Dynamic Pressure at Flip Buckets of Chute Spillways

낙하 배수로의 플립 버킷에서의 동적 압력: 수치 해석

Dynamic Pressure at Flip Buckets of Chute Spillways: A Numerical Study

International Journal of Civil Engineering (2021)Cite this article

Abstract

이 연구는 이러한 구조물의 가장 중요한 설계 매개변수 중 하나인 슈트 여수로의 플립 버킷에서 동적 압력을 조사합니다. 첫째, 압력에 영향을 미치는 무차원 매개변수를 치수해석을 통해 결정하였다.

그 후, 플립 버킷으로 이어지는 슈트 여수로가 있는 선택된 댐의 특성에 따라 플립 버킷으로의 특정 Froude 수 간격과 슈트 경사 각도, 반경 및 플립 버킷 곡률 각도가 분석을 위해 선택되었습니다.

이러한 매개변수의 조합으로 FLOW-3D에서 총 137개 모델을 시뮬레이션하여 플립 버킷의 바닥 압력과 최대 압력 값을 얻었습니다.

다음으로 고려된 무차원 매개변수를 기반으로 다중 회귀 분석을 사용하여 슈트의 플립 버킷 다운스트림에서 바닥 압력과 최대 압력을 결정하기 위한 방정식이 제안되었습니다. 수치 모델링 실행 결과와 다중 회귀 분석을 사용하여 무차원 압력 관계의 미지의 계수를 결정하고 바닥 압력과 최대 압력에 대한 최종 방정식을 제시했습니다.

저압과 최고압을 결정하기 위해 제안된 식의 상관계수와 MAPE(Mean Absolute Percentage Error) 값은 각각 0.94와 0.96, 6.75%와 8.49%였습니다.

이 값은 제안된 방정식의 적절한 정확도를 나타냅니다. 제안된 방정식에서 Froude 수, 상대 곡률, 슈트 경사각, 이륙 각도 및 플립 버킷의 곡률 각도가 각각 저면 압력과 최대 압력에 가장 큰 영향을 미쳤습니다.

This study investigates the dynamic pressure at the flip buckets of chute spillways, which is one of the most important design parameters of these structures. First, the dimensionless parameters affecting pressure were determined by dimensional analysis. Following that, according to the characteristics of selected dams with chute spillways leading to flip buckets, certain Froude number intervals of inflow to the flip bucket, as well as the chute slope angle, radius, and flip bucket curvature angle were selected for analysis. The combination of these parameters resulted in a total of 137 models simulated in FLOW-3D to obtain bottom pressure and maximum pressure values in the flip bucket. Next, based on the dimensionless parameters considered, equations were proposed to determine the bottom pressure and maximum pressure in the flip bucket downstream of the chute, using multiple regression analysis. Using the numerical modeling run results, along with multiple regression analyses, the unknown coefficients of the dimensionless pressure relationship were determined, and final equations for the bottom pressure and maximum pressure were presented. The correlation coefficient and Mean Absolute Percentage Error (MAPE) values of the proposed equations for determining the bottom pressure and maximum pressure were 0.94 and 0.96, and, 6.75% and 8.49%, respectively. These values indicate the appropriate accuracy of the proposed equations. In the proposed equations, the Froude number, relative curvature, chute slope angle, takeoff angle, and flip bucket’s curvature angle, respectively, had the highest impacts on the bottom pressure and maximum pressure.

Keywords

  • Dam spillway
  • Flip bucket
  • Ski jump
  • Dynamic pressure
  • Numerical modeling
  • FLOW-3D
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10

References

  1. 1.Vischer DL, Hager WH (1995) Energy dissipators. Balkema, Rotterdam, The NetherlandsGoogle Scholar 
  2. 2.Khatsuria RM (2005) Hydraulics of spillways and energy dissipators. CRC Press, Dekker, New YorkGoogle Scholar 
  3. 3.Novak P, Moffat AIB, Nalluri C, Narayanan R (2006) Hydraulics structures. Spon, LondonGoogle Scholar 
  4. 4.Chow VT (1959) Open channel hydraulics. McGraw-Hill Book Co., New YorkGoogle Scholar 
  5. 5.Balloffet A (1961) Pressures on spillway flip buckets. J Hydraul Div ASCE 87(5):87–98. https://doi.org/10.1061/JYCEAJ.0000650Article Google Scholar 
  6. 6.Chen TC, Yu YS (1965) Pressure distribution on spillway flip buckets. J Hydraul Div ASCE 91(2):51–63. https://doi.org/10.1061/JYCEAJ.0001228Article Google Scholar 
  7. 7.Lenau CW, Cassidy JJ (1969) Flow through spillway flip bucket. Journal of the Hydraulics Division ASCE 95(2):633–648. https://doi.org/10.1061/JYCEAJ.0002029Article Google Scholar 
  8. 8.Juon R, Hager WH (2000) Flip bucket without and with deflectors. J Hydraul Eng 126(11):837–845. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(837)Article Google Scholar 
  9. 9.Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  10. 10.Heller V, Hager WH, Minor HE (2005) Ski jump hydraulics. J Hydraul Eng 131(5):347–355. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:5(347)Article Google Scholar 
  11. 11.Larese A, Rossi R, Onate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Eng Comput 25(4):385–425. https://doi.org/10.1108/02644400810874976Article MATH Google Scholar 
  12. 12.Steiner R, Heller V, Hager WH, Minor HE (2008) Deflector ski jump hydraulics. J Hydraul Eng 134(5):562–571. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(562)Article Google Scholar 
  13. 13.Kirkgoz MS, Akoz MS, Oner AA (2009) Numerical modeling of flow over a chute spillway. J Hydraul Res 47(6):790–797. https://doi.org/10.3826/jhr.2009.3467Article Google Scholar 
  14. 14.Jorabloo M, Maghsoodi R, Sarkardeh H (2011) 3D simulation of flow over flip buckets at dams. J Am Sci 7(6):931–936Google Scholar 
  15. 15.Nazari O, Jabbari E, Sarkardeh H (2015) Dynamic pressure analysis at chute flip buckets of five dam model studies. Int J Civil Eng 13(1):45–54. http://ijce.iust.ac.ir/article-1-951-en.html
  16. 16.Yamini OA, Kavianpour MR, Movahedi A (2015) Pressure distribution on the bed of the compound flip buckets. J Comput Multiphase Flows 7(3):181–194. https://doi.org/10.1260/1757-482X.7.3.181Article Google Scholar 
  17. 17.Hojjati SH, Mohammadiun S, Salehi Neyshabouri SAA (2016) Effects of different turbulence models on flow over a triangular flip- bucket. Modares Civil Eng J 16(4):69–81 (in Persian)Google Scholar 
  18. 18.Lauria A, Alfonsi G (2020) Numerical investigation of ski jump hydraulics. J Hydraul Eng 146(4):121–127. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001718Article MATH Google Scholar 
  19. 19.Muralha A, Melo J, Ramos HM (2020) Assessment of CFD solvers and turbulent models for water free jets in spillways. Fluids 5(3):104. https://doi.org/10.3390/fluids5030104Article Google Scholar 
  20. 20.Novak P, Cabelka J (1981) Model in hydraulic engineering. Pitman Advanced Publishing Program, LondonGoogle Scholar 
  21. 21.Flow Science, Inc. FLOW-3D User Manual Version 11.2.
  22. 22.Water Research Institute (2003) Hydraulic model of Shafaroud Dam flood control system. Final Report, vol 5. Hydraulic structures Divisions, Tehran, Iran, Chapter 5, pp 1–35 (in Persian)Google Scholar
Figure 9. Scour morphology under different times for case 7.

Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves

무작위 파동에서 우산 흡입 앵커 기초 주변의 세굴 특성 및 평형 세굴 깊이 예측

Ruigeng Hu 1
, Hongjun Liu 2
, Hao Leng 1
, Peng Yu 3 and Xiuhai Wang 1,2,*

1 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China;
huruigeng@stu.ouc.edu.cn (R.H.); lh4517@stu.ouc.edu.cn (H.L.)
2 Key Lab of Marine Environment and Ecology (Ocean University of China), Ministry of Education,
Qingdao 266000, China; hongjun@ouc.edu.cn
3 Qingdao Geo-Engineering Survering Institute, Qingdao 266100, China; yp6650@stu.ouc.edu.cn

Abstract

무작위 파동 하에서 우산 흡입 앵커 기초(USAF) 주변의 국부 세굴을 연구하기 위해 일련의 수치 시뮬레이션이 수행되었습니다. 본 연구에서는 먼저 본 모델의 정확성을 검증하기 위해 검증을 수행하였다.

또한, 세굴 진화와 세굴 메커니즘을 각각 분석하였다. 또한 USAF 주변의 평형 세굴 깊이 Seq를 예측하기 위해 두 가지 수정된 모델이 제안되었습니다. 마지막으로 Seq에 대한 Froude 수 Fr과 Euler 수 Eu의 영향을 연구하기 위해 매개변수 연구가 수행되었습니다.

결과는 현재 수치 모델이 무작위 파동에서 세굴 형태를 묘사하는 데 정확하고 합리적임을 나타냅니다.

수정된 Raaijmaker의 모델은 KCs,p < 8일 때 본 연구의 시뮬레이션 결과와 잘 일치함을 보여줍니다. 수정된 확률적 모델의 예측 결과는 KCrms,a < 4일 때 n = 10일 때 가장 유리합니다. Fr과 Eu가 높을수록 둘 다 더 집중적 인 말굽 소용돌이와 더 큰 결과를 초래합니다.

Figure 1. The close-up of umbrella suction anchor foundation (USAF).
Figure 1. The close-up of umbrella suction anchor foundation (USAF).
Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wvwave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.
Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wvwave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.
Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].
Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].
Figure 9. Scour morphology under different times for case 7.
Figure 9. Scour morphology under different times for case 7.

