa = Qp)
8.870.56No GoodNo Good
3
(Qa = 0.58Qp)
6.530.40No GoodNo Good
4
(Qa = 0.48Qp)
6.220.36No GoodNo Good
5
(Qa = 0.45Qp)
4.220.12AccpetAccpet
6
(Qa = 0.32Qp)
4.040.14AccpetAccpet

2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토

기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).

따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F6.jpg
Fig. 6

Maximum velocity on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F7.jpg
Fig. 7

Maximum shear on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F8.jpg
Fig. 8

Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F9.jpg
Fig. 9

Maximum water surface elevation on section 1 & 2 according to Qa

Table 6.

Numerical results for each cases (Case 7 ~ Case 10)

Case (Qe &amp; Qa)Maximum Velocity (Vmax, m/s)Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
7
Qe : 0.50QpQa : 0.50Qp
8.106.230.640.30No GoodNo GoodNo GoodNo Good
8
Qe : 0.61QpQa : 0.39Qp
8.886.410.610.34No GoodNo GoodNo GoodNo Good
9
Qe : 0.39QpQa : 0.61Qp
6.227.330.240.35No GoodNo GoodAcceptNo Good
10
Qe : 0.42QpQa : 0.58Qp
6.394.790.300.19No GoodAcceptNo GoodAccept

2.3.4 방류량 배분 비율의 허용 방류량 검토

계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).

호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).

Table 7.

Numerical results for each cases (Case 11 ~ Case 14)

Case (Qe &amp; Qa)Maximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
11
Qe : 0.32QpQa : 0.45Qp
3.634.530.090.26AcceptAcceptAcceptAccept
12
Qe : 0.35QpQa : 0.48Qp
5.745.180.230.22No GoodNo GoodAcceptAccept
13
Qe : 0.38QpQa : 0.53Qp
6.704.210.280.11No GoodAcceptAcceptAccept
14
Qe : 0.41QpQa : 0.56Qp
6.545.240.280.24No GoodNo GoodAcceptAccept
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F10.jpg
Fig. 10

Maximum velocity on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F11.jpg
Fig. 11

Maximum shear on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F12.jpg
Fig. 12

Maximum water surface elevation on section 1 & 2 according to total outflow

3. 결 론

본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.

수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.

본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.

Acknowledgements

본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.

References

1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.
2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.
3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.
4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.
5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.
6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.
7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.
9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.
10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593
11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279
12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.
13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.
14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.
15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.
16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230
17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112

Korean References Translated from the English

1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.
2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.
3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.
4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.
5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.
6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.
8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청.
9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731.
10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.

Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.

Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump over Triangular Macroroughnesses

Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션

by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater202113(5), 674; https://doi.org/10.3390/w13050674

Abstract

The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.

Keywords: submerged hydraulic jumptriangular macroroughnessesTKEbed shear stress coefficientvelocityFLOW-3D model

수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.

이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.

내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.

 Introduction

격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].

베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.

Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.

Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.

그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.

Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.

자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.

Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.

Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.

Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.

ReferenceShape Bed-Channel Type-
Jump Type
Channel Dimension (m)Roughness (mm)Fr1Investigated Flow
Properties
Ead and Rajaratnam [10]-Smooth and rough beds-Rectangular channel-Free jumpCL1 = 7.60
CW2 = 0.44
CH3 = 0.60
-Corrugated sheets (RH4 = 13 and 22)4–10-Upstream and tailwater depths-Jump length-Roller length-Velocity-Water surface profile
Tokyay et al. [11]-Smooth and rough beds-Rectangular channel-Free jumpCL = 10.50
CW = 0.253
CH = 0.432
-Two sinusoidal corrugated (RH = 10 and 13)5–12-Depth ratio-Jump length-Energy loss
Izadjoo and Shafai-Bejestan [14]-Smooth and rough beds-Two rectangular-channel-Free jumpCL = 1.2, 9
CW = 0.25, 0.50
CH = 0.40
Baffle with trapezoidal cross section
(RH: 13 and 26)
6–12-Upstream and tailwater depths-Jump length-Velocity-Bed shear stress coefficient
Abbaspour et al. [12]-Horizontal bed with slope 0.002-Rectangular channel—smooth and rough beds-Free jumpCL = 10
CW = 0.25
CH = 0.50
-Sinusoidal bed (RH = 15,20, 25 and 35)3.80–8.60-Water surface profile-Depth ratio-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Shafai-Bejestan and Neisi [13]-Smooth and rough beds-Rectangular channel-Free jumpCL = 7.50
CW = 0.35
CH = 0.50
Lozenge bed4.50–12-Sequent depth-Jump length
Elsebaie and Shabayek [18]-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jumpCL = 9
CW = 0.295
CH = 0.32
-Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)50-Water surface profile-Sequent depth-Jump length-Bed shear stress coefficient
Samadi-Boroujeni et al. [19]-Rectangular channel-Smooth and rough beds-Free jumpCL = 12
CW = 0.40
CH = 0.40
-Six triangular corrugated (RH = 2.5)6.10–13.10-Water surface profile-Sequent depth-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Ahmed et al. [20]-Smooth and rough beds-Rectangular channel-Submerged jumpCL = 24.50
CW = 0.75
CH = 0.70
-Triangular corrugated sheet (RH = 40)1.68–9.29-Conjugated and tailwater depths-Submerged ratio-Deficit depth-Relative jump length-Jump length-Relative roller jump length-Jump efficiency-Bed shear stress coefficient
Nikmehr and Aminpour [15]-Horizontal bed with slope 0.002-Rectangular channel-Rough bed-Free jumpCL = 12
CW = 0.25
CH = 0.50
-Trapezoidal blocks (RH = 2, 3 and 4)5.01–13.70-Water surface profile-Sequent depth-Jump length-Roller length-Velocity
Ghaderi et al. [17]-Smooth and rough beds-Rectangular channel-Free and submerged jumpCL = 4.50
CW = 0.75
CH = 0.70
-Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
Present studyRectangular channel
Smooth and rough beds
Submerged jump
CL = 4.50
CW = 0.75
CH = 0.70
-Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss

CL1: channel length, CW2: channel width, CH3: channel height, RH4: roughness height.

이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.

베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.

다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.

CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].

본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.

Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.

Table 2. Effective parameters in the numerical model.

Bed TypeQ
(l/s)
I
(cm)
T (cm)d (cm)y1
(cm)
y4
(cm)
Fr1= u1/(gy1)0.5SRe1= (u1y1)/υ
Smooth30, 4551.62–3.839.64–32.101.7–9.30.26–0.5039,884–59,825
Triangular macroroughnesses30, 454, 8, 12, 16, 20451.62–3.846.82–30.081.7–9.30.21–0.4439,884–59,825
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).

Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).

ModelsBed TypeQ (l/s)d (cm)y1 (cm)u1 (m/s)Fr1
Numerical and PhysicalSmooth4551.62–3.831.04–3.701.7–9.3
T/I = 0.54551.61–3.831.05–3.711.7–9.3
T/I = 0.254551.60–3.841.04–3.711.7–9.3
Figure 3. The boundary conditions governing the simulations.
Figure 3. The boundary conditions governing the simulations.
Figure 4. Sketch of mesh setup.
Figure 4. Sketch of mesh setup.

Table 4. Characteristics of the computational grids.

MeshNested Block Cell Size (cm)Containing Block Cell Size (cm)
10.551.10
20.651.30
30.851.70

Table 5. The numerical results of mesh convergence analysis.

ParametersAmounts
fs1 (-)7.15
fs2 (-)6.88
fs3 (-)6.19
K (-)5.61
E32 (%)10.02
E21 (%)3.77
GCI21 (%)3.03
GCI32 (%)3.57
GCI32/rp GCI210.98
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).

Conclusions

  • 본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
  • 개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
  • T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
  • 삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
  • 삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
  • 매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
  • 삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
  • 거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
  • 일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 ​​대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.

References

  1. White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
  2. Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci. 197919, 81–128. [Google Scholar] [CrossRef]
  3. McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
  4. Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids 201234, 35–46. [Google Scholar] [CrossRef]
  5. Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A 201394, 83–87. [Google Scholar] [CrossRef]
  6. Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech. 2016797, 60–94. [Google Scholar] [CrossRef]
  7. Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc. 2016108, 425–432. [Google Scholar] [CrossRef]
  8. Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng. 201742, 3751–3760. [Google Scholar] [CrossRef]
  9. De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech. 201818, 849–870. [Google Scholar] [CrossRef]
  10. Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 2002128, 656–663. [Google Scholar] [CrossRef]
  11. Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
  12. Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 20093, 109–117. [Google Scholar] [CrossRef]
  13. Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci. 20092, 436–445. [Google Scholar] [CrossRef]
  14. Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci. 20077, 1164–1169. [Google Scholar] [CrossRef]
  15. Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng. 201764, 396–407. [Google Scholar] [CrossRef]
  16. Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
  17. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform. 202022, 1554–1572. [Google Scholar] [CrossRef]
  18. Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS 201010, 37–47. [Google Scholar]
  19. Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng. 201340, 841–847. [Google Scholar] [CrossRef]
  20. Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J. 20145, 1033–1042. [Google Scholar] [CrossRef]
  21. Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water 201911, 28. [Google Scholar] [CrossRef]
  22. Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 2016142, 04015037. [Google Scholar] [CrossRef]
  23. Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng. 2017143, 04016091. [Google Scholar] [CrossRef]
  24. Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div. 196591, 107–132. [Google Scholar] [CrossRef]
  25. Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
  26. Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res. 199028, 437–460. [Google Scholar] [CrossRef]
  27. Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
  28. Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
  29. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139, 201–225. [Google Scholar] [CrossRef]
  30. Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng. 2020, 1–9. [Google Scholar] [CrossRef]
  31. Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water 201911, 235. [Google Scholar] [CrossRef]
  32. Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol. 201634, 186–190. [Google Scholar]
  33. Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res. 200846, 739–752. [Google Scholar] [CrossRef]
  34. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 201680, 322–335. [Google Scholar] [CrossRef]
  35. Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids 20205, 182. [Google Scholar] [CrossRef]
  36. Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā 201944, 216. [Google Scholar] [CrossRef]
  37. Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water 202012, 1992. [Google Scholar] [CrossRef]
  38. Ghaderi, A.; Abbasi, S.; Abraham, J.; Azamathulla, H.M. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Meas. Instrum. 202072, 101711. [Google Scholar] [CrossRef]
  39. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput. 19861, 3–51. [Google Scholar] [CrossRef] [PubMed]
  40. Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water 20168, 545. [Google Scholar] [CrossRef]
  41. Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour. 20204, 425–436. [Google Scholar] [CrossRef]
  42. Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev. 200962. [Google Scholar] [CrossRef]
  43. Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water 202113, 14. [Google Scholar] [CrossRef]
  44. Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008130, 0780011–0780013. [Google Scholar]
  45. Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis. 20069, 57–68. [Google Scholar] [CrossRef]
  46. Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math. 2020, 1–13. [Google Scholar] [CrossRef]
  47. Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res. 201227, 100–111. [Google Scholar] [CrossRef]
  48. Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
  49. Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
  50. Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng. 2015105, 160–175. [Google Scholar] [CrossRef]
  51. Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng. 201439, 6969–6981. [Google Scholar] [CrossRef]
  52. Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng. 1996122, 540–548. [Google Scholar] [CrossRef]
  53. De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 201715, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow

Numerical Methods in Civil Engineering

Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham****

토목공학의 수치해석법

Abstract

The main purpose of this study is to provide a method to increase energy dissipation on an inclined drop. Therefore, three types of rough elements with cylindrical, triangular and batshaped geometries are used on the inclined slope in the relative critical depth range of 0.128 to 0.36 and the effect of the geometry of these elements is examined using Flow 3D software. The results showed demonstrate that the downstream relative depth obtained from the numerical analysis is in good agreement with the laboratory results. The application of rough elements on the inclined drop increased the downstream relative depth and also the relative energy dissipation. The application of rough elements on the sloping surface of the drop significantly reduced the downstream Froude number, so that the Froude number in all models ranging from 4.7~7.5 to 1.45~3.36 also decreased compared to the plain drop. Bat-shaped elements are structurally smaller in size, so the use of these elements, in addition to dissipating more energy, is also economically viable.

이 연구의 주요 목적은 경사진 낙하에서 에너지 소산을 증가시키는 방법을 제공하는 것입니다. 따라서 0.128 ~ 0.36의 상대 임계 깊이 범위에서 경사면에 원통형, 삼각형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거친 요소가 사용되며 이러한 요소의 형상의 영향은 Flow 3D 소프트웨어를 사용하여 조사됩니다. 결과는 수치 분석에서 얻은 하류 상대 깊이가 실험실 결과와 잘 일치함을 보여줍니다. 경 사진 낙하에 거친 요소를 적용하면 하류 상대 깊이와 상대 에너지 소산이 증가했습니다. 낙차 경사면에 거친 요소를 적용하면 하류의 Froude 수를 크게 감소시켜 4.7~7.5에서 1.45~3.36 범위의 모든 모델에서 Froude 수도 일반 낙차에 비해 감소했습니다. 박쥐 모양의 요소는 구조적으로 크기가 더 작기 때문에 더 많은 에너지를 분산시키는 것 외에도 이러한 요소를 사용하는 것이 경제적으로도 가능합니다.

Keywords: Downstream depth, Energy dissipation, Froude number, Inclined drop, Roughness elements

Introduction

급수 네트워크 시스템, 침식 수로, 수처리 시스템 및 경사가 큰 경우 흐름 에너지를 더 잘 제어하기 위해 경사 방울을 사용할 수 있습니다. 낙하 구조는 지반의 자연 경사를 설계 경사로 변환하여 에너지 소산, 유속 감소 및 수심 증가를 유발합니다. 따라서 흐름의 하류 에너지를 분산 시키기 위해 에너지 분산 구조를 사용할 수 있습니다. 난기류와 혼합된 물과 공기의 형성은 에너지 소비를 증가 시키는 효과적인 방법입니다. 흐름 경로에서 거칠기 요소를 사용하는 것은 에너지 소산을 위한 알려진 방법입니다. 이러한 요소는 흐름 경로에 배치됩니다. 그들은 종종 에너지 소산을 증가시키기 위해 다른 기하학적 구조와 배열을 가지고 있습니다. 이 연구의 목적은 직사각형 경사 방울에 대한 거칠기 요소의 영향을 조사하는 것입니다.

Fig. 1: Model made in Ardabil, Iran
Fig. 1: Model made in Ardabil, Iran
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 5: Variation of the RMSE varying cell size
Fig. 5: Variation of the RMSE varying cell size
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 8: Relative edge depth versus the relative critical depth
Fig. 8: Relative edge depth versus the relative critical depth
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth

Conclusions

현재 연구에서 FLOW-3D 소프트웨어를 사용하여 한 높이, 한 각도, 밀도 15% 및 지그재그 배열에서 삼각형, 원통형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거칠기 요소를 사용하여 경사 낙하 수리학적 매개변수에 대한 거칠기 요소 형상의 영향 평가되었다. VOF 방법을 사용하여 자유 표면 흐름을 시뮬레이션하고 초기에 3개의 난류 모델 RNG, k-ɛ 및 kω를 검증에 사용하고 이를 검토한 후 RNG 방법을 사용하여 다른 모델을 시뮬레이션했습니다. 1- 수치 결과에서 얻은 부드러운 경사 방울의 하류 상대 깊이는 실험실 데이터와 매우 좋은 상관 관계가 있으며 원통형 요소가 장착 된 경사 방울의 상대 에지 깊이 값이 가장 높았습니다. 2- 하류 상대깊이는 임계상대깊이가 증가함에 따라 상승하는 경향을 나타내어 박쥐형 요소를 구비한 경사낙하와 완만한 경사낙하가 각각 하류상대깊이가 가장 높고 가장 낮았다. 3- 하류 깊이의 증가로 인해 상대적 임계 깊이가 증가함에 따라 상대적 에너지 소산이 감소합니다. 한편, 가장 높은 에너지 소산은 박쥐 모양의 요소가 장착된 경사 낙하와 관련이 있으며 가장 낮은 에너지 소산은 부드러운 낙하와 관련이 있습니다. 삼각형, 원통형 및 박쥐 모양의 거친 요소가 장착된 드롭은 부드러운 드롭보다 각각 65%, 76% 및 85% 더 많은 흐름 에너지를 소산합니다. 4- 낙차의 경사면에 거친 요소를 적용하여 다운 스트림 Froude 수를 크게 줄여 4.7 ~ 7.5에서 1.45 ~ 3.36까지의 모든 모델에서 Froude 수가 부드러운 낙하에 비해 감소했습니다. 또한, 다른 원소보다 부피가 작은 박쥐 모양의 거칠기의 부피로 인해 이러한 유형의 거칠기를 사용하는 것이 경제적입니다.

References

References:
[1] Abbaspour, A., Shiravani, P., and Hosseinzadeh dalir, A.,
“Experimental study of the energy dissipation on the rough ramps”,
ISH journal of hydraulic engineering, 2019, p. 1-9.
[2] Abraham, J.P., Sparrow, E.M., Gorman, J.M., Zhao, Y., and
Minkowycz, W.J., “Application of an Intermittency model for
laminar, transitional, and turbulent internal flows”, Journal of
Fluids Engineering, vol. 141, 2019, paper no. 071204.
[3] Ahmad, Z., Petappa, N.M., and Westrich, B., “Energy
dissipation on block ramps with staggered boulders”, Journal of
hydraulic engineering, vol. 135(6), 2009, p. 522-526.
[4] Babaali, H.R., Shamsai, A., and Vosoughifar, H.R.,
“Computational modeling of the hydraulic jump in the stilling
basin with convergence walls using CFD codes”, Arabian Journal
for Science and Engineering, vol. 40(2), 2014, p. 381-395.
[5] Castillo, L.G., Carrillo, J.M., and Cacía, J.T., “Numerical
simulations and laboratory measurements in hydraulic jumps”,
International conference on hydroinformatics. (2014, August) New
York city.
[6] Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S.,
and Abraham, J., “Experimental and numerical investigation for
energy dissipation of supercritical flow in sudden contractions”,
Journal of groundwater science and engineering, vol. 8(4), 2020a,
p. 396-406.
[7] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., and
Abraham, J., “Three-dimensional investigation of hydraulic
properties of vertical drop in the presence of step and grid
dissipators”, Symmetry, vol. 13 (5), 2021a, p. 895.
[8] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., and
Bagherzadeh, M., “SVM performance for predicting the effect of
horizontal screen diameters on the hydraulic parameters of a
vertical drop”, Applied sciences, vol. 11 (9), 2021b, p. 4238.
[9] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R.,
and Abraham, J. “Study of the performance of support vector
machine for predicting vertical drop hydraulic parameters in the
presence of dual horizontal screens”, Water supply, vol 21(1),
2021c, p. 217-231.
[10] Daneshfaraz, R., and Ghaderi, A., “Numerical investigation of
inverse curvature ogee spillways”, Civil engineering journal, vol.
3(11), 2017, p. 1146-1156.
[11] Daneshfaraz, R., Majedi Asl, M., and Bagherzadeh, M.,
“Experimental Investigation of the Energy Dissipation and the
Downstream Relative Depth of Pool in the Sloped Gabion Drop
and the Sloped simple Drop”, AUT Journal of Civil Engineering,
2020b (In persian).
[12] Daneshfaraz, R., Majedi Asl, M., Bazyar, A., Abraham, J.,
Norouzi, R., “The laboratory study of energy dissipation in inclined
drops equipped with a screen”, Journal of Applied Water
Engineering and Research, 2020c, p. 1-10.
[13] Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and
Ghaderi, A., “3-D Numerical simulation of water flow over a
broad-crested weir with openings”, ISH Journal of Hydraulic
Engineering, 2019, p.1-9.
[14] Daneshfaraz, R., Sadeghfam, S., and Kashani, M., “Numerical
simulation of flow over stepped spillways”, Research in civil
engineering and environmental engineering, vol. 2(4), 2014, p.
190-198.
[15] Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M.,
“Efficiency of trapezoidal labyrinth shaped stepped spillways”,
Flow measurement and instrumentation, vol. 72, 2020a.
[16] Ghaderi, A., Daneshfaraz, R., Dasineh, M., and Di Francesco,
S., “Energy dissipation and hydraulics of flow over trapezoidaltriangular labyrinth weirs”, Water, vol. 12(7), 2020b, p. 1-18.
[17] Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, and
Azamathulla, H.M. “Experimental investigation on effective
scouring parameters downstream from stepped spillways”, Water
supply, vol. 20(4), 2020c, p. 1-11.
[18] Ghare, A.D., Ingle, R.N., Porey, P.D., and Gokhale, S.S.
“Block ramp design for efficient energy dissipation”, Journal of
energy dissipation, vol. 136(1), 2010, p. 1-5.
[19] Gorman, J.M., Sparrow, E.M., Smith, C.J., Ghoash, A.,
Abraham, J.P., Daneshfaraz, R., Rezezadeh, J., “In-bend pressure
drop and post-bend heat transfer for a bend with partial blockage at
its inlet”, Numerical Heat Transfer A, vol, 73, 2018, p. 743-767.
[20] Jamil, M., and Khan, S.A., “Theorical study of hydraulic jump
in circular channel section”, ISH journal of hydraulic engineering,
vol. 16(1), 2010, p. 1-10.
[21] Katourani, S., and Kashefipour, S.M., “Effect of the geometric
characteristics of baffle on hydraulic flow condition in baffled
apron drop”, Irrigation sciences and engineering, vol. 37(2), 2012,
p. 51-59.
[22] Lai, Y.G., and Wu, K.A., “Three-dimensional flow and
sediment transport model for free surface open channel flow on
unstructured flexible meshes”, Fluids, vol. 4(1), 2019, p. 1-19.

[23] Nayebzadeh, B., Lotfollahi yaghin, M.A., and Daneshfaraz,
R., “Numerical investigation of hydraulic characteristics of vertical
drops with screens and gradually wall expanding”, Amirkabir
journal of civil engineering, 2020 (In Persian).
[24] Nurouzi, R., Daneshfaraz, R., and Bazyar, A., “The study of
energy dissipation due to the use of vertical screen in the
downstream of inclined drop by adaptive Neuro-Fuzzy inference
system (ANFIS)”, AUT journal of civil engineering, 2019, (In
Persian).
[25] Ohtsu, I., and Yasuda, Y., “Hydraulic jump in sloping
channel”, Journal of hydraulic engineering, vol. 117(7), 1991, p.
905-921.
[26] Olsen, L., Abraham, J.P., Cheng, L.K., Gorman, J.M., and
Sparrow, E.M., “Summary of forced-convection fluid flow and
heat transfer for square cylinders of different aspect ratios ranging
from the cube to a two-dimensional cylinder”, Advances in Heat
Transfer, Vol. 51, 2019, p. 351-457.
[27] Pagliara, S., Das, R., and Palermo, M., “Energy dissipation on
submerged block ramps”, Journal of irrigation and drainage
engineering, vol. 134(4), 2008, p.527-532.
[28] Pagliara, S., and Palermo, M., “Effect of stilling basin
geometry on the dissipative process in the presence of block
ramps”, Journal of irrigation and drainage engineering, vol.
138(11), 2012, p. 1027-1031.
[29] Simsek, O., Akoz, M.S, and Soydan, N.G., “Numerical
validation of open channel flow over a curvilinear broad-creasted
weir”, Progress in computational fluid dynamics an international
journal, vol. 16(6), 2016, p. 364-378.
[30] Sharif, N., and Rostami, A., “Experimental and numerical
study of the effect of flow sepration on dissipating energy in
compound bucket”, APCBEE procedia, vol. 9, 2014, p. 334-338.
[31] Sparrow, E.M., Tong, J.C.K., and Abraham, J.P., “Fluid flow
in a system with separate laminar and turbulent zones”, Numerical
Heat Transfer A, vol. 53(4), 2008, p. 341-353.
[32] Sparrow, E.M., Gorman, J.M., Abraham, J.P., and
Minkowycz, W.J., “Validation of turbulence models for numerical
simulation of fluid flow and convective heat transfers”, Advances
in Heat Transfer, vol. 49, 2017, p. 397-421.
[33] Wagner, W.E., “Hydraulic model studies of the check intake
structure-potholes East canal”, Bureau of reclamation hydraulic
laboratory report hyd, 1956, 411.

Fig6. 실험실 연구에서 계단식 오버 플로우에 대한 쐐기 요소의 선택된 형상 및 배열

Numerical and Experimental Study of Wedge Elements Influence on Hydraulic Parameters and Energy Dissipation over Stepped Spillway in Skimming Flow Regime

Wedge Elements의 수치 및 실험적 연구가 스키밍 흐름 체제에서 계단식 배수로에 대한 유압 매개 변수 및 에너지 소산에 미치는 영향

Authors

  • Kiyoumars Roushangar  1 ; samira akhgar 2
  • 1 Civil Engineering Department, Tabriz University, Tabriz, Iran.
  • 2 Water Engineering Department, Faculty of Civil Engineering, Tabriz University, Tabriz, Iran

Abstract

A stepped spillway is a hydraulic and cost-effective measure to dissipate the energy of large water flow over the spillway. Due to some limitations in stepped spillways, this study has intended a plan to increase and improve the effectiveness of energy depreciation. For this purpose, the effect of the wedge-shaped elements on the velocity and pressure changes over the steps, water level, and energy dissipation downstream the stepped spillway are evaluated.In this regard, several forms of wedge elements are studied with changes in wedge arrangement and the rate of discharge by using a numerical model of Flow-3D, and the appropriate models from the aspect of the most energy depreciation are selected and studied in the laboratory.In the laboratory, 25 experiments were performed on 5 physical models. Numerical and experimental results show that the addition of wedge elements on the stepped spillway has reduced the velocity and water depth downstream of the spillway to about 80% and 30%, respectively, and the energy dissipation over the stepped spillway increased by about 2.7 times. Also, by drawing the distribution profiles of pressure on the edge and the floor of steps, it was observed that the negative pressure in the horizontal section turned into a positive one. Also, negative pressure in the vertical section decreased up to 96% and positive pressure increased about 2 times. As well as increasing the density of the elements, the results that increase the energy dissipation are going to be more remarkable.

요약계단식 배수로는 배수로를 통해 큰 물 흐름의 에너지를 분산시키는 유압적이고 비용 효율적인 조치입니다. 계단식 배수로의 일부 한계로 인해 본 연구는 에너지 감가 상각의 효과를 높이고 개선하기위한 계획을 세웠습니다. 이를 위해 계단, 수위 및 계단식 배수로 하류의 에너지 소실에 대한 속도 및 압력 변화에 대한 쐐기 모양 요소의 영향을 평가합니다. 이와 관련하여 Flow-3D의 수치 모델을 이용하여 쐐기 배열 및 배출 속도의 변화로 여러 형태의 쐐기 요소를 연구하고 가장 에너지 감가 상각 측면에서 적절한 모델을 선택하여 실험실에서 연구합니다. .실험실에서는 5 개의 물리적 모델에 대해 25 개의 실험이 수행되었습니다. 수치 및 실험 결과에 따르면 계단식 배수로에 쐐기 요소를 추가하면 배수로 하류의 속도와 수심이 각각 약 80 % 및 30 %로 감소했으며 계단식 배수로에 대한 에너지 소산은 약 2.7 배 증가했습니다. 또한 계단의 가장자리와 바닥의 압력 분포 프로파일을 그려서 수평 단면의 부압이 양압으로 변하는 것을 관찰했습니다. 또한 수직 부의 부압은 96 %까지 감소했고 양압은 약 2 배 증가했습니다. 요소의 밀도를 높이는 것 외에도 에너지 소산을 증가시키는 결과가 더욱 두드러 질 것입니다.

키워드

Stepped spillway Wedge elements Change of the velocity and pressure Energy dissipation Flow-3D, 계단식 방수로, 웨지 요소 , 속도와 압력의 변화 , 에너지 소산 


Fig. 1. Geometry and alignment of the wedges in the numerical study    Fig. 2. Secondary water depth versus unit flow rate in the simple stepped spillway and stepped spillway with wedge elements.
Fig. 1. Geometry and alignment of the wedges in the numerical study Fig. 2. Secondary water depth versus unit flow rate in the simple stepped spillway and stepped spillway with wedge elements.
Fig6. 실험실 연구에서 계단식 오버 플로우에 대한 쐐기 요소의 선택된 형상 및 배열
Fig6. 실험실 연구에서 계단식 오버 플로우에 대한 쐐기 요소의 선택된 형상 및 배열

 참고 문헌

[1] H. CHANSON. Comparison of energy dissipation between
nappe and skimming flow regimes on stepped chutes. Journal of
hydraulic research, 32.1994, 213-218.
[2] M. R. CHAMANI & N. RAJARATNAM. Jet flow on stepped
spillways. Journal of Hydraulic Engineering, 120.1994, 254-259.
[3] J.A. KELLS. Comparison of energy dissipation between nappe
and skimming flow regimes on stepped chutes discussion. IAHR
Journal of Hydraulic Research 33.1995, 128-133.
[4] M. TABBARA, J. CHATILA & R. AWWAD. Computational
simulation of flow over stepped spillways. Computers &
structures, 83.2005, 2215-2224.
[5] S. RAZI, F. SALMASI & A. H. DALIR. Laboratory Study of
the Effects of Step Number, Slope and Particle Size on Energy
Dissipation in Gabion Stepped Spillways. Amir Kabir Civil
Engineering Journal, 2018.

Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).

Numerical analysis of water flow around a bridge pier in a sand mined channel

모래 채굴 수로에서 교각 주변의 물 흐름에 대한 수치 해석

Oscar HERRERA-GRANADOS1,, Abhijit LADE2, , Bimlesh KUMAR3
1 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
email: Oscar.Herrera-Granados@pwr.edu.pl
2 3Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
email: lade176104013@iitg.ac.in
email: bimk@iitg.ac.in

ABSTRACT

Extraction of sand from river beds has a variety of effects on the hydraulic and morphological characteristicsof the fluvial systems. Recent studies on mining pit have revealed that downstream reaches of the mining pitare more prone to erosion due to increased bed shear stresses. Bridge piers in the vicinity of such mining pitsare also prone to streambed instabilities due to turbulence alterations as suggested by a few recent studies.Thus, a numerical study was carried out to study the effects of a mining pit on the hydrodynamics around acircular pier. The numerical experiments were conducted with the Computational Fluid Dynamics (CFD) codeFlow-3D, which can run several turbulence model closures. In this contribution, the authors applied theclassical RANS equations with the volume of fluid (VOF) method (Savage and Johnson, 2001).

강바닥에서 모래를 추출하는 것은 하강 시스템의 수력 학적 및 형태 학적 특성에 다양한 영향을 미칩니다. 광산 구덩이에 대한 최근 연구에 따르면 광산 구덩이의 하류 도달은 베드 전단 응력 증가로 인해 침식되기 쉽습니다. 이러한 광산 구덩이 근처의 교각은 최근 몇 가지 연구에서 제안한 바와 같이 난류 변화로 인해 유동 불안정성이 발생하기 쉽습니다. 따라서 원형 부두 주변의 유체 역학에 대한 광산 구덩이의 영향을 연구하기 위해 수치 연구가 수행되었습니다. 수치 실험은 CFD (Computational Fluid Dynamics) 코드 Flow-3D로 수행되었으며, 여러 난류 모델 폐쇄를 실행할 수 있습니다. 이 공헌에서 저자는 VOF (volume of fluid) 방법 (Savage and Johnson, 2001)과 함께 고전적인 RANS 방정식을 적용했습니다.

1. Set-up and boundary conditions

두 번의 수치 실행 결과가 이 기여도에서 비교됩니다. 첫 번째 실험에서 0.044 [m3-s-1]의 정상 유량이 원통 부두가 있는 1.0 [m] 폭의 채널을 따라 흐르는 상류 경계 조건으로 설정되었습니다. 계산 영역은 IIT Guwahati 수력학 실험실 (Lade et al., 2019b)의 틸팅 유체 크기를 기반으로 정의됩니다. 두 번째 실행에서는 동일한 배출물이 실린더의 상류에 있는 준설 사다리꼴 구덩이와 함께 실린더 주위로 통과되었습니다. 구덩이의 깊이는 0.1 [m]이고 수로 전체에 걸쳐 확장되었습니다. 수로의 길이 방향을 따라 피트의 상단 너비는 0.67 [m], 하단 너비는 0.33 [m]였습니다.

이 연구의 주요 초점은 채굴 구덩이 (그림 1의 PF2)가있을 때 구덩이 하류 (그림 1의 PF1)와 실린더 하류의 흐름 특성의 변화를 조사하는 것이 었습니다. 따라서 채널 베드는 고정 베드 모델을 사용하여 시뮬레이션 되었습니다. 두 실험의 수압 조건은 CFD 경계 조건으로 설정된 표 1에 나와 있습니다. 배출구 (하류 경계 조건)는 실험실 기록 중에 측정된 수심을 사용하여 설정되었습니다 (Lade et al., 2019a).

Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).
Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).
Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).
Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).
Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2
Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2

References

Herrera-Granados O (2018) Turbulence flow modeling of one-sharp-groyne field. In Free surface flows and transport processes :
36th International School of Hydraulics. Geoplanet: Earth and Planetary Series. Springer IP AG, 207-218.
Lade AD, Deshpande V, Kumar B (2019a) Study of flow turbulence around a circular bridge pier in sand-mined stream channel.
Proceedings of the Institution of Civil Engineers – Water Management,https://doi.org/10.1680/jwama.19.00041
Lade AD, A, DT, Kumar B (2019b) Randomness in flow turbulence around a bridge pier in a sand
mined channel..Physica A 535 122426
Savage, BM, Johnson, M.C (2001). Flow over ogee spillway: Physical and numerical model case study. J. Hydraulic Eng.,
127(8), 640–649.

Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software

Flow-3D를 이용한 Morning Glory Spillway의 배출 계수에 대한 소용돌이 차단 블레이드 45 도의 효과

Effect of Vortex Breaker Blades 45 Degree on Discharge Coefficient of Morning Glory Spillway Using Flow-3D

Authors

S. Noruzi1
and J. Ahadiyan2*
1– M.Sc. Student, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
2*-Corresponding Author, Associate Professor, Faculty of Water Sciences Engineering, Shahid Chamran
University of Ahvaz, Iran.

Abstract

The discharge coefficient of morning glory spillway is decreased with eddies created by vortex at the inlet part of weir. However, a series of specific blades can reduce vortices which result in the spillway efficiency is increased. Hence, in this research numerical modeling of installed breaker blade on morning glory spillway was evaluated using Flow-3D model. To achieve these purposes, morning glory spillway was modeled without and with blades 3, 4 and 6 blades at 45 degree angle. To simulate the turbulence fluctuations, the modified k-e model (RNG k-e) was used and its results were compared to the experimental data. Results showed that by installing blades, the discharge coefficient increases up to 42 percent with 25 percent decreasing in the upstream water level. Moreover, among the three different arrangements of blades, the six-blade model was found to have more satisfactory results than other models. In comparison to control model, for H/D between 0 to 0.1 and 0.1 to 0.2 the discharge coefficient has been increased 40 and 57 percent for six-blade arrangement, respectively. 

모닝 글로리의 배출 계수는 위어 입구 부분의 와류에 의해 생성된 소용돌이로 감소합니다. 그러나 일련의 특정 블레이드는 와류를 줄여 배수로 효율성을 높일 수 있습니다. 따라서 본 연구에서는 모닝 글로리 여수로에 설치된 브레이커 블레이드의 수치 모델링을 Flow-3D 모델을 사용하여 평가했습니다. 이러한 목적을 달성하기 위해 45도 각도에서 블레이드 3, 4 및 6 블레이드 없이 모닝 글로리 여수로를 모델링 했습니다. 난류 변동을 시뮬레이션하기 위해 수정된 k-e 모델 (RNG k-e)을 사용하고 그 결과를 실험 데이터와 비교했습니다. 결과에 따르면 블레이드를 설치하면 상류 수위가 25 % 감소하면서 배출 계수가 42 %까지 증가합니다. 또한 3 개의 블레이드 배열 중 6 개 블레이드 모델이 다른 모델보다 더 만족스러운 결과를 나타냈다. 제어 모델에 비해 H / D가 0 ~ 0.1 및 0.1 ~ 0.2 인 경우 방전 계수가 6- 블레이드 배열에서 각각 40 % 및 57 % 증가했습니다.

Keywords

Figure 1 - Dimensions of the vortex blade
Figure 1 – Dimensions of the vortex blade
Figure 3 - A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
Figure 3 – A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software
Figure 5 – Modeling a simple lotus overflow symmetrically in FLOW-3D software
Figure 7 - Comparison of Ashley flow chart with numerical model and laboratory
Figure 7 – Comparison of Ashley flow chart with numerical model and laboratory
Figure 8 - Comparison of flow coefficient diagram - immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades
Figure 8 – Comparison of flow coefficient diagram – immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades

Reference

1 -حیدری ارجلو، س.، موسوی جهرمی، س. ح. و ادیب، ا. 1386 .بررسی تاثیر شیب بر تعداد بهینه پلکانها در سرریزهای پلکانی، مجله علوم و مهندسی
.)123-136 :)2(33 ،كشاورزی علمی )آبیاری
2 -حاجیپور، گ. 1363 .بررسی آزمایشگاهی تأثیر تیغههای گردابشکن بر هیدرولیک جریان سرریز نیلوفری. پایاننامه كارشناسی ارشد رشته سازههای آبی،
دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
3 -رنجبر ملکشاه، م.، 1363 .بررسی رفتار سرریز نیلوفری با پایین دست تاج پلکانی بوسیله مدلسازی رایانهای، پایاننامه كارشناسی ارشد مهندسی عمران،
دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی.
4 -رمضانی، س. كاویانپور، م ر. و ع. حسنی نژاد. 1362 .بررسی پارامترهای مؤثر بر آبگذری سرریزهای نیلوفری. هفتمین كنگره ملی مهندسی عمران،
دانشکده مهندسی شهید نیکبخت، زاهدان.
1 -سامانی، م. 1331 .طراحی سازههای هیدرولیکی. انتشارات شركت مهندسی مشاور دز آب اهواز
1 -قاسمزاده، ف. 1362 .شبیه سازی مسائل هیدرولیکی در 3D-FLOW .تهران، نوآور.
3 -كمانبدست، 1 ،.موسوی، س.ر. 1361 .مطالعه آزمایشگاهی تأثیر تعداد و زاویه گرداب شکن بر مشخصات جریان در سرریز نیلوفری مربعی، نشریه علوم
آب و خاک )غعلوم و فنون كشاورزی و منابع طبیعی(، سال بیستم، شماره 38 ،صفحه 182-131 .
8 -نظری پوركیانی، ع ا. 1363 .بررسی فشار و سرعت جریان در سرریز نیلوفری سد البرز با استفاده از نرمافزار 3D-FLOW .اولین كنفرانس سراسری
توسعه محوری مهندسی عمران، معماری، برق و مکانیک ایران.
6 -نوحانی، ا.، جمالی امام قیس، ر. 1364 .بررسی آزمایشگاهی تأثیرشکل تیغه های ضد گرداب برراندمان تخلیهی سرریزهای نیلوفری، نشریه آبیاری و
زهکشی ایران، جلد 6 ،شماره 1 ،صفحه 346-341 .
10-Akbari, A A., Nohani, E and A. Afrous. 2015. Numerical study of the effect of anti-vortex plates on the
inflow pattern in shaft spillways. Indian Journal of Fundamental and Applied Life Sciences, 5(S1):
3819-3826.
11-Anonymous, 1965. Design of Small Dams. Water Resources Technical publication, U.S Department of
the interior Bureau of Reclamation.
12-Bagheri, A., Shafai Bajestan, M., Mousavi Jahromi, H., Kashkuli, H. and H. Sedghi. 2010. Hydraulic
evaluation of the flow over polyhedral morning glory spillways. Word Applied Sciences Journal, 9(7):
712-717.
13- Fattor, C. A. and J. D. Bacchiega. 2003. Analysis of instabilities in the charge of regime in morning
glory spillways. Journal of Hydraulic Research, 40(4): 114-123.
14- Khatsuria, R. M. 2005. Hydraulics of spillways and energy dissipaters. Marcel Dekker. Department of
Civil and Environmental Engineering Georgia, Institute of Technology Atlanta, Newyork, USA.
15-Mousavi. S. R., Kamanbedast, A.A., and H. Fathian. 2013. Experimental investigation of the effect of
number of anti-vortex piers on submergence threshold in morning glory spillway with square inlet.
Technical Journal of Engineering and Applied Sciences, 3(24): 3534-3540.
16- Novak, P. 2007. Hydraulic Structures, Fourth edition published by Taylor and Francis. University of
New Castle upon, Tyne, UK, Landon and Network.
17-Tavana, M H., Mousavi Jahromi, H., Shafai Bajestan, M., Masjedi, A. R. and H. Sedghi. 2011.
Optimization of number and direction of vortex breakers in the morning glory spillway using physical
model. Economy, Environmental and Conservation Journal, 17(2): 435-440.
18-Vresteeg. H. K and W. Malalasekera. 1995. An introduction to computational fluid dynamics. Longman
Scientific and Technical. New York.
19-Yakhot. V and L. M. Smith. 1992. The renormalization group. The e-expansion and of turbulence
models. Journal of Computing, 7(1): 35-61.

Fig.2- Richard Dam overflow in America

Studying the effect of shape changes in plan of labyrinth weir on increasing flow discharge coefficient using Flow-3D numerical model

FLOW-3D 수치 모델을 이용하여 미로 위어 평면도의 형상 변화가 유량 계수 증가에 미치는 영향 연구

E. Zamiri 1
, H. Karami 2*
and S. Farzin3
1- M.S. Student, Department of Civil Engineering, Semnan University, Semnan, Iran.
2
*

  • Corresponding Author, Assistant Professor, Department of Civil Engineering, Semnan
    University, Semnan, Iran. (hkarami@semnan.ac.ir).
    3- Assistant Professor, Department of Civil Engineering, Semnan University, Semnan, Iran.

Keywords: : Flood control, Sidewall angle, Predicting discharge coefficient, Computational hydraulic,

Introduction

Weirs are hydraulic structures used to measure, regulate and control the water levels and are
fixed upon open channels and rivers width. Growing magnitude of probable maximum flood
events (PMF) has highlighted the demand for increasing discharge capacity. Application of
labyrinth weir has been suggested as a solution for increasing discharge capacity.
Tullis et al. (1995) evaluated the effective parameters in determining the capacity of a labyrinth
weir. They introduced total head, the effective crest length and the discharge coefficient as
parameters influencing the discharge capacity of a labyrinth weir. Khode et al. (2011)
experimentally studied the parameters of a flow-over labyrinth weir for different side wall angles
(α) from 8 to 30°. They found that discharge coefficient increases by growing side wall angle
values.
Crookston and Tullis (2012a) studied performance of different labyrinth weirs by making
differences between geometric shapes of weirs in plan. The results indicated that discharge
capacity of the arced labyrinth weirs is more than the discharge capacity of horseshoe weirs.
Seo et al. (2016) investigated the effect of weir shapes on discharge of weirs. It was shown that
the discharge of the labyrinth weir had an increase of approximately 71% in comparison with the
linear ogee weir.
In this research, labyrinth weir with sidewall angle equal to 6° was simulated through Flow3D model, using experimental results of previous researchers. After validation, the changes of
discharge coefficient of weir with angles of 45° and 85° and apex shapes of triangular and halfcircular shapes were analyzed.

Weirs는 수위를 측정, 조절 및 제어하는 ​​데 사용되는 수력 구조물이며 열린 수로 및 강 폭에 고정됩니다. 예상되는 최대 홍수 사건 (PMF)의 규모가 커짐에 따라 배출 용량 증가에 대한 요구가 강조되었습니다. 미로 위어 (labyrinth weir)의 적용은 배출 용량을 증가시키기 위한 해결책으로 제안 되었습니다.

Tullis et al. (1995)는 미로 위어의 용량을 결정하는데 효과적인 매개 변수를 평가했습니다. 그들은 미로 위어의 배출 용량에 영향을 미치는 매개 변수로 총 수두, 유효 문장 길이 및 배출 계수를 도입했습니다.

Khode et al. (2011)은 8 ~ 30 °의 다양한 측벽 각도 (α)에 대한 유동-오버 래비 린스 위어의 매개 변수를 실험적으로 연구했습니다.

그들은 측벽 각도 값이 증가함에 따라 방전 계수가 증가한다는 것을 발견했습니다. Crookston과 Tullis (2012a)는 평면에서 위어의 기하학적 모양을 차이를 만들어 서로 다른 미로 위어의 성능을 연구했습니다.

결과는 호형 미로 위어의 배출 용량이 말굽 위어의 배출 용량보다 더 많다는 것을 나타냅니다. Seo et al. (2016)은 위어의 배출에 대한 위어 모양의 영향을 조사했습니다. 미로 위어의 배출량은 선형 오지 위어에 비해 약 71 % 증가한 것으로 나타났습니다.

이 연구에서는 이전 연구자들의 실험 결과를 사용하여 Flow3D 모델을 통해 측벽 각도가 6 ° 인 미로 위어를 시뮬레이션했습니다. 검증 후 각 45 °, 85 °의 위어의 배출 계수 변화와 삼각형 및 반원 형태의 정점 형태를 분석 하였다.

Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.2- Richard Dam overflow in America
Fig.2- Richard Dam overflow in America
Fig.3- Plan of geometric parameters of congressional overflow
Fig.3- Plan of geometric parameters of congressional overflow
Fig. 4- The boundary conditions of the congressional overflow model
Fig. 4- The boundary conditions of the congressional overflow model
Fig.5- View of a simulated congressional overflow
Fig.5- View of a simulated congressional overflow
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow

Results

오버행의 넘침 흐름을 증가시키는 것이 중요하기 때문에 본 연구에서는 넘침 벽의 돌출부에 6, 45 및 85 도의 세 가지 값을 채점하고 넘침 개구부에 삼각형 및 반원 모양을 제안함으로써 , 오버 플로우의 오버 플로우 계수를 변경하여 3D 숫자 래치를 사용하십시오.

Irene Par Vahsh Bareh에서 얻은 결과는 다음과 같습니다.

1- 흐름을 따라 포병의 범람 벽 각도를 늘리면 방출 계수가 증가합니다. 벽 각도가 85도 및 45 도인 포병의 범람 계수는 벽 각도가 6 도인 범람 계수 평균의 2.28 및 1.24 배입니다.

2-구부러진 양고기를 먹은 상태에서 배수로 모양의 변화는 배출 계수를 증가시킨다. 삼각형과 비 삼각형 개구부가있는 오버플로의 배출 계수는 온대 개구부가있는 오버플로의 배출 계수에 비해 양고기가 50.29 및 4.16 % 증가했습니다.

3- 오버플로 양 (p / HT)의 부하와 함께 부하 부하의 무 차원 비율 값을 늘리면 혼잡 한 오버플로의 방전 계수가 감소합니다. 또한 p <HT / 0.5의 값에서 세 가지 형태의 오버플로 개구에 대한 배출 계수의 값은 서로 가깝고 오버플로 모양의 각 끝은 값에서 동일한 기능을 갖습니다. p / HT <0.5. 4-유량이 증가함에 따라 유량 계수가 감소합니다.

References

1- Azhdary Moghaddam, M. and Jafari Nodoushan, E., 2013. Optimization of Geometry of
trapezoidallabyrinth Spillway with using ANFIS Models and Genetic Algorithms (Ute Dam Case Study
in the United States of America). Journal of Civil Engineering. 24(2), pp. 129-138. (In Persian).
2- Canholi, J. F., Canholi, A. P. and Sobral, V., 2011. Hydraulic Design of a Labyrinth Weir in
Aclimação´s Lake. 12nd International Conference on Urban Drainage, Porto Alegre/Brazil.
3- Crookston, B. M. and Tullis, B. P., 2012a. Arced labyrinth weirs. Journal of Hydraulic
Engineering. 138(6), pp.555-562.
4- Crookston, B. M. and Tullis, B. P., 2012b, Hydraulic design and analysis of labyrinth weirs. I:
Discharge relationships. Journal of Irrigation and Drainage Engineering. 139(5), pp.363-370.
5- Esmaeili Varaki, M. and Safarrazavi Zadeh, M., 2013. Study of Hydraulic Features of Flow Over
Labyrinth Weir with Semi-circular Plan form. Journal of Water and Soil. 27(1), pp. 224-234. (In
Persian).
6- Farzin, S., Karami, H. and Zamiri, E., 2016. Study of the Flow over Rubber Dam Using Computational
Hydrodynamics. Journal of Dam and Hydroelectric Powerplant. 3(9), pp.1-11. (In Persian).
7- Hirt, C. W. and Richardson, J. E., 1999. The modeling of shallow flows, Flow Science, Technical
Notes. 48, pp.1-14.
8- Hosseini, K., Tajnesaie, M. and Jafari Nodoush, E., 2015. Optimization of the Geometry of Triangular
Labyrinth Spillways, Using Fuzzy‐Neural System and Differential Evolution Algorithm. Journal of
Civil and Environmental Engineering. 45(1), PP.81-91. (In Persian).
9- Khode, B. V., Tembhurkar, A. R., Porey, P. D. and Ingle, R. N., 2011. Experimental studies on flow
over labyrinth weir. Journal of Irrigation and Drainage Engineering. 138(6), pp.548-552.
10- Nezami, F., Farsadizadeh, D., Hosseinzadeh Delir, A. and Salmasi, F., 2012. Experimental Study of
Discharge Coefficient of Trapezoidal Labyrinth Side-Weirs. Journal of Water and Soil Science. 23(1),
PP.247-257. (In Persian).
11- Nikpiek, P. and Kashefipour, S. M., 2014. Effect of the hydraulic conditions and structure geometry on
mathematical modelling of discharge coefficient for duckbill and oblique weirs. Journal of Irrigation
Science and Engineering. 39(1), pp.1-10. (In Persian).
12- Noori, B. M. and Aaref, N. T., 2017. Hydraulic Performance of Circular Crested Triangular Plan Form
Weirs. Arabian Journal for Science and Engineering. pp.1-10.
13- Noruzi, S. and Ahadiyan, J., 2016. Effect of Vortex Breaker Blades 45 Degree on Discharge
Coefficient of Morning Glory Spillway Using Flow-3D. Journal of Irrigation Science and
Engineering. 39(4), PP. 47-58. (In Persian).
14- Paxson, G. and Savage, B., 2006. Labyrinth spillways: comparison of two popular USA design
methods and consideration of non-standard approach conditions and geometries. Proceedings of the
international junior researcher and engineer workshop on hydraulic structures, Montemor-o-Novo,
Portugal, Division of Civil Engineering, 37.
15- Payri, R., Tormos, B., Gimeno, J. and Bracho, G., 2010. The potential of Large Eddy Simulation (LES)
code for the modeling of flow in diesel injectors. Mathematical and Computer Modelling. 52(7),
pp.1151-1160.
16- Rezaee, M., Emadi, A. and Aqajani Mazandarani, Q., 2016. Experimental Study of Rectangular
Labyrinth Weir. Journal of Water and Soil. 29(6), pp. 1438-1446. (In Persian).
17- Seo, I. W., Do Kim, Y., Park, Y. S. and Song, C. G. 2016, Spillway discharges by modification of weir
shapes and overflow surroundings. Environmental Earth Sciences. 75(6), pp.1-13.
18- Suprapto, M., 2013. Increase spillway capacity using Labyrinth Weir. Procedia Engineering. 54, pp.
440-446.
19- Tullis, J. P., Amanian, N. and Waldron, D., 1995. Design of labyrinth spillways. Journal of Hydraulic
Engineering. 121(3), pp.247-255.
20- Zamiri, E., Karami, H. and Farzin, S., 2016. Numerical Study of Labyrinth Weir Using RNG
Turbulence Model. 15th Iranian Hydraulic Conference, Imam Khomeini International University,
Qazvin, Iran. (In Persian).