References

  1. Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour Around Vertical Pile in Waves. J. Waterw. Port. Coast. Ocean Eng. 1992, 118, 15–31.
    [CrossRef]
  2. Rudolph, D.; Bos, K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of
    the 6th International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; pp. 582–588.
  3. Nielsen, A.W.; Liu, X.; Sumer, B.M.; Fredsøe, J. Flow and bed shear stresses in scour protections around a pile in a current. Coast.
    Eng. 2013, 72, 20–38. [CrossRef]
  4. Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Three-dimensional numerical modelling of wave-induced scour
    around piles in a side-by-side arrangement. Coast. Eng. 2018, 138, 132–151. [CrossRef]
  5. Li, H.; Ong, M.C.; Leira, B.J.; Myrhaug, D. Effects of Soil Profile Variation and Scour on Structural Response of an Offshore
    Monopile Wind Turbine. J. Offshore Mech. Arct. Eng. 2018, 140, 042001. [CrossRef]
  6. Li, H.; Liu, H.; Liu, S. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines.
    Géoméch. Energy Environ. 2017, 10, 12–20. [CrossRef]
  7. Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J.A.F.D.O. Editorial: Advanced research
    on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng. Marit. Eng. 2019, 172, 118–123. [CrossRef]
  8. Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik,
    D.; et al. Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS
    Project. Energies 2019, 12, 1709. [CrossRef]
  9. Wu, M.; De Vos, L.; Chavez, C.E.A.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale
    Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current
    Conditions. J. Mar. Sci. Eng. 2020, 8, 417. [CrossRef]
  10. Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng. 2013,
    63, 17–25. [CrossRef]
  11. Prendergast, L.; Gavin, K.; Doherty, P. An investigation into the effect of scour on the natural frequency of an offshore wind
    turbine. Ocean Eng. 2015, 101, 1–11. [CrossRef]
  12. Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.; Giannini, G.; Haerens, P. Scour Protections
    for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng. 2021, 9, 297. [CrossRef]
  13. Yang, Q.; Yu, P.; Liu, Y.; Liu, H.; Zhang, P.; Wang, Q. Scour characteristics of an offshore umbrella suction anchor foundation
    under the combined actions of waves and currents. Ocean Eng. 2020, 202, 106701. [CrossRef]
  14. Yu, P.; Hu, R.; Yang, J.; Liu, H. Numerical investigation of local scour around USAF with different hydraulic conditions under
    currents and waves. Ocean Eng. 2020, 213, 107696. [CrossRef]
  15. Sumer, B.M.; Christiansen, N.; Fredsøe, J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder
    exposed to waves. J. Fluid Mech. 1997, 332, 41–70. [CrossRef]
  16. Sumer, B.M.; Fredsøe, J. Scour around Pile in Combined Waves and Current. J. Hydraul. Eng. 2001, 127, 403–411. [CrossRef]
  17. Petersen, T.U.; Sumer, B.M.; Fredsøe, J. Time scale of scour around a pile in combined waves and current. In Proceedings of the
    6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012.
  18. Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J.-J. Edge scour at scour protections around piles in the
    marine environment—Laboratory and field investigation. Coast. Eng. 2015, 106, 42–72. [CrossRef]
  19. Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Ser. E Technol.
    Sci. 2014, 57, 1030–1039. [CrossRef]
  20. Larsen, B.E.; Fuhrman, D.R.; Baykal, C.; Sumer, B.M. Tsunami-induced scour around monopile foundations. Coast. Eng. 2017, 129,
    36–49. [CrossRef]
  21. Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics Induced by a Vertical Slender
    Pile under Regular and Random Waves. J. Waterw. Port. Coast. Ocean Eng. 2018, 144, 04018018. [CrossRef]
  22. Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular waves in
    combination with oblique currents. Coast. Eng. 2020, 161, 103751. [CrossRef]
  23. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Reis, M.; das Neves, L. Reliability assessment of offshore dynamic scour
    protections using copulas. Wind. Eng. 2018, 43, 506–538. [CrossRef]
  24. Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble
    mound scour protections. Coast. Eng. 2020, 158, 103671. [CrossRef]
  25. Tavouktsoglou, N.S.; Harris, J.M.; Simons, R.R.; Whitehouse, R.J.S. Equilibrium Scour-Depth Prediction around Cylindrical
    Structures. J. Waterw. Port. Coast. Ocean Eng. 2017, 143, 04017017. [CrossRef]
  26. Ettema, R.; Melville, B.; Barkdoll, B. Scale Effect in Pier-Scour Experiments. J. Hydraul. Eng. 1998, 124, 639–642. [CrossRef]
  27. Umeda, S. Scour Regime and Scour Depth around a Pile in Waves. J. Coast. Res. Spec. Issue 2011, 64, 845–849.
  28. Umeda, S. Scour process around monopiles during various phases of sea storms. J. Coast. Res. 2013, 165, 1599–1604. [CrossRef]
  29. Baykal, C.; Sumer, B.; Fuhrman, D.R.; Jacobsen, N.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a
    circular pile in waves. Coast. Eng. 2017, 122, 87–107. [CrossRef]
  30. Miles, J.; Martin, T.; Goddard, L. Current and wave effects around windfarm monopile foundations. Coast. Eng. 2017, 121,
    167–178. [CrossRef]
  1. Miozzi, M.; Corvaro, S.; Pereira, F.A.; Brocchini, M. Wave-induced morphodynamics and sediment transport around a slender
    vertical cylinder. Adv. Water Resour. 2019, 129, 263–280. [CrossRef]
  2. Yu, T.; Zhang, Y.; Zhang, S.; Shi, Z.; Chen, X.; Xu, Y.; Tang, Y. Experimental study on scour around a composite bucket foundation
    due to waves and current. Ocean Eng. 2019, 189, 106302. [CrossRef]
  3. Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave Scour Around Piles. In Proceedings of the Coastal Engineering 2000,
    American Society of Civil Engineers (ASCE), Sydney, Australia, 16–21 July 2000; pp. 1860–1870.
  4. Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions—Laboratory
    experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo,
    Japan, 5–7 November 2008; pp. 152–161.
  5. Khalfin, I.S. Modeling and calculation of bed score around large-diameter vertical cylinder under wave action. Water Resour. 2007,
    34, 357. [CrossRef]
  6. Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under
    currents and waves. Coast. Eng. 2011, 58, 986–991. [CrossRef]
  7. Myrhaug, D.; Rue, H. Scour below pipelines and around vertical piles in random waves. Coast. Eng. 2003, 48, 227–242. [CrossRef]
  8. Myrhaug, D.; Ong, M.C.; Føien, H.; Gjengedal, C.; Leira, B.J. Scour below pipelines and around vertical piles due to second-order
    random waves plus a current. Ocean Eng. 2009, 36, 605–616. [CrossRef]
  9. Myrhaug, D.; Ong, M.C. Random wave-induced onshore scour characteristics around submerged breakwaters using a stochastic
    method. Ocean Eng. 2010, 37, 1233–1238. [CrossRef]
  10. Ong, M.C.; Myrhaug, D.; Hesten, P. Scour around vertical piles due to long-crested and short-crested nonlinear random waves
    plus a current. Coast. Eng. 2013, 73, 106–114. [CrossRef]
  11. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [CrossRef]
  12. Yakhot, V.; Smith, L.M. The renormalization group, the e-expansion and derivation of turbulence models. J. Sci. Comput. 1992, 7,
    35–61. [CrossRef]
  13. Mastbergen, D.R.; Berg, J.V.D. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons.
    Sedimentology 2003, 50, 625–637. [CrossRef]
  14. Soulsby, R. Dynamics of Marine Sands; Thomas Telford Ltd.: London, UK, 1998. [CrossRef]
  15. Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng. 1984, 110, 1431–1456. [CrossRef]
  16. Zhang, Q.; Zhou, X.-L.; Wang, J.-H. Numerical investigation of local scour around three adjacent piles with different arrangements
    under current. Ocean Eng. 2017, 142, 625–638. [CrossRef]
  17. Yu, Y.X.; Liu, S.X. Random Wave and Its Applications to Engineering, 4th ed.; Dalian University of Technology Press: Dalian,
    China, 2011.
  18. Pang, A.; Skote, M.; Lim, S.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth
    around a mono-pile due to steady currents. Appl. Ocean Res. 2016, 57, 114–124. [CrossRef]
  19. Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using Open-FOAM®.
    Part I: Formulation and validation. Coast. Eng. 2014, 83, 243–258. [CrossRef]
  20. Corvaro, S.; Crivellini, A.; Marini, F.; Cimarelli, A.; Capitanelli, L.; Mancinelli, A. Experimental and Numerical Analysis of the
    Hydrodynamics around a Vertical Cylinder in Waves. J. Mar. Sci. Eng. 2019, 7, 453. [CrossRef]
  21. Flow3D User Manual, version 11.0.3; Flow Science, Inc.: Santa Fe, NM, USA, 2013.
  22. Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv.
    Water Resour. 2012, 37, 73–85. [CrossRef]
  23. Stahlmann, A. Experimental and Numerical Modeling of Scour at Foundation Structures for Offshore Wind Turbines. Ph.D. Thesis,
    Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, Hannover, Germany, 2013.
  24. Breusers, H.N.C.; Nicollet, G.; Shen, H. Local Scour Around Cylindrical Piers. J. Hydraul. Res. 1977, 15, 211–252. [CrossRef]
  25. Schendel, A.; Hildebrandt, A.; Goseberg, N.; Schlurmann, T. Processes and evolution of scour around a monopile induced by
    tidal currents. Coast. Eng. 2018, 139, 65–84. [CrossRef]
Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s.