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Numerical investigation of flow characteristics over stepped spillways

Güven, Aytaç
Mahmood, Ahmed Hussein
Water Supply (2021) 21 (3): 1344–1355.
https://doi.org/10.2166/ws.2020.283Article history

Abstract

Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

HIGHLIGHTS

ListenReadSpeaker webReader: Listen

  • A numerical model was developed for stepped spillways.
  • The turbulent flow was simulated by the Renormalized Group (RNG) model.
  • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

Keyword

CFDnumerical modellingslope changestepped spillwayturbulent flow

INTRODUCTION

댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

METHODOLOGY

ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

formula

(1)

formula

(2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

formula

(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

formula

(4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

formula

(5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

formula

(6)where ⁠: the turbulent length scale.

VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

formula

(7)

formula

(8)

formula

(9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

Case study

ListenReadSpeaker webReader: Listen

In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1

Location of pressure sensors on horizontal step faces

Θ(°)L(m)x/l (–)
50.0 0.050 0.35 0.64 – – – 
30.0 0.104 0.17 0.50 0.84 – – 
18.6 0.178 0.10 0.30 0.50 0.7 0.88 
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Numerical model set-up

ListenReadSpeaker webReader: Listen

A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2

Variables used in test runs

Test no.Θ1 (°)Θ2 (°)h(m)d0q (m3s1)dc/h (–)
50 18.6 0.06 0.045 0.1 2.6 
50 18.6 0.06 0.082 0.235 4.6 
50 30.0 0.06 0.045 0.1 2.6 
50 30.0 0.06 0.082 0.235 4.6 
Table 2 Variables used in test runs

For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.

The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.

Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Figure 3VIEW LARGEDOWNLOAD SLIDE

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.

There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).

The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.

RESULTS AND DISCUSSION

ListenReadSpeaker webReader: Listen

The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.

Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure 4VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 5VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 6VIEW LARGEDOWNLOAD SLIDE

Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

Figure 7VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.

The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.

Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.

Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 8VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.

Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.

Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.

Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

CONCLUSION

ListenReadSpeaker webReader: Listen

In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.

Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.

The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.

이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.

Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.

Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.

DATA AVAILABILITY STATEMENT

ListenReadSpeaker webReader: Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Boes R. M. Hager W. H. 2003a Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
Google Scholar
Boes R. M. Hager W. H. 2003b Two-Phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering 129 (9), 661–670.
Google Scholar
Chanson H. 1994 Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research 32 (3), 445–460.
Google Scholar
Chanson H. 1997 Air Bubble Entrainment in Free Surface Turbulent Shear Flows. Academic Press, London.
Google Scholar
Chanson H. 2002 The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands.
Google Scholar
Felder S. Chanson H. 2011 Energy dissipation down a stepped spillway with nonuniform step heights. Journal of Hydraulic Engineering 137 (11), 1543–1548.
Google Scholar
Flow Science, Inc. 2012 FLOW-3D v10-1 User Manual. Flow Science, Inc., Santa Fe, CA.
Ghaderi A. Daneshfaraz R. Torabi M. Abraham J. Azamathulla H. M. 2020a Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply 20 (5), 1988–1998.
Google Scholar
Ghaderi A. Abbasi S. Abraham J. Azamathulla H. M. 2020b Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation 72, 101711.
Google Scholar
Gonzalez C. A. Chanson H. 2008 Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research 46 (1), 65–72.
Google Scholar
Gunal M. 1996 Numerical and Experimental Investigation of Hydraulic Jumps. PhD Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK.
Hirt C. W. Nichols B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1), 201–225.
Google Scholar
Matos J. 2000 Hydraulic design of stepped spillways over RCC dams. In: Intl Workshop on Hydraulics of Stepped Spillways (H.-E. Minor & W. Hager, eds). Balkema Publ, Zurich, pp. 187–194.
Google Scholar
Mohammad Rezapour Tabari M. Tavakoli S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 41 (4), 1215–1224.
Google Scholar
Ostad Mirza M. J. 2016 Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics Over Stepped Spillways. Communications du Laboratoire de Constructions Hydrauliques, No. 64 (A. J. Schleiss, ed.). Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Roshan R. Azamathulla H. M. Marosi M. Sarkardeh H. Pahlavan H. Ab Ghani A. 2010 Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs 20 (3), 131–136.
Google Scholar
Shahheydari H. Nodoshan E. J. Barati R. Moghadam M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
Google Scholar
Takahashi M. Ohtsu I. 2012 Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research 50 (4), 427–434.
Google Scholar
Versteeg H. K. Malalasekera W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow.
Google Scholar
© 2021 The Authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Figure 47: The course of the level on the physical model [22]

NUMERICAL MODELLING OF FLOW IN SPILLWAY

Author Svoboda, Jiří
Contributors Jandora, Jan (advisor); Holomek, Petr (referee)

Abstract

이 학위 논문의 주제는 Boskovice 상수도의 안전 배수로에서 유량 수치 모델링 솔루션입니다. 디플로마 논문의 소개에서는 기본 오버플로를 일반적으로 설명하고 모양과 유형에 따라 구분합니다. 수역에 사용되는 안전 배수로도 있습니다. 그 다음에는 오버 플로우 계산에 대한 설명, 수학적 모델링 및 사용 된 난류 모델에 대한 설명이 이어집니다. 또한이 작업은 Boskovice 상수도에 대한 기술적 설명, AutoCAD 2020 소프트웨어의 안전 배수로, 경사 및 미끄러짐의 가상 3D 모델 생성, Blender 소프트웨어에서의 검사 및 수리를 다룹니다. 결론적으로 Flow-3D 소프트웨어의 흐름 수치 모델링 결과와 토목 공학부 유압 공학과에서 수행 된 유압 모델 연구와의 후속 비교가 제시됩니다.

The goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.

Keywords: Spillway, numerical model, 3D model, FLOW-3D, Boskovice dam, rockfill dam.

Introduction

상수도 (VD)는 인구에게 식수 공급, 홍수 방지, 발전 등과 같은 긍정적 인 효과만 있는 것이 아닙니다. 안타깝게도 물 작업, 특히 더 많은 양의 물이 남아있는 작업도 중요한 위협 요소가 될 수 있습니다. 수술 중에 자연의 힘이나 심지어 인적 요인의 실패로 인해 사고가 발생할 수 있습니다. 흐름의 수치 모델링을 위해 안전 배수로를 선택한 VD Boskovice의 경우,이 작업은 1 차 범주에 포함됩니다.

이론적 사고는 극도로 높은 경제적 피해를 입히고 환경에 피해를 줄 수 있으며 국가 규모에 사회적 영향을 미치고 큰 인명 손실을 초래할 수 있습니다. 가설적인 사고는 여러 가지 이유로 발생할 수 있습니다. 예를 들어, 홍수가 극심한 동안의 배수로에서 배수로의 마루가 넘쳐 댐의 공기 경사면이 표면 침식으로 이어지고 이후 배수로가 파열 될 수 있습니다.

이러한 사고를 방지하기 위해 VD에 안전 유출 구조물을 구축하고 있으며, 유출이 넘치지 않도록 관련 VD 범주에 해당하는 충분한 용량이 있어야 합니다. 안타깝게도 VD 운영의 역사에서 안전 배수로에 충분한 용량이 없었고 극심한 홍수 흐름 중에 댐이 유출되고 VD 댐이 파열되는 경우가 있습니다. 이러한 이유로 안전 배수로를 설계하는 것은 비용과 시간이 많이 드는 프로세스입니다.

설계 중에는 설계 홍수파 (NPV) 및 제어 홍수파 (KPV)를 안전하게 전달하기 위해 충분한 용량이 사용됩니다. 적절한 설계를 확인하기 위해 안전 배수로의 흐름 모델링이 사용되며, 여기서 물리적 모델이 일반적으로 사용되며 실험실에서 축소 된 규모로 생성됩니다. 수년 동안 컴퓨터 기술 사용 가능성이 증가함에 따라 다양한 소프트웨어에서 수치 모델링을 사용하여 CFD (유체 흐름 시뮬레이션)를 사용하여 안전 배수로의 흐름을 모델링하여 재정 비용을 크게 줄일 수 있었습니다.

<중략>………….

Figure 1: Basic type of sharp-edged overflow (Bazin's overflow) [1]
Figure 1: Basic type of sharp-edged overflow (Bazin’s overflow) [1]
Figure 3: Overflow with a wide crown [1]
Figure 3: Overflow with a wide crown [1]
Figure 4: Schematic longitudinal section of shaft overflow [14]
Figure 4: Schematic longitudinal section of shaft overflow [14]
Figure 5: Overflow over overflow of general cross-section [1]
Figure 5: Overflow over overflow of general cross-section [1]
Figure 6: Imperfect overflow [1]
Figure 6: Imperfect overflow [1]
Figure 7: Types of overflows according to floor plan [1]
Figure 7: Types of overflows according to floor plan [1]
Figure 8: Lateral contraction and lateral constriction coefficient of pillars [1]
Figure 8: Lateral contraction and lateral constriction coefficient of pillars [1]
Figure 9: Schematic comparison of a pressureless jet surface with a pressure and vacuum surface [22]
Figure 9: Schematic comparison of a pressureless jet surface with a pressure and vacuum surface [22]
Figure 14: Situation of external relations of VD Boskovice [17]
Figure 14: Situation of external relations of VD Boskovice [17]
Figure 15: Air slope of VD Boskovice [24]
Figure 15: Air slope of VD Boskovice [24]
Figure 16: Guide slope of VD Boskovice [24]
Figure 16: Guide slope of VD Boskovice [24]
Figure 17: Sampling tower of VD Boskovice [24]
Figure 17: Sampling tower of VD Boskovice [24]
Figure 18: Fountain front safety spillway [24]
Figure 18: Fountain front safety spillway [24]
Figure 19: Sliding of the security object VD Boskovice [24]
Figure 19: Sliding of the security object VD Boskovice [24]
Figure 20: Slip and divergent broth of the security object VD Boskovice [24]
Figure 20: Slip and divergent broth of the security object VD Boskovice [24]
Figure 21: Probable course of the theoretical PV10 000 in Bělá in the profile of the VD Boskovice dam [6]
Figure 21: Probable course of the theoretical PV10 000 in Bělá in the profile of the VD Boskovice dam [6]
Figure 22: Floor plan of the safety spillway and part of the VD Boskovice slip [12]
Figure 22: Floor plan of the safety spillway and part of the VD Boskovice slip [12]
Figure 23: Longitudinal section of BP and slope in the plane of symmetry [12]
Figure 23: Longitudinal section of BP and slope in the plane of symmetry [12]
Figure 24: Modified floor plan of the overflow and chute of VD Boskovice for the creation of a 3D model
Figure 24: Modified floor plan of the overflow and chute of VD Boskovice for the creation of a 3D model
Figure 25: Created overflow structure without modification
Figure 25: Created overflow structure without modification
Figure 26: Created overflow structure after treatment
Figure 26: Created overflow structure after treatment
Figure 27: Detail of the modified overflow shape
Figure 27: Detail of the modified overflow shape
Figure 33: 3D model with normals shown in blue
Figure 33: 3D model with normals shown in blue
Figure 37: Improperly selected mesh block size
Figure 37: Improperly selected mesh block size
Figure 45: Flow profile in Flow-3D without 3D model displayed
Figure 45: Flow profile in Flow-3D without 3D model displayed
Figure 47: The course of the level on the physical model [22]
Figure 47: The course of the level on the physical model [22]
Figure 51: Comparison of levels in PFm4a
Figure 51: Comparison of levels in PFm4a
Figure 52: Isoline of overflow pressures at flow Q = 173.49 m3/s
Figure 52: Isoline of overflow pressures at flow Q = 173.49 m3/s

결론

이 학위 논문에서는 Flow-3D 소프트웨어에서 Boskovice 상수도의 계획된 안전 오버플로 흐름을 시뮬레이션했습니다. 계획된 안전 범람의 범람 가장자리 길이는 21.99m입니다. 그러나 VD Boskovice의 재건 내에서 VD Boskovice [7]의 수력 학적 모델 연구 결과에 따라 안전 개체 VD Boskovice [7]의 결론에 따라 24.60m로 증가했습니다.

MBH 수준 (해발 432.30m)에서는 최고 유량 Q10 000 = 186.5 m3 / s로 제어 홍수 파 KPV10 000의 안전한 전송이 없지만 유량 Q = 167.0 m3 / s 만 있기 때문에 에스. 이 진술은 Flow-3D에서 난류 RNG k – ε 모델을 사용한 수치 적 흐름 모델링에 의해 확인되었으며 MBH에서 173.49 m3 / s의 유속을보고했습니다.

따라서 수력학적 모델 연구 [7]와 Flow3D의 수치 적 흐름 모델링 간의 차이는 약 3.7 % 였는데, 이는 물리적 모델의 형상 또는 생성 된 형상의 가능한 오류와 같은 다양한 요인으로 인한 것일 수 있습니다. 가상 3D 모델. 또한 실제 모델에서 측정하는 동안 발생할 수 있는 오류 (예 : 오버플로 높이 또는 흐름 값을 결정할 때의 장치 오류). 수치 모델의 경우 차이는 사용 된 셀 네트워크 셀 크기, 거칠기, 전류 폭기의 무시, 수치 적 방법에 의해 주어진 불확실성 또는 3D 모델의 단순화로 인한 것일 수 있습니다.

이러한 요소는 Flow-3D 소프트웨어에서 시뮬레이션 된 레벨의 과정에 영향을 미칠 수 있습니다. 일부 영역에서는 유압 모델 연구 [7]의 현재 깊이와 센티미터 단위 만 다릅니다. 그러나 일부 영역에서는 이러한 차이가 수십 센티미터 정도, 예외적으로 1m 측벽에서 더 두드러지며 이는 Flow-3D 소프트웨어의 유동 시뮬레이션에서는 발생하지 않았습니다.

Flow-3D의 흐름에 의한 수치 모델링에 따르면, Q10 000 = 186.5 m3 / s의 피크 흐름을 가진 제어 홍수 파 KPV10 000은 해발 432.40 m의 탱크 레벨에서만 안전 오버플로를 통해 전송됩니다. 즉, MBH 레벨보다 10cm 높음. 이 계산은 오버플로 가장자리 21.99m의 너비에 대해 수행되었지만 이미 재구성 된 안전 오버플로 VD Boskovice의 너비는 24.60m입니다.

이전 평가에서 생성 된 항목에 수치 모델링 만 사용하는 것이 완전히 신뢰할 수있는 것은 아님이 분명합니다. 민감도 분석 및 물리적 모델에 대한 수리적 연구와의 후속 비교가 없는 가상 3D 모델. 그러나 향후 몇 년 동안 물리적 모델로 평가할 필요 없이 수치 적 흐름 모델링의 결과가 충분히 신뢰할 수 있다면 실험실에서 수행되는 더 많은 비용이 드는 수력학적 모델 연구를 점진적으로 대체 할 수 있습니다.

Reference

[1] JANDORA, Jan a Jan ŠULC. Hydraulika: Modul 01. Brno: AKADEMICKÉ
NAKLADATELSTVÍ CERM, 2007. ISBN 978-80-7204-512-9.
[2] BOOR, B., J. KUNŠTÁTSKÝ a C. PATOČKA. Hydraulika pro vodohospodářské
stavby. Praha: SNTL, 1968. ISBN 04-710-68.
[3] STARA, Vlastimil a Helena KOUTKOVÁ. 3. Vodohospodářská konference
s mezinárodní účastí: Součinitel přepadu přelivu s kruhově zaoblenou korunou
z fyzikálních experimentů. Brno, 2003. ISBN 80-86433-26-9.
[4] ŘÍHA, Jaromír. Hydrotechnické stavby II: Modul 01 Přehrady. Studijní opora. FAST
VUT v Brně 2006.
[5] JANDORA, Jan. Matematické modelování ve vodním hospodářství. VUT v Brně, 2008.
[6] KŘÍŽ, Tomáš. Manipulační řád pro vodní dílo Boskovice na toku Bělá v km 7,400. Brno,
2020.
[7] ŠULC, Jan a Michal ŽOUŽELA. Hydraulický modelový výzkum bezpečnostního objektu
VD Boskovice na ÚVS Stavební fakulty VUT v Brně. Výzkumná zpráva, LVV-ÚVSFAST VUT v Brně, 2013
[8] Autodesk® AutoCAD® 2020 [Počítačový software]. (2019). https://www.autodesk.cz/
[9] Blender v2.90 [Počítačový software]. (2020). https://www.blender.org/
[10] FLOW-3D® verze 11.0.4 [Počítačový software]. (2015). Santa Fe, NM: Flow Science,
Inc. https://www.flow3d.com
[11] Why FLOW-3D? Flow-3D [online]. [cit. 2020-11-03]. Dostupné z:
https://www.flow3d.com/products/flow-3d/why-flow-3d/
[12] Podklady poskytnuté Ing. Petrem Holomkem (Povodí Moravy, s. p.)
[13] CHANSON, H. a J.S. MONTES. Journal of Irrigation and Drainage Engineering:
Overflow Characteristics of Circular Weirs: Effcets of Inflow Conditions. 3. Reston: The
American Society of Civil Engineers, 1998. ISBN 0733-9437.
[14] KRATOCHVÍL, Jiří, Miloš JANDA a Vlastimil STARA. Projektování přehrad:
Komplexní projekt HT. Brno: Vysoké učení technické v Brně, 1988.
[15] STUDNIČKA, Tomáš. Matematické modelování odlehčovacích komor na stokových
sítích. Brno, 2013. Disertační práce. Vysoké učení technické v Brně, Fakulta stavební.
Vedoucí práce Ing. Petr Prax, Ph.D.
[16] ŘÍHA, Jaromír. Hydraulika podzemních vod: Modul 01. Studijní opora. FAST VUT
v Brně 2006.

[17] ArcMap Desktop 10.5 Version: 10.5.0.6491, [Počítačový software]. (2016). Copyright ©
1995-2016 Esri
[18] VD Boskovice. Povodí Moravy [online]. Media Age Digital, s.r.o., 2010-2020. [cit. 2020-
09-08]. Dostupné z: http://www.pmo.cz/cz/o-podniku/vodni-dila/boskovice/.
[19] DESATOVÁ, Martina. Numerické modelování proudění v bezpečnostním přelivu
vybraného vodního díla. Brno, 2020. Diplomová práce. Vysoké učení technické v Brně,
Fakulta stavební, Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
[20] HOLINKA, Matouš. Numerické modelování proudění v bezpečnostním objektu vodního
díla. Brno, 2017. Diplomová práce. Vysoké učení technické v Brně, Fakulta stavební,
Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
[21] KŘIVOHLÁVEK, Roman. Numerické modelování proudění v bezpečnostním přelivu
vodního díla Letovice. Brno, 2018. Diplomová práce. Vysoké učení technické v Brně,
Fakulta stavební, Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
[22] ŠULC, Jan, Podklady k přednáškám předmětu CR053 Bezpečnostní objekty
hydrotechnických staveb. Brno, 2020.
[23] HOLEČEK, Miroslav. Hydraulika přelivu sypaných přehrad. Praha, 2006. České vysoké
učení technické v Praze, Fakulta stavební, Katedra hydrotechniky.
[24] Místní šetření dne 17. 12. 2020 za účasti Bc. Jiří Svoboda a Milan Coufal
(Povodí Moravy, s. p.).
[25] JANDORA, Jan, Podklady k přednáškám předmětu CR005 Matematické modelování ve
vodním hospodářství. Brno, 2020.
[26] KOZUBKOVÁ, Milada, Modelování proudění tekutin, FLUENT, CFX. Vysoká škola
Báňská Technická univerzita Ostrava, 2008.

Figure 4. Structure of artificial neural network [37]

Turbulent Flow Modeling at Tunnel Spillway Concave Bends and Prediction of Pressure using Artificial Neural Network

터널 배수로 오목 굴곡에서 난류 유동 모델링 인공 신경망을 이용한 압력 예측 및 예측

Zeinab Bashari Moghaddam 1
Hossein Mohammad Vali Samani2
Seyed Habib Mousavi Jahromi 3

Abstract

터널 배수로는 높은 자유 표면 유속이 설정되는 배수로 유형 중 하나입니다. 회전 가속과 난류 흐름의 불규칙성으로 인해 오목한 수직 굽힘에서 압력이 증가합니다. 물리적 모델은 이 현상을 분석하는 가장 좋은 도구입니다.

모든 실제 프로토 타입 상태 분석을 포괄하는 데 필요한 물리적 모델의 수가 너무 많아 배치 및 비용 측면에서 비실용적입니다. 따라서 FLOW-3D 소프트웨어는 가능한 모든 실제 대안을 포괄하는 오목한 굴곡 터널의 난류 흐름 데이터베이스를 분석하고 생성하기 위해 선택되었습니다.

이 소프트웨어는 방전과 형상이 다른 다양한 터널을 시뮬레이션했습니다. 수치 결과는 Alborz Dam 터널 배수로의 건설 된 물리적 모델의 실험 결과로 검증되었으며 만족스러운 동의를 얻었습니다. 차원 분석은 문제의 관련 변수를 차원 없는 매개 변수로 그룹화하는 데 사용됩니다.

이러한 매개 변수는 인공 신경망 시뮬레이션에 사용됩니다. 결과는 Flow-3D 소프트웨어로 얻은 무 차원 매개 변수와 신경망에 의해 예측된 변수 사이의 상관 계수 R2 = 0.95를 보여 주었으며, 이와 관련하여 난류 모델링을 통해 얻은 데이터베이스를 기반으로 한 인공 신경망이 결론을 내릴 수있었습니다. 압력 예측을 위한 강력한 도구입니다.

Keywords: Flow-3D, Tunnel spillway concave bend, Numerical simulation, Turbulent flow,
Artificial neural network

본문 내용 생략 : 본문 내용은 내용 하단부에 첨부된 본문 링크를 참조하시기 바랍니다.

Figure 1. Flow in a concave curvature
Figure 1. Flow in a concave curvature
Figure 2. Flow in the curvature of the flip bucket
Figure 2. Flow in the curvature of the flip bucket
Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
Figure 4. Structure of artificial neural network [37]
Figure 4. Structure of artificial neural network [37]
Figure 5. Correlation coefficient of the Neural Network simulation and Flow-3D in the training
stage
Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)
Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)

현재 연구에서 FLOW-3D 소프트웨어는 처음에 다양한 크기와 배출의 터널 배수로에서 난류 흐름을 시뮬레이션하는데 사용되었습니다. 결과는 이란 에너지부 물 연구소에서 제공한 Alborz 저장 댐에서 얻은 실제 데이터와 비교하여 검증되었습니다.

시뮬레이션에는 다양한 난류 모델이 사용되었으며 RNG 방법이 관찰된 실제 결과와 가장 잘 일치하는 것으로 나타났습니다. 직경이 3 ~ 15m 인 다양한 터널 배수로, 곡률 반경 3 개, 거의 모든 실제 사례를 포괄하는 3개의 배출이 시뮬레이션에 사용되었습니다.

차원 분석을 사용하여 무 차원 매개 변수를 생성하고 문제의 변수 수를 줄였으며 마지막으로 두 개의 주요 무 차원 그룹이 결정되었습니다. 이러한 무 차원 변수 간의 관계를 얻기 위해 신경망을 사용하고 터널 배수로의 오목한 굴곡에서 압력 예측 단계에서 0.95의 상관 계수를 얻었습니다.

압력 계산 결과는 다른 일반적인 방법으로 얻은 결과와 비교되었습니다. 비교는 신경망 결과가 훨씬 더 정확하고 배수로 터널의 오목한 곡률에서 압력을 예측하는 강력한 도구로 간주 될 수 있음을 나타냅니다.

References

  1. Kim, D. G., & Park, J. H. (2005). Analysis of flow structure over ogee-spillway in
    consideration of scale and roughness effects by using CFD model. KSCE Journal of Civil
    Engineering, 9(2), 161-169.
  2. Sabbagh-Yazdi, S. R., Rostami, F., & Mastorakis, N. E. (2008, March). Simulation of selfaeration at steep chute spillway flow using VOF technique in a 3D finite volume software. In
    Am. Conf. on Appl. Maths. Harvard, Mass, 24-28.
  1. Nohani, E. (2015). Numerical simulation of the flow pattern on morning glory spillways.
    International Journal of Life Sciences, 9(4): 28-31.
  2. Parsaie, A., Dehdar-Behbahani, S., & Haghiabi, A. H. (2016). Numerical modeling of
    cavitation on spillway’s flip bucket. Frontiers of Structural and Civil Engineering, 10(4),
    438-444.
  3. Teuber, K., Broecker, T., Bay´on, A., N¨utzmann, G. and Hinkelmann, R. (2019) ‘CFDmodelling of free surface flows in closed conduits’, Progress in Computational Fluid
    Dynamics, 19(6), 368–380.
  4. Ghazanfari-Hashemi, R.S., Namin, M.M., Ghaeini-Hessaroeyeh, M. and Fadaei-Kermani,
    E., 2020. A Numerical Study on Three-Dimensionality and Turbulence in Supercritical Bend
    Flow. International Journal of Civil Engineering, 18(3), 381-391.
  5. Sha, H. F., Wu, S. Q., & Zhou, H. (2009). Flow characteristics in a circular-section bend of
    high head spillway tunnel. Advances in Water Science, (6), 14.
  6. Liu, Z., Zhang, D., Zhang, H., & Wu, Y. (2011). Hydraulic characteristics of converse
    curvature section and aerator in high-head and large discharge spillway tunnel. Science
    China Technological Sciences, 54(1), 33-39.
  7. Zheng, Q. W., Luo, S. J., & Zhang, F. X. (2012). The Effect of Concave Types on the
    Hydraulic Characteristics in Spillway Tunnels with High-Speed Velocity. China Rural
    Water and Hydropower, 4.
  8. Hongmin, G. U. O., Jiang, L. I., Shan, Q. I. N., & Yang, X. I. E. (2014). Three-Dimensional
    Numerical Simulation on Spillway Tunnel of Pankou Hydropower Station. Water Resources
    and Power, (4), 22.
  9. Wan, W., Liu, B., & Raza, A. (2018). Numerical Prediction and Risk Analysis of Hydraulic
    Cavitation Damage in a High-Speed-Flow Spillway. Shock and Vibration, 2018.
  10. Wei, W., Deng, J. and Xu, W. (2020). Numerical investigation of air demand by the free
    surface tunnel flows. Journal of Hydraulic Research, 1-8.
  11. Xu, W., Dang, Y., Li, G., Shao, J. and Chen, G. (2007) ‘Three-dimensional numerical
    simulation of the bi-tunnel spillway flow [J] ‘, Journal of Hydroelectric Engineering, 1, 56-
    60.
  12. Huang, H.Y., Gong, A.M., Qiu, Y. and Wangliang, Z.A. (2015) ‘ 3D Numerical Simulation
    and Experimental Analysis of Spillway Tunnel’ In Applied Mechanics and Materials. Trans
    Tech Publications Ltd. 723, 171-175.
  13. Li, S., Zhang, J. M., Xu, W. L., Chen, J. G., Peng, Y., Li, J. N., & He, X. L. (2016).
    Simulation and experiments of aerated flow in curve-connective tunnel with high head and
    large discharge. International Journal of Civil Engineering, 14(1), 23-33.
  14. Shilpakar, R., Hua, Z., Manandhar, B., Shrestha, N., Zafar, M. R., Iqbal, T., & Hussain, Z.
    (2017, August). Numerical simulation on tunnel spillway of Jingping-I hydropower project
    with four aerators. In IOP Conference Series: Earth and Environmental Science. 82, 012013.
  15. Song, C. C., & Zhou, F. (1999). Simulation of free surface flow over spillway. Journal of
    Hydraulic Engineering, 125(9), 959-967.
  16. Fais, L.M.C.F., Filho, J.G.D., Genovez, A.I.B. (2015). Geometry influence and discharge
    curve correction in morning glory spillways. Proceedings of the 36th IAHR World
    Congress.
  17. Falvey, H. T. (1990). Cavitation in chutes and spillways. Denver: US Department of the
    Interior, Bureau of Reclamation. 49-57.
  18. Chaudhry, M. H. (2007). Open-channel flow. Springer Science & Business Media.
  1. Novak, P., Moffat, A. I. B., Nalluri, C., & Narayanan, R. (2007). Hydraulic structures.
    Fourth Edition, Taylor & Francis, New York , 246–265.
  2. Jorabloo, M., Maghsoodi, R., Sarkardeh, H., & Branch, G. (2011). 3D simulation of flow
    over flip buckets at dams. Journal of American Science, 7(6), 931-936.
  3. Khani, S., Moghadam, M. A., & Nikookar, M. (2017). Pressure Fluctuations Investigation
    on the Curve of Flip Buckets Using Analytical and Numerical Methods. Vol. 03(04), 165-
    171.
  4. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
    activity. The bulletin of mathematical biophysics, 5(4), 115-133.
  5. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
    computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
  6. Wu,C.L. Huang, B. Xie, C.B. (2008) . Comparison of calculation methods for irrigation
    district water inlet, China Rural Water and Hydropower ,5 (71) ,74–77.
  7. Qiu,J. Huang, B.S. . Lai, G.W. (2002). Research and application of discharge coefficient of
    wide crest weir, China Rural Water and Hydropower ,9 ,41–42.
  8. Xiang, H.Q .Ba,D.D. Liu, J.J. (2012) . Acquiring of curved practical weir flow coefficient by
    curve-fitting based on Matlab, Hydropower Energy Sci. 3 ,97–99.
  9. Ye,Y.T. He,J.J.(2013).Experimental study on hydraulic calculation of discharge under plane
    gate on broad-crested weir, J. Water Resour. Archit. Eng. 11 (2), 138–141.
  10. Salmasi, F., Yıldırım, G., Masoodi, A., & Parsamehr, P. (2013). Predicting discharge
    coefficient of compound broad-crested weir by using genetic programming (GP) and
    artificial neural network (ANN) techniques. Arabian Journal of Geosciences, 6(7), 2709-
    2717.
  11. Noori, R.; Hooshyaripor, F. (2014). Effective prediction of scour downstream of ski-jump
    buckets using artificial neural networks. Water Resour. 41, 8–18.
  12. Flow-Science. (2014). FLOW-3D user manual. version11. In: Flow Science Santa Fe, NM.
  13. Yakhot, V. S. A. S. T. B. C. G., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G.
    (1992). Development of turbulence models for shear flows by a double expansion technique.
    Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520.
  14. Report on the hydraulic model of Alborz dam reservoir. (2001). Iran Water Research
    Institute
  15. Lippman, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine,
    4(2), pp.4-22.
  16. Baylar, A., Ozgur, K.I.S.I. and Emiroglu, M.E. (2009). Modeling air entrainment rate and
    aeration efficiency of weirs using ANN approach. Gazi University Journal of Science, 22(2),
    107-116.
  17. Maureen, C. and Caudill, M. (1989). Neural network primer: Part I. AI Expert, 2(12),
    p.1987.
Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan

Velocity distribution and discharge calculation at a sharp-crested weir

Shun-Chung Tsung • Jihn-Sung Lai •
Der-Liang Young

sharp-crested weir에서 속도 분포 및 배출 계산

개방 수로의 harp-crested 위어는 수두-방류 관계를 통해 방류를 계산하는데 유용한 장치입니다. 그러나 수위 측정 사이트와 배출 계수는 배출 계산 정확도에 큰 영향을 미칩니다. 따라서 본 연구는 각각 16MHz MicroADV와 FLOW-3D를 사용하여 위어 부분의 속도 분포를 측정하고 시뮬레이션합니다. 감마 확률 밀도 함수를 사용하여 속도 분포를 특성화하기 위해 위어 섹션의 수심 및 표면 속도가 선택됩니다. 본 연구에서는 측정된 수심과 수면 속도에서 도출된 속도 분포를 기반으로 속도-면적 통합 방법으로 정확한 배출을 계산합니다. 이 연구의 주요 기여는 정확한 측정 사이트를 제공하고, 속도 분포와 방류를 연결하고, 방류 계수 영향을 피하고, 방류 계산 정확도를 향상시키는 것입니다.

A sharp-crested weir in open channel is a useful device to calculate discharge via head-discharge relationship. However, water stage measurement site and discharge coefficient significantly influence discharge calculation accuracy. Therefore, this study measures and simulates velocity distribution at the weir section using 16-MHz MicroADV and FLOW-3D, respectively. The water depth and surface velocity at the weir section are selected to characterize velocity distribution using gamma probability density function. In this study, accurate discharge is calculated by velocity–area integration method based on velocity distribution derived from measured water depth and surface velocity. The main contributions of this study are to give an exact measurement site, link velocity distribution and discharge, avoid discharge coefficient influence, and improve discharge calculation accuracy.

Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan
Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan

References

  • Ackers P, White WR, Perkins JA, Harrison AJM (1978) Weirs and flumes for flow measurement. Wiley, New York
  • Bagheri S, Heidarpour M (2010) Application of free vortex theory to estimating discharge coefficient for sharp-crested weirs. Biosyst Eng 105:423–427
  • Chanson H, Montes JS (1998) Overflow characteristics of circular weirs: effects of inflow conditions. J Irrig Drain Eng 124(3):152–162
  • Costa JE, Cheng RT, Haeni FP, Melcher N, Spicer KR, Hayes E, Plant W, Hayes K, Teague C, Barrick D (2006) Use of radars to monitor stream discharge by noncontact methods. Water Resour Res 42:1–14
  • Ferrari A (2010) SPH simulation of free surface flow over a sharpcrested weir. Adv Water Resour 33:270–276
  • Ghodsian M (2003) Supercritical flow over a rectangular side weir. Can J Civ Eng 30:596–600
  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225
  • Hirt CW, Sicilian JM (1985) A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int. Conf. Ship Hydrodynamics, National Academy of Science, Washington, DChttp://www.flow3d.com/. Accessed 20 Nov 2012
  • Kindsvater CE, Carter R (1957) Discharge characteristics of rectangular thin-plate weirs. J Hydraul Div 83(3):1–36
  • Lai JS, Tsorng SC, Tan YC, Hwang CY (2008) Measurements and analysis of flow field over sharp-crested weir. Taiwan Water Conservancy 56(1):49–59 (in Chinese)
  • Lin C, Huang WY, Suen HF, Hsieh SC (2002) Study on the characteristics of velocity field of free overfalls over a vertical drop. In: Proc. Hydraul Meas Exp Methods Conf, Estes Park, CO, USA
  • Muson BR, Young DF, Okiishi TH (1990) Fundamentals of fluid mechanics. Wiley, New York
  • Qu J, Ramamurthy AS, Tadayon R, Chen Z (2009) Numerical simulation of sharp-crested weir flows. Can J Civ Eng 36:1530–1534
  • Rajaratnam N, Muralidhar D (1971) Pressure and velocity distribution for sharp-crested weirs. J Hydraul Res 9(2):241–248
  • Ramamurthy AS, Tim US, Rao MV (1987) Flow over sharp-crested weirs. J Irrig Drain Eng 113(2):163–172
  • Rehbock T (1929) Discussion of ‘‘precise weir measurements’’ by Schoder EW and Turner KB Trans ASCE 93: 1143–1162
  • Rouse H (1936) Discharge characteristics of the free overfall. Civ Eng ASCE 6(4):257–260
  • Samani AK, Ansari A, Borghei SM (2010) Hydraulic behaviour of flow over an oblique weir. J Hydraul Res 48(5):669–673
  • Sargisonl JE, Percy A (2009) Hydraulics of broad-crested weirs with varying side slopes. J Irrig Drain Eng 135(1):115–118
  • Subramanya K (1986) Flow in open channels. Tata McGraw-Hill, New Delhi
  • Swamee PK (1988) Generalized rectangular weir equation. J Hydraul Eng 114(8):945–949
  • Tadayon R, Ramamurthy AS (2009) Turbulence modeling of flows over circular spillways. J Irrig Drain Eng 135(4):493–498
  • U.S. Bureau of Reclamation (1997) Water measurement manual. 3rd (ed.), U.S. Government Printing Office, Washington, DC
  • Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Longman Scientific & Technical, UK
  • Zhang X, Yuan L, Peng R, Chen Z (2010) Hydraulic relations for clinging flow of sharp-crested weir. J Hydraul Eng 136(6): 385–390
Figure 12 Experimental set-up of particle image velocimetry (PIV) system.

A comparison study between CFD analysis and PIV technique for velocity distribution over the Standard Ogee crested spillways

Rizgar Ahmed Karim 1Jowhar Rasheed Mohammed 2Affiliations expand

Free PMC article

Abstract

실험 및 수치 모델을 사용하여 표준 Ogee-crested 여수로에서 유속, 평균 속도, 수직 속도 분포 및 최대 속도 dm이 발생하는 위치를 비교하기 위해 포괄적인 연구가 수행되었습니다. 미국 육군 공병대 (USACE)의 사양에 따라 rigid foam으로 5 가지 다른 모델이 제작되었습니다.

유동의 속도는 0.50, 1.00 및 1.33의 다른 비 차원 수두 비 H/Hd를 갖는 모든 모델에 대해 모델의 하류 곡선을 따라 기록되었습니다. 입자 이미지 유속계 (PIV)를 사용하여 유속을 측정했습니다. 속도 분포는 Matlab 코드를 사용하여 캡처된 일련의 이미지를 분석하여 얻었습니다.

시판되는 CFD (Computational Fluid Dynamics) 소프트웨어 패키지인 Flow-3D가 실험 모델 설정을 모델링하는데 사용되었습니다. Flow-3D는 레이놀즈 평균 Navier-Stokes 방정식을 분석하고 배수로 흐름 분석 분야에서 사용하기 위해 널리 검증되었습니다.

수치와 실험의 최대 차이는 수두비의 모든 값에 대해 6.2 %를 초과하지 않는 평균 속도 값을 나타냅니다. PIV 기법에 의해 기록 된 최대 속도의 보간된 값은 수치적으로 계산 된 값보다 작습니다.

낮은 d m 위치에서 이 지역 간의 백분율 차이는 -8.65 %에 이릅니다. 상위 위치는 2.87 %입니다. 수직 위치 (d m)는 상류 수두가 증가하면 아래쪽 위치로 떨어지고 배수로 축으로부터의 거리가 선형으로 감소합니다.

A comprehensive study was performed to compare flow rate, mean velocity, vertical velocity distribution, and locations where the maximum velocity, d m , occurs on standard Ogee-crested spillways using experimental and numerical models. Five different models were constructed from rigid foam according to the specifications of the United States Army Corps of Engineers (USACE). The velocity of the flow was recorded along the downstream curve of the model for all models with different non-dimensional head ratios H/H d of 0.50, 1.00, and 1.33. Particle Image Velocimetry (PIV) was used to measure the flow velocities. Velocity distributions were obtained by analyzing a series of captured images using Matlab codes. A commercially available Computational Fluid Dynamics (CFD) software package, Flow-3D, was used for modelling the experimental model setups. Flow-3D analyzes the Reynolds-averaged Navier-Stokes equations and is widely verified for use in the field of spillway flow analysis. The maximum difference between numerical and experimental results in mean velocity values that do not exceed 6.2% for all values of head ratios. The interpolated values of recorded maximum velocity by the PIV technique are smaller than those values numerically computed. In the lower d m locations, the percent difference between these regions reaches -8.65%; the upper locations are 2.87%. The vertical location (d m ) drops to the lower location when the upstream head increases, and the distance from the spillway axis decreases linearly.

Keywords: Applied fluid mechanics; Civil engineering; Computational fluid dynamics; Finite element methods; Hydraulics; Hydrodynamics; Ogee-crested spillway; Particle image velocimetry; Physical model; Velocity distribution.

Figure 1 Dimensions of standard ogee-crested spillway, (a) dimensions and flow parameters, and (b) detail of upstream quadrant.
Figure 1 Dimensions of standard ogee-crested spillway, (a) dimensions and flow parameters, and (b) detail of upstream quadrant.
Figure 2 Side view of the experimental model.
Figure 2 Side view of the experimental model.
Figure 3 Laboratory setup.
Figure 3 Laboratory setup.
Figure 4 Discharge Coefficients of Experimental and Numerical results plotted together with USACE-WES Published Data, (a) for model No. 1, (b) for model No. 3.
Figure 4 Discharge Coefficients of Experimental and Numerical results plotted together with USACE-WES Published Data, (a) for model No. 1, (b) for model No. 3.
Figure 5 Rating curves of theoretical discharge and flowmeter reading.
Figure 5 Rating curves of theoretical discharge and flowmeter reading.
Figure 6 Mesh geometry.
Figure 6 Mesh geometry.
Figure 7 Numerical model geometry.
Figure 7 Numerical model geometry.
Figure 8 Mesh geometry.
Figure 8 Mesh geometry.
Figure 9 Boundary conditions of the Modeling.
Figure 9 Boundary conditions of the Modeling.
Figure 10 Normalized discharge comparison.
Figure 10 Normalized discharge comparison.
Figure 11 Relative percent difference in discharge.
Figure 11 Relative percent difference in discharge.
Figure 12 Experimental set-up of particle image velocimetry (PIV) system.
Figure 12 Experimental set-up of particle image velocimetry (PIV) system.
Figure 13 (a) Spillway Model setup, (b) Raw Image, and (c) Post-processed Image.
Figure 13 (a) Spillway Model setup, (b) Raw Image, and (c) Post-processed Image.
Figure 14 Cross-correlation algorithm.
Figure 14 Cross-correlation algorithm.
Figure 15 Velocity field and streamlines measured by PIV and simulated with CFD for flow over ogee spillway, (a) model no. 1 and (b) model no. 3.
Figure 15 Velocity field and streamlines measured by PIV and simulated with CFD for flow over ogee spillway, (a) model no. 1 and (b) model no. 3.
Figure 16 Comparison of head-mean velocity of experimental and numerical analysis for all models.
Figure 16 Comparison of head-mean velocity of experimental and numerical analysis for all models.
Figure 17 Sketch of velocity profile and its position for model no. 1.
Figure 17 Sketch of velocity profile and its position for model no. 1.
Figure 18 Vertical Distribution of Velocity for Different Runs of model No. 1.
Figure 18 Vertical Distribution of Velocity for Different Runs of model No. 1.
Figure 19 Vertical location of maximum velocity.
Figure 19 Vertical location of maximum velocity.

Conclusions

이 연구는 최대 속도를위한 수직 위치를 선택하는 동시에 설계 헤드보다 높은 수두에 대해 제어 된 환경에서 Ogee 볏이있는 배수로의 흐름을 더 잘 이해하는 데 기여하기 위해 수행되었습니다. 여기에서 5 개의 실험 모델이 USACE-WES 표준 여수로 모양에 따라 설계 및 제작되었으며 실험실 수로에서 테스트되었습니다. PIV 카메라는 유속을 측정하는 데 사용되었으며 CFD 소프트웨어는 실험 설정을 모델링하는 데 사용되었습니다.

수치 결과는 실험과 잘 일치했습니다. 등급 곡선 결과는 수치 값과 PIV 값의 최대 차이가 평균 속도 값이 모든 수 두비 값에 대해 5.59 %를 초과하지 않음을 나타냅니다. 정규화 된 WES 공개 데이터와 실험 결과 간의 최대 차이는 -7.54 %였습니다.

PIV 카메라로 기록 된 평균 속도는 CFD 모델에서 수치 적으로 분석되었으며, 비교 결과는 수치 데이터와 실험 데이터가 잘 일치 함을 보여줍니다. 최대 차이는 모든 헤드 비율에 대해 6.54 %를 초과하지 않습니다.

속도 비 (v / vmax.)의 실험적 보간 데이터는 dm 이하의 위치에서 수치 적으로 계산 된 데이터보다 작지만 반대로 dm보다 높은 위치에 있습니다. 이 현상은 수치 모델링에서 표면 거칠기를 고려하지 않았기 때문에 발생합니다. 방수로 모델의 표면은 매끄러운 표면으로 가정되었습니다. 최대 속도가 발생하는 수직 위치는 상류 수두가 증가함에 따라 낮은 위치에 있습니다. 위치는 방수로 축으로부터의 거리에 따라 거의 선형 적으로 증가합니다.

필요한 메시 미세 조정 및 구성은 원하는 데이터 유형에 따라 다릅니다. 일반적으로 속도 프로파일을 모델링하는 데는 0.33cm 메쉬로 충분했으며 더 작은 그리드 크기도 평가했지만 변경 사항은 없습니다.

실험적 모델링과 수치 적 모델링의 비교와 관련하여 실험적 모델링이 여전히 더 확립되어 있음이 분명합니다. CFD 모델은 실험 모델보다 속도와 난류에 대해 더 자세한 정보를 제공 할 수 있지만 경우에 따라 더 경제적 일 수 있습니다.

References

  • Adrian R.J. Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 1991;23(1):261–304. [Google Scholar]
  • Adrian L., Adrian R.J., Westrweel J. Cambridge University Press; 2011. Particle Image Velocimetry. [Google Scholar]
  • Chanel P.G. University of Manitoba; Winnipeg, Manitoba, Canada: 2009. An Evaluation of Computational Fluid Dynamics for Spillway Modeling.http://hdl.handle.net/1993/3112 M.Sc. Thesis. [Google Scholar]
  • Engineers U.A. C.o. Waterways Experiment Station Vicksburg, Miss. 1952. Corps of Engineers hydraulic design criteria. [Google Scholar]
  • Fujita I. Large-scale particle image velocimetery for flow analysis in hydraulic engineering applications. J. Hydraul. Res. 1998;36(3):397–414. [Google Scholar]
  • Ho D.K. Taylor and Francis group; London, UK: 2006. Application of Numerical Modelling to Spillways in Australia; pp. 951–959. [Google Scholar]
  • Kanyabujinja P.N. Stellenbosch university; Stellenbosch, South Africa: 2015. CFD Modelling of Ogee Spillway Hydraulics and Comparison with Experimental Mosel Tests.http://hdl.handle.net/10019.1/96787 M.Sc. thesis. [Google Scholar]
  • Khatsuria R.M. CRC Press; 2004. Hydraulics of Spillways and Energy Dissipators. [Google Scholar]
  • Kim D.G., Park J.H. Analysis of flow structure over ogee-spillway in considration of scale and roughness effects by using CFD model. KSCE J. Civil Eng. 2005;9(2):161–169. [Google Scholar]
  • Kuok K.k., Chiu P.C. Application of particle image velocimetry (PIV) for measuring water velocity in laboratory sedimentation tank” IRA Int. J. Technol. Eng. 2017;9(3):16–26. [Google Scholar]
  • Maynord S.T. Technical Report HL-85-1, US Army Engineering Waterways Experiment Station, Vicksburg, Mississippi. 1985. General spillway investigation: hydraulic model investigation.https://apps.dtic.mil/dtic/tr/fulltext/u2/a156686.pdf [Google Scholar]
  • Peltier Y. 2nd International Workshop on Hydraulic Structure. Coimbra; Portugal: 2015. Pressure and velocity on an ogee spillway crest operating at high head ratio: experimental measurements and validation; pp. 128–136. [Google Scholar]
  • Peltier Y., Dewals B., Archambeau P., Pirotton M., Erpicum S. Pressure and velocity on an ogee spillway crest operating at high head ratio: experimental measurements and validation. J. Hydro-Environ. Res. 2018;19:128–136. [Google Scholar]
  • Savage B.M., Johnson M.C. Flow over ogee spillway:experimental and numerical model case study” J. Hydraul. Eng. 2001;127(8):640–649. [Google Scholar]
  • Sveen J.K., Cowen E.A. Advances in Coastal and Ocean/Engineering PIV and Water Waves. Would Scientific; 2004. Quantitative imaging techniques and their application to wavy flows, in PIV and water waves” pp. 1–49. [Google Scholar]
  • U.S. Bureau of Reclamation . Water Resources Technical Publication, U.S. Department of the Interior, Bureau of Reclamation; 1987. Design of Small Dams. [Google Scholar]
  • Willey J., Ewing T., Wark B., Lesleighter E. Commission International Des Grands Barrages,Kyoto. 2012. Complementary use of experimental and numerical modelling techniques in spillway design refinement; pp. 1–22.https://books.google.com_books_about_An_Introduction_to_Computati [Google Scholar]
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.

Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment

by Ana L. Quaresma *OrcID andAntónio N. PinheiroOrcID
CERIS—Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal*
Author to whom correspondence should be addressed.
Academic Editor: Bommanna Krishnappan
Water 2021, 13(6), 851; https://doi.org/10.3390/w13060851
Received: 16 January 2021 / Revised: 8 March 2021 / Accepted: 18 March 2021 / Published: 20 March 2021
(This article belongs to the Special Issue Ecohydraulics of Pool-Type Fishways)

Abstract

이 연구에서는 전산 유체 역학 (CFD) 소프트웨어 (FLOW-3D®)를 사용하여 바닥 오리피스가 있는 풀형 어로에서 흐름의 3D 수치 모델링을 수행했습니다. 수치 결과는 음향 도플러 속도계 (ADV) 및 입자 이미지 속도계 (PIV) 측정에서 얻은 실험 데이터와 비교되었습니다.

흐름 깊이, 흐름 패턴, 수속, 난류 운동 에너지, Reynolds 수직 응력 및 바닥 구성 요소에 평행한 Reynolds 전단 응력과 같이 어로 효율에 영향을 미치는 여러 유체 역학적 변수를 정성 및 정량적으로 비교했습니다.

수치 모델은 복잡한 유동장을 정확하게 재현하여 수치 모델 예측과 분석 된 변수에 대한 실험 데이터 사이에 전반적으로 좋은 일치를 보여줍니다. 분석중인 모든 매개 변수에 대한 수치 모델 검증 수행의 중요성이 강조되었습니다.

또한 프로토 타입 어로의 업 스케일 된 수치 모델을 실행하여 스케일링 효과를 분석했습니다. 스케일 효과의 증거없이 실제 모델과 프로토 타입 치수 모두에 대해 유사한 정확도로 모델을 수행했습니다.

현재 연구는 CFD 모델 (즉, FLOW-3D®)이 새로운 수영장 유형 어로 형상을 위한 적절하고 효율적인 설계 및 분석 도구로 사용될 수 있으며 물리적 모델 테스트를 줄이고 보완 할 수 있다고 결론지었습니다.

In this study, the 3D numerical modelling of flow in a pool-type fishway with bottom orifices was performed using computational fluid dynamics (CFD) software (FLOW-3D®). Numerical results were compared with experimental data obtained from acoustic Doppler velocimetry (ADV) and particle image velocimetry (PIV) measurements. Several hydrodynamic variables that influence fishways efficiencies, such as flow depths, flow patterns, water velocity, turbulent kinetic energy, Reynolds normal stresses, and Reynolds shear stress parallel to the bottom component, were qualitatively and quantitatively compared. The numerical model accurately reproduced the complex flow field, showing an overall good agreement between the numerical model predictions and the experimental data for the analysed variables. The importance of performing a numerical model validation for all the parameters under analyses was highlighted. Additionally, scaling effects were analysed by running an upscaled numerical model of the prototype fishway. The model performed with similar accuracy for both physical model and prototype dimensions with no evidence of scale effects. The present study concludes that CFD models (namely FLOW-3D®) may be used as an adequate and efficient design and analysis tool for new pool-type fishways geometries, reducing and complementing physical model testing.Keywords: pool-type fishways3D numerical modellingLESscale effectsflow patternsCFD model assessment

Introduction

강의 종단 연결성을 복원하는 것은 담수 생태계의 회복에있어 여전히 중요한 문제입니다 [1,2]. 잘 설계되고 건설된 경우 어로는 물고기가 댐과 둑을 지나 계속 이동할 수 있는 경로를 제공합니다.

물고기 통과 효율성에 대한 검토에서 Noonan et al. [3]은 기존의 많은 어로의 설계 특성이 어종의 요구를 적절하게 충족시키지 못했지만, 풀형 어로가 모든 어류 그룹에 대해 가장 높은 효율성을 보여 주었다는 것을 발견했습니다.
여러 어종에 적합한 수영 조건을 제공하는 것은 어항의 흐름과 난류 패턴이 성공에 중요한 역할을 하기 때문에 다소 어려운 일입니다 [2,4,5,6,7,8,9,10,11,12].

물리적 모델링은 풀형 유형 어로의 유체 역학을 연구하기 위한 주요 접근 방식이었습니다 (예 : [13,14,15,16,17,18,19,20,21,22]). 그러나 물리적 실험은 비용과 시간이 많이 소요됩니다. 따라서 컴퓨터 기술의 발전으로 인해 물리적 모델 테스트를 줄이기 위해 복잡한 기하학적 구조를 가진 유압 구조의 흐름 패턴을 분석하는 데 전산 유체 역학 (CFD) 3 차원 (3D) 모델이 점점 더 많이 사용되고 있습니다 [23,24].

따라서 이러한 모델은 어로 유체 역학 연구 및 효율적인 어로 설계에 필수적인 역할을 할 수 있습니다.
어로에 대한 수치 모델링 연구는 주로 수직 슬롯 어로에 초점을 맞추고 있습니다 [12,25,26,27,28,29,30,31,32,33,34,35,36,37]. 수영장의 주요 부분에서 수직 슬롯 어로 흐름은 거의 2 차원 (2D)이고 수직 속도 구성 요소가 수평 요소 [26]보다 훨씬 작기 때문에 이러한 연구의 대부분은 2D 모델을 사용했습니다.

바닥 오리피스가있는 수영장 유형 어로에서는 흐름이 매우 복잡하고 3D이므로 정확한 유동장 특성화를 얻기 위해 3D 모델을 사용해야합니다. 이 어로 구성을 모델링하는 것은 높은 속도 구배, 높은 와도 및 높은 전단 영역을 포함하기 때문에 다소 어렵습니다.

이 연구에서는 FLOW-3D® (Flow Science, Inc., Santa Fe, NM, USA)를 사용하여 바닥 오리피스가 있는 수영장 유형 어로의 3D 수치 시뮬레이션을 수행하여 흐름 깊이, 속도 및 난류 패턴을 예측하는 능력을 평가했습니다. .

최근 몇 년 동안 실내에 가까운 프로토 타입 수영장 형 어로가 사이프 린드 종의 행동과 움직임을 연구하는데 사용되었습니다 [1,7,8,11,38,39,40,41,42,43]. Silva et al. [38]은 노치, 급락 및 스트리밍에 대한 두 가지 다른 유동 체제와 관련하여 조정 가능한 치수를 가진 침수된 오리피스와 표면 노치의 동시 존재에 대한 Iberian barbel Luciobarbus bocagei (Steindachner, 1864)의 반응을 평가했습니다.

이 연구의 결과는 이베리아 바벨이 어로를 협상하기 위해 오리피스 (76 %)를 선호했으며 어로에 들어가는 데 걸리는 시간도 오리피스에 비해 훨씬 적다는 것을 보여주었습니다.

Silva et al. [39] 오프셋 및 직선 오리피스가있는 수영장 유형 어로의 이베리아 바벨에 대한 적합성을 테스트했습니다. 이 연구는 오프셋 구성이 직선 오리피스 레이아웃 (28 %)에 비해 물고기 통과 성공률 (68 %)이 훨씬 더 높음을 발견했습니다. 어로를 성공적으로 협상하는 데 걸리는 시간도 오프셋 구성, 특히 작은 성인의 경우 훨씬 더 낮았습니다.

이 연구에서는 유속과 난류 매개 변수가 물고기 수영 성능에 미치는 영향을 분석했습니다. 수영장의 유동장을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다.

이 연구의 결과에 따르면 레이놀즈 전단 응력은 어로 내 이베리아 미늘의 움직임에 가장 큰 영향을 미치는 매개 변수임이 입증되었습니다. Branco et al. [40] 두 가지 다른 흐름을 가진 오리피스와 노치가 있는 풀형 유형 어로에서 형태 학적 및 생태학적 특성이 다른 두 종, 바닥 지향 이베리아 바벨 Luciobarbus bocagei 및 물기둥 수영 자 Iberian chub Squalius pyrenaicus의 거동과 성능을 평가했습니다.

풀의 유체 역학을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다. 결과는 두 종 모두 흐름 흐름이있는 노치를 선호했으며 이 흐름 체제로 상류로 이동하는데 더 성공적이었습니다.
이 연구에서는 이 시설의 1 : 2.5 스케일 어로 모델을 사용하여 Silva et al.에 의해 테스트된 바닥 오리피스 구성이 있는 풀형 유형 어로의 속도와 난류를 측정했습니다.

[7,38] 효과가 입증된 바벨 사용. 2D 입자 이미지 속도계 (PIV) 시스템 및 음향 도플러 속도계 (ADV)를 사용하여 순간 속도의 광범위한 측정을 수행하고, 후 처리하고, 수치 모델 정확도를 평가하는 데 사용했습니다.

Haque et al. [44] 대부분의 경우 수치 모델의 검증에 사용할 수있는 실험 데이터 세트에 높은 측정 오류가 있고 / 또는 측정 메시가 너무 거칠어 서 이들의 예측 기능을 올바르게 평가할 수없는 문제를 언급했습니다.

모델. Blocken과 Gualtieri [23]는 검증 및 검증 연구가 필수적이며 CFD 연구를 검증하기위한 데이터를 제공하기 위해 고품질 실험이 필요하다고 언급합니다.

Fuentes-Pérez et al. [35]는 특히 난류 메트릭에 대한 어로 연구에서 수치 모델 검증 데이터를 찾는 데 어려움을 언급합니다. 두 가지 측정 기술을 사용하고 상당한 양의 실험 데이터를 얻었기 때문에 이 연구에서는 이러한 문제를 극복했습니다.

물리적 모델은 종종 Froude 수 유사성을 기반으로하며, 두 유사성 법칙을 모두 충족하는 데 어려움이있어 무시되는 레이놀즈 수 유사성입니다. 프로토 타입 레이놀즈 수가 일반적으로 훨씬 더 크기 때문에 레이놀즈 수 관련 스케일 효과가 도입될 수 있습니다.

레이놀즈 수 증가는 속도 분포와 경계층 속성에 영향을 미칠 수 있습니다 [45]. 척도 효과를 평가하기 위해 수치 시뮬레이션을 사용할 수 있습니다 [46,47]. 따라서 본 연구에서는 바닥 오리피스 흐름이있는 풀형어도에 대한 스케일 효과를 분석하기 위해 두 가지 크기의 수치 모델을 개발했습니다.

프로토 타입 치수의 대형 모델과 물리적 모델 치수의 스케일 된 소형 모델입니다. .
바닥 오리피스가있는 수영장 형 어로의 유동장은 수직 슬롯 어로 (VSF)의 유동장보다 매우 3 차원 적이며 훨씬 더 복잡합니다. 이는 어로 수치 모델 검증에 대한 이전 연구에서 더 자주 고려 된 설계입니다 [26, 27,28,29,35].

저자가 아는 한, 이것은 바닥 오리피스가있는 풀형 어로에 대한 최초의 CFD 연구이며, 여기에는 실험 속도 데이터와 풀형 어로에 대한 3 차원 수치 모델링 결과 간의 가장 광범위한 비교도 포함됩니다. 두 가지 다른 측정 기술 (PIV 및 ADV)이 사용되어 자세한 비교가 가능하고 이러한 유형의 유동장에 대한 CFD 시뮬레이션 결과에 대한 확신을 제공합니다.

이 연구는 다른 어로 유형의 이전 수치 모델 연구에서 제시되지 않았던 난류 매개 변수를 포함하여 수치 모델 결과와 측정 간의 일치에 대한 통계적 테스트를 통해 정성적 비교 뿐만 아니라 상세한 정량적 비교도 제공합니다. 스케일 효과도 다룹니다.

따라서 이 연구는 전 세계적으로 가장 많이 사용되는 풀 유형 어로의 CFD 모델 검증을 원활하게 할 것이며 [10] 설계자들의 사용을 장려 할 것입니다.
또한 새로운 풀 유형 어로 형상을 위한 설계 도구로 CFD 모델 (즉, FLOW 3D®)을 사용하는 방법에 대해 설명합니다.

Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).

References

  1. Santos, J.M.; Branco, P.J.; Silva, A.T.; Katopodis, C.; Pinheiro, A.N.; Viseu, T.; Ferreira, M.T. Effect of two flow regimes on the upstream movements of the Iberian barbel (Luciobarbus bocagei) in an experimental pool-type fishway. J. Appl. Ichthyol. 2012, 29, 425–430. [CrossRef]
  2. Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thinking like a fish: A key ingredient for development of
    effective fish passage facilities at river obstructions. River Res. Appl. 2012, 28, 407–417. [CrossRef]
  3. Noonan, M.J.; Grand, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [CrossRef]
  4. Haro, A.; Kynard, B. Video Evaluation of Passage Efficiency of American Shad and Sea Lamprey in a Modified Ice Harbor Fishway. N. Am. J. Fish. Manag. 1997, 17, 981–987. [CrossRef]
  5. Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish; Contract no. 00000022, Project no. 200005700 (BPA Report DOE/BP-00000022-1); Report to the Bonneville Power
    Administration: Portland, Oregon, 2002.
  6. Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juveniles of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [CrossRef]
  7. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [CrossRef]
  8. Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [CrossRef]
  9. Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The IPOS framework: Linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res. Appl. 2012, 28, 429–443. [CrossRef]
  10. Santos, J.M.; Silva, A.T.; Katopodis, C.; Pinheiro, P.J.; Pinheiro, A.N.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: Getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [CrossRef]
  11. Branco, P.J.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Ferreira, M.T. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 2013, 714,
    145–154. [CrossRef]
  12. Gao, Z.; Andersson, H.I.; Dai, H.; Jiang, F.; Zhao, L. A new Eulerian-Lagrangian agent method to model fish paths in a vertical slot fishways. Ecol. Eng. 2016, 88, 217–225. [CrossRef]
  13. Rajaratnam, N.; Katopodis, C.; Mainali, M. Pool-orifice and pool-orifice-weir fishways. Can. J. Civ. Eng. 1989, 16, 774–777. [CrossRef]
  14. Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng. 1999, 125, 351–360. [CrossRef]
  15. Kim, J.H. Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 2001, 16, 425–433. [CrossRef]
  16. Ead, S.A.; Katopodis, C.; Sikora, G.J.; Rajaratnam, N. Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 2004, 3, 379–390. [CrossRef]
  17. Puertas, J.; Pena, L.; Teijeiro, T. Experimental approach to the hydraulics of vertical slot fishways. J. Hydraul. Eng. 2004, 130,10–23. [CrossRef]
  18. Liu, M.; Rajaratnam, N.; Zhu, D.D. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132,765–777. [CrossRef]
  19. Yagci, O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 2010, 36, 36–46. [CrossRef]
  20. Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [CrossRef]
  21. Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [CrossRef]
  22. Ballu, A.; Calluaud, D.; Pineau, G.; David, L. Experimental study of the influence of macro-roughnesses on vertical slot fishway flows. La Houille Blanche 2017, 2, 9–14. [CrossRef]
  23. Blocken, B.; Gualtieri, C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for
    environmental fluid mechanics. Environ. Model. Softw. 2012, 33, 1–22. [CrossRef]
  24. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection
    technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58, 71–85. [CrossRef]
  25. Khan, L.A. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics and Fish Passage Energetics in a Vertical-Slot Fishway. N. Am. J. Fish. Manag. 2006, 26, 255–267. [CrossRef]
  26. Cea, L.; Pena, L.; Puertas, J.; Vazquez-Cendon, M.E.; Peña, E. Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 2007, 133, 160–172. [CrossRef]
  27. Barton, A.F.; Keller, R.J.; Katopodis, C. Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics. Aust. J. Water Res. 2009, 13, 53–60. [CrossRef]
  28. Chorda, J.; Maubourguet, M.M.; Roux, H.; George, J.; Larinier, M.; Tarrade, L.; David, L. Two-dimensional free surface flow numerical model for vertical slot fishways. J. Hydraul. Res. 2010, 48, 141–151. [CrossRef]
  29. Bombaˇc, M.; Novak, G.; Rodiˇc, P.; Cetina, M. Numerical and physical model study of a vertical slot fishway. ˇ J. Hydrol. Hydromech.
    2014, 62, 150–159. [CrossRef]
  30. Bombaˇc, M.; Novak, G.; Mlacnik, J.; Cetina, M. Extensive field measurements of flow in vertical slot fishway as data for validation ˇ of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [CrossRef]
  31. Bombaˇc, M.; Cetina, M.; Novak, G. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. ˇ Ecol.
    Eng. 2017, 107, 126–136. [CrossRef]
  32. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [CrossRef]
  33. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Cooke, S.J.; Katopodis, C. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol. Eng. 2016, 90, 190–202. [CrossRef]
  34. Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Res. Appl. 2017, 33, 1295–1305. [CrossRef]
  35. Fuentes-Pérez, J.F.; Silva, A.T.; Tuhtan, J.A.; García-Vega, A.; Carbonell-Baeza, R.; Musall, M.; Kruusmaa, M. 3D modelling of
    non-uniform and turbulent flow in vertical slot fishways. Environ. Model. Softw. 2018, 99, 156–169. [CrossRef]
  36. Stamou, A.; Mitsopoulos, G.; Rutschmann, P.; Bui, M. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid
    Mech. 2018, 18, 1435–1461. [CrossRef]
  37. Sanagiotto, D.; Rossi, J.; Bravo, J. Applications of computational fluid dynamics in the design and rehabilitation of nonstandard
    vertical slot fishways. Water 2019, 11, 199. [CrossRef]
  38. Silva, A.T.; Santos, J.M.; Franco, A.C.; Ferreira, M.T.; Pinheiro, A.N. Selection of Iberian barbel Barbus bocagei (Steindachner, 1864)
    for orifices and notches upon different hydraulic configurations in an experimental pool-type fishway. J. Appl. Ichthyol. 2009, 25,
    173–177. [CrossRef]
  39. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Passage efficiency of offset and straight orifices for upstream movements of Iberian barbel in a pool-type fishway. River Res. Appl. 2012, 28, 529–542. [CrossRef]
  40. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows. PLoS ONE 2013, 8, e65089. [CrossRef]
  41. Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage performance
    of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [CrossRef]
  42. Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [CrossRef]
  43. Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N. Cyprinid passage performance in an experimental multislot fishway across distinct seasons. Mar. Freshw. Res. 2019, 70, 881–890. [CrossRef]
  44. Haque, M.M.; Constantinescu, G.; Weber, L. Validation of a 3D RANS model to predict flow and stratification effects related to fish passage at hydropower dams. J. Hydraul. Res. 2007, 45, 787–796. [CrossRef]
  45. Dargahi, B. Flow characteristics of bottom outlets with moving gates. J. Hydraul. Res. 2010, 48, 476–482. [CrossRef]
  46. Huang, W.; Yang, Q.; Xiao, H. CFD modelling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluids 2009, 38, 1050–1058. [CrossRef]
  47. Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [CrossRef]
  48. Larinier, M. Pool fishways, pre-barrages and natural bypass channels. Bull. Français de la Pêche et de la Piscic. 2002, 364, 54–82. [CrossRef]
  49. Quaresma, A.L.; Ferreira, R.M.L.; Pinheiro, A.N. Comparative analysis of particle image velocimetry and acoustic Doppler
    velocimetry in relation to a pool-type fishway flow. J. Hydraul. Res. 2017, 55, 582–591. [CrossRef]
  50. Flow Science, Inc. Flow-3D Version 11.2 User Manual; Flow Science, Inc.: Los Alamos, NM, USA, 2016.
  51. Hirt, C.W.; Sicilian, J.M. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the International Conference on Numerical Ship Hydrodynamics, Washington, DC, USA, 4 September 1985.
  52. Savage, B.M.; Johnson, M.C. Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 2001, 127, 640–649. [CrossRef]
  53. Abad, J.D.; Rhoads, B.L.; Güneralp, I.; García, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063. [CrossRef]
  54. Bombardelli, F.A.; Meireles, I.; Matos, J. Laboratory measurements and multi-block numerical simulations of the mean flow and
    turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11, 263–288. [CrossRef]
  55. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
  56. Duguay, J.M.; Lacey, R.W.J.; Gaucher, J. A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol. Eng. 2017, 103, 31–42. [CrossRef]
  1. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 1981, 39, 201–225. [CrossRef]
  2. Van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comp. Phys. 1977, 23, 276–299. [CrossRef]
  3. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due
    to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001 (4pages). [CrossRef]
  4. Smagorinsky, J. General circulation experiments with the primitive equations: I. The Basic Experiment. Mon. Weather Rev. 1963,
    91, 99–164. [CrossRef]
  5. Meyers, J.; Geurts, B.J.; Baelmans, M. Database analysis of errors in large-eddy simulation. Phys. Fluids 2003, 15, 2740–2755.[CrossRef]
  6. Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of Resolution Quality for Large Eddy Simulations. J. Fluids Eng. 2005, 127, 949–958. [CrossRef]
  7. Freitag, M.; Klein, M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering. J. Turbul. 2006, 7, 1–11. [CrossRef]
  8. Gousseau, P.; Blocken, B.; van Heijst, G.J.F. Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Comput. Fluids 2013, 79, 120–133. [CrossRef]
  9. Celik, I.; Li, J.; Hu, G.; Shaffer, C. Limitations of Richardson Extrapolation and Some Possible Remedies. J. Fluids Eng. 2005, 127, 795–805. [CrossRef]
  10. Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
  11. Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]
  12. Bennett, N.D.; Crok, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newhama, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [CrossRef]
  13. Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [CrossRef]
  14. Lane, S.N.; Richards, K.S. The “validation” of hydrodynamic models: Some critical perspectives. In Model Validation for Hydrological
    and Hydraulic Research; Bates, P.D., Anderson, M.G., Eds.; John Wiley: Hoboken, NJ, USA, 2001; pp. 413–438.
  15. Bradbrook, K.F.; Biron, P.M.; Lane, S.N.; Richards, K.S.; Roy, A.G. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol. Process. 1998, 12, 1371–1396. [CrossRef]
  16. Bradbrook, K.F.; Lane, S.N.; Richards, K.S.; Biron, P.M.; Roy, A.G. Role of bed discordance at asymmetrical river confluences. J. Hydraul. Eng. 2001, 127, 351–368. [CrossRef]
  17. Ferguson, R.I.; Parsons, D.R.; Lane, S.N.; Hardy, R.J. Flow in meander bends with recirculation at the inner bank. Water Resour. Res. 2003, 39, 1322–1334. [CrossRef]
  18. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Predicting equilibrium scour-hole geometry near angled stream deflectors using a three-dimensional numerical flow model. J. Hydraul. Eng. 2007, 133, 983–988. [CrossRef]
  19. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Three-dimensional numerical simulation of flow around stream deflectors: The effects of obstruction angle and length. J. Hydraul. Res. 2007, 45, 227–238. [CrossRef]
  20. Han, S.S.; Biron, P.M.; Ramamurthy, A.S. Three-dimensional modelling of flow in sharp open-channel bends with vanes. J. Hydraulic Res. 2011, 49, 64–72. [CrossRef]
  21. Klein, M. An Attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 2005, 75, 131–147. [CrossRef]
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.

Numerical Study of Fluctuating Pressure on Stilling Basin Slab with Sudden Lateral Enlargement and Bottom Drop

급격한 측면 확대 및 바닥 낙하에 따른 정류지(stilling basin) 슬래브의 변동 압력에 대한 수치 연구

by Yangliang Lu,Jinbu Yin *OrcID,Zhou Yang,Kebang Wei andZhiming Liu
College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road, Yangling 712100, China*
Author to whom correspondence should be addressed.
Water 2021, 13(2), 238; https://doi.org/10.3390/w13020238
Received: 6 November 2020 / Revised: 7 January 2021 / Accepted: 11 January 2021 / Published: 19 January 2021
(This article belongs to the Special Issue Physical Modelling in Hydraulics Engineering)

Abstract

갑작스런 확장 및 바닥 낙하가 있는 고요한 정류지(stilling basin) 유역은 복잡한 수력 특성, 특히 3D 공간 수력 점프 아래에서 변동하는 압력 분포로 이어집니다.

이 논문은 FLOW-3D 소프트웨어를 기반으로 한 LES (Large Eddy Simulation) 모델과 TruVOF 방법을 사용하여 시간 평균 압력, 변동 압력의 RMS (Root Mean Square), 정물(stilling basin) 조 슬래브의 최대 및 최소 압력을 시뮬레이션했습니다.

실제 모델 결과와 비교하여 시뮬레이션 결과는 LES 모델이 정물 유역의 변동하는 수류 압력을 안정적으로 시뮬레이션 할 수 있음을 보여줍니다. 변동 압력의 RMS의 최대 값은 정수조 전면과 측벽의 연장선 부근에 나타납니다.

이 논문은 변동 압력의 생성 메커니즘과 Navier-Stokes 방정식에서 파생된 Poisson 방정식을 기반으로 영향 요인 (변동 속도, 속도 구배, 변동 와도)의 정량 분석과 특성의 정성 분석을 결합하는 연구 방법을 제공합니다.

변동하는 압력의. 정류 지의 소용돌이 영역과 벽에 부착 된 제트 영역의 변동 압력 분포는 주로 각각 와류 및 변동 유속의 영향을 받으며 충돌 영역의 분포는 변동 속도, 속도 구배 및 변동에 의해 발생합니다.

A stilling basin with sudden enlargement and bottom drop leads to complicated hydraulic characteristics, especially a fluctuating pressure distribution beneath 3D spatial hydraulic jumps. This paper used the large eddy simulation (LES) model and the TruVOF method based on FLOW-3D software to simulate the time-average pressure, root mean square (RMS) of fluctuating pressure, maximum and minimum pressure of a stilling basin slab. Compared with physical model results, the simulation results show that the LES model can simulate the fluctuating water flow pressure in a stilling basin reliably. The maximum value of RMS of fluctuating pressure appears in the vicinity of the front of the stilling basin and the extension line of the side wall. Based on the generating mechanism of fluctuating pressure and the Poisson Equation derived from the Navier–Stokes Equation, this paper provides a research method of combining quantitative analysis of influencing factors (fluctuating velocity, velocity gradient, and fluctuating vorticity) and qualitative analysis of the characteristics of fluctuating pressure. The distribution of fluctuating pressure in the swirling zone of the stilling basin and the wall-attached jet zone is mainly affected by the vortex and fluctuating flow velocity, respectively, and the distribution in the impinging zone is caused by fluctuating velocity, velocity gradient and fluctuating vorticity. 

Keywords: submerged jumpsudden lateral enlargement and bottom droplarge eddy simulationvortexfluctuating pressure

Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.

Table 1. Operating conditions.

ConditionFlow Discharge
(m3/s)
Inflow Froude NumberInflow Velocity (m/s)Inflow Water Depth (m)
10.9425.2955.6110.114
20.6434.5454.4890.097
30.2324.2273.0180.052
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.

Table 2. Grid independence test.

GridContaining Block Cell Size (m)Nested Block Cell Size (m)Discharge
(m3/s)
Relative Error (%)
10.0500.0250.9905.10
20.0400.0200.9692.70
30.0300.0150.9561.49
40.0200.0100.9521.06
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 7. Comparison of bottom velocity.
Figure 7. Comparison of bottom velocity.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 13. Variance of fluctuating pressure coefficient (Cp′).
Figure 13. Variance of fluctuating pressure coefficient (Cp′).

References

  1. Liu, P.Q.; Dong, J.R.; Yu, C. Experimental investigation of fluctuation uplift on rock blocks at the bottom of the scour pool downstream of Three-Gorges spillway. J. Hydraul. Res. 199836, 55–68. [Google Scholar] [CrossRef]
  2. Liu, P.Q.; Li, A.H. Model discussion of pressure fluctuations propagation within lining slab joints in stilling basins. J. Hydraul. Eng. 2007133, 618–624. [Google Scholar] [CrossRef]
  3. Mousavi, S.N.; Júnior, R.S.; Teixeira, E.D.; Bocchiola, D.; Nabipour, N.; Mosavi, A.; Shamshirband, S. Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods. Mathematics 20208, 323. [Google Scholar] [CrossRef]
  4. Sun, S.-K.; Liu, H.-T.; Xia, Q.-F.; Wang, X.-S. Study on stilling basin with step down floor for energy dissipation of hydraulic jump in high dams. J. Hydraul. Eng. 200536, 1188–1193. (In Chinese) [Google Scholar]
  5. Li, Q.; Li, L.; Liao, H. Study on the Best Depth of Stilling Basin with Shallow-Water Cushion. Water 201810, 1801. [Google Scholar] [CrossRef]
  6. Luo, Y.-Q.; He, D.-M.; Zhang, S.-C.; Bai, S. Experimental Study on Stilling Basin with Step-down for Floor Slab Stability Characteristics. J. Basic Sci. Eng. 201220, 228–236. (In Chinese) [Google Scholar]
  7. Zhang, J.; Zhang, Q.; Wang, T.; Li, S.; Diao, Y.; Cheng, M.; Baruch, J. Experimental Study on the Effect of an Expanding Conjunction Between a Spilling Basin and the Downstream Channel on the Height After Jump. Arab. J. Sci. Eng. 201742, 4069–4078. [Google Scholar] [CrossRef]
  8. Ram, K.V.S.; Prasad, R. Spatial B-jump at sudden channel enlargements with abrupt drop. J. Hydraul. Eng. -Asce 1998124, 643–646. [Google Scholar] [CrossRef]
  9. Hassanpour, N.; Hosseinzadeh Dalir, A.; Farsadizadeh, D.; Gualtieri, C. An Experimental Study of Hydraulic Jump in a Gradually Expanding Rectangular Stilling Basin with Roughened Bed. Water 20179, 945. [Google Scholar] [CrossRef]
  10. Siuta, T. The impact of deepening the stilling basin on the characteristics of hydraulic jump. Czas. Tech. 2018. [Google Scholar] [CrossRef]
  11. Babaali, H.; Shamsai, A.; Vosoughifar, H. Computational Modeling of the Hydraulic Jump in the Stilling Basin with Convergence Walls Using CFD Codes. Arab. J. Sci. Eng. 201440, 381–395. [Google Scholar] [CrossRef]
  12. Dehdar-behbahani, S.; Parsaie, A. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alex. Eng. J. 201655, 467–473. [Google Scholar] [CrossRef]
  13. Macián-Pérez, J.F.; García-Bartual, R.; Huber, B.; Bayon, A.; Vallés-Morán, F.J. Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water 202012, 227. [Google Scholar] [CrossRef]
  14. Tajabadi, F.; Jabbari, E.; Sarkardeh, H. Effect of the end sill angle on the hydrodynamic parameters of a stilling basin. Eur. Phys. J. Plus 2018133. [Google Scholar] [CrossRef]
  15. Valero, D.; Bung, D.B.; Crookston, B.M. Energy Dissipation of a Type III Basin under Design and Adverse Conditions for Stepped and Smooth Spillways. J. Hydraul. Eng. 2018144. [Google Scholar] [CrossRef]
  16. Liu, D.; Fei, W.; Wang, X.; Chen, H.; Qi, L. Establishment and application of three-dimensional realistic river terrain in the numerical modeling of flow over spillways. Water Supply 201818, 119–129. [Google Scholar] [CrossRef]
  17. Epely-Chauvin, G.; De Cesare, G.; Schwindt, S. Numerical Modelling of Plunge Pool Scour Evolution In Non-Cohesive Sediments. Eng. Appl. Comput. Fluid Mech. 20158, 477–487. [Google Scholar] [CrossRef]
  18. Zhang, J.-M.; Chen, J.-G.; Xu, W.-L.; Peng, Y. Characteristics of vortex structure in multi-horizontal submerged jets stilling basin. Proc. Inst. Civ. Eng. Water Manag. 2014167, 322–333. [Google Scholar] [CrossRef]
  19. Li, L.-X.; Liao, H.-S.; Liu, D.; Jiang, S.-Y. Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrodyn. 201527, 522–529. [Google Scholar] [CrossRef]
  20. Ferreri, G.B.; Nasello, C. Hydraulic jumps at drop and abrupt enlargement in rectangular channel. J. Hydraul. Res. 201040, 491–505. [Google Scholar] [CrossRef]
  21. Naseri, F.; Sarkardeh, H.; Jabbari, E. Effect of inlet flow condition on hydrodynamic parameters of stilling basins. Acta Mech. 2017229, 1415–1428. [Google Scholar] [CrossRef]
  22. Zhou, Z.; Wang, J.-X. Numerical Modeling of 3D Flow Field among a Compound Stilling Basin. Math. Probl. Eng. 2019, 5934274. [Google Scholar] [CrossRef]
  23. Qian, Z.; Hu, X.; Huai, W.; Amador, A. Numerical simulation and analysis of water flow over stepped spillways. Sci. China Ser. E Technol. Sci. 200952, 1958–1965. [Google Scholar] [CrossRef]
  24. Liu, F. Study on Characteristics of Fluctuating Wall-Pressure and Its Similarity Law. Ph.D. Thesis, Tianjin University, Tianjin, China, May 2007. (In Chinese). [Google Scholar]
  25. Yan, Z.-M.; Zhou, C.-T.; Lu, S.-Q. Pressure fluctuations beneath spatial hydraulic jumps. J. Hydrodyn. 200618, 723–726. [Google Scholar] [CrossRef]
  26. Moin, P.; Kim, J. Numerical investigation of turbulent channel flow. J. Fluid Mech. 2006118. [Google Scholar] [CrossRef]
  27. Rezaeiravesh, S.; Liefvendahl, M. Effect of grid resolution on large eddy simulation of wall-bounded turbulence. Phys. Fluids 201830. [Google Scholar] [CrossRef]
  28. Stamou, A.I.; Chapsas, D.G.; Christodoulou, G.C. 3-D numerical modeling of supercritical flow in gradual expansions. J. Hydraul. Res. 201046, 402–409. [Google Scholar] [CrossRef]
  29. Savage, B.M.; Crookston, B.M.; Paxson, G.S. Physical and Numerical Modeling of Large Headwater Ratios for a 15 degrees Labyrinth Spillway. J. Hydraul. Eng. 2016142. [Google Scholar] [CrossRef]
  30. Aydin, M.C.; Ozturk, M. Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators. Can. J. Civ. Eng. 200936, 826–836. [Google Scholar] [CrossRef]
  31. Ma, B.; Liang, S.; Liang, C.; Li, Y. Experimental Research on an Improved Slope Protection Structure in the Plunge Pool of a High Dam. Water 20179, 671. [Google Scholar] [CrossRef]
  32. Bai, L.; Zhou, L.; Han, C.; Zhu, Y.; Shi, W.D. Numerical Study of Pressure Fluctuation and Unsteady Flow in a Centrifugal Pump. Processes 20197, 354. [Google Scholar] [CrossRef]
  33. Guven, A. A predictive model for pressure fluctuations on sloping channels using support vector machine. Int. J. Numer. Methods Fluids 201166, 1371–1382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
FLOW-3D (x) Workflow

Calibrating Simulation Parameters

시뮬레이션 매개 변수 보정

교정 연구의 목표

계단식 배수로에서 공기 유입 시뮬레이션에 대한 다양한 수치 매개 변수의 영향을 조사합니다.

엔지니어링 과제

쉽게 실험 데이터와 일치하도록 공기 유입 및 도움말 보정의 최초의 시뮬레이션에 수치 매개 변수의 영향을 연구에 사용할 수 있는 자동화된 워크 플로우 생성 1 .

연구할 매개 변수는 메쉬 크기, 난류 모델, 난류 길이 스케일 및 동적 대 고정 난류 길이 스케일입니다. 또한 FLOW-3D (x) 는 마지막 시간 단계에서 유입된 공기 농도의 이미지와 시뮬레이션에서 공기 유입의 진화를 보여주는 애니메이션을 생성합니다.

FLOW-3D (x) 워크 플로우

시뮬레이션은 동반된 공기의 양을 보고하기 위해 3, 4, 5 단계의 샘플링 볼륨으로 설정됩니다. FLOW-3D (x) 는 노드를 사용하여 자동화된 워크 플로를 구성합니다. 

첫 번째 노드는 .csv 파일에서 시뮬레이션 매개 변수를 읽는데 사용됩니다. 그런 다음 매개 변수는 시뮬레이션을 실행 하기 위해 FLOW-3D 노드로 전송됩니다 . 후 처리 노드는 배수로의 각 단계에서 샘플링 볼륨에서 동반된 공기 볼륨을 추출하고, 마지막 시간 단계에서 동반된 공기의 이미지를 생성하고, 공기 동반 애니메이션을 생성합니다. 마지막 노드는 샘플링 볼륨에서 보고된 동반 공기 값을 .csv 파일에 씁니다.

매개 변수 정의 입력 파일에 18 개의 매개 변수 세트가 지정되어 있으므로 예산 또는 허용되는 반복 횟수가 18로 설정되었습니다. 단일 시뮬레이션의 런타임은 각 반복에서 사용되는 메시 크기에 따라 다릅니다.

시뮬레이션 매개 변수를 보정하는 계단식 방수로

매개 변수 연구 결과

사용 FLOW-3D (X) 의 데이터 분석 기능 및 자동 화상 생성하면 빠른 시각적 평가 결과의 검증을 허용합니다. 또한 각 시뮬레이션 실행에 대한 각 단계의 공기 유입 값은 보고된 .csv 파일에서 쉽게 액세스 할 수 있습니다. 최적화 연구 시간을 절약하기 위해 배치 실행이 사용되었습니다.

교정 전

보정 전 계단식 배수로 동반 공기

0.01m의 메쉬 크기, k-ω 난류 모델 및 0.005m와 동일한 난류 길이 척도를 사용하는 시뮬레이션의 마지막 시간 단계에서 유입 공기

References

메쉬 크기 = 0.005m, k-ω 난류 모델 및 0.005m와 같은 난류 길이 척도의 시뮬레이션에서 마지막 시간 단계에서 혼입된 공기. 2 배 더 미세한 메쉬를 사용한 공기 혼입의 시작은 0.01m 메쉬보다 실험 결과와 유사하게 비교됩니다.

참고 문헌

1 Felder, Stefan (2013). Air-water flow properties on stepped spillways for embankment dams: Aeration, energy dissipation and turbulence on uniform, non-uniform and pooled stepped chutes. PhD Thesis, School of Civil Engineering, The University of Queensland.

FLOW-3D skimming upstream view

계단식 여수로의 흐름 시뮬레이션

FLOW-3D 는 매끄러운 여수로에서 유량 매개 변수를 결정하는데 널리 사용됩니다. 일반적으로 여수로에서 에너지 손실을 찾는 것이 목적인데, 이는 stilling basins 및 other energy dissipaters 를 설계하는 데 사용됩니다.

계단식 여수로에서 에너지 손실을 계산하기 위해 FLOW-3D 를 사용하는 것에 대한 관심이 증가하고 있습니다. 계단식 여수로 모델링 프로세스는 다음 지침에 따라 도움이 될 수 있습니다.

igure 1. Typical geometric representation of a smooth and a stepped spillway.
igure 1. Typical geometric representation of a smooth and a stepped spillway.

소개

계단식 여수로의 흐름은 네 가지 일반 범주로 나뉩니다. 낮잠 흐름, 과도 흐름, 비 공기 스키밍 흐름 및 폭기 스키밍 흐름. 다음 팁은 경사면에서 최대 45도까지 환기되지 않는 계단식 여수로의 Nappe 흐름, 과도기 흐름 및 비 통기성 skimming flow Model에서 개발되었습니다. 추가 비 통기성 skimming 결과는 Bombardelli et al 에서 찾을 수 있습니다. (2010, FloSci-Bib33-10)  및 Meireles et al (2010, FloSci-Bib61-10), 폭기 스키밍 흐름 모델 결과는  Sarfaraz 및 Attari (2011, FloSci-Bib34-11)에서 확인할 수 있습니다.

FLOW-3D skimming upstream view
FLOW-3D skimming upstream view
FLOW-3D skimming downstream view
FLOW-3D skimming downstream view

2 차원으로 시작하고 VOF 방법 선택

지오메트리 또는 흐름에 3D 불일치가없는 한(일반적으로 사실임) 여수로 시뮬레이션을 먼저 2D 사례로 실행합니다. 에너지 손실에 대한 결과는 2D에서 3D로 크게 변하지 않습니다. 이것은 메쉬 크기를 상당히 절약하고 훨씬 더 빠른 시뮬레이션 실행을 가능하게 합니다. 

스키밍 및 전환 흐름의 경우 기본 VOF (Volume-of-Fluid-Advection) 방법이 적절해 보입니다 (IFVOF = 4). Nappe 흐름의 경우 분할 Lagrangian VOF 방법 (IFVOF = 6)을 사용하여 제트 곡률을 해결하는 것이 좋습니다. 흐름 체제가 미리 알려지지 않은 경우 Split Lagrangian 방법을 사용합니다.

메시 해상도

계단식 여수로 Weir 흐름은 상류 속도와 여수로의 형상에 따라 다른 영역을 나타냅니다. 이러한 서로 다른 정권을 스키밍, 과도기 및 Nappe 흐름이라고합니다. 흐름 영역을 정확하게 예측하려면 메쉬 셀이 흐름 매개 변수를 캡처할 수 있을만큼 충분히 작은지 확인해야 합니다. 

스키밍 및 과도적 흐름의 경우 상대적으로 낮은 해상도가 허용될 수 있습니다. 계단의 가장 짧은 길이 / 높이를 분석하기 위한 4 ~ 5 개의 셀이 여러 테스트를 기반으로 충분 해 보이지만 여수로 경사가 45도 이상 더 클 때 메시가 상당히 미세해야 합니다. 에너지 손실 계산을 크게 향상시키는 추가 해상도는 발견되지 않았습니다. 반면에 Nappe 흐름은 떨어지는 제트를 해결하기 위해 매우 미세한 메쉬가 필요합니다.

Figure 2.6 ESI apparatus for offline analysis with microscope imaging.

MODELING AND CHARACTERIZATION OF MICROFABRICATED EMITTERS: IN PURSUIT OF IMPROVED ESI-MS PERFORMANCE

미세 가공 방사체의 모델링 및 특성화 : 개선된 ESI-MS 성능 추구

by XINYUN WU

A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada December, 2011 Copyright © Xinyun Wu, 2011

Abstract

ESI (Electrospray ionization)는 특히 탁월한 감도, 견고성 및 단순성으로 대형 생체 분자를 분석하는 데있어 질량 분석 (MS)에 매우 귀중한 기술이었습니다. ESI 기술 개발에 많은 노력을 기울였습니다. 그 형태와 기하학적 구조가 전기 분무 성능과 추가 MS 감지에 중추적 인 것으로 입증 되었기 때문입니다.

막힘 및 낮은 처리량을 포함하여 전통적인 단일 홀 이미터의 본질적인 문제는 기술의 적용 가능성을 제한합니다. 이 문제를 해결하기 위해 현재 프로젝트는 향상된 ESI-MS 분석을위한 다중 전자 분무(MES) 방출기를 개발하는데 초점을 맞추고 있습니다.

이 논문에서는 스프레이 전류 측정을 위한 전기 분무와 오프라인 전기 분무 실험을 위한 전산 유체 역학 (CFD) 시뮬레이션의 공동 작업이 수행되었습니다. 전기 분무 성능에 대한 다양한 이미터 설계의 영향을 테스트하기 위해 수치 시뮬레이션이 사용되었으며 실험실 결과는 가이드 및 검증으로 사용되었습니다.

CFD 코드는 Taylor-Melcher 누설 유전체 모델(LDM)을 기반으로 하며 과도 전기 분무 공정이 성공적으로 시뮬레이션되었습니다.

이 방법은 750 μm 내경 (i.d.) 이미 터를 통해 먼저 검증되었으며 20 μm i.d.에 추가로 적용되었습니다. 모델. 전기 분무 공정의 여러 단계가 시각적으로 시연되었으며 다양한 적용 전기장 및 유속에서 분무 전류의 변화에 ​​대한 정량적 조사는 이전 시뮬레이션 및 측정과 잘 일치합니다.

단일 조리개 프로토 타입을 기반으로 2 홀 및 3 홀 이미터로 MES 시뮬레이션을 수행했습니다. 시뮬레이션 예측은 실험 결과와 유사하게 비교되었습니다. 이 작업의 증거는 CFD 시뮬레이션이 MES의 이미 터 설계를 테스트하는 효과적인 수치 도구로 사용될 수 있음을 입증했습니다.

이 작업에서 달성 된 마이크로 스케일 에미 터 전기 분무의 성공적인 시뮬레이션에 대한 벤치마킹 결과는 현재까지 발표 된 전기 분무에 대한 동적 시뮬레이션의 가장 작은 규모로 여겨집니다.

Co-Authorship

공동 저자: 이 논문에 대한 모든 연구는 Natalie M. Cann 박사와 Richard D. Oleschuk 박사의 지도하에 완료되었습니다. 다중 전자 분무에 관한 4 장에서 제시된 연구 작업의 일부는 Ramin Wright가 공동 저술했으며, 이 작업은 press에서 다음 논문에서 인용되었습니다.

ibson,G.T.T.; Wright, R.D.; Oleschuk, R.D. Multiple electrosprays generated from a single poly carbonate microstructured fibre. Journal of Mass Spectrometry, 2011, in press.

Chapter 1 Introduction

소프트 이온화 방법으로 ESI (electrospray ionization)의 도입은 질량 분석법 (MS)의 적용 가능성에 혁명을 일으켰습니다. 이 기술의 부드러운 특징은 상대적으로 높은 전하를 가진 이온을 생성하는 고유한 이점으로 인해 액상에서 직접 펩티드 및 단백질과 같은 큰 생체 분자를 분석 할 수 있게했습니다 [1].

지난 10 년 동안 ESI-MS는 놀라운 성장을 보였으며 현재는 단백질 체학, 대사 체학, 글리코 믹스, 합성 화학자를 위한 식별 도구 등 다양한 생화학 분야에서 광범위하게 채택되고 있습니다 [2-3].

ESI-MS는 겔 전기 영동과 같은 생물학적 분자에 대한 기존의 질량 측정 기술보다 훨씬 빠르고 민감하며 정확합니다. 또한, 액체상에서 직접 분석 할 수 있는 큰 비 휘발성 분자의 능력은 고성능 액체 크로마토 그래피 (HPLC) 및 모세관 전기 영동 (CE)과 같은 업스트림 분리 기술과의 결합을 가능하게합니다 [4].

일반적인 ESI 공정은 일반적으로 액적 형성, 액적 수축 및 기상 이온의 최종 형성을 포함합니다. 일렉트로 스프레이의 성능에 영향을 미치는 많은 요소 중에서 스프레이를 위한 이미터의 구조 (즉, 기하학, 모양 등)가 중요한 요소입니다.

전통적인 전기 분무 이미터는 일반적으로 풀링 또는 에칭 기술로 제작 된 단일 채널 테이퍼 형 또는 비 테이퍼 형입니다. 그러나 이러한 이미터는 종종 막힘, 부적절한 처리량 등과 같은 문제로 어려움을 겪습니다. [5]

향상된 감도 및 샘플 활용을 위해 다중 스프레이를 생성하는 새로운 이미터 설계 개발로 분명한 발전이 있었습니다. 새로운 ESI 이미터 설계에 대한 연구는 실험적으로나 이론적으로 큰 관심을 불러 일으켰습니다 [3]. 그러나 ESI의 복잡한 물리적 과정은 팁 형상 외에도 많은 다른 변수에 의존하기 때문에 연구간 직접 비교의 어려움은 장애물이 됩니다.

또한 새로운 나노 이미터 제조 및 테스트 비용이 상당히 높을 수 있습니다. 이 논문은 CFD 시뮬레이션 도구를 활용하여 가상 랩을 설정함으로써 이러한 문제를 해결합니다. 다른 매개 변수로 인해 상호 연결된 변경 없이 다양한 이미터 설계를 비교할 수 있도록 이상적으로 균일한 물리적 조건을 제공합니다.

맞춤 제작된 프로토 타입의 실험 측정 값도 수집되어 더 나은 계산 체계를 형성하는 데 도움이 되는 지침과 검증을 모두 제공합니다. 특히 이 분야의 주요 미래 플랫폼으로 여겨지는 다중 노즐 이미 터 설계에 중점을 둘 것입니다.

전기 분무 거동에 영향을 미치는 요인에 대한 추가 기본 연구는 다양한 기하학적 및 작동 매개 변수와 관련하여 수행됩니다. 이는 보다 효율적이고 견고한 이미터의 개발을 가능하게 할 뿐만 아니라 더 넓은 영역에서 ESI의 적용을 향상시킬 수 있습니다.

Figure 1.1Schematic setup for ESI-MS technique
Figure 1.1Schematic setup for ESI-MS technique
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.4 (A)Externally tapered emitter  (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.4 (A)Externally tapered emitter (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times    (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).

Omit below: Please refer to the original text for the full content.