Optimization Algorithms and Engineering: Recent Advances and Applications

Mahdi Feizbahr,1 Navid Tonekaboni,2Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4Show moreAcademic Editor: Mohammad YazdiReceived08 Apr 2021Revised18 Jun 2021Accepted17 Jul 2021Published11 Aug 2021

Abstract

Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.


강의 식생은 거칠기를 증가시키고 평균 유속을 감소시키며, 유속 에너지를 감소시키고 강의 단면에서 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받으므로 홍수시 유동저항에 큰 영향을 미칩니다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건 및 식물에 따라 다르므로 모델은 유속, 흐름 깊이 및 운하를 따라 식생 유형의 영향을 고려하여 현재 속도를 시뮬레이션해야 합니다. 근관의 거칠기의 영향을 조사하기 위해 총 48개의 모델이 시뮬레이션되었습니다. 결과는 유속을 높임으로써 유속을 감소시키는 식생의 영향은 무시할 수 있는 반면, 해류가 더 낮은 유속일 때 유속을 감소시키는 식생의 영향은 분명히 상당함을 나타냈다.

1. Introduction

Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [114]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [1527]. Consequently, it is necessary to study the effects of the passive factors on the active domain [2836]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [3841].

One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [4345]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [4748].

Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity  is another form of current resistance. The reason for using the  ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].

To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].

The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where nf, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed,  = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:

Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.

On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:

By using equation (6), equation (5) is converted as follows:

Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the  ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].

Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [4555].

One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [475758] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [455961]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [496366] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where  is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.

FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where  are mass accelerations in the directions xyz and  are viscosity accelerations in the directions xyz and are obtained from the following equations:

Shear stresses  in equation (11) are obtained from the following equations:

The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.

Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.

Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.

In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).Table 1 The studied models.

The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After  seconds, this model reached a convergence accuracy of .

Figure 1 The simulated model and its boundary conditions.

Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.

48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.

Any control and simulation system has some inputs that we should determine to test any technology [7077]. Determination and true implementation of such parameters is one of the key steps of any simulation [237881] and computing procedure [8286]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.

Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [8788]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).

Figure 2 Modeling the plant with cylindrical tubes at the bottom of the canal.

Figure 3 Velocity profiles in positions 2 and 5.

The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.

The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.

The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.

2. Modeling Results

After analyzing the models, the results were shown in graphs (Figures 414 ). The total number of experiments in this study was 48 due to the limitations of modeling.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 4 Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.

Figure 5 Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.

Figure 6 Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.

Figure 7 Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.

Figure 8 Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 9 Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

Figure 10 Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.

Figure 11 Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.

Figure 12 Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.

Figure 13 Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 14 Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.

According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.

According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.

According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.

According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 510, which can be justified by increasing the speed and, of course, increasing the Froude number.

With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 58 and 1011), which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.

Figure 15 Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.

According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 16 Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.

According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 17 Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.

According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 18 Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.

According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 19 Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.

According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 20 Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.

According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [27815188994]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [9599].(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 21 Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.

3. Conclusion

The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.

Nomenclature

n:Manning’s roughness coefficient
C:Chézy roughness coefficient
f:Darcy–Weisbach coefficient
V:Flow velocity
R:Hydraulic radius
g:Gravitational acceleration
y:Flow depth
Ks:Bed roughness
A:Constant coefficient
:Reynolds number
y/∂x:Depth of water change
S0:Slope of the canal floor
Sf:Slope of energy line
Fr:Froude number
D:Characteristic length of the canal
G:Mass acceleration
:Shear stresses.

Data Availability

All data are included within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
  2. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  3. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
  4. C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
  5. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
  6. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
  7. Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
  8. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  9. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  10. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  11. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  12. M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
  13. L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
  14. F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  15. D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
  16. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
  17. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  18. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  19. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  20. Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
  21. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
  22. Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
  23. H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
  24. H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
  25. H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
  26. H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
  27. J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
  28. C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  29. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  30. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
  31. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
  32. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
  34. L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
  35. Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
  36. J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
  37. P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
  38. A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
  39. T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
  40. G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
  41. L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
  42. K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
  43. L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
  44. M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
  45. F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
  46. M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
  47. C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
  48. R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  49. G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
  50. N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
  51. S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
  52. C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
  53. F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
  54. M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
  55. A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
  56. S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
  57. V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
  58. T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
  59. U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
  60. F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
  61. W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
  62. P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
  63. J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
  64. G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
  65. Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
  66. E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
  67. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
  68. M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
  69. V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
  70. X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
  71. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
  72. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
  73. B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
  74. Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
  75. J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
  76. M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
  77. A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
  78. W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
  79. G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
  80. Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
  81. A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
  82. Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
  83. E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
  84. S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
  85. Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
  86. A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
  87. M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  88. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  89. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  90. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
  91. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
  92. M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
  93. H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
  94. N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
  95. Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
  96. B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
  97. Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
  98. B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
  99. M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation

A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation

수중 강성 식생이 있는 개방 수로 흐름의 특성에 대한 3차원 수치 시뮬레이션

Journal of Hydrodynamics (2021)Cite this article

Abstract

이 논문은 FLOW-3D를 적용하여 다양한 흐름 배출 및 식생 시나리오가 유속(종방향, 횡방향 및 수직 속도 포함)에 미치는 영향을 조사합니다.