Bibliography

1. Mclafferty, F.W., Tandem Fourier-Transform Mass-Spectrometry of Large Molecules.Abstracts of Papers of the American Chemical Society, 1986. 192: p. 21-Anyl. 2. Griffiths, W.J. and Y.Q. Wang, Mass spectrometry: from proteomics to metabolomics and lipidomics. Chemical Society Reviews, 2009. 38(7): p. 1882-1896. 3. Gibson, G.T.T., S.M. Mugo, and R.D. Oleschuk, Nanoelectrospray Emitters: Trends and Perspective. Mass Spectrometry Reviews, 2009. 28(6): p. 918-936. 4. Cech, N.B. and C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews, 2001. 20(6): p. 362-387. 5. Su, S., Development and Application of Non-tapered Electrospray Emitters for Nano-ESI Mass Spectrometry, in Chemistry. 2008, Queen’s University: Kingston. p. 185. 6. Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914. 3(2): p. 69-91. 7. Dole, M., L.L. Mack, and R.L. Hines, Molecular Beams of Macroions. Journal of Chemical Physics, 1968. 49(5): p. 2240-&. 8. Yamashita, M. and J.B. Fenn, Negative-Ion Production with the Electrospray Ion-Source.Journal of Physical Chemistry, 1984. 88(20): p. 4671-4675. 9. Kebarle, P. and U.H. Verkerk, Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrometry Reviews, 2009. 28(6): p. 898-917. 10. Taylor, G., Disintegration of Water Drops in Electric Field. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1964. 280(138): p. 383. 11. Cole, R.B., Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2000. 35(7): p. 763-772. 12. Rayleigh, L., On the equilibrium of liquid conducting masses charged with electricity.Philos. Mag., 1882. 14: p. 184-186. 13. Mack, L.L., et al., Molecular Beams of Macroions .2. Journal of Chemical Physics, 1970. 52(10): p. 4977-&. 14. Gamero-Castano, M. and J.F. de la Mora, Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. Journal of Mass Spectrometry, 2000. 35(7): p. 790-803. 15. Gamero-Castano, M. and J.F. de la Mora, Modulations in the abundance of salt clusters in electrosprays. Analytical Chemistry, 2000. 72(7): p. 1426-1429. 16. Loscertales, I.G. and J.F. Delamora, Experiments on the Kinetics of Field Evaporation of Small Ions from Droplets. Journal of Chemical Physics, 1995. 103(12): p. 5041-5060. 17. Rohner, T.C., N. Lion, and H.H. Girault, Electrochemical and theoretical aspects of electrospray ionisation. Physical Chemistry Chemical Physics, 2004. 6(12): p. 3056-3068.

18. Iribarne, J.V. and B.A. Thomson, Evaporation of Small Ions from Charged Droplets.Journal of Chemical Physics, 1976. 64(6): p. 2287-2294. 19. Meng, C.K. and J.B. Fenn, Formation of Charged Clusters during Electrospray Ionization of Organic Solute Species. Organic Mass Spectrometry, 1991. 26(6): p. 542-549. 20. Nohmi, T. and J.B. Fenn, Electrospray Mass-Spectrometry of Poly(Ethylene Glycols) with Molecular-Weights up to 5 Million. Journal of the American Chemical Society, 1992. 114(9): p. 3241-3246. 21. de la Mora, J.F., Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chimica Acta, 2000. 406(1): p. 93-104. 22. Iavarone, A.T., J.C. Jurchen, and E.R. Williams, Supercharged protein and peptide lone formed by electrospray ionization. Analytical Chemistry, 2001. 73(7): p. 1455-1460. 23. Hogan, C.J., et al., Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization. Journal of the American Chemical Society, 2008. 130(22): p. 6926-+. 24. Nguyen, S. and J.B. Fenn, Gas-phase ions of solute species from charged droplets of solutions. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(4): p. 1111-1117. 25. Luedtke, W.D., et al., Nanojets, electrospray, and ion field evaporation: Molecular dynamics simulations and laboratory experiments. Journal of Physical Chemistry A, 2008. 112(40): p. 9628-9649. 26. Enke, C.G., A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Analytical Chemistry, 1997. 69(23): p. 4885-4893. 27. Maze, J.T., T.C. Jones, and M.F. Jarrold, Negative droplets from positive electrospray.Journal of Physical Chemistry A, 2006. 110(46): p. 12607-12612. 28. Kebarle, P. and M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analytica Chimica Acta, 2000. 406(1): p. 11-35. 29. Loeb, L.B., A.F. Kip, and G.G. Hudson, Pulses in negative point-to-plane corona.Physical Review, 1941. 60(10): p. 714-722. 30. Cole, R.B., Electrospray ionization mass spectrometry : fundamentals, instrumentation, and applications. 1997, New York: Wiley. xix, 577 p. 31. Smith, D.P.H., The Electrohydrodynamic Atomization of Liquids. Ieee Transactions on Industry Applications, 1986. 22(3): p. 527-535. 32. Taylor, G.I. and A.D. Mcewan, Stability of a Horizontal Fluid Interface in a Vertical Electric Field. Journal of Fluid Mechanics, 1965. 22: p. 1-&. 33. Ikonomou, M.G., A.T. Blades, and P. Kebarle, Electrospray Mass-Spectrometry of Methanol and Water Solutions Suppression of Electric-Discharge with Sf6 Gas. Journal of the American Society for Mass Spectrometry, 1991. 2(6): p. 497-505.

34. Wampler, F.M., A.T. Blades, and P. Kebarle, Negative-Ion Electrospray Mass-Spectrometry of Nucleotides – Ionization from Water Solution with Sf6 Discharge Suppression. Journal of the American Society for Mass Spectrometry, 1993. 4(4): p. 289-295. 35. Marginean, I., P. Nemes, and A. Vertes, Order-chaos-order transitions in electrosprays: The electrified dripping faucet. Physical Review Letters, 2006. 97(6): p. -. 36. Marginean, I., P. Nemes, and A. Vertes, Astable regime in electrosprays. Physical Review E, 2007. 76(2): p. -. 37. Nemes, P., I. Marginean, and A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays. Analytical Chemistry, 2007. 79(8): p. 3105-3116. 38. Marginean, I., et al., Electrospray characteristic curves: In pursuit of improved performance in the nanoflow regime. Analytical Chemistry, 2007. 79(21): p. 8030-8036. 39. Page, J.S., et al., Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Analytical Chemistry, 2008. 80(5): p. 1800-1805. 40. Delamora, J.F. and I.G. Loscertales, The Current Emitted by Highly Conducting Taylor Cones. Journal of Fluid Mechanics, 1994. 260: p. 155-184. 41. Ganan-Calvo, A.M., On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 2004. 507: p. 203-212. 42. Smith, D.R., G. Sagerman, and T.D. Wood, Design and development of an interchangeable nanomicroelectrospray source for a quadrupole mass spectrometer.Review of Scientific Instruments, 2003. 74(10): p. 4474-4477. 43. Barnidge, D.R., S. Nilsson, and K.E. Markides, A design for low-flow sheathless electrospray emitters. Analytical Chemistry, 1999. 71(19): p. 4115-4118. 44. Guzzetta, A.W., R.A. Thakur, and I.C. Mylchreest, A robust micro-electrospray ionization technique for high-throughput liquid chromatography/mass spectrometry proteomics using a sanded metal needle as an emitter. Rapid Communications in Mass Spectrometry, 2002. 16(21): p. 2067-2072. 45. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source.Analytical Chemistry, 1996. 68(1): p. 1-8. 46. Covey, T.R. and D. Pinto, Practical Spectroscopy. Vol. 32. 2002. 47. Kelly, R.T., et al., Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Analytical Chemistry, 2008. 80(14): p. 5660-5665. 48. Choi, Y.S. and T.D. Wood, Polyaniline-coated nanoelectrospray emitters treated with hydrophobic polymers at the tip. Rapid Communications in Mass Spectrometry, 2007. 21(13): p. 2101-2108. 49. Tojo, H., Properties of an electrospray emitter coated with material of low surface energy. Journal of Chromatography A, 2004. 1056(1-2): p. 223-228.

50. Liu, J., et al., Electrospray ionization with a pointed carbon fiber emitter. Analytical Chemistry, 2004. 76(13): p. 3599-3606. 51. Sen, A.K., et al., Modeling and characterization of a carbon fiber emitter for electrospray ionization. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 620-630. 52. Tang, K.Q., et al., Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Analytical Chemistry, 2001. 73(8): p. 1658-1663. 53. Deng, W. and A. Gomez, Influence of space charge on the scale-up of multiplexed electrosprays. Journal of Aerosol Science, 2007. 38(10): p. 1062-1078. 54. Su, S.Q., et al., Microstructured Photonic Fibers as Multichannel Electrospray Emitters.Analytical Chemistry, 2009. 81(17): p. 7281-7287. 55. Sen, A.K., J. Darabi, and D.R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI-MS applications. Microfluidics and Nanofluidics, 2007. 3(3): p. 283-298. 56. Hayati, I., A. Bailey, and T.F. Tadros, Investigations into the Mechanism of Electrohydrodynamic Spraying of Liquids .2. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. Journal of Colloid and Interface Science, 1987. 117(1): p. 222-230. 57. Glonti, G.A., On the Theory of the Stability of Liquid Jets in an Electric Field. Soviet Physics Jetp-Ussr, 1958. 7(5): p. 917-918. 58. Nayyar, N.K. and G.S. Murty, The Stability of a Dielectric Liquid Jet in the Presence of a Longitudinal Electric Field. Proceedings of the Physical Society of London, 1960. 75(483): p. 369-373. 59. Allan, R.S. and S.G. Mason, Particle Behaviour in Shear and Electric Fields .1. Deformation and Burst of Fluid Drops. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1962. 267(1328): p. 45-&. 60. Melcher, J.R. and G.I. Taylor, Electrohydrodynamics – a Review of Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1969. 1: p. 111-&. 61. Saville, D.A., Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 1997. 29: p. 27-64. 62. Carretero Benignos, J.A. and Massachusetts Institute of Technology. Dept. of Mechanical Engineering., Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode. 2005. p. 117 leaves. 63. Hartman, R.P.A., et al., The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. Journal of Electrostatics, 1999. 47(3): p. 143-170. 64. Hartman, R.P.A., et al., Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 1999. 30(7): p. 823-849.

65. Yoon, S.S., et al., Modeling multi-jet mode electrostatic atomization using boundary element methods. Journal of Electrostatics, 2001. 50(2): p. 91-108. 66. Zeng, J., D. Sobek, and T. Korsmeyer, Electro-hydrodynamic modeling of electrospray ionization: Cad for a mu fluidic device – Mass spectrometer interface. Boston Transducers’03: Digest of Technical Papers, Vols 1 and 2, 2003: p. 1275-1278, 1938. 67. Lastow, O. and W. Balachandran, Numerical simulation of electrohydrodynamic (EHD) atomization. Journal of Electrostatics, 2006. 64(12): p. 850-859. 68. http://www.flow3d.com. 69. Valaskovic, G.A., et al., Attomole-Sensitivity Electrospray Source for Large-Molecule Mass-Spectrometry. Analytical Chemistry, 1995. 67(20): p. 3802-3805. 70. Kriger, M.S., K.D. Cook, and R.S. Ramsey, Durable Gold-Coated Fused-Silica Capillaries for Use in Electrospray Mass-Spectrometry. Analytical Chemistry, 1995. 67(2): p. 385-389. 71. Fang, L.L., et al., Online Time-of-Flight Mass-Spectrometric Analysis of Peptides Separated by Capillary Electrophoresis. Analytical Chemistry, 1994. 66(21): p. 3696-3701. 72. Cao, P. and M. Moini, A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. Journal of the American Society for Mass Spectrometry, 1997. 8(5): p. 561-564. 73. Fong, K.W.Y. and T.W.D. Chan, A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. Journal of the American Society for Mass Spectrometry, 1999. 10(1): p. 72-75. 74. Emmett, M.R. and R.M. Caprioli, Micro-Electrospray Mass-Spectrometry – Ultra-High-Sensitivity Analysis of Peptides and Proteins. Journal of the American Society for Mass Spectrometry, 1994. 5(7): p. 605-613. 75. Gatlin, C.L., et al., Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Analytical Biochemistry, 1998. 263(1): p. 93-101. 76. Aturki, Z., et al., On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis, 2006. 27(23): p. 4666-4673. 77. Edwards, J.L., et al., Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 2006. 1106(1-2): p. 80-88. 78. http://www.kiriama.com/kiriama%20single-mode%20polymer%20fibers_009.htm. 79. Wilm, M.S. and M. Mann, Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last. International Journal of Mass Spectrometry, 1994. 136(2-3): p. 167-180.

80. Hirt, C.W. and B.D. Nichols, Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 1981. 39(1): p. 201-225. 81. Melcher, J.R., Continuum electromechanics. 1981, Cambridge, Mass.: MIT Press. 1 v. (various pagings). 82. http://www.flow3d.com/cfd-101/cfd-101-FAVOR.html. 83. http://www.flow3d.com/cfd-101/cfd-101-FAVOR-no-loss.html. 84. Savage, B.M. and M.C. Johnson, Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering-Asce, 2001. 127(8): p. 640-649. 85. http://www.flow3d.com/cfd-101/cfd-101-free-surface-fluid-flow.html. 86. Graham T. T. Gibson, R.D.W.a.R.D.O., Multiple electrosprays generated from a single poly carbonate microstructured fibre. Mass Spectrometry, 2011. 87. Smith, R.D., et al., Analytical characterization of the electrospray ion source in the nanoflow regime. Analytical Chemistry, 2008. 80(17): p. 6573-6579. 88. Hirt, C.W., Electro-hydrodynamics of semi-conductive fluids: with application to electro-spraying. Flow Science Technical Note, 2004. 70(FSI–04–TN70): p. 1-7. 89. de la Mora, J.F., The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 2007. 39: p. 217-243. 90. Cloupeau, M. and B. Prunetfoch, Electrostatic Spraying of Liquids in Cone-Jet Mode.Journal of Electrostatics, 1989. 22(2): p. 135-159. 91. Hayati, I., A.I. Bailey, and T.F. Tadros, Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids .1. Effect of Electric-Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization. Journal of Colloid and Interface Science, 1987. 117(1): p. 205-221. 92. FLOW-3D User Manual, Ver. 9.4. 93. Sen, A.K., J. Darabi, and D.R. Knapp, Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter. Journal of Fluids Engineering-Transactions of the Asme, 2011. 133(7).

FLOW-3D Spillway Visualization

Volume of Fluid (VOF) History

Volume of Fluid (VOF)

FLOW-3D Spillway Visualization

VOF(Volume of Fluid) 방법은 이전의 MAC(Marker-and-Cell) 방법을 기반으로 한다[1]. MAC 방법은 표식기 입자를 사용하여 유체가 고정된 오일러 그리드 내에 존재하는 위치를 찾아냈다. MAC는 자유로운 표면으로 압축할 수 없는 유체의 역학을 시뮬레이션한 최초의 연산 방법이었다. 유체를 추적하기 위한 마커 입자의 사용은 특히 3차원에서 계산적으로 비용이 많이 들고, 입자가 한 그리드 소자에서 다른 그리드 소자로 이동할 때 그리드 요소 특성(질량 등)의 변화가 이산적인 변화를 겪기 때문에 연산 노이즈를 도입한다. 마커 입자를 인터페이스 추적 체계로 대체하려는 다양한 시도가 있었지만, 유체 질량이 종종 분리되거나 결합되어 인터페이스 표면의 생성과 파괴로 이어지기 때문에 대부분 실패했다.

유체 표면 대신 유체 부피를 추적하는 유체 부피(Volume of fluid method)의 발상은 유체 변수의 부피를 사용하는 것이 관례인 2상(물과 증기) 문제에 대한 연구로부터 비롯되었다. 증기의 부피 분율은 물과 증기가 혼합된 상태에서 증기의 양을 기록하는 연속 변수다. 이 체적 개념을 불압성 유체의 자유 표면을 찾기 위해 불연속 변수에까지 확장(예: 액체와 0의 단위 값)한 것은 1975년 간행물 “다차원, 과도 자유 표면 흐름 계산을 위한 방법”[2]에서 니콜스와 허트의 “다차원, 과도 자유 표면 흐름”에서 처음 입증되었다.

계산적 의미 만들기

VOF 개념은 플로우 모델이 일반적으로 압력, 밀도, 온도 등과 같은 종속 변수를 저장하기 위해 각 그리드 요소에서 하나의 숫자 값만 사용하기 때문에 계산이 타당하다. 그렇다면 왜 요소 내의 유체 분포를 정의하기 위해 둘 이상의 변수가 필요할까? 예를 들어, 원소의 유체가 둘 이상의 blob으로 분포된 경우, 각 blob에 대해 더 많은 종속 변수가 필요할 것이다. 이런 관점에서 보면 원소의 유체량만 기록하는 것이 타당하다. 그러나 문제는 체적분율 변수의 추정 불연속적 특성이다. 오일러 그리드를 통한 불연속 유체 인터페이스의 이동을 추적하려면 더 많은 정보가 필요하다.

Making Computational Sense

이 문제는 많은 출판사에서 많은 사람들이 다루어 왔다. 제안된 거의 모든 방법은 인접한 그리드 요소의 볼륨 분율 검사에 기초한 근사치의 어떤 유형에 의존한다. 예를 들어, 1차원 흐름에서는 정확한 방법을 도출하기 쉽다. 액체와 기체를 분리하는 예리한 인터페이스를 가진 1차원 도관을 따라 액체가 흐르고 있다고 가정해 보자. 인터페이스 업스트림 그리드 요소에서, 볼륨 분율은 1과 같고, 인터페이스 다운스트림에서는 볼륨 분율은 0과 같다. 0과 1 사이의 볼륨 비율 값을 갖는 인터페이스를 포함하는 그리드 요소에서 액체는 1의 볼륨 비율을 포함하는 인접 셀에 연결된 셀의 측면에 위치해야 하기 때문에 해당 셀 내에서 인터페이스를 쉽게 찾을 수 있다. 그런 다음 인터페이스는 체적 분율의 곱에 셀의 크기를 곱한 곱에 의해 액체 이웃에 연결된 셀 가장자리로부터 다운스트림 거리에 위치한다. 이 위치는 인터페이스가 날카로운 불연속성을 유지하도록 유체를 삽입할 때 사용할 수 있다. 불행하게도, 2, 3차원에서는 그리드 요소 내에서 인터페이스를 위치시키는 간단한 방법이 존재하지 않는다.

One method proposed for advecting discontinuous fluid interfaces was presented in the 1980 Los Alamos Scientific Laboratory report, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries,” [3] by Nichols, Hirt and Hotchkiss, and in a 1981 publication, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,쓴 [히트와 니콜스가 쓴 [4]. 주로 경수-원자로 안전 연구를 위한 이 프로그램의 초기 적용은 [5]와 [6]에서 확인할 수 있다.

VOF Variations | VOF 변형 모델

VOF 방법의 많은 변형이 문헌에 보고되었지만, 대부분은 원본에서 사용된 방법을 따르지 않는다[4]. 특히 원래의 VOF 방식은 주변 가스가 아닌 압축 불가능한 액체에서만 유체 역학을 위한 Navier-Stokes 방정식을 해결했다. 대신에 유체가 없는 표면은 경계 조건에 의해 처리되었고 유체가 포함된 그리드 요소의 목록은 지속적으로 업데이트되었다. 원래 모델의 가스 영역은 모멘텀을 무시할 수 있는 낮은 밀도를 가지며, 공간적으로 균일한 가스 압력을 가지는 것으로 가정했다. 다른 대부분의 VOF 모델에서 사용하는 대안은 인터페이스에 경계 조건을 설정하지 않기 위해 2-유체 시뮬레이션을 사용하는 것이다. 이 옵션은 가스 역학을 위해 해결해야 하기 때문에 원래 방법보다 상당히 많은 계산 자원을 필요로 한다. 또한 대부분의 2-유체 모델은 인터페이스에서 가스와 액체 사이에 존재하는 속도 “슬립”의 가능성을 무시한다. 슬립의 존재를 무시하고 가스/액체 혼합물의 평균 속도로 인터페이스를 이동하면 심각한 오류가 발생할 수 있다.

Modeling Fluid Advection | 모델링 유체 부착

대체 VOF 방법 개발자들이 항상 높이 평가하지 않는 또 다른 점은 VOF 유체 분율 수량 F의 첨부를 위해 모델링된 방정식이다. 원래의 방법 [4]은 F에 대한 보수적인 운송 방정식을 사용했다.

∂F∂t+∇∙(Fu→)=0

부착을 위해 레벨 설정 방법을 사용하는 것과 같은 많은 대안 VOF 공식은 비보수적 전송 방정식을 사용한다.

∂F∂t+u→∙∇F=0

보수적인 방법의 장점은 변경되어서는 안 되는 유체량을 쉽게 계산하고 표시하기 때문에 시뮬레이션에서 한 번의 간단한 불압력 정밀도 검사를 제공한다는 것이다.

TruVOF 솔루션

이용 가능한 인기 있는 상용 코드 중 FLOW-3D만이 [4]에서 참조한 원래의 1유체 모델을 기반으로 한다. 물론, 열 전달, 표면 장력, 위상 변화, 이동 장애물 및 유체 구조 상호작용과 같은 다양한 물리적 프로세스에 대한 많은 모델을 포함하여 이 소프트웨어에 대한 많은 개선이 평생에 걸쳐 이루어졌다.

다른 기사 읽기 : VOF (Volume of Fluid) 란 무엇인가? | FLOW-3D

참고문헌

References

  1. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow,” Phys. Fluids 8, 2182 (1965); J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, “THE MAC METHOD: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces,” Los Alamos Scientific Laboratory report LA-3425 (March 1966).
  2. D. Nichols and C. W. Hirt, “Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies,” Proc. Of the First International Conference on Numerical Ship Hydrodynamics, Gaithersburg, Maryland, October 20-23, 1975.
  3. D. Nichols, C. W. Hirt and R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries,” Los Alamos Scientific Laboratory report LA-8355 (August 1980).
  4. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Jour. Computational Physics, 39, 201 (1981).
  5. D. Nichols and C. W. Hirt, Numerical Simulation of BWR Vent Clearing Hydrodynamics,” Proc. 1978 Annual Meeting ANS, San Diego, CA; Nuc. Sci. Eng. 73, 196 (1980).
  6. W. Hirt and B. D. Nichols, “A Computational Method for Free Surface Hydrodynamics,” ASME 1980 Pressure Vessels and Piping Conf. San Francisco, CA (August 1980) Jour, Pressure Vessel Technology, 103, 136 (1981)
Schematic section view of siphon spillway

사이폰 여수로 | Siphon Spillways

Siphon Spillways

This article was contributed by Ali Habibzadeh (Project Engineer) and Jose (Pepe) Vasquez (Principal Engineer) at Northwest Hydraulic Consultants.

원문 : https://www.flow3d.com/siphon-spillways/

CFD 모델링은 여수로 구조물의 수력학 설계를 평가하기 위한 강력한 도구입니다. 설계 흐름에서 여수로의 용량은 댐 안전성 측면에서 가장 중요합니다(USBR 1987). 노스웨스트 수력학 컨설턴트는 기존 또는 새로운 여수로 설계에 대한 수많은 사례 연구에 CFD 모델링을 적용했습니다. 다음 글은 기존의 사이펀 여수로에서 수행한 샘플 사례 연구를 보여줍니다.

공기 조절식 사이펀 여수로는 상류 수위에 따라 다른 유압 조건에서 작동합니다(McBirney 1957). 유출로의 파고(crest) 위에 있는 비교적 작은 머리들의 경우, 사이펀은 사이펀 배럴 내부에 대기압을 가진 자유 위어처럼 작동합니다(즉, discharge 은 h에w3/2 비례합니다). 헤드가 증가하면 사이펀 배럴 내부의 흐름이 가압된 흐름으로 전환됩니다.

사이펀 배럴은 하위 대기압으로 프라이밍됩니다. 그 단계에서 사이펀 배럴을 통한 배출은 오리피스의 배출과 같습니다(즉o1/2 배출은 h에 비례한다). 프라이밍된 사이펀을 통과하는 드라이빙 헤드는 사이펀 출구의 상류 수위와 하류 바로 아래 수위 사이의 디퍼렌셜 헤드와 동일합니다. 

프라이밍드 사이펀(ho)의 유효 헤드는 일반적으로 프리 사이펀(hw)보다 상당히 크기 때문에 프라이밍된 사이펀은 상류 수위(Ervine 1976년)가 약간 증가한 프리 사이펀과 비교할 때 상당히 많은 양의 흐름을 전달할 수 있다. 

그러나 이는 사이펀이 실제로 프리임(Tadayon and Ramamurthy, 2013)을 할 경우에만 해당됩니다. 홍수와 비상사태 때, 인간의 개입이 없는 사이펀의 작동은 지극히 중요하지만, 이것이 항상 일어나는 것은 아닙니다.

프라이밍을 강화하기 위해 종종 디플렉터를 사이펀 바닥에 설치하여 제한된 공기량을 둘러싸기 위해 반대쪽 벽을 향해 향하는 제트를 생성합니다. 제트에 의해 발생되는 증가된 난기류는 점차적으로 제한된 공기를 제거하여 통 안의 압력을 떨어뜨립니다.

상류 수위가 내려가면서 사이펀 내 원수가 끊기고 유량이 다시 대기압으로 전환됩니다. 이 전환이 일어나면 헤드 방전 관계가 오리피스에서 보로 전환되면서 배출이 크게 감소합니다.

Schematic section view of siphon spillway
Schematic section view of siphon spillway; weir flow (left) and orifice flow (right).

FLOW-3D Modeling of a Siphon Spillway

노스웨스트 수리학 컨설턴트는 FLOW-3D를 사용하여 기존 3피트 높이의 직사각형 사이펀 유출로의 배출 용량을 평가하였습니다. 기존 사이펀은 홍수 때 셀프 프라이밍 문제가 발생했기 때문에 입구의 후드형 환기구와 배럴 내 바닥 디플렉터가 추가되었습니다. 아래의 첫 번째 애니메이션은 상류 수위 상승과 함께 사이펀의 단면 모델을 보여줍니다.

첫 번째 애니메이션은 기존 유출로의 현장 관찰에서 결정된 고정된 상류 수위(水位)로 진행되었습니다. 플로어 디플렉터에 의한 흐름의 편향으로 인해 배럴 내에 공기량이 제한됩니다. 시간이 지남에 따라 이 공기는 유동에 의해 유입되어 배럴 내의 절대 압력이 대기권(~2,115 lb/ft2)에서 대기권(약 1,500 lb/ft2)으로 떨어집니다. 압력이 배럴 내에서 떨어지면서 공기가 제거되고 물로 대체됩니다. 사이펀을 통한 배출은 사이펀이 프라이밍되면 1cfs 미만에서 16cf 이상으로 증가하며, 배럴은 가득 차게 작동됩니다.

두 번째 애니메이션은 상류 수면 표고가 감소함에 따라 사이펀 프라임 브레이크 액션을 보여줍니다. 사이펀 프라임 브레이크 과정은 사이펀 배럴의 크라운에서 대기 외압과 압력 간의 차이가 사이펀에 공기를 삽입하는 데 필요한 차동 헤드를 초과할 때 발생합니다. 따라서 사이펀 프라임은 깨지고 공기가 배럴 내의 액체를 대체합니다. 이 애니메이션에서 볼 수 있듯이, 사이펀 프라임 브레이크 액션이 완료된 후 배럴을 통한 내부 압력과 방전이 원래의 위어 흐름 값으로 돌아갑니다.

FLOW-3D의 결과는 노스웨스트 유압 컨설턴트의 수력학 연구소에서 수행한 물리적 모델 연구에 의해 확인되었습니다. 

References

Ervine, D. A., (1976). “The Design and Modelling of Air-Regulated Siphon Spillways.”, Proceedings of the Institution of Civil Engineers, Vol. 61, pp. 383-400.

McBirney, W. B. (1957). “Some Experiments with Emergency Siphon Spillways.”, US Bureau of Reclamation, PAP-97.

Tadayon, R. and Ramamurthy, A. S., (2013). “Discharge Coefficient for Siphon Spillways.”, ASCE Journal of Irrigation and Drainage Engineering, Vol. 139, No. 3, pp. 267-270.

USBR. (1987). “Design of Small Dams.”, 3rd Ed., U.S. Government Printing Office, Washington, DC.

FLOW-3D HYDRO- Dams & Spillways

Dams & spillways Long history of success

  • Government regulators
  • Hydro-power utilities
  • Engineering consultants
  • Hydraulics laboratories
  • CFD consultants
  • Academia

Dams & spillways

•Wide range of applications

•Wide range of flow conditions:
–Open channel
–Pressurized –Mixed

•Wide range of models
FLOW-3D HYDRO is a solution that is:

  • Versatile
  • Robust
  • Accurate

Spillway rating curve
Draft tube exit hydraulics
Flow distribution at turbine entrance
Head loss & energy dissipation
Forces on dams
Aerated flows
Spillway approach conditions
Jet deflection on upper spillway
Spillway water profile
Fish passage hydraulics
Forces on Spillways
Sediment & Scour

Limitless dam, spillway & stilling basin configurations

–Weirs & hydraulic controls
–Ogee
–Gated
–Staircase
–Siphon
–Bucket
–Morning glory
–Labyrinth
–Piano Key weir
–Arced weirs
–…

FLOW-3D HYDRO에는 수십 가지 예가 사전 탑재되어 있어 응용 프로그램 모델링을 시작할 수 있는 좋은 출발점을 제공합니다.

Ray-tracing an upcoming post-processing feature

Fishways

기하학적 또는 흐름 구성에 대한 제한 없음: FLOW-3D HYDO는 속도, 공기 흡입 및 난류장과 같은 중요한 흐름 특성을 매우 정확하게 표현합니다.

  • Natural fishways
  • Pool & weir
  • Pool & orifice
  • Larinier
  • Ice-harbor
  • Natural
  • Baffle
  • Vertical slot
  • Denil •…
  • Simulation outputs
  • Detail of velocity field
  • Water elevation profiles

Spatial mapping of turbulence intensity

Determination of flow conditions:
–Skimming
–Plunging
–Intermittent

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. Lock
Advanced Analysis, Worley Pty Limited
L7, 116 Miller Street, North Sydney, NSW 2060 Australia
Tel: +61 2 8923 6817 e-mail: david.ho@worley.com.au

Abstract

엔지니어링 설계에서 유한 요소, 유한 차분 및 전산 유체 역학 분석 소프트웨어와 같은 수치 도구의 일상적인 사용이 최근 몇 년 동안 증가했습니다. 소프트웨어 및 하드웨어 기술의 발전은보다 비선형적이고 복잡한 3 차원 분석이 수행되고 있음을 의미합니다.

그러나 본질적으로 “블랙 박스”인 이러한 강력한 소프트웨어는 “컴퓨팅”기술을 보유하고 있지만 광범위한 엔지니어링 경험이 필요하지 않은 분석가의 손에 “컴퓨터 보조 재해”로 이어질 수 있습니다. 품질 보증 절차의 엄격한 구현은 수치 모델이나 분석 기법이 정확한지 확인할 필요가 없을 수 있습니다.

이 백서에서는 복잡성이 증가하는 세 가지 실제 토목 공학 응용 프로그램에서 수치 분석 결과를 검증하는 방법을 설명합니다. 여기에는 유한 요소법을 이용한 수조 탱크의 구조 해석, 전산 유체 역학법을 이용한 수력 구조물 위의 홍수 조사, 유한 ​​차분법을 이용한 안벽 시공 시뮬레이션 등이 있습니다. 입력 데이터의 불확실성 수준과 각 사례에 대한 계산 결과의 신뢰성에 대해 논의합니다. 분석 과정에서 몇 가지 흥미로운 결과가 발견되었습니다.

첫 번째 사례 연구는 시공의 질이 구조물의 성능에 상당한 영향을 미친다는 것을 보여주었습니다. 그러나 설계자는 설계 단계에서 이러한 상황을 수량화하고 분석하지 못할 수도 있습니다. 필요할 경우 향후 역분석은 물론 설계 검증의 기준점이 될 수 있도록 공사 종료 시 모니터링의 중요성이 필수적입니다. 유한 요소 분석은 복잡한 문제를 분석할 수 있는 강력한 수치 도구이지만, 분석가들은 문제의 행동이 단순하고 잘 이해되는 것처럼 보일 수 있는 상황에서 예상치 못한 결과를 만날 수 있도록 준비해야 합니다.

두 번째 사례 연구에서는 중요한 배수로 구조에 전산 유체 역학 분석이 처음으로 적용 되었기 때문에 엄격한 검증 프로세스가 강조됩니다. 그것은 2D ogee 방수로 프로파일로 시작하여 문제의 방수로의 3D 모델을 분석하기 위해 진행되는 방식으로 수행되었습니다.
계산된 결과를 각 단계에서 이론 및 물리적 테스트 데이터와 비교했습니다. 유체 흐름 문제의 비선형적 특성에도 불구하고, 분석은 확신을 가지고 실제 설계 목적에 적합한 결과를 제공할 수 있었습니다.

최종 사례 연구에서는 안벽의 거동이 시공 이력과 매립 방식에 영향을 받은 것으로 나타났습니다. 벽의 움직임은 매우 가변적인 토양 속성에도 불구하고 질적으로도 단순한 비선형 토양 모델을 사용하여 정확하게 예측되었습니다. 지속적인 모니터링 기록이 없기 때문에 검증은 어려웠습니다. 계산된 결과를 검증하는 열쇠는 수치 소프트웨어 도구를 사용하지 않는 독립적인 계산을 찾는 것입니다. 대부분의 경우 이러한 솔루션을 사용할 수 있습니다. 그러나 다른 경우에는 실험실 또는 현장 관찰에만 의존할 수 있습니다.

Introduction

오늘날 수치 해석은 대부분의 엔지니어링 설계에서 필수적인 부분을 형성합니다. 따라서 결과 검증의 필요성은 분석 기술 / 방법론을 신뢰할 수 있고 설계자가 계산 된 결과에 대한 확신을 가질 수 있도록 설계 프로세스 전반에 걸쳐 매우 중요합니다.

일반적인 관행은 고전 이론, 실험 데이터, 게시 된 데이터, 유사한 구조의 성능 및 다른 사람이 수행 한 수치 계산에 대해 결과를 검증하는 것입니다. 때때로 소프트웨어 개발자가 제공 한 벤치 마크 또는 검증 예제가 이러한 목적으로 사용될 수 있지만 전체 범위의 문제를 포괄 할만큼 포괄적 인 경우는 거의 없습니다.

수치 해석을 시작하기 전에 분석가는 입력 데이터의 신뢰성, 소프트웨어 도구가 문제의 문제를 해결할 수 있는지 여부 및 결과를 검증하는 방법을 결정해야합니다. 검증 프로세스가 많은 실무자들에 의해 품질 보증 절차의 일부로 채택되었지만 비용이 많이 드는 실패가 여전히 발생했습니다 [1].

Validation

결과 검증의 필요성은 수치 분석의 사용 (남용)에서 일부 나쁜 업계 관행을 관찰함으로써 강화 될 수 있습니다. 수치 계산을 수행하기 위해 고용 된 일부 엔지니어 / 분석가는 계산 뒤에있는 기본 이론을 완전히 이해하지 못하거나 숨겨진 함정을 처리 할 수있는 실제 엔지니어링 경험이 충분하지 않을 수 있습니다.

일부 소프트웨어가 “CAD와 유사”해지고 많은 사람들이 작동하기 쉽다고 주장하기 때문에 엔지니어링 회사가 대학원 엔지니어 대신 초보를 고용하여 수치 모델링 및 분석을 수행하는 경향이 점차 증가하고 있습니다.

사용자는 복잡한 지오메트리 모델을 생성하고, 적절한 요소와 메시를 만들고, 각 하중 케이스에 대한 경계 조건 (접촉, 하중 및 고정)을 적용하고, 속성을 할당하고, 제출에 필요한 모든 플래그 / 스위치 / 버튼을 설정하는 데 상당한 노력을 기울일 것입니다.

분석이 실행됩니다. 자체 검사를위한 일부 품질 보증 절차는 전처리 단계에서 따를 수 있지만 계산이 완료되고 결과가 후 처리 될 때까지 많은 사용자는 출력이 어느 정도 정확하다고 쉽게 믿을 것입니다. 지오메트리 생성은 수치 모델링 프로세스의 일부일뿐입니다. 가장 어려운 문제 중 하나는 전체 설계 프로세스에서 불확실성을 다루는 것입니다. 재료 속성 및 로딩 순서와 같은 입력과 관련된 불확실성이 있습니다.

예를 들어 모델이 선형 또는 비선형 방식으로 동작하는지 여부와 같이 솔루션 유형의 적절성과 관련된 불확실성이 있습니다. 마지막으로 결과 해석과 관련된 불확실성이 있습니다. 수치 분석에서 결과를 검증하고 문제를 발견하는 데있어 분석가를위한 좋은 방법에 대한 간단한 지침은 없습니다. 그러나 다음 방법을 통해 점차적으로 달성 할 수 있습니다.

• 수치 적 방법 과정에 대한 좋은 이해 – 이것은 학부 및 / 또는 대학원 수준의 공식 교육을 통해 얻을 수 있으며 지속적인 전문성 개발의 일환으로 자습을 통해 더욱 향상 될 수 있습니다.
• 특정 유형의 문제에 대한 기본 이론과 해결책의 범위를 잘 이해합니다. 이 역시 위와 같은 교육을 통해 이루어질 수 있습니다.
• 실제 문제를 해결하는 데 공학적 판단을 사용하고 수치 분석을 수행 한 경험이 있습니다. 이는 숙련 된 엔지니어가 분석가를 적절하게 감독하는 환경에서 작업함으로써 얻을 수 있습니다.

품질 보증 시스템의 구현이 실행 가능한 솔루션으로 이어지는 엔지니어링 판단을 대체하는 것은 아니라는 점에 유의해야합니다. 복잡한 대규모 모델을 분석하기 전에 시뮬레이션 기술과 문제의 근본적인 동작을 완전히 이해하기 위해 간단한 테스트 모델을 사용하여 수치 “실험”을 수행해야하는 경우가 매우 많습니다.

경험에 따르면 때때로 테스트 모델 자체가 분석가가 최종 설계 솔루션에 도달 할 수있는 충분한 정보를 제공 할 수 있습니다. 해당 대형 복합 모델의 분석은 설계 기대치를 확인하는 것입니다. 다음 사례 연구는 결과 검증이 수행 된 방법과 신뢰 수준 및 불확실성이 해결된 방법을 보여줍니다.

Applications

일반적인 토목 공학 프로젝트에서 수치 분석은 구조 역학, 기하학 및 유체 역학의 세 가지 기본 분야 중 하나 또는 조합을 포함 할 수 있습니다. 문제의 성격은 토양-구조 상호 작용, 유체-구조 상호 작용 또는 토양-유체 상호 작용 중 하나로 분류 될 수 있습니다.

어떤 경우에는 세 가지 모두를 포함 할 수 있습니다. 잠재적 인 복잡성을 고려하여, 정확도를 잃지 않고 실제 목적을 위해 중요한 동작을 캡처하지 않고 문제를 단순화하기 위해 몇 가지 가정과 이상화가 이루어져야합니다. 이러한 문제를 해결할 수있는 범용 및 특수 수치 분석 소프트웨어가 있습니다. 두 가지 유형의 소프트웨어가 사례 연구에 사용되었습니다.

Case 1 – Deflection of a steel water tank

직경 약 90m의 대형 원형 강철 물 탱크는 처음 채울 때 큰 벽면이 휘어지면서 탱크의 장기적인 구조적 무결성에 대한 우려를 불러 일으켰습니다.

물의 높이는 전체 저장 용량에서 약 10m였습니다. 지붕 구조는 탱크 내부에있는 기둥으로 거의 전적으로지지되었습니다. 스트레이크(strakes)는 벽의 바닥 1/3이 더 두꺼운 고급 강판으로 구성되었습니다. 1 차 윈드 거더는 탱크 상단 주위에 용접되었고 2 차 윈드 거더는베이스 위 2/3에 위치했습니다. 하단 스트레이 크는 환형베이스 플레이트에 필렛 용접되었습니다. 내부 기둥의 기초를 제외한 전체 바닥은 용접 된 강판으로 덮여있었습니다.

이 탱크는 유능한 중간층 사암과 미사암 기반암 위에 압축된 채움물 위에 세워졌습니다. 일련의 축 대칭 유한 요소 분석 (FEA)을 수행하여 관찰된 처짐을 예측할 수 있는지 여부를 결정하고 매일 물을 채우고 비울 때 피로 파괴가 발생할 가능성으로 인해 벽 바닥의 응력 상태를 계산했습니다.

내부 기둥과 지붕 빔을 포함하는 탱크의 12 분의 1 섹터에 대한 3 차원 모델을 처음에 분석하여 벽이 얼마나 많은 지붕 자중을지지하고 축 대칭 가정의 타당성을 조사했는지 조사했습니다. 이 분석의 결과는 지붕 구조의 강성 기여도가 중요하지 않아 후속 축 대칭 모델에 포함되지 않았 음을 보여주었습니다.

그러나 지붕 자체 무게의 작은 부분이 벽에 적용됩니다. 축 대칭 모델은 모든 강철 섹션, 필렛 및 맞대기 용접 및 기초로 구성되었습니다 (그림 1). 그것들은 몇 개의 3 노드 삼각형 축 대칭 요소가있는 4 노드 비 호환 모드 사변형으로 이산화되었습니다.

용접 재료를 통해서만 하중 전달이 허용되도록 용접이 모델링되었습니다. 용접 연결부에 미세한 메시를 사용하여 응력 상태를 정확하게 포착했습니다. 롤러 지지대는 모델의 측면 및 하단 경계에 적용되었습니다. 다음과 같은 하중이 적용되었습니다 :

철골 구조물의 자중, 지붕 자중, 벽의 정수압, 수위에 따른 바닥의 균일 한 압력. 한 모델은 용접 또는베이스의 강판이 플라스틱 힌지를 형성하기 위해 항복되었다고 가정했습니다. 이 경우 벽 바닥에서 핀 연결이 모델링되었습니다.

Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base
그림2 Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base

벽 처짐은 그림 2에 나와 있습니다. 측정 범위와 계산 된 결과는 비교 목적으로 표시됩니다. 계산 된 벽 처짐을 검증하기 위해 두 벽 두께에 대한 Timoshenko 및 Woinowsky-Krieger [2]에 기반한 고전 이론도 그림에 표시되었습니다. 계산 된 편향은 이론적 계산에 의해 제한됨을 관찰 할 수 있습니다.

벽 두께의 변화로 인한 전이가 분석에서 포착되었습니다. 이것은 유한 요소 모델에 대한 확신을 제공했습니다. 윈드 거더와 구속 된베이스의 영향도 볼 수 있습니다. 윈드 거더 설치로 인해 초기 변형이 발생하여 공사가 끝날 때 벽 상단이 안쪽으로 당겨질 수 있습니다. 굽힘 동작이 발생한베이스 근처를 제외하고는 후프 동작이 벽 동작을 지배했습니다.

계산된 최대 처짐이 측정된 순서와 동일하더라도 최대 돌출이 발생한 높이는 예측되지 않았습니다. 실제로 조사 데이터는 몇 가지 가능한 시나리오를 제안했습니다.베이스에 플라스틱 힌지 형성 (그러나이 영역에서 계산 된 응력은 항복 강도를 초과하지 않았습니다). 지반 재료의 국부적 인 베어링 고장 (다시 현장에서 균열과 같은 명백한 지시 신호가 보이지 않음); 또는 탱크 건설이 끝날 때 내장 된 기하학적 결함이있었습니다. 사전 변형 된 탱크에서 역 분석을 수행하여 측정 된 처짐이 정수압 하에서 “회복”되었습니다. 그러나 계산된 응력은 수율을 훨씬 초과했습니다. 불행히도 탱크는 완성 후 첫 번째 충전 전에 즉시 조사되지 않았습니다.

Figure 2 Wall deflection of water tank
Figure 2 Wall deflection of water tank

탱크의 원래 디자인과 건설이 2000 년대 초에 수행되었다는 점은 흥미 롭습니다. 설계 계산에 관련 표준 [3]을 사용했습니다. 이 표준은 탱크 벽이 후프 동작만으로 작용한다고 가정하고이 구조의 경우가 아닌베이스의 제약 조건을 무시합니다. 벽 처짐의 크기는 기초 강성을 고려한 Rish [4]가 개발 한 고전 이론 [2] 또는 FEA와 같은 수치 분석에 의해 결정될 수 있습니다. 고급 강철을 사용하면 설계자는 강도에는 적합하지만 서비스 가능성에는 필요하지 않은 더 얇은 섹션을 선택해야합니다. 굽힘 강성은 큐브 두께에 의해 결정됩니다. 수중 부하에서 후속 벽 변형 프로파일은 제작 품질에 영향을받습니다. 이것은 설계 단계에서 추정하기 어려웠을 것입니다.

사례 2 – 배수로 배출

호주의 많은 댐 구조는 제한된 수 문학적 정보로 1950 년대와 60 년대에 설계 및 건설되었습니다. 이러한 기존 방수로 구조는 수정 된 가능한 최대 홍수 수준에 대처하기 위해 크기가 작습니다. 증가 된 홍수 조건 하에서 방수로 꼭대기에 대한 음압 생성과 같은 잠재적 인 문제가 발생할 수 있습니다. 이는 방수로 및 게이트 구조에 불안정성 또는 캐비테이션 손상을 유발할 수 있습니다. 역사적으로 스케일링 된 물리적 모델은 이러한 동작을 연구하기 위해 수력 학 실험실에서 구성되었지만 비용이 많이 들고 시간이 많이 걸리며 스케일링 효과와 관련된 많은 어려움이 있습니다. 오늘날 고성능 컴퓨터와보다 효율적인 전산 유체 역학 (CFD) 코드를 사용하여 수리적 구조의 동작을 합리적인 시간과 비용으로 수치 적으로 조사 할 수 있습니다. 이 분석 기법은 대도시 지역에 주요 상수원을 제공하는 가장 큰 콘크리트 중력 댐에 호주에서 처음으로 적용 되었기 때문에 검증을 수행 할 필요가있었습니다. 이것은 그림 3과 같이 조사 프로세스에 통합되었습니다. 순서도는 간단한 2D에서 상세한 3D 방수로 모델로 어떻게 발전했는지 보여줍니다.

Figure 3 Flowchart showing the validation process
Figure 3 Flowchart showing the validation process

미 육군 공병대 [5]에서 발표 한 광범위한 데이터가 있기 때문에 검증을 위해 ogee 방수로 프로필 (그림 4 참조)이 선택되었습니다. 계산 된 결과는 조사의 각 단계에서 검토되었습니다. 게시 된 데이터에서 크게 벗어나면 프로젝트가 중단됩니다. 이것은 프로젝트가 시작되기 전에 고객과 상호 합의되었습니다.

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

이러한 종류의 분석의 초기 어려움 중 하나는 개방 채널 중력 흐름 문제에서 자유 표면의 정확한 계산이었습니다. 자유 표면을 추적하는 데 적응 형 메싱 및 반복 방법을 사용하는 것은 일부 유한 체적 CFD 코드에서 사용되었지만 성공은 제한적이었습니다. 본 연구에 사용 된 코드는 SOLA-VOF 방법으로 Navier-Stokes 방정식을 해결합니다. 유체 운동의 과도 동작을 해결하기 위해 유한 차분 방법이 사용되었습니다. 유체의 부피 (VOF) 함수는 자유 표면 운동을 계산하는 데 사용됩니다 [6].

분석에 대한 자세한 내용은 [7]에 설명되어 있습니다. 계산 된 파고 압력 분포, 자유 표면 프로파일 및 정상 상태에서의 배출 속도는 검증 목적으로 사용되었습니다. 다른 상류 수두 (H) 아래의 배수로 꼭대기를 따라 압력 분포가 그림 5에 나와 있습니다. 일부 압력 진동은 코드가 일반 메시와 곡선 배수로 장애물 사이의 인터페이스에서 계산을 처리하는 방식에 기인 할 수 있습니다. 훨씬 더 미세한 메쉬는 이러한 불규칙성을 부드럽게 만들었습니다. 압력 분포에 대한 교각의 영향은 3D 모델에서 올바르게 예측되었습니다 (그림 6).

계산된 자유 표면 프로파일 (그림 7)도 게시 된 데이터와 잘 일치했습니다. Savage와 Johnson [8]은 분석 기법에 대한 신뢰도를 높이는 동일한 CFD 코드를 사용하여 유사한 유효성 검사를 수행했습니다. 문제의 배수로에 대한 후속 분석은 스케일링 된 물리적 모델 테스트에서 얻은 결과와 비교할 때 상당히 좋은 결과를 제공했습니다.

Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 7 Upper nappe profile next to pier
Figure 7 Upper nappe profile next to pier

분석에서 배수로의 기하학적 구조와 물 속성이 잘 정의되었습니다. 물은 비압축성이며 고정 된 온도에서 일정한 특성을 가지고 있다고 가정했습니다. 실제로 좋은 품질의 콘크리트 표면 마감을 얻을 수 있기 때문에 배수로 경계는 매끄럽다 고 가정했습니다. 불확실성은 메쉬 밀도와 적절한 난류 모델의 선택이라는 두 가지 소스에서 비롯됩니다. 메쉬 크기는 메모리 양과 컴퓨터의 클럭 속도에 의해 제한됩니다.

높은 레이놀즈 수의 난류 흐름은 소용돌이와 소용돌이의 형성을 포착 할 수있는 매우 미세한 메시로 계산할 수 있지만 현재 메시 밀도는 검증 및 설계 목적에 필요한 변수를 예측하기에 충분히 미세했습니다. 조사 결과는 큰 와류, k-ε 및 RNG 모델과 같은 난류 모델의 선택에 의해 크게 영향을받지 않는 것으로 나타났습니다. 분명히 벽 거칠기와 난류 모델의 도입은 방전율을 감소시킬 것입니다. 그러나 다시 분석 결과는 사용 된 메시에 거의 영향을 미치지 않음을 보여줍니다. 향후 분석은 다른 메쉬 밀도로 인한 이산화 오류를 조사 할 것입니다.

사례 3 – 안벽 건설
주요 컨테이너 항구 시설은 설계 단계에서 최소한의 수치 분석을 수행하여 약 25 년 전에 건설되었습니다. 당시에는 이러한 분석 도구를 사용하는 것이 비용 효율적이지 않은 것으로 간주되었습니다. 다수의 컨테이너 크레인이 측면을 따라 이어지는 2km 길이의 안벽을 건설하기 위해 광범위한 준설 및 매립 작업이 수행되었습니다.

시설이 완공 된 이후 일련의 콘크리트 카운터 포트 유닛으로 구성된 안벽과 후방 크레인 빔은 크레인이 할 수 있도록 후방 빔에 대한 레벨 조정 작업이 수행 될 정도로 지속적으로 이동하고 있습니다. 정상적으로 작동합니다. 그러나 영향을받는 두 구조물의 움직임을 저지하기 위해보다 영구적 인 해결책을 모색했습니다. 토양-구조 상호 작용 및 시공 시뮬레이션을 처리 할 수있는 명시 적 유한 차이 분석을 사용하여 다양한 교정 옵션의 순위를 지정했습니다.