실험적 측정을 통한 검증 후 식생직경, 식생높이, 유출량에 대한 민감도 분석을 수행하였습니다. 종방향 속도의 경우 흐름 구조에 대한 가장 큰 영향은 배출보다는 식생 직경에서 비롯됩니다.

그러나 식생 높이는 수직 분포의 변곡점을 결정합니다. 식생 지역, 즉 상류와 하류의 두 위치에서 횡단 속도를 비교하면 수심을 따라 대칭 패턴이 식별됩니다. 식생 지역의 횡단 및 수직 유체 순환 패턴을 포함하여 흐름 또는 식생 시나리오에 관계없이 수직 속도에서도 동일한 패턴이 관찰됩니다.

또한 식생 직경이 클수록 이러한 패턴이 더 분명해집니다. 상부 순환은 식생 캐노피 근처에서 발생합니다. 식생 지역의 가로 세로 방향 순환에 관한 이러한 발견은 수중 식생을 통한 3차원 흐름 구조를 밝혀줍니다.

This paper applies the Flow-3D to investigate the impacts of different flow discharge and vegetation scenarios on the flow velocity (including the longitudinal, transverse and vertical velocities). After the verification by using experimental measurements, a sensitivity analysis is conducted for the vegetation diameter, the vegetation height and the flow discharge. For the longitudinal velocity, the greatest impact on the flow structure originates from the vegetation diameter, rather than the discharge. The vegetation height, however, determines the inflection point of the vertical distribution. Comparing the transverse velocities at two positions in the vegetated area, i.e., the upstream and the downstream, a symmetric pattern is identified along the water depth. The same pattern is also observed for the vertical velocity regardless of the flow or vegetation scenario, including both transverse and vertical fluid circulation patterns in the vegetated area. Moreover, the larger the vegetation diameter is, the more evident these patterns become. The upper circulation occurs near the vegetation canopy. These findings regarding the circulations along the transverse and vertical directions in the vegetated region shed light on the 3-D flow structure through the submerged vegetation.

Key words

  • Submerged rigid vegetation
  • longitudinal velocity
  • transverse velocity
  • vertical velocity

References

  1. [1]Angelina A., Jordanova C. S. J. Experimental study of bed load transport through emergent vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(6): 474–478.Article Google Scholar 
  2. [2]Li Y., Wang Y., Anim D. O. et al. Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants [J]. Geomorphology, 2014, 204: 314–324.Article Google Scholar 
  3. [3]Bai F., Yang Z., Huai W. et al. A depth-averaged two dimensional shallow water model to simulate flow-rigid vegetation interactions [J]. Procedia Engineering, 2016, 154: 482–489.Article Google Scholar 
  4. [4]Huai W. X., Song S., Han J. et al. Prediction of velocity distribution in straight open-channel flow with partial vegetation by singular perturbation method [J]. Applied Mathematics and Mechanics (Engilsh Editon), 2016, 37(10): 1315–1324.MathSciNet Article Google Scholar 
  5. [5]Wang P. F., Wang C. Numerical model for flow through submerged vegetation regions in a shallow lake [J]. Journal of Hydrodynamics, 2011, 23(2): 170–178.Article Google Scholar 
  6. [6]Wang W. J., Cui X. Y., Dong F. et al. Predictions of bulk velocity for open channel flow through submerged vegetation [J]. Journal of Hydrodynamics, 2020, 32(4): 795–799.Article Google Scholar 
  7. [7]Zhang M., Li C. W., Shen Y. Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation [J]. Applied Mathematical Modelling, 2013, 37(1–2): 540–553.MathSciNet Article Google Scholar 
  8. [8]Huai W., Wang W., Hu Y. et al. Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation [J]. Advances in Water Resources, 2014, 69: 106–113.Article Google Scholar 
  9. [9]Panigrahi K., Khatua K. K. Prediction of velocity distribution in straight channel with rigid vegetation [J]. Aquatic Procedia, 2015, 4: 819–825.Article Google Scholar 
  10. [10]Huai W. X., Zeng Y. H., Xu Z. G. et al. Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation [J]. Advances in Water Resources, 2009, 32(4): 487–492.Article Google Scholar 
  11. [11]Chen S. C., Kuo Y. M., Li Y. H. Flow characteristics within different configurations of submerged flexible vegetation [J]. Journal of Hydrology, 2011, 398(1–2): 124–134.Article Google Scholar 
  12. [12]Yagci O., Tschiesche U., Kabdasli M. S. The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics [J]. Advances in Water Resources, 2010, 33(5): 601–614.Article Google Scholar 
  13. [13]Wu F. S. Characteristics of flow resistance in open channels with non-submerged rigid vegetation [J]. Journal of Hydrodynamics, 2008, 20(2): 239–245.Article Google Scholar 
  14. [14]Huai W., Hu Y., Zeng Y. et al. Velocity distribution for open channel flows with suspended vegetation [J]. Advances in Water Resources, 2012, 49: 56–61.Article Google Scholar 
  15. [15]Pu J. H., Hussain A., Guo Y. K. et al. Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction [J]. Water Science and Engineering, 2019, 12(2): 121–128.Article Google Scholar 
  16. [16]Zhang M. L., Li C. W., Shen Y. M. A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation [J]. Applied Mathematical Modelling, 2010, 34(4): 1021–1031.MathSciNet Article Google Scholar 
  17. [17]Anjum N., Tanaka N. Numerical investigation of velocity distribution of turbulent flow through vertically double-layered vegetation [J]. Water Science and Engineering, 2019, 12(4): 319–329.Article Google Scholar 
  18. [18]Wang W., Huai W. X., Gao M. Numerical investigation of flow through vegetated multi-stage compound channel [J]. Journal of Hydrodynamics, 2014, 26(3): 467–473.Article Google Scholar 
  19. [19]Ghani U., Anjum N., Pasha G. A. et al. Numerical investigation of the flow characteristics through discontinuous and layered vegetation patches of finite width in an open channel [J]. Environmental Fluid Mechanics, 2019, 19(6): 1469–1495.Article Google Scholar 
  20. [20]Aydin M. C., Emiroglu M. E. Determination of capacity of labyrinth side weir by CFD [J]. Flow Measurement and Instrumentation, 2013, 29: 1–8.Article Google Scholar 
  21. [21]Hao W. L., Wu W. Q., Zhu C. J. et al. Experimental study on vertical distribution of flow velocity in vegetated river channel [J]. Water Resources and Power, 2015, 33(2): 85–88(in Chinese).Google Scholar 
  22. [22]Pietri L., Petroff A., Amielh M. et al. Turbulent flows interacting with varying density canopies [J]. Mécanique and Industries, 2009, 10(3–4): 181–185.Article Google Scholar 
  23. [23]Li Y., Du W., Yu Z. et al. Impact of flexible emergent vegetation on the flow turbulence and kinetic energy characteristics in a flume experiment [J]. Journal of Hydro-environment Research, 2015, 9(3): 354–367.Article Google Scholar 
  24. [24]Li W. Q., Wang D., Jiao J. L. et al. Effects of vegetation patch density on flow velocity characteristics in an open channel [J]. Journal of Hydrodynamics, 2018, 31(5): 1052–1059.Article Google Scholar 
  25. [25]Langre E. D., Gutierrez A., Cossé J. On the scaling of drag reduction by reconfiguration in plants [J]. Comptes Rendus Mécanique, 2012, 340(1–2): 35–40.Article Google Scholar 
  26. [26]Fathi-Maghadam M., Kouwen N. Nonrigid, nonsubmerged, vegetative roughness on floodplains [J]. Journal of Hydraulic Engineering, ASCE, 1997, 123(1): 51–57.Article Google Scholar 
  27. [27]Liang D., Wu X. A random walk simulation of scalar mixing in flows through submerged vegetations [J]. Journal of Hydrodynamics, 2014, 26(3): 343–350.MathSciNet Article Google Scholar 
  28. [28]Ghisalberti M., Nepf H. Mass transport in vegetated shear flows [J]. Environmental Fluid Mechanics, 2005, 5(6): 527–551.
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