그라우트 기둥, 타이백 앵커 및 말뚝 지지대와 같은 다양한 제안 된 개선을 분석하기 전에, 토양 및 구조적 특성과 시공 과정의 선택이 적절하도록 계산 모델을 관찰에 대해 보정해야한다고 결정했습니다. 지질 및 지질 공학 정보는 현장 및 실험실 테스트 데이터를 포함하는 현장 조사 보고서에서 평가되었습니다. 시설의 범위를 고려할 때 현장에서 만나는 특정 토양 유형에 대해 상당한 분산 테스트 데이터가 예상됩니다. 수력 모래 충전재에 대한 표준 침투 테스트 (SPT) 블로우 횟수 (N) 및 콘 침투 테스트 (CPT) 저항 (qc)에 대한 몇 가지 일반적인 기록이 그림 8과 9에 나와 있습니다.

Figure 8 SPT ‘N’ profiles
Figure 8 SPT ‘N’ profiles
Figure 9 CPT profiles
Figure 9 CPT profiles

이 결과로부터 평균 해수면 위와 아래에있는 모래 채우기의 강도와 강성의 대비를 관찰 할 수 있습니다. 이 현상은 배치 방법에 기인한다고 제안되었다 [9]. 또한 기초 수준에서 진동 압축 된 모래의 특성에도 변동이있었습니다. 분석을 위해 선택된 토양 특성은 테스트 데이터, 인근 사이트의 경험 및 유사한 토양 조건에 대한 발표 된 데이터를 기반으로합니다. 그것들은 표 1에 요약되어 있습니다. 일반적으로 시설의 건설 순서는 다음과 같습니다.

  1. Removal of pockets of soft marine clay by dredging
  2. Dredging of sand to the required level
  3. Vibro-compaction of the sand on which the counterfort units were to be founded
  4. Placement of gravel for the quay wall foundation.
  5. Placement of concrete counterfort units weighing 360 tonne each
  6. Placement of hydraulic sand fill behind the units
  7. Surcharging the fill just behind the capping beam
  8. Construct capping beam and place more sand fill to the finished level
  9. Additional surcharge prior to the operation of container cranes.

Table 1 Soil properties used in the construction
simulation of the quay wall

Table 1 Soil properties used in the construction simulation of the quay wal
Table 1 Soil properties used in the construction simulation of the quay wal

2D 평면 변형 모델의 수치 시뮬레이션에서 구성 순서 (그림 10)와 하중은 다음 단계에 따라 단순화 / 이상적입니다.

  1. The starting condition of the seabed consisted of the vibrocompacted sand, gravel bed, native sand, clay and fissured clay at depth. The “in-situ” stresses were also switched on in this step.
  2. Placement of counterfort unit (using equivalent linear elastic beam elements) with a vertical force applied through the centre of gravity of the unit to represent the buoyant self-weight.
  3. Sequentially placing hydraulic sand fill behind the unit to the level prior to surcharging.
  4. Apply an equivalent trapezoidal pressure to represent the surcharge.
  5. Placement of capping beam and the sand fill to the required level.
  6. Apply additional surcharge.
  7. Application of repeated loads from the crane seaward and landward legs.
Figure 10 Construction sequence
Figure 10 Construction sequence

분석에서는 침수 된 물질과 평균 해수면 위에있는 물질을 나타 내기 위해 적절한 밀도를 사용했습니다. 안벽의 장기적인 움직임이 중요했기 때문에 배수 된 토양 매개 변수가 사용되었습니다. 토양은 분석에서 Mohr-Coulomb 실패 기준을 따르는 것으로 가정되었습니다. 단순한 탄성-완전 소성 응력-변형 거동이 가정되었습니다. 일련의 강체 다이어그램으로 표현 된 안벽 이동의 역사는 그림 11에 나와 있습니다. 벽의 상단과 바닥에서 계산 된 수직 및 수평 이동은 그림 12와 13에 표시됩니다. 수치는 모니터링 된 데이터와 해당 상한 및 하한 (해당 상자에 표시됨)입니다. 측정에서 산란의 양에도 불구하고 벽 건설에 대해 계산 된 움직임은 합리적으로 잘 비교되었습니다. 조사 데이터와 예측을 일치시키기 위해 분석에서 토양 속성을 변경하려는 시도가 없었습니다. 반복되는 크레인 하중의 래칫 효과를 관찰 할 수 있습니다. 불행히도 반복적 인 크레인 하중 하에서 벽 이동에 대한 기준이 없었기 때문에 이러한 예상 이동을 비교할 수 없었습니다. 문제의 복잡성과 고도로 가변적 인 토양 특성을 고려할 때 계산 된 결과는 매우 고무적입니다.

Figure 11 Wall deformations
Figure 11 Wall deformations

토양에서 플라스틱 구역의 발달도 분석에서 계산되었습니다. 벽의 발가락 아래의 토양이 여러 번 과도하게 압박을받는 것으로 밝혀졌습니다. 접촉 압력은 경사 하중으로 인한 베어링 고장에 대한 안전 지표 (FOS)를 결정하는 데 사용되었습니다. 지지력은 계산 방법에 의해 크게 영향을 받았다고보고되었습니다 [10]. 원래의 기초 디자인은 덴마크 코드 [11]를 기반으로했기 때문에이 경우 일관성을 위해 사용되었습니다. 편심의 함수로서 FOS의 발전과 수평 대 수직 추력 (H / V)의 비율이 각각 그림 14와 15에 나와 있습니다.

Figure 12 Wall top movements
Figure 12 Wall top movements
Figure 13 Wall base movements
Figure 13 Wall base movements
Figure 14 ‘FOS’ vs. eccentricity
Figure 14 ‘FOS’ vs. eccentricity
Figure 15 ‘FOS’ vs. H/V ratio
Figure 15 ‘FOS’ vs. H/V ratio

그림은 벽이 추가 요금과 반복적 인 적재 단계 동안 국부적 인 베어링 고장에 가까웠음을 보여줍니다. 크레인 하중 하에서 FOS의 명백한 증가는 벽에 대한 수직 하중이 증가하는 반면 유지된 토양의 수평 압력이 다소 일정하게 유지됨에 따라 편심이 감소했기 때문입니다.

끝 맺는 말
세 가지 매우 다른 실제 응용 프로그램의 유효성 검사 프로세스가 설명되었습니다. 각 사례의 주요 특징과 결과는 표 2에 요약되어 있습니다. 재료 및 하중 불확도 및 예상 결과가 강조 표시됩니다. 건설 품질은 구조의 성능에 상당한 영향을 미치는 것으로 나타났습니다.

이는 분석가가 프로젝트의 설계 단계에서 정량화하고 정확하게 분석하지 못할 수도 있습니다. 구조가 완료된 직후 모니터링의 중요성을 간과해서는 안됩니다. 이것은 미래의 역 분석을위한 유용한 자료가 될 것입니다. 수치 도구가 이러한 복잡한 문제를 분석 할 수 있다는 사실에도 불구하고 분석가는 어떤 매개 변수가 중요하거나 중요하지 않은지 식별 할 준비가되어 있어야합니다.

익숙하지 않은 문제를 분석 할 때 유효성 검사 프로세스를 점진적으로 수행해야합니다. 아마도 검증 방법을 찾는 핵심은 수치 분석 도구를 사용하지 않고 솔루션에 도달 할 수있는 다른 방법이 있는지 묻는 것입니다. 많은 경우 이러한 솔루션은 광범위한 문헌 검색 후에 존재합니다. 그러나 다른 경우에는 실험실 테스트와 현장 관찰이 유일한 대안이 될 것입니다.

자세한 내용은 원문을 참고하시기 바랍니다.

References
[1] Puri, S.P.S. (1998) “Avoiding Engineering Failures Caused by Computer-Related Errors”, J. Comp. in Civil Engineering, ASCE, 12(4), 170-172.
[2] Timoshenko, S.P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, 2nd edition, McGraw-Hill Kogakusha. p.580.
[3] BS2654 (1989) Manufacturing of vertical steel welded non-refrigerated storage tanks with butt-welded shells for the petroleum industry.
[4] Rish, R.F. (1977) “Design of Cylindrical Tanks on Elastic Foundations”, Civil Engineering Transactions, The Institution of Engineers, Australia, 192-195.
[5] US Army Corps of Engineers (1990) Hydraulic Design of Spillways, Engineer Manual No. 1110-2-1603.
[6] Hirt, C.W. and Nichols, B.D. (1981) “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, J. Comp. Phys. 39, 201- 225.
[7] Ho, D.K.H., Boyes, K.M and Donohoo, S.M. (2001) “Investigation of Spillway Behaviour under Increased Maximum Flood by Computational Fluid Dynamics Technique”, Proc. Conf. 14th Australasian Fluid Mechanics, Adelaide, December, 577-580.
[8] Savage, B.M. and Johnson, M.C. (2001) “Flow over Ogee Spillway: Physical and Numerical Model Case Study”, J. Hydraulic Engineering, ASCE, 127(8), 640-649.
[9] Lee, K.M., Shen, C.K., Leung, D.H.K. and Mitchell, J.K. (1999) “Effects of placement method on geotechnical behaviour of hydraulic fill sands” J. Geotech. and Geoenviron. Engineering, ASCE, 125(10), 832-846.
[10] Sieffert, J.G. and Bay-Gress, Ch. (2000) “Comparison of European bearing capacity calculation methods for shallow foundations”, Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 143, April, 65-74.
[11] DS 415 (1984) Code of Practice for Foundation Engineering. Table 2 Summary of findings for the three case studies

Cavitation | 캐비테이션

캐비테이션이란 무엇입니까?

The spillways of the Glen Canyon dam in 1983 (Lee and Hoopes, 1996).

캐비테이션은 유체 흐름의 매우 낮은 압력 또는 포화 압력을 높이는 온도 상승으로 인해 유체 내에서 증기 또는 기포가 빠르게 발생하는 것입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유도 된 힘은 1983 년 Glen Canyon 댐의 배수로에서 경험 한 손상에서 볼 수 있듯이 며칠 내에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

또한 고압 다이 캐스팅에서 캐비테이션이 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 급속한 압력 강하를 초래하고 후속 캐비테이션으로 이어질 수 있습니다. 생성된 증기 기포는 최종 주조에서 다공성을 유발하거나 더 나쁜 경우 다이에 손상을 일으켜 주조품을 훼손시키고 다이 수명을 감소시킬 수 있습니다.

캐비테이션은 터빈과 파이프에 손상을 줄 수 있고, 댐의 배수로에서 콘크리트를 침식하는 등의 원인이 될 수 있습니다. 아래 이미지는 댐의 배수로 바닥 근처의 콘크리트 침식을 보여줍니다. 댐에 사용되는 콘크리트는 일반적으로 강도가 높지만 캐비테이션은 여전히 그것을 부식시킬 수 있습니다.

Eroded concrete due to cavitation on the spillway of a dam

캐비테이션은 때때로 오염 물질과 유기 분자를 분해하고, 소수성 화학 물질을 결합하고, 캐비테이션 기포의 파열로 인해 생성 된 충격파를 통해 신장 결석을 파괴하고, 혼합을위한 난류를 증가시켜 수질 정화와 같은 특정 산업 응용 분야에서 의도적으로 유도됩니다.

따라서 캐비테이션이 발생할 가능성이있는 위치와 그 강도를 이해하는 것이 중요합니다. 캐비테이션을 실험을 수행하거나 실험 결과의 현상을 시각화하는 것이 어렵고, 잠재적으로 손상 될 수 있으므로 수치해석 시뮬레이션으로 검토하는 것이 매우 필요하고, 유용합니다.

Real-World Applications | 실제 응용 분야

  • 물 및 환경 구조 내에서 손상을 주는 캐비테이션 시뮬레이션
  • 다이 손상 및 주조 다공성을 유발할 수 있는 고압 다이 캐스팅 중 캐비테이션 시뮬레이션
  • MEMS 장치 내의 열 거품 형성 시뮬레이션
  • 열 전달 표면의 비등 거동 예측
  • 캐비테이션 역학으로 인한 혼합 예측

Modeling Cavitation in FLOW-3D

FLOW-3D의 캐비테이션 모델은 thermal bubble jets 와 MEMS devices를 시뮬레이션하는데 성공적으로 사용되었습니다. FLOW-3D는 “active”또는 “passive” 모델 옵션을 제공합니다. Active 모델은 기포 영역을 열고 수동 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전파하지만, 기포 영역의 형성을 시작하지는 않습니다.

Active모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합하며, Passive모델은 작은 기포의 간단한 모양이 예상되는 시뮬레이션에 가장 적합합니다. 활성 모델과 에너지 전송 계산을 통해 위상 변화도 옵션입니다. 기포는 계면에서의 증발 또는 응축으로 인해 추가로 팽창하거나 수축 할 수 있습니다.

Sample Results

아래 시뮬레이션은 수축 노즐을 보여줍니다. 애니메이션은 매우 일시적인 진동 동작을 보여주는 캐비테이션 버블의 진화를 보여줍니다. 캐비테이션 부피 분율은 초기 연속 액체에서 캐비테이션의 시작을 시각화하기 위해 플롯됩니다.

아래 애니메이션은 진입 속도가 8m/s이고 수렴 기울기가 18 °이고 발산 기울기가 8 ° 인 벤츄리 내의 캐비테이션을 보여줍니다. 다시 말하지만, 캐비테이션의 과도 동작은 잘 모델링되어 있으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션주기 기간을 예측합니다 (Stutz and Reboud 1997).

Cavitation in a venturi

물 탱크를 통해 이동하는 고속 발사체를 시뮬레이션하여 발사체 후류에서 생성 된 저압 영역의 공동 기둥을 보여줍니다. 발사체의 초기 속도는 600m / s입니다. 아래는 탱크의 움직임과 후행하는 캐비테이션 유체의 애니메이션입니다. 발사체가 감속함에 따라 캐비테이션 기둥의 반경이 좁아집니다.

@

High-speed bullet

References

Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.

Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.

Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.

Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

많은 제품들이 모두 자신의 소프트웨어가 가장 적합하다고 말하기 떄문에, 사람들은 자신의 업무에 적합한 CFD 소프트웨어 선택에 어려움을 겪습니다. 그 이유는 유체 흐름 및 열 전달 분석을 위한 소프트웨어 패키지는 다양한 형태로 제공됩니다. 이러한 패키지는 물리적 근사치와 수치적 솔루션 기법이 크게 다르기 때문에 적합한 패키지를 선택하는 것이 어렵습니다.

아래 내용에서 올바른 CFD 소프트웨어를 선택할 때 고려해야 할 중요한 항목을 설명합니다.

Spillway’s tailrace over natural rock

1. 메싱 및 지오메트리

유한 요소 또는 “바디 맞춤 좌표”를 사용하는 솔루션 방법은 유동 영역의 기하학적 구조를 준수하는 해석용 그리드를 생성해야합니다. 정확한 수치 근사를 위해 허용 가능한 요소 크기와 모양으로 이러한 그리드를 생성하는 것은 쉽지 않은 작업입니다. 복잡한 경우 이러한 유형의 그리드 생성에는 며칠 또는 몇주의 노력이 소요될 수 있습니다. 일부 프로그램은 직사각형 그리드 요소만 사용하여 이러한 생성 문제를 제거하려고 시도하지만 흐름 및 열 전달 특성을 변경하는 “계단현상” 경계 문제를 해결해야 합니다. FLOW-3D는 FAVOR ™ (분수 면적 / 체적) 방법을 사용하여 기하학적 특성이 매끄럽게 포함된 생성하기 쉬운 직사각형 그리드를 사용하여 두 문제를 모두 해결합니다. 간단하고 강력한 솔리드 모델러가 FLOW-3D와 함께 패키지로 제공되거나 사용자가 CAD 프로그램에서 기하학적 데이터를 가져올 수 있습니다.

2. 운동량 방정식과 대략적인 흐름 모델

유체 운동량의 정확한 처리는 여러 가지 이유로 중요합니다. 첫째, 복잡한 지오메트리를 통해 유체가 어떻게 흐를지 예측할 수 있는 유일한 방법입니다. 둘째, 유체에 의해 가해지는 동적 힘 (즉, 압력)은 모멘텀을고려하여야만 계산할 수 있습니다. 마지막으로, 열 에너지의 대류 이동을 계산하려면 개별 유체 입자가 다른 유체 입자 및 제한 경계와 관련하여 어떻게 움직이는지를 정확하게 파악할 수 있어야 합니다.

이것은 운동량의 정확한 처리를 의미합니다. 모멘텀의 보존을 대략적으로만 하는 단순화된 흐름 모델은 실제적인 유체 구성과 온도 분포를 예측하는데 사용할 수 없기 때문에 FLOW-3D에서는 사용되지 않습니다.

3. 액체-고체 열 전달 영역

액체와 고체 (예 : 금속-금형) 사이의 열 전달에는 계면 영역의 정확한 추정이 필요합니다. 계단 경계는 이 영역을 과대 평가합니다. 예를 들어, 실린더의 표면적은 27 %의 비율로 과대 평가됩니다. FLOW-3D 전 처리기의 각 제어 볼륨에 대해 FAVOR ™ 방법에 의해 정확한 계면 영역이 자동으로 계산됩니다.

4. 액체-고체 열 전달에 대한 볼륨 효과 제어

제어 볼륨의 크기는 액체 / 고체 인터페이스를 포함하는 제어 볼륨에서도 열이 흐르기 때문에 액체와 고체 사이에서 교환되는 열의 속도와 양에 영향을 미칠 수 있습니다. FLOW-3D에서는 액체-고체 인터페이스에서 열 전달 속도를 계산할 때 체적 크기와 전도도가 고려됩니다.

5. 암시성(Implicitness)과 정확성

비선형 및 결합 방정식에 대한 암시적 방법에는 각 반복에서 under-relaxation 특성이 있는 반복 솔루션 방법이 필요합니다. 이 동작은 일부 상황에서 심각한 오류 (또는 매우 느린 수렴)를 일으킬 수 있습니다 (예 : 큰 종횡비로 제어 볼륨을 사용하거나 실제로 중요하지 않은 효과를 예상하여 암시성이 사용되는 경우).

FLOW-3D에서는 계산 노력FLOW-3D에서는 계산 작업이 덜 필요하기 때문에 가능한 경우 언제나 명시적 수치 방법을 사용하며, 수치 안정성 요구 사항은 정확도 요구 사항과 동일합니다. Implicit vs. Explicit Numerical Methods 문서에서 자세히 알아보세요.

6. 대류 전송을 위한 암시적 수치 방법 (Implicit Numerical Methods)

임의적으로 큰 시간 단계 크기를 계산에 사용할 수 있는 암시적 수치 기법은 CPU 시간을 줄이는데 널리 사용되는 방법입니다. 불행히도 이러한 방법은 대류 해석에 정확하지 않습니다. 암시적 방법은 근사 방정식에 확산 효과를 도입하여 시간 단계 독립성을 얻습니다. 물리적 확산(예 : 열전도)에 수치적 확산을 추가하는 것은 확산 속도만 수정하기 때문에 심각한 문제를 일으키지 않을 수 있습니다. 그러나 대류 과정에 수치 확산을 추가하면 모델링되는 물리적 현상의 특성이 완전히 바뀝니다. FLOW-3D에서 시간 단계는 프로그램에 의해 자동으로 제어되어 정확한 시간 근사치를 보장합니다.

7. 이완 및 수렴 매개 변수 (Relaxation and Convergence Parameters)

암시적 근사를 사용하는 수치 방법은 하나 이상의 수렴 및 이완 매개 변수를 선택해야합니다. 이러한 매개 변수를 잘못 선택하면 발산 또는 수렴 속도가 느려질 수 있습니다. FLOW-3D에서는 하나의 수렴 및 하나의 이완 매개 변수만 사용되며, 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다. 사용자는 수치해석 솔버를 제어하는 ​​매개 변수를 설정할 필요가 없습니다.

8. 자유 표면 추적

액체-가스 인터페이스 (즉, 자유 표면)를 모델링하는 데 사용되는 두 가지 방법이 있습니다. 그 중 하나는 액체 및 가스 영역의 흐름을 계산하고 계면을 유체 밀도의 급격한 변화로 처리하는 것입니다. 일반적으로 밀도 불연속성은 고차 수치 근사를 사용하여 모델링됩니다.

불행히도, 이 치료는 몇몇 그리드 셀에 걸쳐 인터페이스가 매끄럽게 진행되도록 해주며, 그러한 인터페이스에 일반적으로 존재하는 접선 유속의 급격한 변화는 설명하지 않습니다. 또한 이 기법은 가스가 계산 영역으로 유입되는 액체로 대체될 경우 탈출 포트 또는 가스의 싱크로도 보완해야 합니다. 또한 이러한 방법은 일반적으로 유체의 비압축성을 만족시키기 위해 더 많은 노력을 기울여야 합니다.  가스 영역은 거의 균일한 압력 조정을 통해 솔루션 수렴 속도를 늦추는 경향이 있기 때문에 이러한 현상이 발생합니다.

FLOW-3D에서는 다른 기술인 VOF (Volume-of-Fluid) 방법이 사용됩니다. 이것은 인터페이스가 단계 불연속으로 긴밀하게 유지되는 진정한 3 차원 인터페이스 추적 체계입니다. 또한 선택적 표면 장력을 포함하여 수직 및 접선 응력 경계 조건이 인터페이스에 적용됩니다. 가스 영역은 사용자가 모델에 포함되도록 요청하지 않는 한 계산되지 않습니다.

A vertical jet flowing into a moving cross stream

공기 유입 / Air Entrainment

Air Entrainment / 공기 유입

A vertical jet flowing into a moving cross stream

FLOW-3D 의 공기 혼입 모델(air entrainment model)은 자유 표면에서 용해되지 않은 공기 혼입을 시뮬레이션하는 강력한 도구입니다. 제트 및 방수로 충돌시 관찰되는 국부적이고 난류가없는 자유 표면 혼입 기능이 있습니다. 이러한 기능은 엔지니어가 설계시 공기 유입을 예측하고, 공기유입이 안전하게 작동하도록 적절한 수정을 할 수 있게 합니다.

Spillway hydraulics / 여수로 수리장치

여수로 구조는 다양한 작동 조건을 처리 할 수 ​​있도록 설계되어야 합니다. 유동 조건이 설계 범위의 상단에 도달하면 여수로 표면의 불규칙성으로 인해 유동이 분리 될 수 있습니다. 이는 여수로 표면의 압력이 캐비테이션을 일으킬 정도로 낮아지게 합니다. 캐비테이션은 구조물의 강도에 매우 해로우며 치명적인 손상을 초래할 수 있습니다.

공기 유입은 캐비테이션의 가능성을 줄이는 수단입니다. 물이 공기에 존재하면 캐비테이션 영역의 붕괴하는 기포에 감쇠 효과를 추가하여 캐비테이션 손상을 줄입니다. 여수로의 속도가 충분히 높으면 공기를 동반시키고 캐비테이션을 줄이기 위해 폭기 장치를 추가해야합니다.

폭기 흐름의 시뮬레이션과 폭기 장치에서 포획된 공기의 예측.

왼쪽 이미지는 거시적 인 밀도에 의해 착색됩니다. 오른쪽 그래프는 폭기 장치에 유입 된 수분의 일정한 부피와 폭기 장치 이후의 수분 및 공기의 양을 비교 한 것입니다.

아래 동영상은 FLOW-3D에서 공기 유입 과정을 시뮬레이션하는 방법을 보여줍니다. 여기에는 공기혼입 및 드리프트 플럭스 모델의 이론에 대한 세부 정보와 FLOW-3D에서 기본 공기혼입 시뮬레이션을 설정하는 방법에 대한 데모가 포함되어 있습니다.

Fish passage design / 물고기 개체수 유지를 위한 어도 설계

공기가 물로 혼입되면 미생물의 성장을 유지하고 건강한 어류 개체군의 생존을 보장 할 수 있습니다. 그러나 과포화 상태의 용존 기체는 수생 생물에 부정적인 영향을 미치는 수질 문제가 됩니다. 공기 동반 모델의 또 다른 용도는 강의 하류로 방출되는 배수로에서 동반되는 공기의 농도를 결정하기 위해 해양 생물학에서 사용됩니다.
이 모델에 대한 더 자세한 정보는 Air Entrainment 의 Flow Science Report를 다운로드하십시오.

Cavitation(공동현상)

Cavitation(공동현상)

공동 현상은 유체 흐름의 압력이 매우 낮거나 온도 상승으로 인해 유체 내에서 증기 및 / 또는 가스 버블이 빠르게 진화하여 포화 압력을 높입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유발된 힘은 1983 년 글렌 캐년 댐의 유출로에서 발생한 손상으로 볼 수 있듯이 며칠 만에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

또한, 캐비테이션은 고압 다이 캐스팅에서 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 압력 강하를 빠르게하여 후속 캐비테이션을 유발할 수 있습니다. 생성 된 증기 기포는 최종 주조에서 다공성을 야기하거나, 더 악화되어, 다이를 손상시켜 주조를 오염시키고 다이 수명을 감소시킬 수 있습니다. 이러한 이유로, 캐비테이션이 발생할 가능성이 있는 영역을 이해하는 것이 중요합니다. 물리적 실험을 통해 캐비테이션을 시작하고 시각화하는 것은 어렵고, 잠재적으로 피해를 주기 때문에 공정을 시뮬레이션하는 것이 바람직합니다.

실증 사례

  • 물 및 환경 구조 내에서 손상된 캐비테이션 시뮬레이션
  • 고압 다이캐스팅 중 캐비테이션을 시뮬레이션하여 다이 손상 및 캐스팅 다공성을 유발할 수 있습니다.
  • MEMS 장치 내에서 열 기포 형성 시뮬레이션
  • 열전달 표면의 비등 거동 예측
  • 캐비테이션 역학으로 인한 혼합 예측

Cavitation(공동현상) FLOW-3D모델링

FLOW-3D의 현재 캐비테이션 모델은 열 버블 제트(Thermal bubble jets) 및 MEMS 장치를 시뮬레이션하는 데 성공적으로 사용되었습니다. FLOW-3D는 “Active”또는 “Passive”모델 옵션을 제공합니다. 능동형(Active) 모델은 기포 영역을 열고 수동형 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전진하지만 기포 영역의 형성은 시작하지 않습니다.

능동형(Active) 모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합한 반면, 수동형(Passive) 모델은 작은 기포의 짧은 모양이 예상되는 시뮬레이션에 가장 적합합니다. 에너지 전송의 능동 모델과 계산을 통해 위상 변화(Phase change)도 옵션입니다. 기포는 계면(Surface)에서의 증발 또는 응축으로 인해 추가로 팽창 또는 수축 될 수 있습니다.

해석 사례

아래의 결과는 8m/s의 진입 속도, 18°의 수렴 기울기 및 8°의 발산 기울기를 가진 벤투리(Venturi) 내의 캐비테이션을 보여줍니다. 캐비테이션의 과도 거동이 잘 모델링되었으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션 사이클 주기(Cycle period)를 예측합니다 (Stutz and Reboud 1997).

물 탱크를 통과하는 고속 발사체를 시뮬레이트하여 발사체의 웨이크에서 발생하는 저압 영역에서 공동화 깃털(Cavitation jets)을 보여줍니다. 발사체의 초기 속도는 600m/s입니다. 아래는 탱크에서의 움직임과 후미 캐비테이션 유체의 해석 결과입니다. 캐비테이팅 플룸(Cavitating plume)의 반경은 발사체가 감속함에 따라 좁아집니다.

참고 문헌

  • Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.
  • Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.
  • Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.
  • Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.

Culvert Application / 암거 시설물

Culvert Applications / 암거 시설물 유동해석 개요

Brain Fox / CFD Engineer, Flow Science, inc

근래 이상기후에 의한 강우량 증대와 도시화에 따른 첨두 유출량의 증대 및 도달시간의 단축은 하류지점의 빈번한 범람을 유발하여, 이러한 문제들의 해결을 위해 저류지와 같은 우수 유출 저감시설 구축을 추진하고 있습니다.

Culvert 시설물의 최적 설계 또는 기존 시설물의 개선을 통한 문제점 해결에 필요한 3차원 유동 해석은 FLOW-3D를 활용하여 도움을 받을 수 있습니다.

암거 흐름은 지형 및 수리조건에 따라 복잡하고 다양한 흐름 특성을나타내고 있으며, 이로 인해 암거의 3차원 유동해석(CFD)이 점점 더 필수적인 업무 과정이 되어 가고 있습니다.

기본 Culvert 유동

FLOW-3D를 이용한 Culvert 유동해석

Overtopping

None-Liner

Energy Dissipiration

Fish Passage / 어도

Sedimentation / Outlet Scour

Multi-ballel culvert

Moning Glory Spillway

Air entrainment

FLOW-3D를 이용한 실제 해석

초기 해석 조건

해석시간

São Roque Hydro Power Plant

São Roque Hydro Power Plant

This article was contributed by Diego David Baptista de Souza, Alexandre Charles Allain, and Anaximandro Steckling Muller of Engevix Engenharia S/A.

The São Roque hydroplant project는 브라질의 카노아스 강 산타 카타리나 주에 있습니다. 롤러 압축 콘크리트 댐은 141,9MW의 설치 용량을 허용합니다. 그림 1은 프로젝트의 위치를 보여 줍니다.

Figure 1 – São Roque hydro power plant location

제트 편향은 낮은 홍수에 대해 배수로의 첫번째 단계에서 발생하며 불안전한 흐름과 진동을 일으킵니다. 수치 모델링은 제트 편향을 제한하는 첫 단계의 형상을 최적화하는데 사용될 수 있습니다. 편향이 발생하는 임계 방전을 최소화하는 기하학적 구조를 찾기 위해 여러 번의 시뮬레이션이 수행되었습니다. 처음 계단식 배수로를 따라 설치된 흐름을 스키핑 흐름이라 한다. 유량 시스템이 불안정성을 보이기 시작하면서 결국 제트가 임계 유량으로 비상할 때까지 저수지의 수위가 점차적으로 낮아지게 됩니다.

시뮬레이션한 모든 기하학적 구조는 고정 매개변수인 1.2m의 정규 계단높이와 53°의 경사를 포함합니다. 그림 2와 3은 두개의 기하학적 구조를 보여 줍니다. 수치 모델에는 TruVOF 기법을 이용한 공기 침투 및 자유 표면 추적이 포함됩니다. 색상 범례는 물의 농도를 나타내며, 물 1은 100% 물이고 0은 100% 공기입니다. 분석은 y축에 있는 단일 2D블록인 spillway의 단면 모델을 사용하여 수행되었습니다.
jet takeoff 에 따라 해당되는 유량을 사용해 관련 형상을 비교하고 가장 효율적인 형상을 결정할 수 있습니다. 제트 편향에 해당하는 임계 유량은 탱크 레벨이 낮아지는 속도와 시뮬레이션에 사용되는 메쉬의 크기에 따라 달라지게 됩니다.

Spillway Water Profile and Energy Dissipation

Jet Deflection on Upper Spillway

그림 2는 ‘생성자’ 프로파일과 단계별 섹션 사이의 전환 위치에 대한 2개의 기하학적 설계(상단과 하단)를 비교하여 보여줍니다. 좌측에는 흐름이 스키밍 체제에 있고 중앙에서 탱크 레벨이 점차 낮아지면서 플럭스가 동요되기 시작합니다. 우측에는 지속적인 상태 방출과 함께 jet takeoff 가 표시되어 있습니다.

Figure 2 – Comparison of 2 geometric designs         

Figure 3 – Spillway water and energy profiles

Figure 4 – Turbulent energy dissipation on stepped spillway         

발생 가능한 최대 홍수의 양에 대해 계단식 배수로와 에너지 분산이 평가되었습니다. 표준 단계는 공기 침투 모델과 함께 FLOW-3D와 비교했습니다. 그림 3은 수치 모델과 이론 모델 모두의 결과를 나타내는데 이 현상을 평가하기 위해 FLOW-3D에 단면 모델이 적용되었습니다.
수치 시뮬레이션으로 얻은 Water의 프로필은 공기 흡입을 고려할 때 이론적 모델과 잘 맞습니다. 에너지 프로필은 이론적 모델에서 수렴적인 결과로 약간의 차이가 나타납니다. 이러한 차이는 단계별 채널이 시작되기 전에 Creager프로필의 수두손실을 무시하는 것과 같은 일부 이론적 가정의 결과일 수 있습니다. 다운 스트림에서 유출되는 에너지 프로필은 유출되는 유압 점프로 인해 떨어지게 됩니다. 그림 4는 FLOW-3D의 난류 에너지 소산을 나타냅니다.

Flow Distribution at Turbine Entrance

Figure 5 – Flow trough penstocks upstream turbine entrance

물의 Head 높이는53m이고 총 방출량이333 m3/s인 동일한 3개의 강철 penstock를 통해 전달됩니다. 그 터빈들은 수직 축을 가진 Francis 타입입니다. penstock하단에는 플럭스가 터빈으로 유도되기 전 마지막 커브 뒤에 수평 부분이 남아 있습니다. 이 수평 부분은 터빈에 도달하기 전에 흐름을 안정화시키는데 필요합니다. 필요한 길이와 속도 및 압력 분포의 작동 방식을 결정하기 위해 수치 모델링이 사용되었습니다.
업 스트림 경계 조건은 유량 소스로 설정되며 물 취수구 끝에 위치합니다. 하류인 터빈 입구에는 특정 압력이 설정되어 있어 Bernoulli 방정식이 사용됩니다. 수두 손실은 이론적으로 계산되었고 이 등식에서 제외되었습니다. 마지막으로, 거칠기를 보정하여 수치모델과 이론 계산에서 헤드 손실이 동일하도록 2mm의 거칠기가 설정되었습니다. 이는 강철 penstock의 거칠기와 잘 일치합니다. 또한 메쉬 크기는 0.5m의 셀로 설정되었습니다.

이 세가지 구성은 모두 터빈 입구 바로 앞에 위치한 크로스 섹션의 하부에서 더 높은 속도를 보여 줍니다. 흐름은 단면 1과 단면 2사이에서 많은 변화는 없었습니다. 실제로 깊이 평균 속도와 압력 분포 측면에서 전체 결과는 직경이 전환된 직후에 흐름이 이미 안정화되었음을 나타냅니다.  구성 3에서 속도 분포는 수평 단면을 따라 계속 발전한다는 것은 흥미로운 사실입니다. 따라서, 이 수평적인 penstock의 길이를 증가시킬 필요가 없는 것처럼 보였습니다. 또한, 이것은 비용과 수두손실을 상당히 증가시킬 것입니다. 따라서 초기 프로젝트의 개요는 최종 프로젝트를 위해 그대로 유지되었습니다. 이 시뮬레이션은 수치 모델이 의사 결정 지원을 위한 효율적이고 빠른 도구임을 입증하게 됩니다.

Draft Tube Exit

그 draft tube는 운하의 흐름을 분산시킵니다. 하지만, 갑작스런 단면의 확장으로 인해, 흐름 체제는 난류와 수두 손실의 상당한 확산으로 인해 변화하게 됩니다. 수치 모델을 사용하여 수두손실을 확인할 수 있습니다.

상류 경계조건은 체적 흐름 속도로 설정되었고 draft tube의 수문에 위치합니다. 하류에서는 정상 작동 수위와 동등한 압력이 설정되었습니다. 메쉬 크기는 0.5m로 설정되었습니다.

이 수치 모델은 14cm의 수두 손실을 초래하는 반면, 이론적인 계산은 16.7cm로 비교적으로 수렴하고 있습니다. 3D수치 해석을 사용하면 수두손실을 최소화하는 기하학적인 최적화를 할 수 있습니다.

Figure 6 – Downstream view of the 3 units’ draft tube exit with the FAVOR™ option

Figure 7 – Cross section of the draft tube exit and tailrace channel in terms of velocity magnitude and vectors

Conclusions

수치 모델링은 수력학 엔지니어에게 유용한 도구이고 FLOW-3D와 같은 패키지는 매우 효율적인 도구입니다. 또한 솔루션 및 최적화를 통해 비용을 절감할 수 있습니다. 저자들의 경험에 따르면 다양한 문제에 있어 3차원 모델링은 훌륭한 옵션이며 물리적 모델링과 함께 추가 도구로 사용될 수 있습니다. 때때로, 그것은 실제 모델을 대체할 수도 있는데, 그것은 São Roque HPP의 경우였습니다. 또한 3D 수치해석 최적화를 통해 물리적 모델을 설계하는데 도움이 될 수 있습니다.

CFD + Physical Modeling Results

CFD + Physical Modeling Results

This material was provided by Kevin Sydor, M.Sc., P.Eng., Section Head, Hydrotechnical and Oceanographic Studies, Water Resources Engineering; Manitoba Hydro; Joe Groeneveld, Western Canada Discipline Practice Lead – Hydrotechnical, Hatch Ltd.; Graham Holder, Consultant, LaSalle; D.G. Murray, P.Eng., M.Sc., Discipline Practice Lead – Hydrotechnical, Hatch Ltd.

 

10년이 넘는 기간 동안 Manitoba Hydro는 Flow-3D의 힘으로 수력 발전소 설계의 복잡성을 해결해 왔습니다. 최근 Manitoba Hydro는 급류, 다중 채널, 그리고 natural contours을 포함한 복잡한 장소에서 제안된 Keeyask생성에 대한 사전연구에 집중해 왔습니다. FLOW-3D사용 이전에는 초기 설계를 토대로 시뮬레이션과 물리적 모델링의 결합 결과가 서로의 성능을 검증하고 향상시키는 통합 연구를 수행했습니다.

Water velocities (m/s) as determined in CFD simulation at left, compared with photo of physical model in operation at right, for Stage 1 Cofferdam operation at a construction length of 450m.

 

실제 발전소와 제철소를 건설하기 위해서는 두 단계의 강 유역이 필요했습니다. Manitoba Hydro는 임시 코퍼 댐 건설 중 물리적 조건이 변화함에 따라 다양한 지역에서의 수위와 속도가 어떻게 변할 것인지를 추정하는 시뮬레이션을 수행했습니다. 그런 다음, 그들은 연안 공사, 우회 구조, 하천 폐쇄 및 배수로의 1/120 축척모델에서 측정된 결과와, 배수로 구역의 1/50 축척모델에서 측정된 결과를 비교했습니다. 1/120 축척모델의 연산에서 관찰된 수치는 수정되었고, CFD시뮬레이션 내 경계 조건을 나타내는 STL모델의 변경 사항으로 세부 사항이 피드백 되었습니다. 여러 가지의 상세한 공정은 물리적 축척 모형의 거동을 약 5%이내에서 예측했을 뿐만 아니라 공사비를 절감할 수 있는 설계 변경 사항도 찾아냈습니다.

 

Setting up and Calibrating the CFD Model

Simulation of final Keeyask spillway structure, verifying water velocities (m/s) to compare with physical scale model operation.

 

CFD모델은 약 3km x 2km의 영역을 커버하였으며, 탐지 속도 경계로 설정된 경계 조건을 통해 상류 쪽으로의 흐름을 제어하고 하류 쪽 끝의 지속적인 유출 경계를 설정하였습니다. 설계자들은 교각, 교대, 여수로 구조 및 코퍼댐과 같은 기하학적 객체의 STL AutoCAD파일을 가져와 물리적 경계를 나타낸 다음 매개 변수를 정의 했습니다.

강 급류의 특성과 레일 통로의 평행 부분을 통해 생성되는 예상 유량 범위를 모두 수용하기 위해 CFD모델이 다시 정규화되도록 설정되었습니다. 일반화된 최소 잔류 방법에 기초한 회전 난류 모드 및 implicit의 압력-속도 솔버를 설정했습니다. 메쉬는 데카르트 좌표로 설정되었고 보다 정밀한 메쉬 처리가 필요한 영역에서 grid를 다듬기 위해 중첩된 메쉬 블록을 사용했습니다. 배수로 구조 주위 영역의 격자 간격은 1m x 1m x 1m로 설정되었습니다. 즉, 배수로 및 배수로 용마루의 형상을 포함하는 데 필요했던 것입니다.

시뮬레이션의 목적은 건설 일정상 다양한 지점에서의 방전 용량, 수위, 속도 및 흐름 패턴, 다양한 위치, 경로 게이트(부분에서 완전히 열림)등을 추정하는 것이었습니다.  이 계산된 값들은 코페르담 건축에서 암석 덩어리에 필요한 돌의 크기를 결정하는데 중요합니다. 건축의 모든 단계에서 그들을 제자리와 하류로 이동시키는 항력에 저항할 만큼 암석들은 충분히 커야 합니다.

Excellent agreement in flow-rate prediction of spillway behavior between numeric and measured physical model values.

 

Physical Modeling

수력 발전소 설계로 인해 처음에는 제대로 하지 못하는 일이 너무 많습니다. 중요한 지형에서의 용량, 압력, 속도 및 배수로 게이트 동작(완전 개방)을 검증하기 위해서는 중요한 흐름 영역의 규모 물리적 모델을 구축해야 합니다. Manitoba Hydro는 LaSalle Consulting Group에 1/120 스케일의 하나의 포괄적 인 레이아웃과 1/50 스케일의 2 개의 전체구역과 2 개의 절반 구역을 가진 방수 모델을 구축할 것을 요청했습니다.

 

Integrated Modeling Results

실제 모델의 크기에 대한 힘의 이동 관계를 살펴보면, 바위 크기 예측에 대한 시뮬레이션은 약간 보존적입니다. 그러나 초기 수위 데이터 곡선은 시뮬레이션과 물리적 모델 행동 사이에 일치를 보여주었고 추가 시험을 위한 단계를 설정했습니다. 모델에서 코퍼댐이 서서히 생성됨에 따라 후속 수위 CFD시뮬레이션 결과를 정확하게 예측했음을 보여주었습니다.

완성된 코퍼댐의 테스트에 따르면 제어 구조가 아닌 채널 입구에서 흐름이 제어되고 있는 것으로 나타났습니다. 이것은 원하는 것보다 높은 상류수위가 나타났습니다. 접근 채널의 입구를 낮추도록 물리적 모델을 재구성하여 CFD에 사용된 고도를 반영했습니다. 출입구가 더 낮게 발굴되어, 수로의 왼쪽 둑을 따라 굴착하는 것은 입구 근처의 작은 지역에서만 필요했습니다.

 

Conclusion

Manitoba Hydro는 CFD모델링이 미래의 수력 발전소뿐만 아니라 Keeyask 발전소의 건설과 운영을 계획하는 데에도 여러 가지 이점을 제공한다는 사실을 발견했습니다 두 가지 접근법의 결과간에 매우 잘 일치했을 뿐만 아니라 FLOW-3D 시뮬레이션과 스케일 모델 테스트를 결합하면 두 가지 설계 옵션의 유효성을 개선하는 반복적 인 방법이 제공되었습니다. 또한 시뮬레이션을 통해 사용자는 실제 사용할 수 있는 값의 수가 제한되어 있지 않고 CFD모델 도메인 내의 어디서나 속도, 수위 및 유량을 쉽고 빠르게 추출할 수 있습니다.

Spillway Hydraulics Assessments

Spillway Hydraulics Assessments

이 기사는 BC Hydro의 Hydrotechnical부서의 전문 엔지니어인 M.A.Sc., P.Eng의 FaizalYusuf에 의해 기고되었다.

브리티시 콜롬비아의 공공 전력 회사인 BC Hydro는 FLOW-3D를 사용하여 현존하는 여러 댐의 복잡한 유압 문제를 조사하고 제안된 시설의 설계와 최적화를 지원합니다. 본 기사에서는 FLOW-3D를 다양한 유형의 드릴에 적용하는 방법과 신뢰할 수 있는 프로토 타입 또는 수치 모델 보정용 물리적 유압 모델 데이터의 중요성을 강조하는 세가지 사례가 제시됩니다.

W.A.C. Bennett Dam

Shock Waves in Spillway Chute

W.C. Bennett 댐에서는 1960년대 물리적 유압 모델과 프로토 타입 사이에 있었던 레일 궤도의 차이로 인해 충격파 형성에 대한 신뢰할 수 있는 결론을 도출하기 어렵습니다. 이 자료는 실제 모델 테스트 결과의 슈트 용량을 제공합니다. 콘크리트 라인 스풀 레이 슈트의 충격 파장의 크기는 헤드 워크에 있는 세 개의 방사형 게이트의 다운 스트림이 44% 감소되는데 크게 영향을 받습니다. 방사형 관문의 방사형 개구부의 충격파는 지역적으로 더 높은 수위로 이어져 특정 과거 작업에서 슈트 월의 과다 주입을 야기합니다.

2012년에 최대 2,865 m3/s 의 배출에 대한 프로토 타입 유출 테스트가 실행되어 슈트 벽, 슈트 내 물 표면에 대한 3D레이저 스캔 및 FLOW-3D model 보정을 위한 흐름 패턴. 수치 모델과 현장 관찰 간에, 특히 슈트 월의 첫번째 충격파의 위치와 높이 사이에 훌륭한 일치가 이루어졌습니다.

보정된 FLOW-3D모델은 기존에 규정된 바와 같이 3개의 방사형 관문이 모두 열리는 한, 유출되지 않고 설계 홍수를 안전하게 통과할 수 있음을 확인했습니다. 바깥쪽 문을 이용한 허가 명령은 안쪽 문보다 더 많이 열립니다.
CFD모델 또한 spillway 슈트의 콘크리트 손상에 대한 통찰력을 제공했습니다. FLOW-3D시뮬레이션 결과로부터 계산된 공동지수를 USBR의 경험적 데이터와 비교했고, spillway의 과거 성능과 일치하는 것으로 확인되었습니다. 수치 해석을 통해 현장 검사를 지원하였으며, 이를 통해 슈트의 콘크리트 상태의 악화가 캐비테이션 때문이 아니라는 결론을 내렸습니다.

Strathcona Dam

Poor Approach Conditions and Uncertainty of Spillway Rating Curves

FLOW-3D는 댐 우측 교대에 수직 리프트 게이트가 3개 포함된 Strathcona댐 배수로의 등급 곡선과 관련한 열악한 접근 조건 및 불확실성을 조사하는 데 사용되었습니다. Strathcona spillway의 등급 곡선은 경험적인 조정과 교각의 기하학적 구조가 포함되지 않은 flume의 제한적인 물리적 유압 모델 테스트의 조합으로부터 개발되었습니다.
수치 모델 테스트 및 보정은 세개의 게이트가 모두 열려 있었던 1982년부터의 프로토 타입 유출 관측치와 비교하여 이루어진 것입니다. 맨 왼쪽 베이의 streamline입니다. 최좌측 베이로의 흐름은 댐 축에 평행하게 흐르는 물과 지하수 댐의 상류 경사에 인접한 콘크리트 옹벽 위로 곤두박질쳐 왜곡됩니다. 이 흐름은 다른 두 베이로 훨씬 더 부드럽게 들어갑니다. 프로토 타입과 비교하여 수치 모델에서 생성된 매우 유사한 흐름 패턴 외에도, 게이트 섹션에서 시뮬레이션된 수위는 1982년의 현장 측정 값과 0.1m이내에 일치했습니다.

보정된 CFD모델은 모든 게이트가 완전히 열린 상태에서 탱크의 정상 작동 범위에 대해 배수로 정격 곡선의 5%이내에서 배출을 생성합니다. 그러나 큰 홍수가 지나가는 동안 발생할 수 있는 더 높은 저장소 수준에서(그림 3) 시뮬레이션 배출과 등급 곡선 간의 차이는 다음과 같이 10%보다 큽니다. 단순화된 기하학적 구조와 경험적 보정을 사용한 물리적 모델 시험은 복잡한 접근 흐름 패턴을 적절히 나타내지 않았습니다. FLOW-3D모델은 개별 베이의 등급 곡선 정확도, 게이트 조건 및 오리피스와 자유 표면 흐름 사이의 전환에 대한 추가적인 통찰력을 제공합니다.

John Hart Dam

Optimization of a Proposed Spillway

John Hart 콘크리트 댐은 기존의 게이트 배수로와 현재 건설 중인 낮은 층의 출구 구조 사이에 위치할 새로운 free crest spillway를 포함하도록 개조될 것입니다. FLOW-3D를 사용한 체계적인 최적화 프로세스를 통해 제안된 배수로 설계가 크게 개선되었습니다.
free crest 배수로의 예비 설계는 엔지니어링 유압 설계 가이드에 기초했습니다. 콘크리트 에이프런 블록은 댐의 끝에 있는 바위를 보호하기 위한 것입니다. 새로운 우측 도류벽이 새 배수로에서 테일 레일 풀로 흐르는 흐름을 유도하고 낮은 레벨의 배수로 구조물을 배수로로부터 보호합니다.

그림 4는 새 레일의 초기 설계와 최적화 설계에 대한 FLOW-3D모델 결과를 보여 줍니다. CFD분석을 통해 배수 용량이 10%증가하고 도로가 심하게 감소했습니다. 배수로 돌출부 위에 있고 제안된 오른쪽 벽을 따라 최대 5m의 수위 감소를 포함한 흐름 패턴을 개선합니다. 제안된 설계를 확인하기 위해 물리적 유압 모델 테스트가 사용됩니다.

Conclusion

BC Hydro는 다양한 유형의 댐과 물 운반 구조의 흐름 패턴 및 성능 대한 광범위한 유압 장치 문제를 조사하기 위해 FLOW-3D를 사용해 왔습니다. 프로토 타입 데이터와 신뢰할 수 있는 물리적 유압 모델 테스트는 수치 모델 결과에 대한 신뢰도를 높이기 위해 가능할 때마다 사용됩니다

FSR_01-12_Air-Entrainment-Report [공기 혼입 모델 분석]

Overview
In free-surface flows the turbulence in the liquid may be sufficient to disturb the surface to the point of entraining air into the flow. This process is important, for example, in water treatment where air is needed to sustain microorganisms for water purification and in rivers and streams for sustaining a healthy fish population. Air entrainment is typically engineered into spillways downstream of hydropower plants to reduce the possibility of cavitation damage at the base of the spillway. Situations where air entrainment is undesirable are in the sprue and runner systems used by metal casters, and in the filling of liquid containers used for consumer products.
The importance of being able to predict the amount and distribution of entrained air at a free liquid surface has led to the development of a unique model in FLOW-3D®. The model has two options. One option, to be used when the volume fraction of entrained air is relatively low, uses a passive scalar variable to record and transport the air volume fraction. This model is passive in that it does not alter the dynamics of the flow.
The second air-entrainment model option is based on a variable density formulation. This model includes the “bulking” of fluid volume by the addition of air and the buoyancy effects associated with entrained air. This dynamically coupled model cannot, however, be used in conjunction with heat transport and natural (thermal) convection.
In addition, when using the variable density formulation, the model can include a relative drifting of air in water, the possible escape of air if it rises to the surface of the water and the removal or addition of air to trapped bubble regions represented as adiabatic bubbles.
The same basic entrainment process is used in both options. It is based on a competition between the stabilizing forces of gravity and surface tension and the destabilizing effects of surface turbulence.
Because turbulence is the main cause of entrainment, a turbulence-transport model must be used in connection with the air-entrainment model. It is recommended that the RNG version of the more traditional k-epsilon turbulence model be employed. All the validation tests reported in this Technical Note were performed using the RNG model.

 

[다운로드]

FSR_01-12_Air-Entrainment-Report

Modeling Turbulent Entrainment of Air at a Free Surface

Overview
In free-surface flows the turbulence in the liquid may be sufficient to disturb the surface to the point of entraining air into the flow. This process is important, for example, in water treatment where air is needed to sustain microorganisms for water purification and in rivers and streams for sustaining a healthy fish population. Air entrainment is typically engineered into spillways downstream of hydropower plants to reduce the possibility of cavitation damage at the base of the spillway. Other situations where air entrainment is undesirable are in the sprue and runner systems used by metal casters, and in the filling of liquid containers used for consumer products.
The importance of being able to predict the amount and distribution of entrained air at a free liquid surface has led to the development of a unique model that can be easily inserted into FLOW-3D® as a user customization. The model has two options. One option, to be used when the volume fraction of entrained air is relatively low, uses a scalar variable to record the air volume fraction. This model is passive in that it does not alter the dynamics of the flow.
A second air-entrainment model, option two, is based on a variable density formulation. This model includes the “bulking” of fluid volume by the addition of air and the buoyancy effects associated with entrained air. However, this dynamically coupled model cannot be used in connection with heat transport and natural (thermal) convection.
In both model options the same basic entrainment process is used that is based on a competition between the stabilizing forces of gravity and surface tension and the destabilizing effects of surface turbulence. The model is described in the next section. Because turbulence is the main cause of entrainment, a turbulence-transport model must be used in connection with the air-entrainment model (i.e., ifvis=3 or 4). It is recommended that the RNG version of the more traditional k-epsilon turbulence model be employed. All the validation tests reported in this Technical Note were performed using the RNG turbulence model.

Water & Environmental Bibliography

다음은 수자원 및 환경 분야에 대한 참고 문 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  해석 결과를 사용하였습니다. FLOW-3D  를 사용하여 수처리 및 환경 산업을 위한 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Water and Environmental Bibliography

2021년 8월 26일 Update

68-21   R. Daneshfaraz, E. Aminvash, S. Di Francesco, A. Najibi, J. Abraham, Three-dimensional study of the effect of block roughness geometry on inclined drop, Numerical Methods in Civil Engineering, 6.1; pp. 1-9, 2021. 

66-21   Benjamin Hohermuth, Lukas Schmoker, Robert M. Boes, David Vetsch, Numerical simulation of air entrainment in uniform chute flow, Journal of Hydraulic Research, 59.3; pp. 378-391, 2021. doi.org/10.1080/00221686.2020.1780492

65-21   Junjun Tan, Honglin Tan, Elsa Goerig, Senfan Ke, Haizhen Huang, Zhixiong Liu, Xiaotao Shi, Optimization of fishway attraction flow based on endemic fish swimming performance and hydraulics, Ecological Engineering, 170; 106332, 2021. doi.org/10.1016/j.ecoleng.2021.106332

63-21   Erdinc Ikinciogullari, Muhammet Emin Emiroglu, Mehmet Cihan Aydin, Comparison of scour properties of classical and trapezoidal labyrinth weirs, Arabian Journal for Science and Engineering, 2021. doi.org/10.1007/s13369-021-05832-z

59-21   Elias Wehrmeister, José J. Ota, Separation in overflow spillways: A computational analysis, Journal of Hydraulic Research, 59, 2021. doi.org/10.1080/00221686.2021.1908438

53-21   Zongxian Liang, John Ditter, Riadh Atta, Brian Fox, Karthik Ramaswamy, Numerical modeling of tailings dam break using a Herschel-Bulkley rheological model, USSD Annual Conference, online, May 11-21, 2021. 

51-21   Yansong Zhang, Jianping Chen, Chun Tan, Yiding Bao, Xudong Han, Jianhua Yan, Qaiser Mehmood, A novel approach to simulating debris flow runout via a three-dimensional CFD code: A case study of Xiaojia Gully, Bulletin of Engineering Geology and the Environment, 80.5, 2021. doi.org/10.1007/s10064-021-02270-x

49-21   Ramtin Sabeti, Mohammad Heidarzadeh, Preliminary results of numerical simulation of submarine landslide-generated waves, EGU General Assembly 2021, online, April 19-30, 2021. doi.org/10.5194/egusphere-egu21-284

48-21   Anh Tuan Le, Ken Hiramatsu, Tatsuro Nishiyama, Hydraulic comparison between piano key weir and rectangular labyrinth weir, International Journal of GEOMATE, 20.82; pp. 153-160, 2021. doi.org/10.21660/2021.82.j2106

46-21   Maoyi Luo, Faxing Zhang, Zhaoming Song, Liyuan Zhang, Characteristics of flow movement in complex canal system and its influence on sudden pollution accidents, Mathematical Problems in Engineering, 6617385, 2021. doi.org/10.1155/2021/6617385

42-21   Jakub Major, Martin Orfánus, Zbyněk Zachoval, Flow over broad-crested weir with inflow by approach shaft – Numerical model, Civil Engineering Journal, 30.1; 19, 2021. doi.org/10.14311/CEJ.2021.01.0019 

41-21   Amir Ghaderi, Saeed Abbasi, Experimental and numerical study of the effects of geometric appendance elements on energy dissipation over stepped spillway, Water, 13.7; 957, 2021. doi.org/10.3390/w13070957

38-21   Ana L. Quaresma, António N. Pinheiro, Modelling of pool-type fishways flows: Efficiency and scale effects assessment, Water, 13.6; 851, 2021. doi.org/10.3390/w13060851

37-21   Alireza Khoshkonesh, Blaise Nsom, Farhad Bahmanpouri, Fariba Ahmadi Dehrashid, Atefah Adeli, Numerical study of the dynamics and structure of a partial dam-break flow using the VOF Method, Water Resources Management, 35; pp. 1513-1528, 2021. doi.org/10.1007/s11269-021-02799-2

36-21   Amir Ghaderi, Mehdi Dasineh, Francesco Aristodemo, Constanza Aricò, Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses, Water, 13.5; 674, 2021. doi.org/10.3390/w13050674

35-21   Hongliang Qi, Junxing Zheng, Chenguang Zhang, Modeling excess shear stress around tandem piers of the longitudinal bridge by computational fluid dynamics, Journal of Applied Water Engineering and Research, 2021. doi.org/10.1080/23249676.2021.1884614

31-21   Seth Siefken, Robert Ettema, Ari Posner, Drew Baird, Optimal configuration of rock vanes and bendway weirs for river bends: Numerical-model insights, Journal of Hydraulic Engineering, 147.5, 2021. doi.org/10.1061/(ASCE)HY.1943-7900.0001871

29-21   Débora Magalhães Chácara, Waldyr Lopes Oliveira Filho, Rheology of mine tailings deposits for dam break analyses, REM – International Engineering Journal, 74.2; pp. 235-243, 2021. doi.org/10.1590/0370-44672020740098

27-21   Ling Peng, Ting Zhang, Youtong Rong, Chunqi Hu, Ping Feng, Numerical investigation of the impact of a dam-break induced flood on a structure, Ocean Engineering, 223; 108669, 2021. doi.org/10.1016/j.oceaneng.2021.108669

26-21   Qi-dong Hou, Hai-bo Li, Yu-Xiang Hu, Shun-chao Qi, Jian-wen Zhou, Overtopping process and structural safety analyses of the earth-rock fill dam with a concrete core wall by using numerical simulations, Arabian Journal of Geosciences, 14; 234, 2021. doi.org/10.1007/s12517-021-06639-w

25-21   Filipe Romão, Ana L. Quaresma, José M. Santos, Susana D. Amaral, Paulo Branco, António N. Pinheiro, Performance and fish transit time over vertical slots, Water, 13.3; 275, 2021. doi.org/10.3390/w13030275

23-21   Jiahou Hu, Chengwei Na, Yi Wang, Study on discharge velocity of tailings mortar in dam break based on FLOW-3D, IOP Conference Series: Earth and Environmental Science, 6th International Conference on Hydraulic and Civil Engineering, Xi’an, China, December 11-13, 2020, 643; 012052, 2021. doi.org/10.1088/1755-1315/643/1/012052

21-21   Asad H. Aldefae, Rusul A. Alkhafaji, Experimental and numerical modeling to investigate the riverbank’s stability, SN Applied Sciences, 3; 164, 2021. doi.org/10.1007/s42452-021-04168-5

20-21   Yangliang Lu, Jinbu Yin, Zhou Yang, Kebang Wei, Zhiming Liu, Numerical study of fluctuating pressure on stilling basin slabwith sudden lateral enlargement and bottom drop, Water, 13.2; 238, 2021. doi.org/10.3390/w13020238

18-21   Prashant Prakash Huddar, Vishwanath Govind Bhave, Hydraulic structure design with 3D CFD model, Proceedings, 25th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2020), Odisha, India, March 26-28, 2021.

17-21   Morteza Sadat Helbar, Atefah Parvaresh Rizi, Javad Farhoudi, Amir Mohammadi, 3D flow simulation to improve the design and operation of the dam bottom outlets, Arabian Journal of Geosciences, 14; 90, 2021. doi.org/10.1007/s12517-020-06378-4

15-21   Charles R. Ortloff, Roman hydraulic engineering: The Pont du Gard Aqueduct and Nemausus (Nîmes) Castellum, Water, 13.1; 54, 2021. doi.org/10.3390/w13010054

12-21   Mehdi Karami Moghadam, Ata Amini, Ehsan Karami Moghadam, Numerical study of energy dissipation and block barriers in stepped spillways, Journal of Hydroinformatics, 23.2; pp. 284-297, 2021. doi.org/10.2166/hydro.2020.245

08-21   Prajakta P. Gadge, M. R. Bhajantri, V. V. Bhosekar, Numerical simulations of air entraining characteristics over high head chute spillway aerator, Proceedings, ICOLD Symposium on Sustainable Development of Dams and River Basins, New Dehli, India, February 24 – 27, 2021.

07-21   Pankaj Lawande, Computational fluid dynamics simulation methodologies for stilling basins, Proceedings, ICOLD Symposium on Sustainable Development of Dams and River Basins, New Dehli, India, February 24 – 27, 2021.

Below is a collection of technical papers in our Water & Environmental Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate applications for the Water & Environmental Industry.

02-21   Aytaç Güven, Ahmed Hussein Mahmood, Numerical investigation of flow characteristics over stepped spillways, Water Supply, in press, 2021. doi.org/10.2166/ws.2020.283

01-21   Le Thi Thu Hien, Nguyen Van Chien, Investigate impact force of dam-break flow against structures by both 2D and 3D numerical simulations, Water, 13.3; 344, 2021. doi.org/10.3390/w13030344

125-20   Farhad Bahmanpouri, Mohammad Daliri, Alireza Khoshkonesh, Masoud Montazeri Namin, Mariano Buccino, Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling, Journal of Hydrology, in press, 2020. doi.org/10.1016/j.jhydrol.2020.125645

124-20   John Petrie, Yan Qi, Mark Cornwell, Md Al Adib Sarker, Pranesh Biswas, Sen Du, Xianming Shi, Design of living barriers to reduce the impacts of snowdrifts on Illinois freeways, Illinois Center for Transportation Series No. 20-019, Research Report No. FHWA-ICT-20-012, 2020. doi.org/10.36501/0197-9191/20-019

123-20   Mohammad Reza Namaee, Jueyi Sui, Yongsheng Wu, Natalie Linklater, Three-dimensional numerical simulation of local scour in the vicinity of circular side-by-side bridge piers with ice cover, Canadian Journal of Civil Engineering, 2020. doi.org/10.1139/cjce-2019-0360

119-20   Tuğçe Yıldırım, Experimental and numerical investigation of vortex formation at multiple horizontal intakes, Thesis, Middle East Technical University, Ankara, Turkey, , 2020.

118-20   Amir Ghaderi, Mehdi Dasineh, Francesco Aristodemo, Ali Ghahramanzadeh, Characteristics of free and submerged hydraulic jumps over different macroroughnesses, Journal of Hydroinformatics, 22.6; pp. 1554-1572, 2020. doi.org/10.2166/hydro.2020.298

117-20   Rasoul Daneshfaraz, Amir Ghaderi, Aliakbar Akhtari, Silvia Di Francesco, On the effect of block roughness in ogee spillways with flip buckets, Fluids, 5.4; 182, 2020. doi.org/10.3390/fluids5040182

115-20   Chi Yao, Ligong Wu, Jianhua Yang, Influences of tailings particle size on overtopping tailings dam failures, Mine Water and the Environment, 2020. doi.org/10.1007/s10230-020-00725-3

114-20  Rizgar Ahmed Karim, Jowhar Rasheed Mohammed, A comparison study between CFD analysis and PIV technique for velocity distribution over the Standard Ogee crested spillways, Heliyon, 6.10; e05165, 2020. doi.org/10.1016/j.heliyon.2020.e05165

113-20   Théo St. Pierre Ostrander, Analyzing hydraulics of broad crested lateral weirs, Thesis, University of Innsbruck, Innsbruck, Austria, 2020.

111-20   Mahla Tajari, Amir Ahmad Dehghani, Mehdi Meftah Halaghi, Hazi Azamathulla, Use of bottom slots and submerged vanes for controlling sediment upstream of duckbill weirs, Water Supply, 20.8; pp. 3393-3403, 2020. doi.org/10.2166/ws.2020.238

110-20   Jian Zhou, Subhas K. Venayagamoorthy, How does three-dimensional canopy geometry affect the front propagation of a gravity current?, Physics of Fluids, 32.9; 096605, 2020. doi.org/10.1063/5.0019760

106-20   Juan Francisco Macián-Pérez, Arnau Bayón, Rafael García-Bartual, P. Amparo López-Jiménez, Characterization of structural properties in high reynolds hydraulic jump based on CFD and physical modeling approaches, Journal of Hydraulic Engineering, 146.12, 2020. doi.org/10.1061/(ASCE)HY.1943-7900.0001820

105-20   Bin Deng, He Tao, Changbo Jian, Ke Qu, Numerical investigation on hydrodynamic characteristics of landslide-induced impulse waves in narrow river-valley reservoirs, IEEE Access, 8; pp. 165285-165297, 2020. doi.org/10.1109/ACCESS.2020.3022651

102-20   Mojtaba Mehraein, Mohammadamin Torabi, Yousef Sangsefidi, Bruce MacVicar, Numerical simulation of free flow through side orifice in a circular open-channel using response surface method, Flow Measurement and Instrumentation, 76; 101825, 2020. doi.org/10.1016/j.flowmeasinst.2020.101825

101-20   Juan Francisco Macián Pérez, Numerical and physical modelling approaches to the study of the hydraulic jump and its application in large-dam stilling basins, Thesis, Universitat Politècnica de València, Valencia, Spain, 2020.

99-20   Chen-Shan Kung, Pin-Tzu Su, Chin-Pin Ko, Pei-Yu Lee, Application of multiple intake heads in engineering field, Proceedings, 30th International Ocean and Polar Engineering Conference (ISOPE), Online, October 11-17,  ISOPE-I-20-3116, 2020.

Below is a collection of technical papers in our Water & Environmental Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate applications for the Water & Environmental Industry.

91-20      Selahattin Kocaman, Stefania Evangelista, Giacomo Viccione, Hasan Güzel, Experimental and numerical analysis of 3D dam-break waves in an enclosed domain with a single oriented obstacle, Environmental Science Proceedings, 2; 35, 2020. doi.org/10.3390/environsciproc2020002035

89-20      Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, Bernhard Gems, The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D, Natural Hazards and Earth Systems Sciences, 20; pp. 2255–2279, 2020. doi.org/10.5194/nhess-20-2255-2020

88-20      Cesar Simon, Eddy J. Langendoen, Jorge D. Abad, Alejandro Mendoza, On the governing equations for horizontal and vertical coupling of one- and two-dimensional open channel flow models, Journal of Hydraulic Research, 58.5; pp. 709-724, 2020. doi.org/10.1080/00221686.2019.1671507

87-20       Mohammad Nazari-Sharabian, Moses Karakouzian, Donald Hayes, Flow topology in the confluence of an open channel with lateral drainage pipe, Hydrology, 7.3; 57, 2020. doi.org/10.3390/hydrology7030057

84-20       Naohiro Takeichi, Takeshi Katagiri, Harumi Yoneda, Shusaku Inoue, Yusuke Shintani, Virtual Reality approaches for evacuation simulation of various disasters, Collective Dynamics (originally presented in Proceedings from the 9th International Conference on Pedestrian and Evacuation Dynamics (PED2018), Lund, Sweden, August 21-23, 2018), 5, 2020. doi.org/10.17815/CD.2020.93

83-20       Eric Lemont, Jonathan Hill, Ryan Edison, A problematic installation: CFD modelling of waste stabilisation pond mixing alternatives, Ozwater’20, Australian Water Association, Online, June 2, 2020, 2020.

77-20       Peng Yu, Ruigeng Hu, Jinmu Yang, Hongjun Liu, Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves, Ocean Engineering, 213; 107696, 2020. doi.org/10.1016/j.oceaneng.2020.107696

76-20       Alireza Mojtahedi, Nasim Soori, Majid Mohammadian, Energy dissipation evaluation for stepped spillway using a fuzzy inference system, SN Applied Sciences, 2; 1466, 2020. doi.org/10.1007/s42452-020-03258-0

74-20       Jackson D., Tellez Alvarez E., Manuel Gómez, Beniamino Russo, Modelling of surcharge flow through grated inlet, Advances in Hydroinformatics: SimHydro 2019 – Models for Extreme Situations and Crisis Management, Nice, France, June 12-14, 2019, pp. 839-847, 2020. doi.org/10.1007/978-981-15-5436-0_65

73-20       Saurav Dulal, Bhola NS Ghimire, Santosh Bhattarai, Ram Krishna Regmi, Numerical simulation of flow through settling basin: A case study of Budhi-Ganga Hydropower Project (BHP), International Journal of Engineering Research & Technology (IJERT), 9.7; pp. 992-998, 2020.

70-20       B. Nandi, S. Das, A. Mazumdar, Experimental analysis and numerical simulation of hydraulic jump, IOP Conference Series: Earth and Environmental Science, 2020 6th International Conference on Environment and Renewable Energy, Hanoi, Vietnam, February 24-26, 505; 012024, 2020. doi.org/10.1088/1755-1315/505/1/012024

69-20       Amir Ghaderi, Rasoul Daneshfaraz, Mehdi Dasineh, Silvia Di Francesco, Energy dissipation and hydraulics of flow over trapezoidal–triangular labyrinth weirs, Water (Special Issue: Combined Numerical and Experimental Methodology for Fluid–Structure Interactions in Free Surface Flows), 12.7; 1992, 2020. doi.org/10.3390/w12071992

68-20       Jia Ni, Linwei Wang, Xixian Chen, Luan Luan Xue, Isam Shahrour, Effect of the fish-bone dam angle on the flow mechanisms of a fish-bone type dividing dyke, Marine Technology Society Journal, 54.3; pp. 58-67, 2020. doi.org/10.4031/MTSJ.54.3.9

67-20       Yu Zhuang, Yueping Yin, Aiguo Xing, Kaiping Jin, Combined numerical investigation of the Yigong rock slide-debris avalanche and subsequent dam-break flood propagation in Tibet, China, Landslides, 17; pp. 2217-2229, 2020. doi.org/10.1007/s10346-020-01449-9

66-20       A. Ghaderi, R. Daneshfaraz, S. Abbasi, J. Abraham, Numerical analysis of the hydraulic characteristics of modified labyrinth weirs, International Journal of Energy and Water Resources, 4.2, 2020. doi.org/10.1007/s42108-020-00082-5

65-20      D.P. Zielinski, S. Miehls, G. Burns, C. Coutant, Adult sea lamprey espond to induced turbulence in a low current system, Journal of Ecohydraulics, 5, 2020. doi.org/10.1080/24705357.2020.1775504

63-20       Raffaella Pellegrino, Miguel Ángel Toledo, Víctor Aragoncillo, Discharge flow rate for the initiation of jet flow in sky-jump spillways, Water, Special Issue: Planning and Management of Hydraulic Infrastructure, 12.6; 1814, 2020. doi.org/10.3390/w12061814

59-20       Nesreen Taha, Maged M. El-Feky, Atef A. El-Saiad, Ismail Fathy, Numerical investigation of scour characteristics downstream of blocked culverts, Alexandria Engineering Journal, 59.5; pp. 3503-3513, 2020. doi.org/10.1016/j.aej.2020.05.032

57-20       Charles Ortloff, The Hydraulic State: Science and Society in the Ancient World, Routledge, London, UK, eBook ISBN: 9781003015192, 2020. doi.org/10.4324/9781003015192

54-20       Navid Aghajani, Hojat Karami, Hamed Sarkardeh, Sayed‐Farhad Mousavi, Experimental and numerical investigation on effect of trash rack on flow properties at power intakes, Journal of Applied Mathematics and Mechanics (ZAMM), online pre-issue, 2020. doi.org/10.1002/zamm.202000017

53-20     Tian Zhou, Theodore Endreny, The straightening of a river meander leads to extensive losses in flow complexity and ecosystem services, Water (Special Issue: A Systems Approach of River and River Basin Restoration), 12.6; 1680, 2020. doi.org/10.3390/w12061680

50-20       C.C. Battiston, F.A. Bombardelli, E.B.C. Schettini, M.G. Marques, Mean flow and turbulence statistics through a sluice gate in a navigation lock system: A numerical study, European Journal of Mechanics – B/Fluids, 84; pp.155-163, 2020. doi.org/10.1016/j.euromechflu.2020.06.003

47-20       Mohammad Nazari-Sharabian, Aliasghar Nazari-Sharabian, Moses Karakouzian, Mehrdad Karami, Sacrificial piles as scour countermeasures in river bridges: A numerical study using FLOW-3D, Civil Engineering Journal, 6.6; pp. 1091-1103, 2020. doi.org/10.28991/cej-2020-03091531

44-20    Leena Jaydeep Shevade, L. James Lo, Franco A. Montalto, Numerical 3D model development and validation of curb-cut inlet for efficiency prediction, Water, 12; 1791, 2020. doi.org/10.3390/w12061791

43-20       Vitor Hugo Pereira de Morais, Tiago Zenker Gireli, Paulo Vatavuk, Numerical and experimental models applied to an ogee crest spillway and roller bucket stilling basin, Brazilian Journal of Water Resources, 2020. doi.org/10.1590/2318-0331.252020190005

42-20       Chen Xie, Qin Chen, Gang Fan, Chen Chen, Numerical simulation of the natural erosion and breaching process of the “10.11” Baige Landslide Dam on the Jinsha River, Dam Breach Modelling and Risk Disposal, pp. 376-377, International Conference on Embankment Dams (ICED), Beijing, China, June 5 – 7, 2020. doi.org/10.1007/978-3-030-46351-9_40

41-20       Niloofar Aghili Mahabadi, Hamed Reza Zarif Sanayei, Performance evaluation of bilateral side slopes in piano key weirs by numerical simulation, Modeling Earth Systems and Environment, 6; pp. 1477-1486, 2020. doi.org/10.1007/s40808-020-00764-3

40-20       P. April Le Quéré, I. Nistor, A. Mohammadian, Numerical modeling of tsunami-induced scouring around a square column: Performance assessment of FLOW-3D and Delft3D, Journal of Coastal Research (preprint), 2020. doi.org/10.2112/JCOASTRES-D-19-00181

39-20       Jian Zhou, Subhas K. Venayagamoorthy, Impact of ambient stable stratification on gravity currents propagating over a submerged canopy, Journal of Fluid Mechanics, 898; A15, 2020. doi.org/10.1017/jfm.2020.418

37-20     Aliasghar Azma, Yongxiang Zhang, The effect of variations of flow from tributary channel on the flow behavior in a T-shape confluence, Processes, 8; 614, 2020. doi.org/10.3390/pr8050614

35-20     Selahattin Kocaman, Hasan Güzel, Stefania Evangelista, Hatice Ozmen-Cagatay, Giacomo Viccione, Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel, Water, 12; 1124, 2020. doi.org/10.3390/w12041124

32-20       Adriano Henrique Tognato, Modelagem CFD da interação entre hidrodinâmica costeira e quebra-mar submerso: estudo de caso da Ponta da Praia em Santos, SP (CFD modeling of interaction between sea waves and submerged breakwater at Ponta de Praia – Santos, SP: a case study, Thesis, Universidad Estadual de Campinas, Campinas, Brazil, 2020.

31-20   Hamidreza Samma, Amir Khosrojerdi, Masoumeh Rostam-Abadi, Mojtaba Mehraein and Yovanni Cataño-Lopera, Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet, Journal of Hydroinformatics, 22.2, pp. 385-401, 2020. doi.org/10.2166/hydro.2020.091

28-20   Halah Kais Jalal and Waqed H. Hassan, Three-dimensional numerical simulation of local scour around circular bridge pier using FLOW-3D software, IOP Conference Series: Materials Science and Engineering, art. no. 012150, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019745. doi.org/10.1088/1757-899X/745/1/012150

25-20   Faizal Yusuf and Zoran Micovic, Prototype-scale investigation of spillway cavitation damage and numerical modeling of mitigation options, Journal of Hydraulic Engineering, 146.2, 2020. doi.org/10.1061/(ASCE)HY.1943-7900.0001671

24-20   Huan Zhang, Zegao Yin, Yipei Miao, Minghui Xia and Yingnan Feng, Hydrodynamic performance investigation on an upper and lower water exchange device, Aquacultural Engineering, 90, art. no. 102072, 2020. doi.org/10.1016/j.aquaeng.2020.102072

22-20   Yu-xiang Hu, Zhi-you Yu and Jian-wen Zhou, Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha River, Landslides, 2020. doi.org/10.1007/s10346-020-01382-x

19-20   Amir Ghaderi, Mehdi Dasineh, Saeed Abbasi and John Abraham, Investigation of trapezoidal sharp-crested side weir discharge coefficients under subcritical flow regimes using CFD, Applied Water Science, 10, art. no. 31, 2020. doi.org/10.1007/s13201-019-1112-8

18-20   Amir Ghaderi, Saeed Abbasi, John Abraham and Hazi Mohammad Azamathulla, Efficiency of trapezoidal labyrinth shaped stepped spillways, Flow Measurement and Instrumentation, 72, art. no. 101711, 2020. doi.org/10.1016/j.flowmeasinst.2020.101711

16-20   Majid Omidi Arjenaki and Hamed Reza Zarif Sanayei, Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach, Modeling Earth Systems and Environment, 2020. doi.org/10.1007/s40808-020-00714-z

15-20   Bo Wang, Wenjun Liu, Wei Wang, Jianmin Zhang, Yunliang Chen, Yong Peng, Xin Liu and Sha Yang, Experimental and numerical investigations of similarity for dam-break flows on wet bed, Journal of Hydrology, 583, art. no. 124598, 2020. doi.org/10.1016/j.jhydrol.2020.124598

14-20   Halah Kais Jalal and Waqed H. Hassan, Effect of bridge pier shape on depth of scour, IOP Conference Series: Materials Science and Engineering, art. no. 012001, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019671. doi.org/10.1088/1757-899X/671/1/012001

13-20   Shahad R. Mohammed, Basim K. Nile and Waqed H. Hassan, Modelling stilling basins for sewage networks, IOP Conference Series: Materials Science and Engineering, art. no. 012111, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019671. doi.org/10.1088/1757-899X/671/1/012111

11-20   Xin Li, Liping Jin, Bernie A. Engel, Zeng Wang, Wene Wang, Wuquan He and Yubao Wang, Influence of the structure of cylindrical mobile flumes on hydraulic performance characteristics in U-shaped channels, Flow Measurement and Instrumentation, 72, art. no. 101708, 2020. doi.org/10.1016/j.flowmeasinst.2020.101708

10-20   Nima Aein, Mohsen Najarchi, Seyyed Mohammad Mirhosseini Hezaveh, Mohammad Mehdi Najafizadeh and Ehsanollah Zeigham, Simulation and prediction of discharge coefficient of combined weir–gate structure, Proceedings of the Institution of Civil Engineers – Water Management (ahead of print), 2020. doi.org/10.1680/jwama.19.00047

03-20   Agostino Lauria, Francesco Calomino, Giancarlo Alfonsi, and Antonino D’Ippolito, Discharge coefficients for sluice gates set in weirs at different upstream wall inclinations, Water, 12, art. no. 245, 2020. doi.org/10.3390/w12010245

113-19   Ruidong An, Jia Li, Typical biological behavior of migration and flow pattern creating for fish schooling, E-Proceedings, 38th IAHR World Congress, Panama City, Panama, September 1-6, 2019.

112-19   Wenjun Liu, Bo Wang, Hang Wang, Jianmin Zhang, Yunliang Chen, Yong Peng, Xin Liu, Sha Yang, Experimental and numerical modeling of dam-break flows in wet downstream conditions, E-Proceedings, 38th IAHR World Congress, Panama City, Panama, September 1-6, 2019.

111-19   Zhang Chendi, Liu Yingjun, Xu Mengzhen, Wang Zhaoyin, The 3D numerical study on flow properties of individual step-pool, Proceedings: 14th International Symposium on River Sedimentation, Chengdu, China, September 16-19, 2019.

110-19   Mason Garfield, The effects of scour on the flow field at a bendway weir, Thesis: Colorado State University, Fort Collins, Colorado, Colorado State University, Fort Collins, Colorado.

109-19   Seth Siefken, Computational fluid dynamics models of Rio Grande bends fitted with rock vanes or bendway weirs, Thesis: Colorado State University, Fort Collins, Colorado, Colorado State University, Fort Collins, Colorado.

108-19   Benjamin Israel Devadason and Paul Schweiger, Decoding the drowning machines: Using CFD modeling to predict and design solutions to remediate the dangerous hydraulic roller at low head dams, The Journal of Dam Safety, 17.1, pp. 20-31, 2019.

106-19   Amir Ghaderi and Saeed Abbasi, CFD simulations of local scouring around airfoil-shaped bridge piers with and without collar, Sādhanā, art. no. 216, 2019. doi.org/10.1007/s12046-019-1196-8

105-19   Jacob van Alwon, Numerical and physical modelling of aerated skimming flows over stepped spillways, Thesis, University of Leeds, Leeds, United Kingdom, 2019.

100-19   E.H. Hussein Al-Qadami, A.S. Abdurrasheed, Z. Mustaffa, K.W. Yusof, M.A. Malek and A. Ab Ghani, Numerical modelling of flow characteristics over sharp crested triangular hump, Results in Engineering, 4, art. no. 100052, 2019. doi.org/10.1016/j.rineng.2019.100052

99-19   Agostino Lauria, Francesco Calomino, Giancarlo Alfonsi, and Antonino D’Ippolito, Discharge coefficients for sluice gates set in weirs at different upstream wall inclinations, Water, 12.1, art. no. 245, 2019. doi.org/10.3390/w12010245

98-19   Redvan Ghasemlounia and M. Sedat Kabdasli, Surface suspended sediment distribution pattern for an unexpected flood event at Lake Koycegiz, Turkey, Proceedings, 14th National Conference on Watershed Management Sciences and Engineering, Urmia, Iran, July 16-17, 2019.

97-19   Brian Fox, Best practices for simulating hydraulic structures with CFD, Proceedings, Dam Safety 2019, Orlando, Florida, USA, September 8-12, 2019.

96-19   John Wendelbo, Verification of CFD predictions of self-aeration onset on stepped chute spillways, Proceedings, Dam Safety 2019, Orlando, Florida, USA, September 8-12, 2019.

95-19   Pankaj Lawande, Anurag Chandorkar and Adhirath Mane, Predicting discharge rating curves for tainter gate controlled spillway using CFD simulations, Proceedings, 24th HYDRO 2019, International Conference, Hyderabad, India, December 18-20, 2019.

91-19   Gyeong-Bo Kim, Wei Cheng, Richards C. Sunny, Juan J. Horrillo, Brian C. McFall, Fahad Mohammed, Hermann M. Fritz, James Beget, and Zygmunt Kowalik , Three Dimensional Landslide Generated Tsunamis: Numerical and Physical Model Comparisons, Landslides, 2019. doi.org/10.1007/s10346-019-01308-2

85-19   Susana D. Amaral, Ana L. Quaresma, Paulo Branco, Filipe Romão, Christos Katopodis, Maria T. Ferreira, António N. Pinheiro, and José M. Santos, Assessment of retrofitted ramped weirs to improve passage of potamodromous fish, Water, 11, art. no. 2441, 2019. doi.org/10.3390/w11122441

82-19   Shubing Dai, Yong He, Jijian Yang, Yulei ma, Sheng Jin, and Chao Liang, Numerical study of cascading dam-break characteristics using SWEs and RANS, Water Supply, 2019. doi.org/10.2166/ws.2019.168

81-19   Kyong Oh Baek, Evaluation technique for efficiency of fishway based on hydraulic analysis, Journal of Korea Water Resources Association, 52.spc2, pp. 855-863, 2019. doi.org/10.3741/JKWRA.2019.52.S-2.855

80-19   Yongye Li, Yuan Gao, Xiaomeng Jia, Xihuan Sun, and Xuelan Zhang, Numerical simulations of hydraulic characteristics of a flow discharge measurement process with a plate flowmeter in a U-channel, Water, art. no. 2392, 2019. doi.org/10.3390/w11112382

76-19   Youtong Rong, Ting Zhang, Yanchen Zheng, Chunqi Hu, Ling Peng, and Ping Feng, Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry, Journal of Hydrology, in press, 2019. doi.org/10.1016/j.jhydrol.2019.124308

74-19   Youtong Rong, Ting Zhang, Ling Peng, and Ping Feng, Three-dimensional numerical simulation of dam discharge and flood routing in Wudu Reservoir, Water, 11, art. no. 2157, 2019. doi.org/10.3390/w11102157

70-19   Le Thi Thu Hien, Study the flow over chute spillway by both numerical and physical models, Proceedings, pp. 845-851, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019. doi.org/10.1007/978-981-15-0291-0_116

69-19   T. Vinh Cuong, N. Thanh Hung, V. Thanh Te, P. Anh Tuan, Analysis of spur dikes spatial layout to river bed degradation under reversing tidal flow, Proceedings, pp. 737-744, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019. doi.org/10.1007/978-981-15-0291-0_101

67-19   Zongshi Dong, Junxing Wang, David Florian Vetsch, Robert Michael Boes, and Guangming Tan, Numerical simulation of air–water two-phase flow on stepped spillways behind X-shaped flaring gate piers under very high unit discharge, Water, 11, art. no. 1956, 2019. doi.org/10.3390/w11101956

66-19   Tony L. Wahl, Effect of boundary layer conditions on uplift pressures at open offset spillway joints, Sustainable and Safe Dams Around the World: Proceedings, 2019. doi.org/10.1201/9780429319778-182

65-19   John Petrie, Kun Zhang, and Mahmoud Shehata, Numerical simulation of snow deposition around living snow fences, Community Center for Environmentally Sustainable Transportation in Cold Climates (CESTiCC), Project Report, 2019.

64-19   Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Markus Aufleger, Michael Strasser, and Bernhard Gems, Lituya Bay 1958 Tsunami – detailed pre-event bathymetry reconstruction and 3D-numerical modelling utilizing the CFD software FLOW-3D, Natural Hazards and Earth Systems Sciences, under review, 2019. doi.org/10.5194/nhess-2019-285

63-19   J. Patarroyo, D. Damov, D. Shepherd, G. Snyder, M. Tremblay, and M. Villeneuve, Hydraulic design of stepped spillway using CFD supported by physical modelling: Muskrat Falls hydroelectric generating facility, Sustainable and Safe Dams Around the World: Proceedings, , pp. 205-219, 2019. doi.org/10.1201/9780429319778-19

61-19   A.S. Abdurrasheed, K.W. Yusof, E.H. Hussein Alqadami, H. Takaijudin, A.A. Ghani, M.M. Muhammad, A.T. Sholagberu, M.K. Zainalfikry, M. Osman, and M.S. Patel, Modelling of flow parameters through subsurface drainage modules for application in BIOECODS, Water, 11, art. no. 1823, 2019. doi.org/10.3390/w11091823

59-19     Brian Fox and Robert Feurich, CFD analysis of local scour at bridge piers, Proceedings of the Federal Interagency Sedimentation and Hydraulic Modeling Conference (SEDHYD), Reno, Nevada, June 24-28, 2019.

56-19     Pankaj Lawande, Brian Fox, and Anurag Chandorkar, Three dimensional CFD modeling of flow over a tainter gate spillway, International Dam Safety Conference, Bhubaneswar, Odisha, India, February 13-14, 2019.

49-19     Yousef Sangsefidi, Bruce MacVicar, Masoud Ghodsian, Mojtaba Mehraein, Mohammadamin Torabi, and Bruce M. Savage, Evaluation of flow characteristics in labyrinth weirs using response surface methodology, Flow Measurement and Instrumentation, Vol. 69, 2019. doi: 10.1016/j.flowmeasinst.2019.101617

43-19     Gongyun Liao, Zancheng Tang, and Fei Zhu, Self-cleaning performance of double-layer porous asphalt pavements with different granular diameters and layer combinations, 19th COTA International Conference of Transportation, Nanjing, China, July 6-8, 2019.

42-19     Tsung-Chun Ho, Gwo-Jang Hwang, Kao-Shu Hwang, Kuo-Cheng Hsieh, and Lung-Wei Chen, Experimental and numerical study on desilting efficiency of the bypassing tunnel for Nan-Hua reservoir, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

41-19     Chang-Ting Hsieh, Sheng-Yung Hsu, and Chin-Pin Ko, Planning of sluicing tunnel in front of the Wushe dam – retrofit the existing water diversion tunnel as an example, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

40-19     Chi-Lin Yang, Pang-ku Yang, Fu-June Wang, and Kuo-Cheng Hsieh, Study on the transportation of high-concentration sediment flow and the operation of sediment de-silting in Deji Reservoir, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

39-19   Sam Glovik and John Wendelbo, Advanced CFD air entrainment capabilities for baffle drop structure design, NYWEA 91st Annual Meeting, New York, NY, February 3-6, 2019.

36-19     Ahmed M. Helmi, Heba T. Essawy, and Ahmed Wagdy, Three-dimensional numerical study of stacked drop manholes, Journal of Irrigation and Drainage Engineering, Vol. 145, No. 9, 2019. doi: 10.1061/(ASCE)IR.1943-4774.0001414

33-19     M. Cihan Aydin, A. Emre Ulu, and Çimen Karaduman, Investigation of aeration performance of Ilısu Dam outlet using two-phase flow model, Applied Water Science, Vol. 9, No. 111, 2019. doi: 10.1007/s13201-019-0982-0

16-19     Bernard Twaróg, The analysis of the reactive work of the Alden Turbine, Technical Transactions I, Environmental Engineering, 2019. doi: 10.4467/2353737XCT.19.010.10050

14-19     Guodong Li, Xingnan Li, Jian Ning, and Yabing Deng, Numerical simulation and engineering application of a dovetail-shaped bucket, Water, Vol. 11, No. 2, 2019. doi: 10.3390/w11020242

13-19     Ilaria Rendina, Giacomo Viccione, and Leonardo Cascini, Kinematics of flow mass movements on inclined surfaces, Theoretical and Computational Fluid Dynamics, Vol. 33, No. 2, pp. 107-123, 2019. doi: 10.1007/s00162-019-00486-y

10-19     O.K. Saleh, E.A. Elnikhely, and Fathy Ismail, Minimizing the hydraulic side effects of weirs construction by using labyrinth weirs, Flow Measurement and Instrumentation, Vol. 66, pp. 1-11, 2019. doi: 10.1016/j.flowmeasinst.2019.01.016

05-19   Hakan Ersoy, Murat Karahan, Kenan Gelişli, Aykut Akgün, Tuğçe Anılan, M. Oğuz Sünnetci, Bilgehan Kul Yahşi, Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation, Engineering Geology, Vol. 249, pp. 112-128, 2019. doi: 10.1016/j.enggeo.2018.12.025

96-18     Kyung-Seop Sin, Robert Ettema, Christopher I. Thornton, Numerical modeling to assess the influence of bendway weirs on flow distribution in river beds, Task 4 of Study: Native Channel Topography and Rock-Weir Structure Channel-Maintenance Techniques, U.S. Dept. of the Interior. CSU-HYD Report No. 2018-1, 2018.

95-18   Thulfikar Razzak Al-Husseini, Hayder A. Al-Yousify and Munaf A. Al-Ramahee, Experimental and numerical study of the effect of the downstream spillway face’s angle on the stilling basin’s energy dissipation, International Journal of Civil Engineering and Technology, 9.8, pp. 1327-1337, 2018.

94-18   J. Michalski and J. Wendelbo, Utilizing CFD methods as a forensic tool in pipeline systems to assess air/water transient issues, Proceedings, 7, pp. 5519-5527, 91st Water Environment Federation Technical Exhibition & Conference (WEFTEC), New Orleans, LA, United States, September 29 – October 3, 2018. doi.org/10.2175/193864718825138817

79-18 Harold Alvarez and John Wendelbo, Estudio de 3 modelos matemáticos para similar olas producidas por derrumbes en embalses y esfuerzos en compuertas, XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina, September 2018. (In Spanish)

70-18   Michael Pfister, Gaetano Crispino, Thierry Fuchsmann, Jean-Marc Ribi and Corrado Gisonni, Multiple inflow branches at supercritical-type vortex drop shaft, Journal of Hydraulic Engineering, Vol. 144, No. 11, 2018. doi.org/10.1061/(ASCE)HY.1943-7900.0001530

67-18   F. Nunes, J. Matos and I. Meireles, Numerical modelling of skimming flow over small converging spillways, 3rd International Conference on Protection against Overtopping, June 6-8, 2018, Grange-over-Sands, UK, 2018.

66-18   Maria João Costa, Maria Teresa Ferreira, António N. Pinheiro and Isabel Boavida, The potential of lateral refuges for Iberian barbel under simulated hydropeaking conditions, Ecological Engineering, Vol. 124, 2018. doi.org/10.1016/j.ecoleng.2018.07.029

63-18   Michael J. Seluga, Frederick Vincent, Samuel Glovick and Brad Murray, A new approach to hydraulics in baffle drop shafts to address dry and wet weather flow in combined sewer tunnels, North American Tunneling Conference Proceedings, June 24-27, 2018, Washington, D.C. pp. 448-461, 2018. © Society for Mining, Metallurgy & Exploration

62-18   Ana Quaresma, Filipe Romão, Paulo Branco, Maria Teresa Ferreira and António N. Pinheiro, Multi slot versus single slot pool-type fishways: A modelling approach to compare hydrodynamics, Ecological Engineering, Vol. 122, pp. 197-206, 2018. doi.org/10.1016/j.ecoleng.2018.08.006

57-18   Amir Isfahani, CFD modeling of piano key weirs using FLOW-3D, International Dam Safety Conference, January 23-24, 2018, Thiruvananthapuram, Kerala, India; Technical Session 1A, Uncertainties and Risk Management in Dams, 2018.

49-18   Jessica M. Thompson, Jon M. Hathaway and John S. Schwartz, Three-dimensional modeling of the hydraulic function and channel stability of regenerative stormwater conveyances, Journal of Sustainable Water in the Built Environment, vol. 4, no.3, 2018. doi.org/10.1061/JSWBAY.0000861

46-18   A.B. Veksler and S.Z. Safin, Hydraulic regimes and downstream scour at the Kama Hydropower Plant, Power Technology and Engineering, vol. 51, no. 5, pp. 2-13, 2018. doi.org/10.1007/s10749-018-0862-z

45-18   H. Omara and A. Tawfik, Numerical study of local scour around bridge piers, 9th Annual Conference on Environmental Science and Development, Paris, France, Feb. 7-9, 2018; IOP Conference Series: Earth and Environmental Sciences, vol. 151, 2018. doi.org:10.1088/1755-1315/151/1/012013

40-18   Vincent Libaud, Christophe Daux and Yanis Oukid, Practical Capacities and Challenges of 3D CFD Modelling: Feedback Experience in Engineering Projects, Advances in Hydroinformatics, pp. 767-780, 2018. doi.org/10.1007/978-981-10-7218-5_55

39-18   Khosro Morovati and Afshin Eghbalzadeh, Study of inception point, void fraction and pressure over pooled stepped spillways using FLOW-3D, International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28, no. 4, pp.982-998, 2018. doi.org/10.1108/HFF-03-2017-0112

34-18   Tomasz Siuta, The impact of deepening the stilling basin on the characteristics of hydraulic jump, Technical Transactions, vol. 3, pp. 173-186, 2018.

32-18   Azin Movahedi, M.R. Kavianpour, M. R and Omid Aminoroayaie Yamini, Evaluation and modeling scouring and sedimentation around downstream of large dams, Environmental Earth Sciences, vol. 77, no. 8, pp. 320, 2018. doi.org/10.1007/s12665-018-7487-2

31-18   Yang Song, Ling-Lei Zhang, Jia Li, Min Chen and Yao-Wen Zhang, Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs, Science of The Total Environment, vol. 636, pp. 230-239, 2018. doi.org/10.1016/j.scitotenv.2018.04.257

30-18   Shaolin Yang, Wanli Yang, Shunquan Qin, Qiao Li and Bing Yang, Numerical study on characteristics of dam-break wave, Ocean Engineering, vol. 159, pp.358-371, 2018. doi.org/10.1016/j.oceaneng.2018.04.011

27-18   Rachel E. Chisolm and Daene C. McKinney, Dynamics of avalanche-generated impulse waves: three-dimensional hydrodynamic simulations and sensitivity analysis, Natural Hazards and Earth System Sciences, vol. 18, pp. 1373-1393, 2018. doi.org/10.5194/nhess-18-1373-2018.

24-18   Han Hu, Zhongdong Qian, Wei Yang, Dongmei Hou and Lan Du, Numerical study of characteristics and discharge capacity of piano key weirs, Flow Measurement and Instrumentation, vol. 62, pp. 27-32, 2018. doi.org/10.1016/j.flowmeasinst.2018.05.004

23-18   Manoochehr Fathi-Moghaddam, Mohammad Tavakol Sadrabadi and Mostafa Rahmanshahi, Numerical simulation of the hydraulic performance of triangular and trapezoidal gabion weirs in free flow condition, Flow Measurement and Instrumentation, vol. 62, pp. 93-104, 2018. doi.org/10.1016/j.flowmeasinst.2018.05.005

22-18   Anastasios I.Stamou, Georgios Mitsopoulos, Peter Rutschmann and Minh Duc Bui, Verification of a 3D CFD model for vertical slot fish-passes, Environmental Fluid Mechanics, June 2018. doi.org/10.1007/s10652-018-9602-z

17-18   Nikou Jalayeri, John Wendelbo, Joe Groeneveld, Andrew John Bearlin, and John Gulliver, Boundary dam total dissolved gas analysis using a CFD model, Proceedings from the U.S. Society on Dams Annual Conference, April 30 – May 4, 2018, © 2018 U.S. Society on Dams.

12-18   Bernard Twaróg, Interaction between hydraulic conditions and structures – fluid structure interaction problem solving. A case study of a hydraulic structure, Technical Transactions 2/2018, Environmental Engineering, DOI: 10.4467/2353737XCT.18.029.8002

06-18   Oscar Herrera-Granados, Turbulence Flow Modeling of One-Sharp-Groyne Field, © Springer International Publishing AG 2018, M. B. Kalinowska et al. (eds.), Free Surface Flows and Transport Processes, GeoPlanet: Earth and Planetary Sciences, https://doi.org/10.1007/978-3-319-70914-7_12

05-18  Shangtuo Qian, Jianhua Wu, Yu Zhou and Fei Ma, Discussion of “Hydraulic Performance of an Embankment Weir with Rough Crest” by Stefan Felder and Nushan Islam, J. Hydraul. Eng., 2018, 144(4): 07018003, © ASCE.

04-18   Faezeh Tajabadi, Ehsan Jabbari and Hamed Sarkardeh, Effect of the end sill angle on the hydrodynamic parameters of a stilling basin, DOI 10.1140/epjp/i2018-11837-y, Eur. Phys. J. Plus (2018) 133: 10

03-18   Dhemi Harlan, Dantje K. Natakusumah, Mohammad Bagus Adityawan, Hernawan Mahfudz and Fitra Adinata, 3D Numerical Modeling of Flow in Sedimentation Basin, MATEC Web of Conferences 147, 03012 (2018), https://doi.org/10.1051/matecconf/201814703012 SIBE 2017

02-18   ARKAN IBRAHIM, AZHEEN KARIM and Mustafa GÜNAL, Simulation of local scour development downstream of broad-crested weir with inclined apron, European Journal of Science and Technology Special Issue, pp. 57-61, January 2018, Copyright © 2017 EJOSAT.