Abstract

레이저 사인파 진동(사인) 용접 및 레이저 용접(SLW)에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트의 수치 모델이 온도 분포와 용융 흐름을 시뮬레이션하기 위해 개발되었습니다.

SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 시뮬레이션을 통해 응고 미세구조에 대한 온도 구배(G)와 응고 속도(R)의 영향을 설명했습니다.

결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다.

그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부의 인장시험에서 융착선을 따라 인장파괴 형태를 보였고 사인 용접부의 인장강도가 SLW 용접부보다 유의하게 우수하였습니다.

이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

Keywords

Laser weldingSinusoidal oscillatingEnergy distributionNumerical simulationMolten pool flowGrain structure

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively

추가 생산용 전자빔 조사에 의한 316L 스테인리스 용융 · 응고 거동

Melting and Solidification Behavior of 316L Steel Induced by Electron-Beam Irradiation for Additive Manufacturing

付加製造用電子ビーム照射による 316L ステンレス鋼の溶融・凝固挙動

奥 川 将 行*・宮 田 雄一朗*・王     雷*・能 勢 和 史*
小 泉 雄一郎*・中 野 貴 由*
Masayuki OKUGAWA, Yuichiro MIYATA, Lei WANG, Kazufumi NOSE,
Yuichiro KOIZUMI and Takayoshi NAKANO

Abstract

적층 제조(AM) 기술은 복잡한 형상의 3D 부품을 쉽게 만들고 미세 구조 제어를 통해 재료 특성을 크게 제어할 수 있기 때문에 많은 관심을 받았습니다. PBF(Powderbed fusion) 방식의 AM 공정에서는 금속 분말을 레이저나 전자빔으로 녹이고 응고시키는 과정을 반복하여 3D 부품을 제작합니다.

일반적으로 응고 미세구조는 Hunt[Mater. 과학. 영어 65, 75(1984)]. 그러나 CET 이론이 일반 316L 스테인리스강에서도 높은 G와 R로 인해 PBF형 AM 공정에 적용될 수 있을지는 불확실하다.

본 연구에서는 미세구조와 응고 조건 간의 관계를 밝히기 위해 전자빔 조사에 의해 유도된 316L 강의 응고 미세구조를 분석하고 CtFD(Computational Thermal-Fluid Dynamics) 방법을 사용하여 고체/액체 계면에서의 응고 조건을 평가했습니다.

CET 이론과 반대로 높은 G 조건에서 등축 결정립이 종종 형성되는 것으로 밝혀졌다. CtFD 시뮬레이션은 약 400 mm s-1의 속도까지 유체 흐름이 있음을 보여 주며 수상 돌기의 파편 및 이동의 영향으로 등축 결정립이 형성됨을 시사했습니다.

Additive manufacturing(AM)technologies have attracted much attention because it enables us to build 3D parts with complicated geometry easily and control material properties significantly via the control of microstructures. In the powderbed fusion(PBF)type AM process, 3D parts are fabricated by repeating a process of melting and solidifying metal powders by laser or electron beams. In general, the solidification microstructures can be predicted from solidification conditions defined by the combination of temperature gradient G and solidification rate R on the basis of columnar-equiaxed transition(CET)theory proposed by Hunt [Mater. Sci. Eng. 65, 75(1984)]. However, it is unclear whether the CET theory can be applied to the PBF type AM process because of the high G and R, even for general 316L stainless steel. In this study, to reveal relationships between microstructures and solidification conditions, we have analyzed solidification microstructures of 316L steel induced by electronbeam irradiation and evaluated solidification conditions at the solid/liquid interface using a computational thermal-fluid dynamics (CtFD)method. It was found that equiaxed grains were often formed under high G conditions contrary to the CET theory. CtFD simulation revealed that there is a fluid flow up to a velocity of about 400 mm s-1, and suggested that equiaxed grains are formed owing to the effect of fragmentations and migrations of dendrites.