62-17   Abbas Mansoori, Shadi Erfanian and Farhad Khamchin Moghadam, A study of the conditions of energy dissipation in stepped spillways with A-shaped step using FLOW-3D, Civil Engineering Journal, 3.10, 2017.

57-17   Ben Modra, Brett Miller, Nigel Moon and Andrew Berghuis, Physical model testing of a bespoke articulated concrete block (ACB) fishway, 13th Hydraulics in Water Engineering Conference, Sydney, Nov. 13-18, 2017; Engineers Australia, pp. 301-309, 2017.

53-17   C. Gonzalez, U. Baeumer and C. Russell, Natural disaster relief and recovery arrangements Fitzroy project, bridge scour remediation, 13th Hydraulics in Water Engineering Conference, Sydney. Nov. 13-18, 2017; Engineers Australia, pp. 274-281, 2017.

52-17   Nigel Moon, Russell Merz, Sarah Luu and Daley Clohan, Utilising CFD modelling to conceptualise a novel rock ramp fishway design, 13th Hydraulics in Water Engineering Conference, Sydney, Nov. 13-18, 2017; Engineers Australia, pp. 382-389, 2017.

50-17   B.M. Crookston, R.M. Anderson and B.P. Tullis, Free-flow discharge estimation method for Piano Key weir geometries, Journal of Hydro-environment Research (2017), http://dx.doi.org/10.1016/j.jher.2017.10.003.

48-17   Jian Zhou, Physics of Environmental Flows Interacting with Obstacles, PhD Thesis: Colorado State University, Copyright by Jian Zhou 2017, All Rights Reserved.

46-17   Michael Sturn, Bernhard Gems, Markus Aufleger, Bruno Mazzorana, Maria Papathoma-Köhle and Sven Fuchs, Scale Model Measurements of Impact Forces on Obstacles Induced by Bed-load Transport Processes, Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia.

43-17   Paula Beceiro, Maria do Céu Almeida and Jorge Matos, Numerical modelling of air-water flows in sewer drops, Available Online 28 April 2017, wst2017246; DOI: 10.2166/wst.2017.246

42-17   Arnau Bayon, Juan Pablo Toro,  Fabián A.Bombardelli, Jorge Matose and Petra Amparo López-Jiménez, Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillwaysJournal of Hydro-environment Research, Available online 26 October 2017

40-17   Sturm M, Gems B, Mazzorana B, Gabl R and Aufleger M, Validation of physical and 3D numerical modelling of hydrodynamic flow impacts on objects (Validierung experimenteller und 3-D-numerischer Untersuchungen zur Einwirkung hydrodynamischer Fließprozesse auf Objekte), Bozen-Bolzano Institutional Archive (BIA), ISSN: 0043-0978, https://bia.unibz.it/handle/10863/3893, 2017

38-17   Tsung-Hsien Huang, Chyan-Deng Jan, and Yu-Chao Hsu, Numerical Simulations of Water Surface Profiles and Vortex Structure in a Vortex Settling Basin by using FLOW-3D, Journal of Marine Science and Technology, Vol. 25, No. 5, pp. 531-542 (2017) 531, DOI: 10.6119/JMST-017-0509-1

36-17   Jacob van Alwon, Duncan Borman and Andrew Sleigh, Numerical Modelling of Aerated Flows Over Stepped Spillways, 37th IAHR World Congress, 2017.

35-17   Abolfazl Nazari Giglou, John Alex Mccorquodale and Luca Solari, Numerical study on the effect of the spur dikes on sedimentation pattern, Ain Shams Engineering Journal, Available online 8 March 2017.

33-17   Giovanni De Cesare, Khalid Essyad, Paloma Furlan, Vu Nam Khuong, Sean Mulligan, Experimental study at prototype scale of a self-priming free surface siphon, Congrès SHF : SIMHYDRO 2017, Nice, 14-16 June

32-17   Kathryn Plymesser and Joel Cahoon, Pressure gradients in a steeppass fishway using a computational fluid dynamics model, Ecological Engineering 108 (2017) 277–283.

31-17   M. Ghasemi, S. Soltani-Gerdefaramarzi, The Scour Bridge Simulation around a Cylindrical Pier Using FLOW-3D, Journal of Hydrosciences and Environment 1(2): 2017 46-54

27-17   John Wendelbo and Brian Fox, CFD modeling of Piano Key weirs: validation and numerical parameter space analysis, 2017 Dam Safety, San Antonio, September 10-14, 2017, Copyright © 2017 Association of State Dam Safety Officials, Inc. All Rights Reserved.

26-17   Brian Fox and John Wendelbo, Numerical modeling of Piano Key Weirs using FLOW-3D, USSD Annual Conference, Anaheim, CA, April 3- 7, 2017

25-17   Rasoul Daneshfaraz, Sina Sadeghfam and Ali Ghahramanzadeh, Three-dimensional Numerical Investigation of Flow through Screens as Energy Dissipators, Canadian Journal of Civil Engineering, https://doi.org/10.1139/cjce-2017-0273

23-17   J.M, Duguay, R.W.J. Lacey and J. Gaucher, A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D, Ecological Engineering, Volume 103, Part A, June 2017, Pages 31-42

22-17   Hanif Pourshahbaz, Saeed Abbasi and Poorya Taghvaei, Numerical scour modeling around parallel spur dikes in FLOW-3D, https://doi.org/10.5194/dwes-2017-21, Drinking Water Engineering and Science, © Author(s) 2017

21-17   Hamid Mirzaei, Zohreh Heydari and Majid Fazli, The effect of meshing and comparing different models of turbulence in topographic prediction of bed and amplitude of flow around the groin in 90-degree arc with movable bed, Modeling Earth Systems and Environment, pp 1–16, July 2017

13-17   Lan Qi, Hui Chen, Xiao Wang, Wencai Fei and Donghai Liu, Establishment and application of three-dimensional realistic river terrain in the numerical modeling of flow over spillways, Water Science & Technology: Water Supply | in press | 2017.

11-17   Allison, M.A., Yuill, B.T., Meselhe, E.A., Marsh, J.K., Kolker, A.S., Ameen, A.D., Observational and numerical particle tracking to examine sediment dynamics in a Mississippi River delta diversion, Estuarine, Coastal and Shelf Science (2017), doi: 10.1016/j.ecss.2017.06.004.

09-17   Hamid Mirzaei, Zohreh Heydari and Majid Fazli, The effect of meshing and comparing different turbulence models in predicting the topography of bed and flow field in the 90 degree bend with moving bed, M. Model. Earth Syst. Environ. (2017). doi:10.1007/s40808-017-0336-6

03-17   Luis G. Castillo and José M. Carrillo, Comparison of methods to estimate the scour downstream of a ski jump, Civil Engineering Department, Universidad Politécnica de Cartagena, UPCT Paseo Alfonso XIII, 52 – 30203 Cartagena, Spain, International Journal of Multiphase Flow 92 (2017) 171–180.

103-16 Daniel Valero and Rafael Garcia-Bartual, Calibration of an Air Entrainment Model for CFD Spillway Applications, Advances in Hydroinformatics, P. Gourbesville et al. (eds), pp. 571-582, 2016. doi.org/10.1007/978-981-287-615-7_38

97-16   M. Taghavi and H. Ghodousi, A Comparison on Discharge Coefficients of Side and Normal Weirs with Suspended Flow Load using FLOW-3D, Indian Journal of Science and Technology, Vol 9(3), doi.org/10.17485/ijst/2016/v9i3/78537, January 2016.

96-16   Luis G. Castillo and José M. Carrillo, Scour, Velocities and Pressures Evaluations Produced by Spillway and Outlets of DamWater 2016, 8(3), 68; doi.org/10.3390/w8030068.

95-16   Majid Heydari and Alireza KhoshKonesh, The Comparison of the Performance of Prandtl Mixing Length, Turbulence Kinetic Energy, K-e, RNG and LES Turbulence Models in Simulation of the Positive Wave Motion Caused by Dam Break on the Erodible Bed, Indian Journal of Science and Technology, Vol 9(7), 2016. doi.org/10.17485/ijst/2016/v9i7/87856

93-16   Saleh I. Khassaf, Ali N. Attiyah and Hayder A. Al-Yousify, Experimental investigation of compound side weir with modeling using computational fluid dynamic, International Journal of Energy and Environment, Volume 7, Issue 2, 2016 pp.169-178

92-16   Jason Duguay and Jay Lacey, Modeling: OpenFOAM CFD Modeling Case Study of a Pool and Weir Fishway with Implications for Free-Surface Flows, International Conference on Engineering and Ecohydrology for Fish Passage 2016

90-16   Giacomo Viccione, Vittorio Bovolin and Eugenio Pugliese Carratelli, A numerical investigation of liquid impact on planar surfaces, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Greece, June 2016.

89-16   Giacomo Viccione, A numerical investigation of flow dynamics over a trapezoidal smooth open channel, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Greece, June 2016.

87-16  Jian Zhou and Subhas K. Venayagamoorthy, Numerical simulations of intrusive gravity currents interacting with a bottom-mounted obstacle in a continuously stratified ambient, Environmental Fluid Mechanics, 17; 191–209, 2016. doi: 10.1007/s10652-016-9454-3

86-16   Charles R. Ortloff, Similitude in Archaeology: Examining Agricultural System Science in PreColumbian Civilizations of Ancient Peru and Bolivia, Hydrol Current Res 7:259. doi: 10.4172/2157-7587.1000259, October 2016.

85-16   Charles R. Ortloff, New Discoveries and Perspectives on Water Management at 300 Bc – Ad 1100 Tiwanaku’s Urban Center (Bolivia), MOJ Civil Eng 1(3): 00014. DOI: 10.15406/mojce.2016.01.00014.

82-16   S. Paudel and N. Saenger, Grid refinement study for three dimensional CFD model involving incompressible free surface flow and rotating object, Computers & Fluids, Volume 143, http://dx.doi.org/10.1016/j.compfluid.2016.10.025, 17 January 2017, Pages 134–140

77-16   José A. Vásquez, Daniel M. Robb, MODELACIÓN CFD DE ROTURA DE PRESAS EN PRESENCIA DE OBSTÁCULOS, XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, LIMA, PERÚ, 28 AL 30 DE SETIEMBRE DE 2016.

76-16   José A. Vásquez and Guilherme de Lima, MODELACIÓN CFD DE ONDAS TSUNAMI EN RESERVORIOS, LAGOS Y MINAS CAUSADAS POR DESLIZAMIENTOS DE LADERAS, XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, LIMA, PERÚ, 28 AL 30 DE SETIEMBRE DE 2016.

75-16   Bernhard Gems, Bruno Mazzorana, Thomas Hofer, Michael Sturm, Roman Gabl and Markus Aufleger, 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes, Nat. Hazards Earth Syst. Sci., 16, 1351-1368, 2016, http://www.nat-hazards-earth-syst-sci.net/16/1351/2016/, doi:10.5194/nhess-16-1351-2016 © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.

74-16   Roman Gabl, Jakob Seibl, Manfred Pfeifer, Bernhard Gems and Markus Aufleger, 3D-numerische Modellansätze für die Berechnung von Lawineneinstößen in Speicher (Concepts to simulate avalanche impacts into a reservoir based on 3D-numerics), Österr Wasser- und Abfallw (2016). doi:10.1007/s00506-016-0346-z.

73-16   Sebastian Krzyzagorski, Roman Gabl, Jakob Seibl, Heidi Böttcher and Markus Aufleger, Implementierung eines schräg angeströmten Rechens in die 3D-numerische Berechnung mit FLOW-3D (Implementation of an angled trash rack in the 3D-numerical simulation with FLOW-3D), Österr Wasser- und Abfallw (2016) 68: 146. doi:10.1007/s00506-016-0299-2.

71-16   Khosro Morovati, Afshin Eghbalzadeh and Saba Soori, Numerical Study of Energy Dissipation of Pooled Stepped Spillways, Civil Engineering Journal Vol. 2, No. 5, May, 2016.

66-16   Sooyoung Kim, Seo-hye Choi and Seung Oh Lee, Analysis of Influence for Breach Flow According to Asymmetry of Breach Cross-section, Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 5 pp. 557-565, 2016, http://dx.doi.org/10.5762/KAIS.2016.17.5.557, ISSN 1975-4701 / eISSN 2288-4688.

65-16   Dae-Geun Kim, Analysis of Overflow Characteristics around a Circular-Crested Weir by Using Numerical Model, Journal of Korean Society of Water and Wastewater Vol. 30, No. 2, April 2016.

63-16   Farzad Ferdos and Bijan Dargahi, A study of turbulent flow in largescale porous media at high Reynolds numbers. Part II: flow physics, Journal of Hydraulic Research, 2016, DOI: 10.1080/00221686.2016.1211185.

62-16   Farzad Ferdos and Bijan Dargahi, A study of turbulent flow in largescale porous media at high Reynolds numbers. Part I: numerical validation, Journal of Hydraulic Research, 2016, DOI: 10.1080/00221686.2016.1211184.

60-16   Chia-Lin Chiu, Chia-Ming Fan and Shun-Chung Tsung, Numerical modeling for  periodic oscillation of free overfall in a vertical drop pool, DOI: 10.1061/(ASCE)HY.1943-7900.0001236. © 2016 American Society of Civil Engineers.

54-16   Serife Yurdagul Kumcu, Investigation of Flow Over Spillway Modeling and Comparison between Experimental Data and CFD Analysis, KSCE Journal of Civil Engineering, (0000) 00(0):1-10, Copyright 2016 Korean Society of Civil Engineers, DOI 10.1007/s12205-016-1257-z.

52-16   Gharehbaghi, A., Kaya, B. and Saadatnejadgharahassanlou, Two-Dimensional Bed Variation Models Under Non-equilibrium Conditions in Turbulent Streams, H. Arab J Sci Eng (2016). doi:10.1007/s13369-016-2258-4

48-16   M. Mohsin Munir, Taimoor Ahmed, Javed Munir and Usman Rasheed, Application of Computational Flow Dynamics Analysis for Surge Inception and Propagation for Low Head Hydropower Projects, Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences, A. Physical and Computational Sciences 53 (2): 177–185 (2016), Copyright © Pakistan Academy of Sciences

46-16   Manuel Gómez, Joan Recasens, Beniamino Russo and Eduardo Martínez-Gomariz, Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison, wst2016326; DOI: 10.2166/wst.2016.326, August 2016

45-16   Chia-Ying Chang, Frederick N.-F. Chou, Yang-Yih Chen, Yi-Chern Hsieh, Chia-Tzu Chang, Analytical and experimental investigation of hydrodynamic performance and chamber optimization of oscillating water column system, Energy 113 (2016) 597-614

42-16   Bung, D. and Valero, D., Application of the Optical Flow Method to Velocity Determination, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T3150628160853 (ISBN 978-1-884575-75-4).

41-16   Valero, D., Bung, D., Crookston, B. and Matos, J., Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T340628160853 (ISBN 978-1-884575-75-4).

40-16   Bruce M. Savage, Brian M. Crookston and Greg S. Paxson, Physical and Numerical Modeling of Large Headwater Ratios for a 15° Labyrinth Spillway, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0001186, 04016046.

36-16   Kai-Wen Hsiao, Yu-Chao Hsu, Chyan-Deng Jan, and Yu-Wen Su, Characteristics of Hydraulic Shock Waves in an Inclined Chute Contraction by Using Three Dimensional Numerical Model, Geophysical Research Abstracts, Vol. 18, EGU 2016-11505, 2016, EGU General Assembly 2016, © Author(s) 2016. CC Attribution 3.0 License.

34-16   Dunlop, S., Willig, I., Paul, G., Cabinet Gorge Dam Spillway Modifications for TDG Abatement – Design Evolution and Field Performance, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3650628160853 (ISBN 978-1-884575-75-4).

33-16   Crispino, G., Dorthe, D., Fuchsmann, T., Gisonni, C., Pfister, M., Junction chamber at vortex drop shaft: case study of Cossonay, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T350628160853 (ISBN 978-1-884575-75-4).

32-16  Brown, K., Crookston, B., Investigating Supercritical Flows in Curved Open Channels with Three Dimensional Numerical Modeling, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3580628160853 (ISBN 978-1-884575-75-4).

31-16  Cicero, G, Influence of some geometrical parameters on Piano Key Weir discharge efficiency,In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3320628160853 (ISBN 978-1-884575-75-4).

28-16   Anthoula Gkesouli, Maria Nitsa, Anastasios I. Stamou, Peter Rutschmann and Minh Duc Bui, Modeling the effect of wind in rectangular settling tanks for water supply, DOI: 10.1080/19443994.2016.1195290, Desalination and Water Treatment, June 22, 2016.

27-16   Eugenio Pugliese Carratelli, Giacomo Viccione and Vittorio Bovolin, Free surface flow impact on a vertical wall: a numerical assessment, Theor. Comput. Fluid Dyn., DOI 10.1007/s00162-016-0386-9, February 2016.

25-16   Daniel Valero and Daniel B. Bung, Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow, Environmental Modelling & Software 82 (2016) 218e228.

24-16   Il Won Seo, Young Do Kim, Yong Sung Park and Chang Geun Song, Spillway discharges by modification of weir shapes and overflow surroundings, Environmental Earth Sciences, March 2016, 75:496, 14 March 2016

23-16   Du Han Lee, Myounghwan Kim and Dong Sop Rhee, Evacuation Safety Evaluation of Inundated Stairs Using 3D Numerical Simulation, International Journal of Smart Home Vol. 10, No. 3, (2016), pp.149-158 http://dx.doi.org/10.14257/ijsh.2016.10.3.15

22-16   Arnau Bayon, Daniel Valero, Rafael García-Bartual, Francisco Jose Valles-Moran and Amparo Lopez-Jimenez, Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump, Environmental Modelling & Software 80 (2016) 322e335.

21-16   Shima Bahadori and Mehdi Behdarvandi Askar, Investigating the Effect of Relative Width on Momentum Transfer between Main Channel and Floodplain in Rough Rectangular Compound Channel Sunder Varius Relative Depth Condition, Open Journal of Geology, 2016, 6, 225-231, Published Online April 2016 in SciRes.

18-16   Ali Ahrari,  Hong Lei, Montassar Aidi Sharif, Kalyanmoy Deb and  Xiaobo Tan, Optimum Design of Artificial Lateral Line Systems for Object Tracking under Uncertain Conditions, COIN Report Number: 2016006

16-16   Elena Battisacco, Giovanni De Cesare and Anton J. Schleiss, Re-establishment of a uniform discharge on the Olympic fountain in Lausanne, Journal of Applied Water Engineering and Research, (2016) DOI: 10.1080/23249676.2016.1163648.

14-16   Shima Bahadori, Mehdi and Behdarvandi Askar, Investigating the Simultaneous Effect of Relative Width and Relative Roughness on Apparent Shear Stress in Symmetric Compound Rectangular Channels, JOURNAL OF CURRENT RESEARCH IN SCIENCE, ISSN 2322-5009 CODEN (USA): JCRSDJ, S (1), 2016: 654-660

12-16   Charles R. Ortloff, Hydraulic Engineering Innovations at 100 BC- AD 300 Nabataean Petra (Jordan), In conference proceedings: De Aquaeductu atque Aqua Urbium Lyciae Pamphyliae Pisidiae. The Legacy of Sextus Julius Frontinus, Antalya, Turkey, G. Wiplinger, ed.  ISBN: 978-90-429-3361-3, 2016 Peeters Publisher, Leuven, Belgium.

11-16 G. Robblee, S. Kees and B.M. Crookston, Schnabel Engineering; and K. Keel, Town of Hillsborough, Ensuring Water Supply Reliability with Innovative PK Weir Spillway Design, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

10-16 Tina Stanard and Victor Vasquez, Freese and Nichols, Inc.; Ruth Haberman, Upper Brushy Creek Water Control and Improvement District; Blake Tullis, Utah State University; and Bruce Savage, Idaho State University, Importance of Site Considerations for Labyrinth Spillway Hydraulic Design — Upper Brushy Creek Dam 7 Modernization, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

09-16 James R. Crowder, Brian M. Crookston, Bradley T. Boyer and J. Tyler Coats, Schnabel Engineering, Cultivating Ingenuity and Safety in Alabama: The Taming of Lake Ogletree Reservoir, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

08-16 Frank Lan, Robert Waddell and Michael Zusi, AECOM; and Brian Grant, Montana DNRC, Replacing Ruby Dam Outlet Uses Computational Fluid Dynamics to Model Energy Dissipation, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

07-16 Elise N. Dombeck, Federal Energy Regulatory Commission, Applications of FLOW-3D for Stability Analyses of Concrete Spillways at FERC Projects, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

06-16   Farhad Ghazizadeh and M. Azhdary Moghaddam, An Experimental and Numerical Comparison of Flow Hydraulic Parameters in Circular Crested Weir Using FLOW-3D, Civil Engineering Journal Vol. 2, No. 1, January, 2016

05-16   Sadegh Dehdar-behbahani and Abbas Parsaie, Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran, doi:10.1016/j.aej.2016.01.006, February 2016.

04-16   Oscar Herrera-Granados and Stanisław W. Kostecki, Numerical and physical modeling of water flow over the ogee weir of the new Niedów barrage, DOI: 10.1515/johh-2016-0013, J. Hydrol. Hydromech., 64, 2016, 1, 67–74

03-16   B. Gems, B. Mazzorana, T. Hofer, M. Sturm, R. Gabl, M. Aufleger, 3D-hydrodynamic modelling of flood impacts on a building and indoor flooding processes, Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2015-326, 2016, Manuscript under review for journal Nat. Hazards Earth Syst. Sci., Published: 19 January 2016 © Author(s) 2016. CC-BY 3.0 License.

124-15 Yousef Sangsefidi, Mojtaba Mehraein, and Masoud Ghodsian, Numerical simulation of flow over labyrinth spillways, Scientia Iranica, Transaction A, 22(5), 1779–1787, 2015.

120-15   Du Han Lee, Myounghwan Kim and Dong Sop Rhee, Analysis of Critical Evacuation Condition on Inundated Stairs Using Numerical Simulation, Advanced Science and Technology Letters Vol.120 (GST 2015), pp.522-525 http://dx.doi.org/10.14257/astl.2015.120.104

119-15  Shiqiang Ye and Paul Toth, Bank Erosion Control at Frederickhouse Dam, Ontario, CDA 2015 Annual Conference, Congrès annuel 2015 de l’ACB, Mississauga, ON, Canada, 2015 Oct 5-8

118-15  D.M. Robb and J.A. Vasquez, Numerical simulation of dam-break flows using depth-averaged hydrodynamic and three-dimensional CFD models, 22nd Canadian Hydrotechnical Conference, Montreal, Quebec, April 29 – May 2, 2015

117-15 Ashkan. Reisi, Parastoo. Salah, and Mohamad Reza. Kavianpour, Impact of Chute Walls Convergence Angle on Flow Characteristics of Spillways using Numerical Modeling, International Journal of Chemical, Environmental & Biological Sciences (IJCEBS), Volume 3, Issue 3 (2015) ISSN 2320–4087 (Online)

115-15  Ivana Vouk, Field and Numerical Investigation of Mixing and Transport of Ammonia in the Ottawa River, Master’s Thesis: Department of Civil Engineering, University of Ottawa, August 2015, © Ivana Vouk, Canada 2016.

113-15   J. Amblard, C. Pams Capoccioni, D. Nivon, L. Mellal, G. De Cesare, T. Ghilardi, M. Jafarnejad and E. Battisacco, Analysis of Ballast Transport in the Event of Overflowing of the Drainage System on High Speed Lines, International Journal of Railway Technology, Volume 4, 2015. doi:10.4203/ijr, t.4.xx.xx , ©Saxe-Coburg Publications, 2015

111-15   Y. Oukid, V. Libaud and C. Daux, 3D CFD modelling of spillways -Practical feedback on capabilities and challenges, Hydropower & Dams Issue Six, 2015

110-15  Zhiyong Zhang and Yuanping Yang, Numerical Study on Onset Condition of Scour Below Offshore Pipeline Under Reversing Tidal Flow, © EJGE, Vol. 20 [2015], Bund. 25

109-15  He Baohua, Numerical Simulation Analysis of Karst Tunnel Water Bursting Movement, © EJGE, Vol. 20 [2015], Bund. 25

105-15   Ali Yıldız and A. İhsan Martı, Comparison of Experimental Study and CFD Analysis of the Flow Under a Sluice Gate, Proceedings of International Conference on Structural Architectural and Civil Engineering Held on 21-22, Nov, 2015, in Dubai, ISBN:9788193137321

104-15  Yehui Zhu and Liquan Xie, Numerical Analysis of Flow Effects on Water Interface over a Submarine Pipeline, Resources, Environment and Engineering II: Proceedings of the 2nd Technical Congress on Resources, Environment and Engineering (CREE 2015, Hong Kong, 25-26 September 2015), Edited by Liquan Xie, CRC Press 2015, Pages 99–104, DOI: 10.1201/b19136-16.

100-15  Yizhou Xiao, Wene Wang, Xiaotao Hu, and Yan Zhou, Experimental and numerical research on portable short-throat flume in the field, Flow Measurement and Instrumentation, doi:10.1016/j.flowmeasinst.2015.11.003, Available online December 8, 2015

99-15   Mehdi Taghavi and Hesam Ghodousi, Simulation of Flow Suspended Load in Weirs by Using FLOW-3D Model, Civil Engineering Journal Vol. 1, No. 1, November 2015

98-15   Azin Movahedi, Ali Delavari and Massoud Farahi, Designing Manhole in Water Transmission Lines Using FLOW-3D Numerical Model, Civil Engineering Journal Vol. 1, No. 1, November 2015

97-15   R. Gabl, J. Seibl, B. Gems, and M. Aufleger, 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir, Nat. Hazards Earth Syst. Sci., 15, 2617-2630, doi:10.5194/nhess-15-2617-2015, 2015.

94-15   Jason Matthew Duguay and Jay Lacey, Numerical Study of an Innovative Fish Ladder Design for Perched Culverts, Canadian Journal of Civil Engineering, 10.1139/cjce-2014-0436, November 2015

92-15   H. A. Hussein, R. Abdulla and  M. A. Md Said, Computational Investigation of Inlet Baffle Height on the Flow in a Rectangular Oil/Water Separator Tanks, Applied Mechanics and Materials, Vol. 802, pp. 587-592, Oct. 2015

91-15   Mahmoud Mohammad Rezapour Tabari and Shiva Tavakoli, Effects of Stepped Spillway Geometry on Flow Pattern and Energy DissipationArabian Journal for Science and Engineering, October 2015

87-15   Erin R. Ryan, Effects of Hydraulic Structures on Fish Passage – An Evaluation of 2D vs 3D Hydraulic Analysis Methods, Master’s Thesis: Civil and Environmental Engineering, Colorado State University, Summer 2015, Copyright by Erin Rose Ryan 2015

79-15   Ana L. Quaresma, Is CFD an efficient tool to develop pool type fishways? International Conference on Engineering and Ecohydrology for Fish Passage. Paper 20, June 24, 2015

78-15   Amir Alavi, Don Murray, Claude Chartrand and Derek McCoy, CFD Modeling Provides Value Engineering, Hydro Review, October 2015

75-15   Rebekka Czerny, Classification of flow patterns in a nature-oriented fishway based on 3D hydraulic simulation results, International Conference on Engineering and Ecohydrology for Fish Passage. Paper 39, June 22, 2015

73-15   Frank Seidel, Hybrid model approach for designing fish ways – example fish lift system at Baldeney/Ruhr and fishway at Geesthacht /Elbet, International Conference on Engineering and Ecohydrology for Fish Passage 2015

72-15   G. Guyot, B. Huber, and A. Pittion-Rossillon, Assessment of a numerical method to forecast vortices with a scaled model, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

71-15   Abbas Parsaie, Amir Hamzeh Haghiabi and Amir Moradinejad, CFD modeling of flow pattern in spillway’s approach channel, Sustainable Water Resources Management, September 2015, Volume 1, Issue 3, pp 245-251

70-15   T. Liepert, A. Kuhlmann, G. Haimer, M.D. Bui and P. Rutschmann, Optimization of Fish Pass Entrance Location at a Hydropower Plant Considering Site-Specific Constraints, Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3-5 September 2015

67-15   Alkistis Stergiopoulou and Efrossini Kalkani, Towards a first CFD study of modern horizontal axis Archimedean water current turbines, Volume: 02 Issue: 04, ISO 9001:2008 Certified Journal © 2015, IRJET, July 2015

66-15   Won Choi, Jeongbae Jeon, Jinseon Park, Jeong Jae Lee and Seongsoo Yoon, System reliability analysis of downstream spillways based on collapse of upstream spillways, Int J Agric & Biol Eng, 2015; 8(4): 140-150.

64-15   Szu-Hsien Peng and Chuan Tang, Development and Application of Two-Dimensional Numerical Model on Shallow Water Flows Using Finite Volume Method, Journal of Applied Mathematics and Physics, 2015, 3, 989-996, Published Online August 2015 in SciRes. http://www.scirp.org/journal/jamp, http://dx.doi.org/10.4236/jamp.2015.38121

62-15   Cuneyt Yavuz, Ali Ersin Dincer, Kutay Yilmaz and Samet Dursun, Head Loss Estimation of Water Jets from Flip Bucket of Cakmak-1 Diversion Weir and HEPP, RESEARCH GATE, August 2015 DOI: 10.13140/RG.2.1.3650.5440

54-15   Guo-bin Xu, Li-na Zhao, and Chih Ted Yang, Derivation and verification of minimum energy dissipation rate principle of fluid based on minimum entropy production rate principle, International Journal of Sediment Research, August 2015

50-15   Vafa Khoolosi, Sedat Kabdaşli, and Sevda Farrokhpour, Modeling and Comparison of Water Waves Caused by Landslides into Reservoirs, Watershed Management 2015 © ASCE 2015.

48-15   Mohammad Rostami and Maaroof Siosemarde, Human Life Saving by Simulation of Dam Break using FLOW-3D (A Case Study: Upper Gotvand Dam), www.sciencejournal.in, Volume- 4 Issue- 3 (2015) ISSN: 2319–4731 (p); 2319–5037 (e) © 2015 DAMA International. All rights reserved.

47-15   E. Kolden, B. D. Fox, B. P. Bledsoe and M. C. Kondratieff, Modelling Whitewater Park Hydraulics and Fish Habitat in Colorado, River Res. Applic., doi: 10.1002/rra.2931, 2015

43-15   Firouz Ghasemzadeh, Behzad Parsa, and Mojtaba Noury, Numerical Study of Overflow Capacity of Spillways, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

42-15   Mario Oertel, Numerical Modeling of Free-Surface Flows in Practical Applications, Chapter 8 in Rivers – Physical, Fluvial and Environmental Processes (GeoPlanet: Earth and Planetary Sciences), by Pawel Rowiński and Artur Radecki-Pawlik, July 2, 2015

39-15   R. Gabl, J. Seibl, B. Gems, and M. Aufleger, 3-D-numerical approach to simulate an avalanche impact into a reservoir, Nat. Hazards Earth Syst. Sci. Discuss., 3, 4121–4157, 2015, www.nat-hazards-earth-syst-sci-discuss.net/3/4121/2015/, doi:10.5194/nhessd-3-4121-2015, © Author(s) 2015. CC Attribution 3.0 License.

37-15   Mario Oertel, Discharge Coefficients of Piano Key Weirs from Experimental and Numerical Models, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

36-15   Jessica Klein and Mario Oertel, Comparison between Crossbar Block Ramp and Vertical Slot Fish Pass via Numerical 3D CFD Simulation, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

35-15   Mario Oertel, Jan P. Balmes and Daniel B. Bung, Numerical Simulation of Erosion Processes on Crossbar Block Ramps, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

33-15   Daniel Valero and Daniel B. Bung, Hybrid Investigation of Air Transport Processes in Moderately Sloped Stepped Spillway Flows, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

32-15   Deniz Velioglu, Nuray Denli Tokyay, and Ali Ersin Dincer, A Numerical and Experimental Study on the Characteristics of Hydraulic Jumps on Rough Beds, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

31-15   J.C.C. Amorim, R.C.R. Amante, and V.D. Barbosa, Experimental and Numerical Modeling of Flow in a Stilling Basin, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

30-15   Luna B.J. César, Salas V. Christian, Gracia S. Jesús, and Ortiz M. Victor, Comparative Analysis of the Modification of Turbulence and Its Effects on a Trapezoidal Section Stilling Basin, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

27-15   L. Castillo, J. Carrillo, and M. Álvarez, Complementary Methods for Determining the Sedimentation and Flushing in a Reservoir, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0001050 , 05015004, 2015.

22-15   Mohammad Vaghefi, Mohammad Shakerdargah and Maryam Akbari, Numerical investigation of the effect of Froude number on flow pattern around a submerged T-shaped spur dike in a 90º bend, © Turkish Journal of Engineering & Environmental Sciences, 03.04.2015, doi:10.3906/muh-1405-2

18-15   S. Michael Scurlock, Amanda L. Cox, Drew C. Baird, Christopher I. Thornton and Steven R. Abt, Hybrid Modeling of River Training Structures in Sinuous Channels, SEDHYD 2015, Joint 10th Federal Interagency Sedimentation Conference, 5th Federal Interagency Hydrologic Modeling Conference, April 19-23, 2015, Reno, Nevada

13-15   Selahattin Kocaman and Hatice Ozmen-Cagatay, Investigation of dam-break induced shock waves impact on a vertical wall, Journal of Hydrology (2015), doi: http://dx.doi.org/10.1016/j.jhydrol.2015.03.040.

12-15   Nguyen Cong Thanh and Wang Ling-Ling, Physical and Numerical Model of Flow through the Spillways with a Breast Wall, KSCE Journal of Civil Engineering (0000) 00(0):1-8, Copyright 2015 Korean Society of Civil Engineers, DOI 10.1007/s12205-015-0742-0, April 10, 2015.

10-15   Yueping Yin, Bolin Huang, Guangning Liu and Shichang Wang, Potential risk analysis on a Jianchuandong dangerous rockmass-generated impulse wave in the Three Gorges Reservoir, China, Environ Earth Sci, DOI 10.1007/s12665-015-4278-x, © Springer-Verlag Berlin Heidelberg 2015

08-15   Yue-ping Yin, Bolin Huang, Xiaoting Chen, Guangning Liu and Shichang Wang, Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China, 10.1007/s10346-015-0564-7, © Springer-Verlag Berlin Heidelberg 2015

07-15   M. Vaghefi, A. Ahmadi and B. Faraji, The Effect of Support Structure on Flow Patterns Around T-Shape Spur Dike in 90° Bend Channel, Arabian Journal for Science and Engineering, February 2015,

06-15   Sajjad Mohammadpour Zalaki, Hosein Fathian, Ebrahim Zalaghi and Farhad Kalantar Hormozi, Investigation of hydraulic parameters and cavitation in Kheir Abad flood release structure, Canadian Journal of Civil Engineering, February 2015

04-15  Der-Chang Lo, Jin-Shuen Liou, and Shyy Woei Chang, Hydrodynamic Performances of Air-Water Flows in Gullies with and without Swirl Generation Vanes for Drainage Systems of Buildings, Water 2015, 7(2), 679-696; doi:10.3390/w7020679

01-15   William Daley Clohan, Three-Dimensional Numerical Simulations of Subaerial Landslide Generated Waves, Master’s Thesis: Civil Engineering, The University of British Columbia (Vancouver), January 2015 © William Daley Clohan, 2015. Available upon request.

136-14   Charles R. Ortloff, Hydraulic Engineering in 300 BCE- CE 300 Petra (Jordan), Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

135-14   Charles R. Ortloff, Land, Labor, Water and Technology in Precolumbian South America, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

134-14   Charles R. Ortloff, Hydrologic Engineering of the 300 BCE- CE 1100 Precolumbian Tiwanaku State (Bolivia), Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

133-14   Charles R. Ortloff, Water engineering at Petra (Jordan): Recreating the decision process underlying hydraulic engineering of the Wadi Mataha pipeline system, Journal of Archaeological Science, April 2014. 44. 91–97. 10.1016/j.jas.2014.01.015.

132-14   Charles R. Ortloff, Hydraulic Engineering in Ancient Peru and Bolivia, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

131-14    Charles R. Ortloff, Water Management in Ancient Peru, Living Reference Work Entry, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

130-14  Kordula Schwarzwälder and Peter Rutschmann, Sampling bacteria with a laser, Geophysical Research Abstracts Vol. 16, EGU2014-15144, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

129-14   Kordula Schwarzwälder, Eve Walters and Peter Rutschmann, Bacteria fate and transport in a river, Geophysical Research Abstracts Vol. 16, EGU2014-14022, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

127-14   Charles R. Ortloff, Hydraulic Engineering in Petra, Living Reference Work Entry, Encyclopedia of the History of Science, Technology, and Medicine in Non-Western Cultures, pp 1-13, 03 July 2014

124-14  G. Wei. M. Grünzner and F. Semler, Combination of 2D shallow water and full 3D numerical modeling for sediment transport in reservoirs and basins, Reservoir Sedimentation – Schleiss et al. (Eds) © 2014 Taylor & Francis Group, London, ISBN 978-1-138-02675-9.

121-14    A. Bayón-Barrachina, D. Valero, F. Vallès-Morán, and P.A. López-Jiménez, Comparison of CFD Models for Multiphase Flow Evolution in Bridge Scour Processes, 5th International Junior Researcher and Engineer Workshop on Hydraulic Structures, Spa, Belgium, 28-30 August 2014

120-14  D. Valero, R. García-Bartual and J. Marco, Optimisation of Stilling Basin Chute Blocks Using a Calibrated Multiphase RANS Model, 5th International Junior Researcher and Engineer Workshop on Hydraulic Structures, Spa, Belgium, 28-30 August 2014

119-14   R. Gabl, B. Gems, M. Plörer, R. Klar, T. Gschnitzer, S. Achleitner, and M. Aufleger, Numerical Simulations in Hydraulic Engineering, Computational Engineering, 2014, pp 195-224, April 2014

118-14  Kerilyn Ambrosini, Analysis of Flap Gate Design and Implementations for Water Delivery Systems in California and Nevada, BioResource and Agricultural Engineering, BioResource and Agricultural Engineering Department, California Polytechnic State University, San Luis Obispo, 2014

117-14  Amir Moradinejad, Abas Parssai, Mohamad Noriemamzade, Numerical Modeling of Flow Pattern In Kamal Saleh Dam Spillway Approach Channel, App. Sci. Report.10 (2), 2014: 82-89, © PSCI Publications

116-14  Luis G. Castillo and José M. Carrillo, Characterization of the Dynamic Actions and Scour Estimation Downstream of a Dam, 1st International Seminar on Dam Protection against Overtopping and Accidental Leakage, M.Á. Toledo, R. Morán, E. Oñate (Eds), Madrid, 24-25 November 2014

115-14  Luis G. Castillo, José M. Carrillo, Juan T. García, Antonio Vigueras-Rodríguez, Numerical Simulations and Laboratory Measurements in Hydraulic Jumps, 11th International Conference on Hydroinformatics, HIC 2014, New York City, USA

114-14  Du Han Lee, Young Joo Kim, and Samhee Lee, Numerical modeling of bed form induced hyporheic exchangePaddy and Water Environment, August 2014, Volume 12, Issue 1 Supplement, pp 89-97

112-14  Ed Zapel, Hank Nelson, Brian Hughes, Steve Fry, Options for Reducing Total Dissolved Gas at the Long Lake Hydroelectric Facility, Hydrovision International, July 22-24, 2014, Nashville, TN

111-14  Jason Duguay, Jay Lace, Dave Penny and Ken Hannaford, Evolution of an Innovative Fish Ladder Design to Address Issues of Perched Culverts, 2014 Conference of the Transportation Association of Canada, Montreal, Quebec

106-14   Manuel Gomez and Eduardo Martinez, 1D, 2D and 3D Modeling of a PAC-UPC Laboratory Canal Bend, SimHydro 2014: Modelling of rapid transitory flows, 11-13 June 2014, Sophia Antipolis

105-14 Jason Duguay and Jay Lacey, Numerical Validation of an Innovative Fish Baffle Design in Response to Fish Passage Issues at Perched Culverts, CSPI Technical Bulletin, January 14, 2014

104-14  Di Ning, Di,  A Computational Study on Hydraulic Jumps, including Air Entrainment, Master’s Thesis: Civil and Environmental Engineering, University of California, Davis, 2014, 1569799, Copyright ProQuest, UMI Dissertations Publishing 2014

103-14  S. M. Sayah, S. Bonanni, Ph. Heller, and M. Volpato, Physical and Numerical Modelling of Cerro del Águila Dam -Hydraulic and Sedimentation, DOI: 10.13140/2.1.5042.1122 Conference: Hydro 2014

102-14   Khosrow Hosseini, Shahab Rikhtegar, Hojat Karami, Keivan Bina, Application of Numerical Modeling to Assess Geometry Effect of Racks on Performance of Bottom Intakes, Arabian Journal for Science and Engineering, December 2014

98-14  Aysel Duru, Numerical Modelling of Contracted Sharp Crested Weirs, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, November 2014

97-14  M Angulo, S Liscia, A Lopez and C Lucino, Experimental validation of a low-head turbine intake designed by CFD following Fisher and Franke guidelines, 27th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2014), IOP Publishing, IOP Conf. Series: Earth and Environmental Science 22 (2013) 042014 doi:10.1088/1755-1315/22/4/042014

94-14   Hamidreza Babaali, Abolfazl Shamsai, and Hamidreza Vosoughifar, Computational Modeling of the Hydraulic Jump in the Stilling Basin with ConvergenceWalls Using CFD Codes, Arab J Sci Eng, DOI 10.1007/s13369-014-1466-z, October 2014

93-14   A.J. Vellinga, M.J.B. Cartigny, J.T. Eggenhuisen, E.W.M. Hansen, and R. Rouzairol, Morphodynamics of supercritical-flow bedforms using depth-resolved computational fluid dynamics model, International Association of Sedimentologists, Geneva, 2014.

88-14   Marcelo A. Somos-Valenzuela, Rachel E. Chisolm, Daene C. McKinney, and Denny Rivas, Inundation Modeling of a Potential Glacial Lake Outburst Flood in Huaraz, Peru, CRWR Online Report 14-01, March 2014

84-14   Hossein Shahheydari, Ehsan Jafari Nodoshan, Reza Barati, and Mehdi Azhdary Moghadam, Discharge coefficient and energy dissipation over stepped spillway under skimming flow regimeKSCE Journal of Civil Engineering, 10.1007/s12205-013-0749-3, November 2014

81-14   Gaël Epely-Chauvin, Giovanni De Cesare and Sebastian Schwindt, Numerical Modelling of Plunge Pool Scour Evolution in Non-Cohesive Sediments, Engineering Applications of Computational Fluid Mechanics Vol. 8, No. 4, pp. 477–487 (2014).

79-14   Liquan Xie, Yanhui Xu, and Wenrui Huang, Numerical Study on Hydrodynamic Mechanism of Sediment Trapping by Geotextile Mattress with Sloping Curtain (GMSC), Proceedings of the Eleventh (2014) Pacific/Asia Offshore Mechanics Symposium Shanghai, China, October 12-16, 2014 Copyright © 2014 by The International Society of Offshore and Polar Engineers, ISBN 978–1 880653 90-6: ISSN 1946-004X.

78-14  D. N. Powell and A. A. Khan, Flow Field Upstream of an Orifice under Fixed Bed and Equilibrium Scour ConditionsJ. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0000960, 04014076, 2014.

76-14   Berk Sezenöz, Numerical Modelling of Continuous Transverse Grates for Hydraulic Efficiency, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, October 2014

75-14   Francesco Calomino and Agostino Lauria, 3-D Underflow of a Sluice Gate at a Channel Inlet; Experimental Results and CFD Simulations, Journal of Civil Engineering and Urbanism, Volume 4, Issue 5: 501-508 (2014)

73-14   Som Dutta, Talia E. Tokyay, Yovanni A. Cataño-Lopera, Sergio Serafinod and Marcelo H. Garcia, Application of computational fluid dynamic modeling to improve flow and grit transport in Terence J. O’Brien Water Reclamation Plant, Chicago, Illinois, Journal of Hydraulic Research, DOI: 10.1080/00221686.2014.949883, October 2014

72-14   Ali Heidari, Poria Ghassemi, Evaluation of step’s slope on energy dissipation in stepped spillway, International Journal of Engineering & Technology, 3 (4) (2014) 501-505, ©Science Publishing Corporation, www.sciencepubco.com/index.php/IJET, doi: 10.14419/ijet.v3i4.3561

70-14   M. Tabatabai, M. Heidarnejad, A. Bordbar, Numerical Study of Flow Patterns in Stilling Basin with Sinusoidal Bed using FLOW-3D Model, Advances in Environmental Biology, 8(13) August 2014, Pages: 787-792

66-14   John S. Schwartz, Keil J. Neff, Frank E. Dworak, Robert R. Woockman, Restoring riffle-pool structure in an incised, straightened urban stream channel using an ecohydraulic modeling approach, Ecol. Eng. (2014), doi.org/10.1016/j.ecoleng.2014.06.002

65-14  Laura Rozumalski and Michael Fullarton, CFD Modeling to Design a Fish Lift Entrance, Hydro Review, July 2014

64-14   Pam Waterman, Scaled for Success: Computational Fluid Dynamics Analysis Prompts Swift Stormwater System Improvements in Indianapolis, WaterWorld, August 2014.

63-14   Markus Grünzner and Peter Rutschmann, Large Eddy Simulation  – Ein Beitrag zur Auflösung turbulenter Strömungsstrukturen in technischen Fischaufstiegshilfen; (LES – resolving turbulent flow in technical fish bypasses), Tagungsband Internationales Symposium in Zurich, Wasser- und Flussbau im Alpenraum, Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, ETH Zurich. In German.

62-14   Jason Duguay, Jay Lace, Dave Penny, and Ken Hannaford, Evolution of an Innovative Fish Ladder Design to Address Issues of Perched Culverts, 2014 Conference of the Transportation Association of Canada, Montreal, Quebec

60-14   Kordula Schwarzwälder, Minh Duc Bui, and Peter Rutschmann, Simulation of bacteria transport processes in a river with FLOW-3D, Geophysical Research Abstracts, Vol. 16, EGU2014-12993, 2014, EGU General Assembly 2014, © Author(s) 2014. CC Attribution 3.0 License.

58-14   Eray Usta, Numercial Investigation of Hydraulic Characteristics of Laleili Dam Spillway and Comparison with Physical Model Study, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, May 2014

57-14   Selahattin Kocaman, Prediction of Backwater Profiles due to Bridges in a Compound Channel Using CFD, Hindawi Publishing Corporation, Advances in Mechanical Engineering, Volume 2014, Article ID 905217, 9 pages, http://dx.doi.org/10.1155/2014/905217

54-14   Ines C. Meireles, Fabian A. Bombardelli, and Jorge Matos, Air entrainment onset in skimming flows on steep stepped spillways: an analysis, (2014) Journal of Hydraulic Research, 52:3, 375-385, DOI: 10.1080/00221686.2013.878401

53-14   Charles R Ortloff, Groundwater Management in the 300 bce-1100ce Pre-Columbian City of Tiwanaku (Bolivia), Hydrol Current Res 5: 168. doi:10.4172/2157-7587.1000168, 2014

50-14   Mohanad A. Kholdier, Weir-Baffled Culvert Hydrodynamics Evaluation for Fish Passage using Particle Image Velocimetry and Computational Fluid Dynamic Techniques, Ph.D. Thesis: Utah State University (2014). All Graduate Theses and Dissertations. Paper 3078. http://digitalcommons.usu.edu/etd/3078

48-14   Yu-Heng Lin, Study on raceway pond for microalgae culturing system, Master Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University, August 2014. In Chinese

38-14   David Ingram, Robin Wallacey, Adam Robinsonz and Ian Bryden, The design and commissioning of the first, circular, combined current and wave test basin, Proceedings of Oceans 2014 MTS/IEEE, Taipei, Taiwan, IEEE, April 2014

36-14   Charles R. Ortloff, Hydraulic Engineering in Precolumbian Peru and Bolivia, The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

35-14   Charles R. Ortloff, Hydraulic Engineering in BC 100- AD 300 Petra (Jordan), The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

34-14   Charles R. Ortloff, Hydraulic Engineering in Precolumbian Peru and Bolivia, The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

33-14   Roman Gabl, Bernhard Gems, Giovanni De Cesare, and Markus Aufleger, Contribution to Quality Standards for 3D-Numerical Simulations with FLOW-3D, Wasserwirtschaft (ISSN: 0043-0978), vol. 104, num. 3, p. 15-20, Wiesbaden: Springer Vieweg-Springer Fachmedien Wiesbaden Gmbh, 2014. Available for download at the University of InnsbruckIn German.

31-14   E. Fadaei-Kermani and G.A. Barani, Numerical simulation of flow over spillway based on the CFD method, Scientia Iranica A, 21(1), 91-97, 2014

30-14   Luis G. Castillo  and José M. Carrillo, Scour Analysis Downstream of Paute-Cardenillo Dam, © 3rd IAHR Europe Congress, Book of Proceedings, 2014, Porto, Portugal.

29-14    L. G. Castillo, M. A. Álvarez, and J. M. Carrillo, Numerical modeling of sedimentation and flushing at the Paute-Cardenillo Reservoir, ASCE-EWRI. International Perspective on Water Resources and Environment Quito, January 8-10, 2014

28-14   L. G. Castillo and J. M. CarrilloScour estimation of the Paute-Cardenillo Dam, ASCE-EWRI. International Perspective on Water Resources and Environment Quito, January 8-10, 2014.