Keywords

Additive Manufacturing, 316L Stainless Steel, Powder Bed Fusion, Electron Beam Melting, Computational Thermal
Fluid Dynamics Simulation

Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity

References

1) M.C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R.
Fabbro and P. Peyre: “Influence of beam diameter on Laser Powder

Bed Fusion(L-PBF)process”, Addit. Manuf. 36(2020), 101532.
2) J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G.
Zhou and S.N. Schiffres: “Influence of processing and microstructure
on the local and bulk thermal conductivity of selective laser melted
316L stainless steel”, Addit. Manuf. 32(2020), 100996.
3) S. Dryepondt, P. Nandwana, P. Fernandez-Zelaia and F. List:
“Microstructure and High Temperature Tensile properties of 316L
Fabricated by Laser Powder-Bed Fusion”, Addit. Manuf. 37(2020),
101723.
4) S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T.
Nakano: “Excellent mechanical and corrosion properties of austenitic
stainless steel with a unique crystallographic lamellar microstructure
via selective laser melting”, Scr. Mater. 159(2019), 89-93.
5) T. Ishimoto, S. Wu, Y. Ito, S.H. Sun, H. Amano and T. Nakano:
“Crystallographic orientation control of 316L austenitic stainless
steel via selective laser melting”, ISIJ Int. 60(2020), 1758-1764.
6) T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun and T. Nakano:
“Crystallographic texture control of beta-type Ti-15Mo-5Zr3Al alloy by selective laser melting for the development of novel
implants with a biocompatible low Young’s modulus”, Scr. Mater.
132(2017), 34-38.
7) X. Ding, Y. Koizumi, D. Wei and A. Chiba: “Effect of process
parameters on melt pool geometry and microstructure development
for electron beam melting of IN718: A systematic single bead
analysis study”, Addit. Manuf. 26(2019), 215-226.
8) K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang,
S. Ghosh, T. Duong, I. Karaman, A. Elwany and R. Arróyave: “Finite
interface dissipation phase field modeling of Ni-Nb under additive
manufacturing conditions”, Acta Mater. 185(2020), 320-339.
9) M.M. Kirka, Y. Lee, D.A. Greeley, A. Okello, M.J. Goin, M.T.
Pearce and R.R. Dehoff: “Strategy for Texture Management in
Metals Additive Manufacturing”, JOM, 69(2017), 523-531.
10) S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M.
Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee and
R.R. Dehoff: “Additive Manufacturing of Nickel Superalloys:
Opportunities for Innovation and Challenges Related to
Qualification”, Metall. Mater. Trans. A. 49(2018), 3764-3780.
11) M.R. Gotterbarm, A.M. Rausch and C. Körner: “Fabrication of
Single Crystals through a μ-Helix Grain Selection Process during
Electron Beam Metal Additive Manufacturing”, Metals, 10(2020),
313.
12) J.D.D. Hunt: “Steady state columnar and equiaxed growth of
dendrites and eutectic”, Mater. Sci. Eng. 65(1984), 75-83.
13) S. Bontha, N.W. Klingbeil, P.A. Kobryn and H.L. Fraser: “Effects of
process variables and size-scale on solidification microstructure in
beam-based fabrication of bulky 3D structures”, Mater. Sci. Eng. A.
513-514(2009), 311-318.
14) J. Gockel and J. Beuth: “Understanding Ti-6Al-4V microstructure
control in additive manufacturing via process maps”, 24th Int. SFF
Symp. – An Addit. Manuf. Conf. SFF 2013.(2013), 666-674.
15) B. Schoinochoritis, D. Chantzis and K. Salonitis: “Simulation of
metallic powder bed additive manufacturing processes with the finite
element method: A critical review”, Proc. of Instit. Mech. Eng., Part
B: J. Eng. Manuf. 231(2017), 96-117.
16)小泉雄一郎: “計算機シミュレーションを用いたAdditive
Manufacturing プロセス最適化予測”, スマートプロセス学会誌,
8-4(2019), 132-138.
17) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba:
“Molten pool behavior and effect of fluid flow on solidification
conditions in selective electron beam melting(SEBM)of a
biomedical Co-Cr-Mo alloy”, Addit. Manuf. 26(2019), 202-214.
18) C. Tang, J.L. Tan and C.H. Wong: “A numerical investigation on
the physical mechanisms of single track defects in selective laser
melting”, Int. J. Heat Mass Transf. 126(2018), 957-968.
19) Technical data for Iron, [Online]. Available: http://periodictable.com/
Elements/026/data.html. [Accessed: 8-Feb-2021].
20) N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J.
Turner, N. Carl-son and S.S. Babu: “Numerical modeling of heattransfer and the influence of process parameters on tailoring the grain
morphology of IN718 in electron beam additive manufacturing”,
Acta Mater. 112(2016), 303-314.
21) S. Morita, Y. Miki and K. Toishi: “Introduction of Dendrite
Fragmentation to Microstructure Calculation by Cellular Automaton
Method”, Tetsu-to-Hagane. 104(2018), 559-566.
22) H. Esaka and M. Tamura: “Model Experiment Using Succinonitrile
on the Formation of Equiaxed Grains caused by Forced Convection”,
Tetsu-to-Hagane. 86(2000), 252-258.

Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions

류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

Hyung Ju Yoo1 Sung Sik Joo2 Beom Jae Kwon3 Seung Oh Lee4*
유 형주1 주 성식2 권 범재3 이 승오4*
1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University2Director, Water Resources & Environment Department, HECOREA3Director, Water Resources Department, ISAN4Professor, Dept. of Civil & Environmental Engineering, Hongik University
1홍익대학교 건설환경공학과 박사과정
2㈜헥코리아 수자원환경사업부 이사
3㈜이산 수자원부 이사
4홍익대학교 건설환경공학과 교수*Corresponding Author

ABSTRACT

최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다.