27-14   Luis G. Castillo, Manual A. Álvarez and José M. Carrillo, Analysis of Sedimentation and Flushing into the Reservoir Paute-Cardenillo© 3rd IAHR Europe Congress, Book of Proceedings, 2014, Porto, Portugal.

24-14   Carter R. Newell and John Richardson, The Effects of Ambient and Aquaculture Structure Hydrodynamics on the Food Supply and Demand of Mussel Rafts, Journal of Shellfish Research, 33(1):257-272, DOI: http://dx.doi.org/10.2983/035.033.0125, 0125, 2014.

16-14   Han Hu, Jiesheng Huang, Zhongdong Qian, Wenxin Huai, and Genjian Yu, Hydraulic Analysis of Parabolic Flume for Flow Measurement, Flow Measurement and Instrumentation, http://dx.doi.org/10.1016/j.flowmeasinst.2014.03.002, 2014.

14-14   Seung Oh Lee, Sooyoung Kim, Moonil Kim, Kyoung Jae Lim and Younghun Jung, The Effect of Hydraulic Characteristics on Algal Bloom in an Artificial Seawater Canal: A Case Study in Songdo City, South Korea, Water 2014, 6, 399-413; doi:10.3390/w6020399, ISSN 2073-4441, www.mdpi.com/journal/water

13-14   Kathryn Elizabeth Plymesser, Modeling Fish Passage and Energy Expenditure for American Shad in a Steeppass Fishway using Computational Fluid Dynamics, Ph.D. Thesis: Montana State University, January 2014, © Kathryn Elizabeth Plymesser, 2014, All Rights Reserved.

12-14   Sangdo An and Pierre Y. Julien, Three-Dimensional Modeling of Turbid Density Currents in Imha Reservoir, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0000851, 05014004, 2014.

09-14   B. Gems, M. Wörndl, R. Gabl, C. Weber, and M. Aufleger, Experimental and numerical study on the design of a deposition basin outlet structure at a mountain debris cone, Nat. Hazards Earth Syst. Sci., 14, 175–187, 2014, www.nat-hazards-earth-syst-sci.net/14/175/2014/, doi:10.5194/nhess-14-175-2014, © Author(s) 2014. CC Attribution 3.0 License.

07-14   Charles R. Ortloff, Water Engineering at Petra (Jordan): Recreating the Decision Process underlying Hydraulic Engineering of the Wadi Mataha Pipeline System, Journal of Archaeological Science, Available online January 2014.

06-14   Hatice Ozmen-Cagatay, Selahattin Kocaman, Hasan Guzel, Investigation of dam-break flood waves in a dry channel with a hump, Journal of Hydro-environment Research, Available online January 2014.

05-14   Shawn P. Clark, Jonathan Scott Toews, and Rob Tkach, Beyond average velocity: Modeling velocity distributions in partially-filled culverts to support fish passage guidelines, International Journal of River Basin Management, DOI10.1080/15715124.2013.879591, January 2014.

04-14   Giovanni De Cesare, Martin Bieri, Stéphane Terrier, Sylvain Candolfi, Martin Wickenhäuser and Gaël Micoulet, Optimization of a Shared Tailrace Channel of Two Pumped-Storage Plants by Physical and Numerical Modeling, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 291-305.

03-14   Grégory Guyot, Hela Maaloul and Antoine Archer, A Vortex Modeling with 3D CFD, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 433-444.

02-14   Géraldine Milési and Stéphane Causse, 3D Numerical Modeling of a Side-Channel Spillway, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 487-498.

01-14   Mohammad R. Namaee, Mohammad Rostami, S. Jalaledini and Mahdi Habibi, A 3-Dimensional Numerical Simulation of Flow Over a Broad-Crested Side Weir, Advances in Hydroinformatics, Springer Hydrogeology 2014, pp 511-523.

104-13   Alireza Nowroozpour, H. Musavi Jahromi and A. Dastgheib, Studying different cases of wedge shape deflectors on energy dissipation in flip bucket using CFD model, Proceedings, 6th International Perspective on Water Resources & the Environment Conference (IPWE), Izmir, Turkey, January 7-9, 2013.

102-13   Shari Dunlop, Isaac Willig and Roger L. Kay, Emergency Response to Erosion at Fort Peck Spillway: Hydraulic Analysis and Design, ICOLD 2013 International Symposium, Seattle, WA.

101-13   Taeho Kang and Heebeom Shin, Dam Emergency Action Plans in Korea, ICOLD 2013 International Symposium, Seattle, WA.

100-13   John Hess, Jeffrey Wisniewski, David Neff and Mike Forrest, A New Auxiliary Spillway for Folsom Dam, ICOLD 2013 International Symposium, Seattle, WA.

98-13   Neda Sharif and Amin Rostami Ravori, Experimental and Numerical Study of the Effect of Flow Separation on Dissipating Energy in Compound Bucket, 2013 5th International Conference on Chemical, Biological and Environmental Engineering (ICBEE 2013); 2013 2nd International Conference on Civil Engineering (ICCEN 2013)

97-13  A. Stergiopoulou, V. Stergiopoulos, and E. Kalkani, Contributions to the Study of Hydrodynamic Behaviour of Innovative Archimedean Screw Turbines Recovering the Hydropotential of Watercourses and of Coastal Currents, Proceedings of the 13th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013

96-13   Shokry Abdelaziz, Minh Duc Bui, Namihira Atsushi, and Peter Rutschmann, Numerical Simulation of Flow and Upstream Fish Movement inside a Pool-and-Weir Fishway, Proceedings of 2013 IAHR World Congress, Chengdu, China

95-13  Guodong Li, Lan Lang, and Jian Ning, 3D Numerical Simulation of Flow and Local Scour around a Spur Dike, Proceedings of 2013 IAHR World Congress, Chengdu, China

93-13   Matthew C. Kondratieff and Eric E. Richer, Stream Habitat Investigations and Assistance, Federal Aid Project F-161-R19, Federal Aid in Fish and Wildlife Restoration, Job Progress Report, Colorado Parks & Wildlife, Aquatic Wildlife Research Section, Fort Collins, Colorado, August 2013. Available upon request

92-13   Matteo Tirindelli, Scott Fenical and Vladimir Shepsis, State-of-the-Art Methods for Extreme Wave Loading on Bridges and Coastal Highways, Seventh National Seismic Conference on Bridges and Highways (7NSC), May 20-22, 2013, Oakland, CA

91-13   Cecia Millán Barrera, Víctor Manuel Arroyo Correa, Jorge Armando Laurel Castillo, Modeling contaminant transport with aerobic biodegradation in a shallow water body, Proceedings of 2013 IAHR Congress © 2013 Tsinghua University Press, Beijing

80-13  Brian Fox, Matthew Kondratieff, Brian Bledsoe, Christopher Myrick, Eco-Hydraulic Evaluation of Whitewater Parks as Fish Passage Barriers, International Conference on Engineering and Ecohydrology for Fish Passage, June 25-27, 2013, Oregon State University. Presentation available for download on the Scholarworks site.

79-13  Changsung Kim, Jongtae Kim, Joongu Kang, Analysis of the Cause for the Collapse of a Temporary Bridge Using Numerical Simulation, Engineering, 2013, 5, 997-1005, (http://www.scirp.org/journal/eng), Copyright © 2013 Changsung Kim et al. Published Online December 2013

76-13   Riley J. Olsen, Michael C. Johnson, and Steven L. Barfuss, Low-Head Dam Reverse Roller Remediation Options, Journal of Hydraulic Engineering, November 2013; doi:10.1061/(ASCE)HY.1943-7900.0000848.

72-13  M. Pfister, E. Battisacco, G. De Cesare, and A.J. Schleiss, Scale effects related to the rating curve of cylindrically crested Piano Key weirs, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

71-13  F. Laugier, J. Vermeulen, and V. Lefebvre, Overview of Piano KeyWeirs experience developed at EDF during the past few years, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

70-13   G.M. Cicero, J.R. Delisle, V. Lefebvre, and J. Vermeulen, Experimental and numerical study of the hydraulic performance of a trapezoidal Piano Key weir, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds, © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

69-13   V. Lefebvre, J. Vermeulen, and B. Blancher, Influence of geometrical parameters on PK-Weirs discharge with 3D numerical analysis, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

65-13 Alkistis Stergiopoulou and Efrossini Kalkani, Towards a First CFD Study of Innovative Archimedean Inclined Axis Hydropower Turbines, International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 2 Issue 9, September 2013.

58-13  Timothy Sassaman, Andrew Johansson, Ryan Jones, and Marianne Walter, Hydraulic Analysis of a Pumped Storage Pond Using Complementary Methods, Hydrovision 2013 Conference Proceedings, Denver, CO, July 2013.

57-13  Jose Vasquez, Kara Hurtig, and Brian Hughes, Computational Fluid Dynamics (CFD) Modeling of Run-of-River Intakes, Hydrovision 2013 Conference Proceedings, Denver, CO July 2013.

56-13  David Souders, Jayesh Kariya, and Jeff Burnham, Validation of a Hybrid 3-Dimensional and 2-Dimensional Flow Modeling Technique for an Instanenous Dam-Break, Hydrovision 2013 Conference Proceedings, Denver, CO July 2013.

55-13  Keith Moen, Dan Kirschbaum, Joe Groeneveld, Steve Smith and Kimberly Pate, Sluiceway Deflector Design as part of the Boundary TDG Abatement Program, Hydrovision 2013 Conference Proceedings, Denver, CO, July 2013.

54-13  S. Temeepattanapongsa, G. P. Merkley, S. L. Barfuss and B. Smith, Generic unified rating for Cutthroat flumes, Irrig Sci, DOI 10.1007/s00271-013-0411-3, Springer-Verlag Berlin Heidelberg 2013, August 2013.

53-13 Hossein Afshar and Seyed Hooman Hoseini, Experimental and 3-D Numerical Simulation of Flow over a Rectangular Broad-Crested Weir, International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249-8958, Volume 2, Issue 6, August 2013

52-13  Abdulmajid Matinfard (Kabi), Mohammad Heidarnejad, Javad Ahadian, Effect of Changes in the Hydraulic Conditions on the Velocity Distribution around a L-Shaped Spur Dike at the River Bend, Technical Journal of Engineering and Applied Sciences Available online at www.tjeas.com ©2013 TJEAS Journal-2013-3-16/1862-1868 ISSN 2051-0853 ©2013 TJEAS

51-13  Elham Radaei, Sahar Nikbin, and Mahdi Shahrokhi, Numerical Investigation of Angled Baffle on the Flow Pattern in a Rectangular Primary Sedimentation Tank, RCEE, Research in Civil and Environmental Engineering 1 (2013) 79-91.

48-13   Mohammad Kayser, Mohammed A. Gabr, Assessment of Scour on Bridge Foundations by Means of In Situ Erosion Evaluation Probe, Transportation Research Record: Journal of the Transportation Research Board, 0361-1981 (Print), Volume 2335 / 2013, pp 72-78. 10.3141/2335-08, August 2013.

47-13  Wei Ping Yin et al., 2013, Three-Dimensional Water Temperature and Hydrodynamic Simulation of Xiangxi River Estuary, Advanced Materials Research, 726-731, 3212, August, 2013.

41-13   N. Nekoue, R. Mahajan, J. Hamrick, and H. Rodriguez, Selective Withdrawal Hydraulic Study Using Computational Fluid Dynamics Modeling, World Environmental and Water Resources Congress 2013: pp. 1808-1813. doi: 10.1061/9780784412947.177.

40-13  Eleanor Kolden, Modeling in a three-dimensional world: whitewater park hydraulics and their impact on aquatic habitat in Colorado, Thesis: Master of Science, Civil and Environmental Engineering, Colorado State University. Full thesis available online at Colorado State University.

38-13  Prashant Huddar P.E. and Yashodhan Dhopavkar, CFD Use in Water – Insight, Foresight, and Efficiency, CFD Application in Water Engineering, Bangalore, India, June 2013.

37-13 B. Gems, M. Wörndl, R. Gabl, C. Weber, and M. Aufleger, Experimental and numerical study on the design of a deposition basin outlet structure at a mountain debris cone, Nat. Hazards Earth Syst. Sci. Discuss., 1, 3169–3200, 2013, www.nat-hazards-earth-syst-sci-discuss.net/1/3169/2013/, doi:10.5194/nhessd-1-3169-2013, © Author(s) 2013. Full paper online at: Natural Hazards and Earth System Sciences.

33-13   Tian Zhou and Theodore A. Endreny, Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments, Water Resources Research, DOI: 10.1002/wrcr.20384, ©2013. American Geophysical Union. All Rights Reserved.

31-13  Francesco Calomino and Agostino Lauria, MOTO ALL’IMBOCCO DI UN CANALE RETTANGOLARE CONTROLLATO DA PARATOIA PIANA. Analisi sperimentale e modellazione numerica 3DFLOW AT THE INTAKE OF THE RECTANGULAR CHANNEL ;CONTROLLED BY A FLAT SLUICE GATE. Experimental and Numerical 3D ModelL’acqua, pp. 29-36, © Idrotecnica Italiana, 2013. In Italian and English.

30-13  Vinod V. Nair and S.K. Bhattacharyya, Numerical Study of Water Impact of Rigid Sphere under the Action of Gravity CFD Application in Water Engineering, Bangalore, India, June 2013. Abstract only.

29-13   Amar Pal Singh, Faisal Bhat, Ekta Gupta, 3-D Spillway Simulations of Ratle HEP (J&K) for the Assessment of Design Alternatives to be Tested in Model Studies, CFD Application in Water Engineering, Bangalore, India, June 2013.

28-13  Shun-Chung Tsung, Jihn-Sung Lai, and Der-Liang Young, Velocity distribution and discharge calculation at a sharp-crested weir, Paddy Water Environ, DOI 10.1007/s10333-013-0378-y, © Springer Japan 2013, May 2013.

27-13  Karen Riddette and David Ho, Assessment of Spillway Modeling Using Computational Fluid DynamicsANCOLD Proceedings of Technical Groups, 2013.

21-13  Tsung-Hsien Huang and Chyan-Deng Jan, Simulation of Velocity Distribution for Water Flow in a Vortex-Chamber-Type Sediment Extractor, EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-7061. Online at: http://adsabs.harvard.edu/abs/2013EGUGA..15.7061H

19-13  Riley J. Olsen, Hazard Classification and Hydraulic Remediation Options for Flat-Topped and Ogee-Crested Low- Head Dams, Thesis: Master of Science in Civil and Environmental Engineering, Utah State University, All Graduate Theses and Dissertations. Paper 1538. http://digitalcommons.usu.edu/etd/1538, 2013.

17-13  Mohammad-Hossein Erfanain-Azmoudeh and Amir Abbas Kamanbedast, Determine the Appropriate Location of Aerator System on Gotvandolia Dam’s Spillway Using FLOW-3D, American-Eurasian J. Agric. & Environ. Sci., 13 (3): 378-383, 2013, ISSN 1818-6769, © IDOSI Publications, 2013.

13-13   Chia-Cheng Tsai, Yueh-Ting Lin, and Tai-Wen Hsu, On the weak viscous effect of the reflection and transmission over an arbitrary topography, Phys. Fluids 25, 043103 (2013); http://dx.doi.org/10.1063/1.4799099 (21 pages).

07-13  M. Kayser and M. A. Gabr, Scour Assessment of Bridge Foundations Using an In Situ Erosion Evaluation Probe (ISEEP), 92nd Transportation Research Board Annual Meeting, January 13-17, 2013, Washington, D.C.

06-13   Yovanni A. Cataño-Lopera, Blake J. Landry, Jorge D. Abad, and Marcelo H. García, Experimental and Numerical Study of the Flow Structure around Two Partially Buried Objects on a Deformed Bed, Journal of Hydraulic Engineering © ASCE /March 2013, 269-283.

04-13  Safinaz El-Solh, SPH Modeling of Solitary Waves and Resulting Hydrodynamic Forces on Vertical and Sloping Walls, Thesis: Master of Applied Science in Civil Engineering, Department of Civil Engineering, University of Ottawa, October 2012, © Safinaz El-Solh, Ottawa, Canada, 2013. Full paper available online at uOttawa.

108-12  Hatice Ozmen-Cagatay and Selahattin Kocaman, Investigation of Dam-Break Flow Over Abruptly Contracting Channel With Trapezoidal-Shaped Lateral Obstacles, Journal of Fluids Engineering © 2012 by ASME August 2012, Vol. 134 / 081204-1

102-12 B.M. Crookston, G.S. Paxson, and B.M. Savage, Hydraulic Performance of Labryinth Weirs for High Headwater Ratios, 4th IAHR International Symposium on Hydraulic Structures, 9-11 February 2012, Porto, Portugal, ISBN: 978-989-8509-01-7.

101-12 Jungseok Ho and Wonil Kim, Discrete Phase Modeling Study for Particle Motion in Storm Water Retention, KSCE Journal of Civil Engineering (2012) 16(6):1071-1078, DOI 10.1007/s12205-012-1304-3.

99-12  Charles R. Ortloff and Michael E. Mosely, Environmental change at a Late Archaic period site in north central coast Perú, Ñawpa Pacha, Journal of Andean Archaeology, Volume 32, Number 2 / December 2012, ISSN: 0077-6297 (Print); 2051-6207 (Online), Left Coast Press, Inc.

98-12  Tao Wang and Vincent H. Chu, Manning Friction in Steep Open-channel Flow, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012.

96-12  Zhi Yong Dong, Qi Qi Chen, Yong Gang, and Bin Shi, Experimental and Numerical Study of Hydrodynamic Cavitation of Orifice Plates with Multiple Triangular Holes, Applied Mechanics and Materials, Volumes 256-259, Advances in Civil Engineering, December 2012.

95-12  Arjmandi H., Ghomeshi M.,  Ahadiayn J., and Goleij G., Prediction of Plunge Point in the Density Current using RNG Turbulence Modeling, Water and Soil Science (Agricultural Science) Spring 2012; 22(1):171-185. Abstract available online at the Scientific Online Database.

84-12  Li Ping Zhao, Jian Qiu Zhang, Lei Chen, Xuan Xie, Jun Qiang Cheng, Study of Hydrodynamic Characteristics of the Sloping Breakwater of Circular Protective Facing, Advanced Materials Research (Volumes 588 – 589), Advances in Mechanics Engineering, 1781-1785, 10.4028/www.scientific.net/AMR.588-589.1781.

83-12 Parviz Ghadimi, Abbas Dashtimanesh, and Seyed Reza Djeddi, Study of water entry of circular cylinder by using analytical and numerical solutions, J. Braz. Soc. Mech. Sci. & Eng. 2012, vol.34, n.3, pp. 225-232 . ISSN 1678-5878. http://dx.doi.org/10.1590/S1678-58782012000300001.

81-12  R. Gabl, S. Achleitner, A. Sendlhofer, T. Höckner, M. Schmitter and M. Aufleger, Side-channel spillway – Hybrid modeling, Hydraulic Measurements and Experimental Methods 2012, EWRI/ASCE, August 12-15, 2012, Snowbird, Utah.

80-12  Akin Aybar, Computational Modelling of Free Surface Flow in Intake Structures using FLOW-3D Software, Thesis: MS in Civil Engineering, The Graduate School of Natural and Applied Sciences of Middle East Technical University, June 2012.

74-12  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Saeed Reza Sabbagh Yazdi, and Syafalni Syafalni, Computational investigations of baffle configuration effects on the performance of primary sedimentation tanks, Water and Environment Journal, 22 October 2012, © 2012 CIWEM.

68-12  Jalal Attari and Mohammad Sarfaraz, Transitional Steps Zone in Steeply Stepped Spillways, 9th International Congress on Civil Engineering, May 8-10, 2012, Isfahan University of Technology (IUT), Isfahan, Iran

67-12  Mohammad Sarfaraz, Jalal Attari and Michael Pfister, Numerical Computation of Inception Point Location for Steeply Sloping Stepped Spillways, 9th International Congress on Civil Engineering, May 8-10, 2012, Isfahan University of Technology (IUT), Isfahan, Iran

64-12  Anders Wedel Nielsen, Xiaofeng Liu, B. Mutlu Sumer, Jørgen Fredsøe, Flow and bed shear stresses in scour protections around a pile in a current, Coastal Engineering, Volume 72, February 2013, Pages 20–38.

62-12  Ehab A. Meselhe, Ioannis Georgiou, Mead A. Allison, John A McCorquodale, Numerical Modeling of Hydrodynamics and Sediment Transport in Lower Mississippi at a Proposed Delta Building Diversion, Journal of Hydrology, October 2012.

60-12  Markus Grünzner and Gerhard Haimerl, Numerical Simulation Downstream Attraction Flow at Danube Weir Donauwörth, 9th ISE 2012, Vienna, Austria.

59-12 M. Grünzner, A 3 Dimensional Numerical (LES) and Physical ‘Golf Ball’ Model in Comparison to 1 Dimensional Approach, Hydraulic Measurements and Experimental Methods 2012, EWRI/ASCE, August 12-15, 2012, Snowbird, Utah

58-12  Shawn P. Clark, Jonathan S. Toews, Martin Hunt and Rob Tkach, Physical and Numerical Modeling in Support of Fish Passage Regulations, 9th ISE 2012, Vienna, Austria.

57-12  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Syafalni, Numerical Modeling of Baffle Location Effects on the Flow Pattern of Primary Sedimentation Tanks, Applied Mathematical Modelling, Available online October 2012, http://dx.doi.org/10.1016/j.apm.2012.09.060.

50-12  Gricelda Ramirez, A Virtual Flow Meter to Develop Velocity-Index Ratings and Evaluate the Effect of Flow Disturbances on these Ratings, Master’s Thesis: Department of Civil Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2012.

43-12  A. A. Girgidov, A. D. Girgidov and M. P. Fedorov, Use of dispersing springboards to reduce near-bottom velocity in a toe basin, Power Technology and Engineering (formerly Hydrotechnical Construction), Volume 46, Number 2 (2012), 113-115, DOI: 10.1007/s10749-012-0316-y.

40-12  Jong Pil Park, Kyung Sik Choi, Ji Hwan Jeong, Gyung Min Choi, Ju Yeop Park, and Man Woong Kim, Experimental and numerical evaluation of debris transport augmentation by turbulence during the recirculation-cooling phase, Nuclear Engineering and Design 250 (2012) 520-537

39-12  Hossein Basser, Abdollah Ardeshir, Hojat Karami, Numerical simulation of flow pattern around spur dikes series in rigid bed, 9th International Congress on Civil Engineering, May 8-10, 2012 Isfahan University of Technology (IUT), Isfahan, Iran

38-12  Sathaporn Temeepattanapongsa, Unified Equations for Cutthroat Flumes Derived from a Three-Dimensional Hydraulic Model, (2012). Thesis: Utah State University, All Graduate Theses and Dissertations. Paper 1308. Available online at: http://digitalcommons.usu.edu/etd/1308

36-12 Robert Feurich, Jacques Boubée, Nils Reidar B. Olsen, Improvement of fish passage in culverts using CFD, Ecological Engineering, Volume 47, October 2012, Pages 1–8.

35-12 Yovanni A. Cataño-Lopera and Jorge D. Abad, Flow Structure around a Partially Buried Object in a Simulated River Bed, World Environmental And Water Resources Congress 2012, Albuquerque, New Mexico, United States, May 20-24, 2012.

33-12  Fatemeh Rostami, Saeed Reza Sabbagh Yazdi, Md Azlin Md Said and Mahdi Shahrokhi, Numerical simulation of undular jumps on graveled bed using volume of fluid method, Water Science & Technology Vol 66 No 5 pp 909–917 © IWA Publishing 2012 doi:10.2166/wst.2012.213.

30-12  Saman Abbasi and Amir Abbas Kamanbedast, Investigation of Effect of Changes in Dimension and Hydraulic of Stepped Spillways for Maximization Energy Dissipation, World Applied Sciences Journal 18 (2): 261-267, 2012, ISSN 1818-4952, © IDOSI Publications, 2012, DOI: 10.5829/idosi.wasj.2012.18.02.492

24-12  Mario Oertel, Jan Mönkemöller and Andreas Schlenkhoff, Artificial stationary breaking surf waves in a physical and numerical model, Journal of Hydraulic Research, 50:3, 338-343, 2012.

23-12  Mario Oertel, Cross-bar block ramps:Flow regimes – flow resistance – energy dissipation – stability, thesis, Bericht Nr. 20, 2012, © 2011/12 Dr. Mario Oertel, Hydraulic Engineering Section, Bergische University of Wuppertal. Duplication only with author’s permission.

20-12  M. Oertel and A. Schlenkhoff, Crossbar Block Ramps: Flow Regimes, Energy Dissipation, Friction Factors, and Drag Forces, Journal of Hydraulic Engineering © ASCE, May 2012, pp. 440-448.

19-12  Mohsen Maghrebi, Saeed Alizadeh, and Rahim Lotfi, Numerical Simulation of Flow Over Rectangular Broad Crested Weir, 1st International and 3rd National Conference on Dams and Hydropower in Iran, Tehran, Iran, February 8 – February 9, 2012

18-12  Alireza Daneshkhah and Hamidreza Vosoughifar, Solution of Flow Field Equations to Investigate the Best Turbulent Model of Flow over a Standard Ogee Spillway, 1st International and 3rd National Conference on Dams and Hydropower in Iran, Tehran, Iran, February 8 – February 9, 2012

03-12  Hamed Taghizadeh, Seyed Ali Akbar Salehi Neyshabour and Firouz Ghasemzadeh, Dynamic Pressure Fluctuations in Stepped Three-Side Spillway, Iranica Journal of Energy & Environment 3 (1): 95-104, 2012, ISSN 2079-2115

02-12   Kim, Seojun, Yu, Kwonkyu, Yoon, Byungman, and Lim, Yoonsung, A numerical study on hydraulic characteristics in the ice Harbor-type fishway, KSCE Journal of Civil Engineering, 2012-02-01, Issn: 1226-7988, pp 265- 272, Volume: 16, Issue: 2, Doi: 10.1007/s12205-012-0010-5.

105-11 Hatice Ozmen Cagatay and Selahattin Kocaman, Dam-break Flow in the Presence of Obstacle: Experiment and CFD Simulation, Engineering Applications of Computational Fluid Mechancis, Vol. 5, No. 4, pp. 541-552, 2011

102-11 Sang Do An, Interflow Dynamics and Three-Dimensional Modeling of Turbid Density Currents in IMHA Reservoir, South Korea, thesis: Doctor of Philosophy, Department of Civil and Environmental Engineering at Colorado State University, 2011.

101-11 Tsunami – A Growing Disaster, edited by Mohammad Mokhtari, ISBN 978-953-307-431-3, 232 pages, Publisher: InTech, Chapters published December 16, 2011 under CC BY 3.0 license, DOI: 10.5772/922. Available for download at Intech.

98-11  Selahattin Kocaman and Hasan Guzel, Numerical and Experimental Investigation of Dam-Break Wave on a Single Building Situated Downstream, Epoka Conference Systems, 1st International Balkans Conference on Challenges of Civil Engineering, 19-21 May 2011, EPOKA University, Tirana, Albania.

97-11   T. Endreny, L. Lautz, and D. I. Siegel, Hyporheic flow path response to hydraulic jumps at river steps: Flume and hydrodynamic models, WATER RESOURCES RESEARCH, VOL. 47, W02517, doi:10.1029/2009WR008631, 2011.

96-11   Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said and Syafalni, Numerical Simulation of Influence of Inlet Configuration on Flow Pattern in Primary Rectangular Sedimentation Tanks, World Applied Sciences Journal 15 (7): 1024-1031, 2011, ISSN 1818-4952, © IDOSI Publications, 2011. Full article available online at IODSI.

94-11  Kathleen H. Frizell, Summary of Hydraulic Studies for Ladder and Flume Fishway Design- Nimbus Hatchery Fish Passage Project, Hydraulic Laboratory Report HL-2010-04, U.S. Department of the Interior Bureau of Reclamation Technical Service Center Hydraulic Investigations and Laboratory Services Group, December 2011

88-11   Abdelaziz, S, Bui, MD, Rutschmann, P, Numerical Investigation of Flow and Sediment Transport around a Circular Bridge Pier, Proceedings of the 34th World Congress of the International Association for Hydro- Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, ACT: Engineers Australia, 2011: 2624-2630.

86-11  M. Heidarnejad, D. Halvai and M. Bina, The Proper Option for Discharge the Turbidity Current and Hydraulic Analysis of Dez Dam Reservoir, World Applied Sciences Journal 13 (9): 2052-2056, 2011, ISSN 1818-4952 © IDOSI Publications, 2011

84-11  Martina Reichstetter and Hubert Chanson, Physical and Numerical Modelling of Negative Surges in Open Channels, School of Civil Engineering at the University of Queensland, Report CH84/11, ISBN No. 9781742720388, © Reichstetter and Chanson, 2011.

83-11  Reda M. Abd El-Hady Rady, 2D-3D Modeling of Flow Over Sharp-Crested Weirs, Journal of Applied Sciences Research, 7(12): 2495-2505, ISSN 1819-544X, 2011.

78-11  S. Abbasi, A. Kamanbedast and J. Ahadian, Numerical Investigation of Angle and Geometric of L-Shape Groin on the Flow and Erosion Regime at River Bends, World Applied Sciences Journal 15 (2): 279-284, 2011, ISSN 1818-4952 © IDOSI Publications, 2011.

75-11  Mario Oertel and Daniel B. Bung, Initial stage of two-dimensional dam-break waves: laboratory versus VOF, Journal of Hydraulic Research, DOI: 10.1080/00221686.2011.639981, Available online: 08 Dec 2011.

73-11  T.N. Aziz and A.A. Khan, Simulation of Vertical Plane Turbulent Jet in Shallow Water, Advances in Civil Engineering, vol. 2011, Article ID 292904, 10 pages, 2011. doi:10.1155/2011/292904.

67-11   Chung R. Song, ASCE, Jinwon Kim, Ge Wang, and Alexander H.-D. Cheng, Reducing Erosion of Earthen Levees Using Engineered Flood Wall SurfaceJournal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 10, October 2011, pp. 874-881, http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000500.

64-11  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Syafalni, The Effect of Number of Baffles on the Improvement Efficiency of Primary Sedimentation Tanks, Available online 11 November 2011, ISSN 0307-904X, 10.1016/j.apm.2011.11.001.

62-11  Jana Hadler, Klaus Broekel, Low head hydropower – its design and economic potential, World Renewable Energy Congress 2011, Sweden, May 8-13, 2011.

60-11 Md. Imtiaj Hassan and Nahidul Khan, Performance of a Quarter-Pitch Twisted Savonius Turbine, The International Conference and Utility Exhibition 2011, Pattaya City, Thailand, 28-30 September 2011.

59-11   Erin K. Gleason, Ashraful Islam, Liaqat Khan, Darrne Brinker and Mike Miller, Spillway Analysis Techniques Using Traditional and 3-D Computational Fluid Dynamics Modeling, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

58-11  William Rahmeyer, Steve Barfuss, and Bruce Savage, Composite Modeling of Hydraulic Structures, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

57-11  B. Dasgupta, K. Das, D. Basu, and R. Green, Computational Methodology to Predict Rock Block Erosion in Plunge Pools, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

56-11  Jeff Burnham, Modeling Dams with Computational Fluid Dynamics- Past Success and New Directions, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

52-11  Madhi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, and Syafalni, The Computational Modeling of Baffle Configuration in the Primary Sedimentation Tanks, 2011 2nd International Conference on Environmental Science and Technology IPCBEE vol 6. (2011) IACSIT Press, Singapore.

47-11  Stefan Haun, Nils Reidar B. Olsen and Robert Feurich, Numerical Modeling of Flow over Trapezoidal Broad-Crested Weir, Engineering Applications of Computational Fluid Mechanics Vol 5., No. 3, pp. 397-405, 2011.

42-11  Anu Acharya, Experimental Study and Numerical Simulation of Flow and Sediment Transport around a Series of Spur Dikes, thesis: The University of Arizona Graduate College, Copyright © Anu Acharya 2011, July 2011.

38-11  Mehdi Shahosseini, Amirabbas Kamanbedast and Roozbeh Aghamajidi, Investigation of Hydraulic Conditions around Bridge Piers and Determination of Shear Stress using Numerical Methods, World Environmental and Water Resources Congress 2011, © ASCE 2011.

35-11  L. Toombes and H. Chanson, Numerical Limitations of Hydraulic Models, 34th IAHR World Congress, 33rd Hydrology & Water Resources Symposium, 10th Hydraulics Conference, Brisbane, Australia, 26 June – 1 July 2011.

34-11  Mohammad Sarfaraz, and Jalal Attari, Numerical Simulation of Uniform Flow Region over a Steeply Sloping Stepped Spillway, 6th National Congress on Civil Engineering, Semnan University, Semnan, Iran, April 26-27, 2011.

30-11  John Richardson and Pamela Waterman, Stemming the Flood, Mechanical Engineering, Vol. 133/No.7 July 2011

29-11  G. Möller & R. Boes, D. Theiner & A. Fankhauser, G. De Cesare & A. Schleiss, Hybrid modeling of sediment management during drawdown of Räterichsboden reservoir, Dams and Reservoirs under Changing Challenges – Schleiss & Boes (Eds), © 2011 Taylor & Francis Group, London, ISBN 978-0-415-68267-1.

24-11  Liaqat A. Khan, Computational Fluid Dynamics Modeling of Emergency Overflows through an Energy Dissipation Structure of a Water Treatment Plant, ASCE Conf. Proc. doi:10.1061/41173(414)155, World Environmental and Water Resources Congress 2011.

23-11  Anu Acharya and Jennifer G. Duan, Three Dimensional Simulation of Flow Field around Series of Spur Dikes, ASCE Conf. Proc. doi:10.1061/41173(414)218, World Environmental and Water Resources Congress 2011.

22-11  Mehdi Shahosseini, Amirabbas Kamanbedast, and Roozbeh Aghamajidi, Investigation of Hydraulic Conditions around Bridge Piers and Determination of Shear Stress Using Numerical Method, ASCE Conf. Proc. doi:10.1061/41173(414)435, World Environmental and Water Resources Congress 2011.

20-11  Jong Pil Park, Ji Hwan Jeong, Won Tae Kim, Man Woong Kim and Ju Yeop Park, Debris transport evaluation during the blow-down phase of a LOCA using computational fluid dynamics, Nuclear Engineering and Design, June 2011, ISSN 0029-5493, DOI: 10.1016/j.nucengdes.2011.05.017.

13-11 Ehab A. Meselhe, Myrtle Grove Delta Building Diversion Project, The Geological Society of America, South-Central Section – 45th Annual Meeting, New Orleans, Louisiana, March 2011.

12-11  Bryan Heiner and Steven L. Barfuss, Parshall Flume and Discharge Corrections Wall Staff Gauge and Centerline Measurements, Journal of Irrigation and Drainage Engineering, posted ahead of print February 1, 2011, DOI:10.1061/(ASCE)IR.1943-4774.0000355, © 2011 by the American Society of Civil Engineers.

06-11  T. Endreny, L. Lautz, and D. Siegel, Hyporheic flow path response to hydraulic jumps at river steps- Hydrostatic model simulations, Water Resources Research, Vol. 47, W02518, doi: 10.1029/2010WR010014, 2011, © 2011 by the American Geophysical Union, 0043-1397/11/2010WR010014

03-11  Jinwon Kim, Chung R. Song, Ge Wang and Alexander H.-D. Cheng Reducing Erosion of Earthen Levees Using Engineered Flood Wall Surface, Journal of Geotechnical and Geoenvironmental Engineering, © ASCE, January 2011.

02-11  F. Montagna, G. Bellotti and M. Di Risio, 3D numerical modeling of landslide-generated tsunamis around a conical island, Springer Link, Earth and Environmental Science, Natural Hazards, DOI: 10.1007/s11069-010-9689-0, Online First™, 7 January 2011.

83-10   S. Abdelaziz, M.D. Bui and P. Rutschmann, Numerical simulation of scour development due to submerged horizontal jet, River Flow 2010, eds. Dittrich, Koll, Aberle & Geisenhainer, © 2010 Bundesanstalt für Wasserbau, ISBN 978-3-939230-00-7.

79-10  Daniel J. Howes, Charles M. Burt, and Brett F. Sanders, Subcritical Contraction for Improved Open-Channel Flow Measurement Accuracy with an Upward-Looking ADVM, J. Irrig. Drain Eng. 2010.136:617-626.

78-10  M. Kaheh, S. M. Kashefipour, and A. Dehghani, Comparison of k-ε and RNG k-ε Turbulent Models for Estimation of Velocity Profiles along the Hydraulic Jump, presented at the 6th International Symposium on Environmental Hydraulics, Athens, Greece, June 2010.

75-10  Shahrokh Amiraslani, Jafar Fahimi, Hossein Mehdinezhad, The Numerical Investigation of Free Falling Jet’s Effect on the Scour of Plunge Pool, XVIII International Conference on Water Resources CMWR 2010 J. Carrera (Ed) CIMNE, Barcelona 2010

74-10  M. Ho Ta Khanh, Truong Chi Hien, and Dinh Sy Quat, Study and construction of PK Weirs in Vietnam (2004 to 2011), 78th Annual Meeting of the International Commission on Large Dams,  VNCOLD, Hanoi, Vietnam, May 23-26, 2010.

72-10  DKH Ho and KM Riddette, Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia, © Institution of Engineers Australia, 2010, Australian Journal of Civil Engineering, Vol 6 No 1, 2010.

71-10  Cecilia Lucino, Sergio Liscia y Gonzalo Duro, Vortex Detection in Pump Sumps by Means of CFD, XXIV Latin American Congress on Hydraulics, Punta Del Este, Uruguay, November 2010; Deteccion de Vortices en Darsenas de Bombeo Mediante Modelacion MatematicaAvailable in English and Spanish.

64-10 Jose (Pepe) Vasquez, Assessing Sediment Movement by CFD Particle Tracking, 2nd Joint Federal Interagency Conference, Las Vegas, Nevada, June 27-July 1, 2010.

63-10 Sung-Min Cho, Foundation Design of the Incheon Bridge, Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol 41 No.4, ISSN0046-5828, December 2010.

61-10  I. Meireles, F.A. Bombardelli and J. Matos, Experimental and Numerical Investigation of the Non-Aerated Skimming Flow on Stepped Spillways Over Embankment Dams, Presented at the 2010 IAHR European Congress, Edinburgh, UK, May 4-6, 2010.

60-10  Mario Oertel, G. Heinz and A. Schlenkhoff, Physical and Numerical Modelling of Rough Ramps and Slides, Presented at the 2010 IAHR European Congress, Edinburgh, UK, May 4-6, 2010.

59-10  Fatemeh Rostami, Mahdi Shahrokhi, Md Azlin Md Said, Rozi Abdullah and Syafalni, Numerical modeling on inlet aperture effects on flow pattern in primary settling tanks, Applied Mathematical Modelling, Copyright © 2010 Elsevier Inc., DOI: 10.1016/j.apm.2010.12.007, December 2010.

56-10  G. B. Sahoo, F Bombardelli, D. Behrens and J.L. Largier, Estimation of Stratification and Mixing of a Closed River System Using FLOW-3D, American Geophysical Union, Fall Meeting 2010, abstract #H31G-1091

50-10  Sung-Duk Kim, Ho-Jin Lee and Sang-Do An, Improvement of hydraulic stability for spillway using CFD model, International Journal of the Physical Sciences Vol. 5(6), pp. 774-780, June 2010. Available online at http://www.academicjournals.org/IJPS, ISSN 1992

49-10  Md. Imtiaj Hassan, Tariq Iqbal, Nahidul Khan, Michael Hinchey, Vlastimil Masek, CFD Analysis of a Twisted Savonius Turbine, PKP Open Conference Systems, IEEE Newfoundland and Labrador Section, October 2010

46-10  Hatice Ozmen-Cagatay and Selahattin Kocaman, Dam-break flows during initial stage using SWE and RANS approaches, Journal of Hydraulic Research, Vol 48, No. 5 (2010), pp. 603-611, doi: 10.108/00221686.2010.507342, © 2010 International Association for Hydro-Environment Engineering and Research.

44-10  Marie-Hélène Briand, Catherine Tremblay, Yannick Bossé, Julian Gacek, Carola Alfaro, and Richard Blanchet, Ashlu Creek hydroelectric project- Design and optimization of hydraulic structures under construction, CDA 2010 Annual Conference, Congrès annuel 2010 de l’A CB, Niagra Falls, ON, Canada, 2010 Oct 2-7.

43-10 Gordon McPhail, Justin Lacelle, Bert Smith, and Dave MacMillan, Upgrading of Boundary Dam Spillway, CDA 2010 Annual Conference, Congrès annuel 2010 de l’A CB, Niagra Falls, ON, Canada, 2010 Oct 2-7.

40-10 Selahattin Kocamana; Galip Seckinb; Kutsi S. Erduran, 3D model for prediction of flow profiles around bridges, DOI: 10.1080/00221686.2010.507340, Journal of Hydraulic Research, Volume 48, Issue 4 August 2010, pages 521 – 525. Available online at: informaworld

38-10  Kevin M. Sydor and Pamela J. Waterman, Engineering and Design: The Value of CFD Modeling in Designing a Hydro Plant, Hydro Review, Volume 29, Issue 6, September 2010 Available online at HydroWorld.com

33-10  Fabián A. Bombardelli, Inês Meireles and Jorge Matos, Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence, SpringerLink, Environmental Fluid Mechanics, Online First™, 26 August 2010

30-10 Bijan Dargahi, Flow characteristics of bottom outlets with moving gates, IAHR, Journal of Hydraulic Research, Vol. 48, No. 4 (2010), pp. 476-482, doi: 10.1080/00221686.20101.507001, © 2010 International Association for Hydro-Environment Engineering and Research

24-10 Shuang Ming Wang and Kevin Sydor, Power Intake Velocity Modeling Using FLOW-3D at Kelsey Generating Station, Canadian Dam Association Bulletin, Vol. 21. No. 2, Spring 2010, pp: 16-21

20-10 Jungseok Ho, Todd Marti and Julie Coonrod, Flood debris filtering structure for urban storm water treatment, DOI: 10.1080/00221686.2010.481834, Journal of Hydraulic Research, Volume 48, Issue 3, pages 320 – 328, June 2010.

16-10 J. Jacobsen and N. R. B. Olsen, Three-dimensional numerical modeling of the capacity for a complex spillway, Proceedings of the ICE – Water Management, Volume 163, Issue 6, pages 283 –288, ISSN: 1741-7589, E-ISSN: 1751-7729.

13-10 J. Ho, J. Coonrod, L. J. Hanna, B. W. Mefford, Hydrodynamic modelling study of a fish exclusion system for a river diversion, River Research and Applications Volume 9999, mIssue 9999, Copyright © 2005 John Wiley & Sons, Ltd.

12-10 Nils Rüther, Jens Jacobsen, Nils Reidar B. Olsen and Geir Vatne, Prediction of the three-dimensional flow field and bed shear stresses in a regulated river in mid-Norway, Hydrology Research Vol 41 No 2 pp 145–152 © IWA Publishing 2010, doi:10.2166/nh.2010.064.

11-10 Xing Fang, Shoudong Jiang, and Shoeb R. Alam, Numerical Simulations of Efficiency of Curb-Opening Inlets, J. Hydr. Engrg. Volume 136, Issue 1, pp. 62-66 (January 2010).

54-09    K.W. Frizell, J.P. Kubitschek, and R.F. Einhellig, Folsom Dam Joint Federal Project Existing Spillway Modeling – Discharge Capacity Studies, American River Division Central Valley Project Mid-Pacific Region, Hydraulic Laboratory Report HL-2009-02, US Department of the Interior, Bureau of Reclamation, Denver, Colorado, September 2009

50-09  Mark Fabian, Variation in Hyporheic Exchange with Discharge and Slope in a Tropical Mountain Stream, thesis: State University of New York, College of Environmental Science & Forestry, 2009. Available online: http://gradworks.umi.com/14/82/1482174.html.

48-09 Junwoo Choi, Kwang Oh Ko, and Sung Bum Yoon, 3D Numerical Simulation for Equivalent Resistance Coefficient for Flooded Built-Up Areas, Asian and Pacific Coasts 2009 (pp 245-251), Proceedings of the 5th International Conference on APAC 2009, Singapore, 13 – 16 October 2009

47-09 Young-Il Kim, Chang-Jin Ahn, Chae-Young Lee, Byung-Uk Bae, Computational Fluid Dynamics for Optimal Design of Horizontal-Flow Baffled-Channel Powdered Activated Carbon Contactors, Mary Ann Liebert, Inc. publishers, Volume: 26 Issue 1: January 15, 2009.

43-09 Charles R. Ortloff, Water Engineering in the Ancient World: Archaeological and Climate Perspectives on Societies of Ancient South America, Meso-America, the Middle East and South East Asia, Oxford University Press, ISBN13: 978-0-19-923909-2ISBN10: 0-19-923909-6, December 2009 Available at Oxford University Press (clicking on this link will take you to OUP’s website).

40-09 Ge Wang, Chung R. Song, Jinwon Kim and Alexander, H.-D Cheng, Numerical Study of Erosion-proof of Loose Sand in an Overtopped Plunging Scour Process — FLOW-3D, The 2009 Joint ASCE-ASME-SES Conference on Mechanics and Materials, Blacksburg, Virginia, June 24-27, 2009

39-09 Charles R. Ortloff, Water Engineering in the Ancient World: Archaeological and Climate Perspectives on Societies of Ancient South America, the Middle East, and South-East Asia(Hardcover), Oxford University Press, USA (October 15, 2009), ISBN-10: 0199239096; ISBN-13: 978-0199239092 Buy Water Engineering in the Ancient World on Amazon.com.

38-09 David S. Brown, Don MacDonell, Kevin Sydor, and Nicolas Barnes, An Integrated Computational Fluid Dynamics and Fish Habitat Suitability Model for the Pointe Du Bois Generating Station, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 53-66

37-09 Warren Gendzelevich, Andrew Baryla, Joe Groenveld, and Doug McNeil, Red River Floodway Expansion Project-Design and Construction of the Outlet Structure, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 13-26

36-09 Jose A. Vasquez and Jose J. Roncal, Testing River2D and FLOW-3D for Sudden Dam-Break Flow Simulations, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 44-55

33-09 Pamela J. Waterman, Modeling Commercial Aquaculture Systems Employing FLOW-3D, (clicking on this link will take you to Desktop Engineering’s website) Desktop Engineering, November 2009

29-09 Bruce M. Savage, Michael C. Johnson, Brett Towler, Hydrodynamic Forces on a Spillway- Can we calculate them?, Dam Safety 2009, Hollywood, FL, USA, October 2009

27-09 Charles “Chick” Sweeney, Keith Moen, and Daniel Kirschbaum, Hydraulic Design of Total Dissolved Gas Mitigation Measures for Boundary Dam, Waterpower XVI, © PennWell Corporation, Spokane, WA, USA, July 2009

23-09 J.A. Vasquez and B.W. Walsh, CFD simulation of local scour in complex piers under tidal flow, 33rd IAHR Congress: Water Engineering for a Sustainable Environment, © 2009 by International Association of Hydraulic Engineering & Research (IAHR), ISBN: 978-94-90365-01-1

15-09 Kaushik Das, Steve Green, Debashis Basu, Ron Janetzke, and John Stamatakos, Effect of Slide Deformation and Geometry on Waves Generated by Submarine Landslides- A Numerical Investigation, Copyright 2009, Offshore Technology Conference, Houston, Texas, USA, May 4-7, 2009

5-09 Remi Robbe, Douglas Sparks, Calculation of the Rating Curves for the Matawin Dam’s Bottom Sluice Gates using FLOW-3D, Conference of the Société Hydrotechnique de France (SHF), 20-21 January 2009, Paris, France. (in French)

4-09 Frederic Laugier, Gregory Guyot, Eric Valette, Benoit Blancher, Arnaud Oguic, Lily Lincker, Engineering Use of Hydrodynamic 3D Simulation to Assess Spillway Discharge Capacity, Conference of the Société Hydrotechnique de France (SHF), 20-21 January 2009, Paris, France. (in French)

50-08   H. Avila and R.Pitt, The Calibration and use of CFD Models to Examine Scour from Stormwater Treatment Devices – Hydrodynamic Analysis, 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 2008

47-08    Greg Paxson, Brian Crookston, Bruce Savage, Blake Tullis, and Frederick Lux III, The Hydraulic Design Toolbox- Theory and Modeling for the Lake Townsend Spillway Replacement Project, Assoc. of State Dam Safety Officials (ASDSO), Indian Wells, CA, September 2008.

46-08  Sh. Amirslani, M. Pirestani and A.A.S. Neyshabouri, The 3D numerical simulation of scour by free falling jet and compare geometric parameters of scour hole with DOT, River flow 2008-Altinakar, Kokipar, Gogus, Tayfur, Kumcu & Yildirim (eds) © 2008 Kubaba Congress Department and Travel Services ISBN 978-605-601360201

44-08  Paul Guy Chanel, An Evaluation of Computational Fluid Dynamics for Spillway Modeling, thesis: Department of Civil Engineering, University of Manitoba, Copyright © 2008 by Paul Guy Chanel

41-08 Jinwei Qiu, Gravel transport estimation and flow simulation over low-water stream crossings, thesis: Lamar University – Beaumont, 2008, 255 pages; AAT 3415945

37-08 Dae-Geun Kim, Numerical analysis of free flow past a sluice gate, KSCE Journal of Civil Engineering, Volume 11, Number 2 / March, 2007, 127-132.

36-08 Shuang Ming Wang and Kevin Sydor, Power Intake Velocity Modeling using FLOW-3D at Kelsey Generating Station, CDA 2008 Annual Conference, Congres annuel 2008 de l’ACB, Winnipeg, MB, Canada, September 27-October 2, 2008, du 27 septembre au 2 octobre 2008

33-08 Daniel B. Bung, Arndt Hildebrandt, Mario Oertel, Andreas Schlenkhoff and Torsten Schlurmann, Bore Propaga