그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다.

이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다.

수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다.

따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다.

이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다.

그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.

키워드

보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력

Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.KeywordsAuxiliary spillway FLOW-3D Numerical simulation Revetment stability Shear stress

1. 서 론

최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.

기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006Kim, 2007Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.

그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.

2. 본 론

2.1 이론적 배경

2.1.1 3차원 수치모형의 기본이론

FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.

2.1.2 유동해석의 지배방정식

1) 연속 방정식(Continuity Equation)

FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1)(2)와 같다.

(1)

∇·v=0

(2)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ

여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.

2) 운동량 방정식(Momentum Equation)

각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3)(4)(5)와 같다.

(3)

∂u∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂x+Gx+fx-bx-RSORρVFu

(4)

∂v∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂y+Gy+fy-by-RSORρVFv

(5)

∂w∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂z+Gz+fz-bz-RSORρVFw

여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.

2.1.3 소류력 산정

호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6)(7)과 같다.

1) Schoklitsch 공식

Schoklitsch(1934)는 Chezy 유속계수를 적용하여 소류력을 산정하였다.

(6)

τ=γRI=γC2V2

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.

2) Manning 조도계수를 고려한 공식

Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.

(7)

τ=γn2V2R1/3

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.

FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.

2.2 하천호안 설계기준

하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.

Table 1.

Standard of Permissible Velocity and Shear on Revetment

Country (Reference)MaterialPermissible velocity (Vp, m/s)Permissible Shear (τp, kN/m2)
KoreaRiver Construction Design Practice Guidelines
(MOLIT, 2016)
Vegetated5.00.50
Stone5.00.80
USAASTM D’6460Vegetated6.10.81
Unvegetated5.00.28
JAPANDynamic Design Method of Revetment5.0

2.3. 보조여수로 운영에 따른 하류하천 영향 분석

2.3.1 모형의 구축 및 경계조건

본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).

수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.

(8)

n=ks1/68.1g1/2

여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.

시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.

Table 2.

Mesh sizes and numerical conditions

MeshNumbers49,102,500 EA
Increment (m)DirectionExisting SpillwayAuxiliary Spillway
∆X0.99 ~ 4.301.00 ~ 4.30
∆Y0.99 ~ 8.161.00 ~ 5.90
∆Z0.50 ~ 1.220.50 ~ 2.00
Boundary ConditionsXmin / YmaxInflow / Water Surface Elevation
Xmax, Ymin, Zmin / ZmaxWall / Symmetry
Turbulence ModelRNG model
Table 3.

Case of numerical simulation (Qp : Design flood discharge)

CaseExisting Spillway (Qe, m3/s)Auxiliary Spillway (Qa, m3/s)Remarks
1Qp0Reference case
20Qp
300.58QpReview of discharge capacity on
auxiliary spillway
400.48Qp
500.45Qp
600.32Qp
70.50Qp0.50QpDetermination of optimal division
ratio on Spillways
80.61Qp0.39Qp
90.39Qp0.61Qp
100.42Qp0.58Qp
110.32Qp0.45QpDetermination of permissible
division on Spillways
120.35Qp0.48Qp
130.38Qp0.53Qp
140.41Qp0.56Qp
Table 4.

Roughness coefficient and roughness height

CriteriaRoughness coefficient (n)Roughness height (ks, m)
Structure (Concrete)0.0140.00061
River0.0330.10496
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F1.jpg
Fig. 1

Layout of spillway and river in this study

2.3.2 보조 여수로의 방류능 검토

본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.

보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.

하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F2.jpg
Fig. 2

Region of interest in this study

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F3.jpg
Fig. 3

Maximum velocity and location of Vmax according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F4.jpg
Fig. 4

Maximum shear according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F5.jpg
Fig. 5

Maximum water surface elevation and location of ηmax according to Qa

Table 5.

Numerical results for each cases (Case 1 ~ Case 6)

CaseMaximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation
in terms of Vp
Evaluation
in terms of τp
1
(Qa = 0)
9.150.54No GoodNo Good
2
(Qa = Qp)
8.870.56No GoodNo Good
3
(Qa = 0.58Qp)
6.530.40No GoodNo Good
4
(Qa = 0.48Qp)
6.220.36No GoodNo Good
5
(Qa = 0.45Qp)
4.220.12AccpetAccpet
6
(Qa = 0.32Qp)
4.040.14AccpetAccpet

2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토

기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).

따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F6.jpg
Fig. 6

Maximum velocity on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F7.jpg
Fig. 7

Maximum shear on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F8.jpg
Fig. 8

Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F9.jpg
Fig. 9

Maximum water surface elevation on section 1 & 2 according to Qa

Table 6.

Numerical results for each cases (Case 7 ~ Case 10)

Case (Qe &amp; Qa)Maximum Velocity (Vmax, m/s)Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
7
Qe : 0.50QpQa : 0.50Qp
8.106.230.640.30No GoodNo GoodNo GoodNo Good
8
Qe : 0.61QpQa : 0.39Qp
8.886.410.610.34No GoodNo GoodNo GoodNo Good
9
Qe : 0.39QpQa : 0.61Qp
6.227.330.240.35No GoodNo GoodAcceptNo Good
10
Qe : 0.42QpQa : 0.58Qp
6.394.790.300.19No GoodAcceptNo GoodAccept

2.3.4 방류량 배분 비율의 허용 방류량 검토

계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).

호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).

Table 7.

Numerical results for each cases (Case 11 ~ Case 14)

Case (Qe &amp; Qa)Maximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
11
Qe : 0.32QpQa : 0.45Qp
3.634.530.090.26AcceptAcceptAcceptAccept
12
Qe : 0.35QpQa : 0.48Qp
5.745.180.230.22No GoodNo GoodAcceptAccept
13
Qe : 0.38QpQa : 0.53Qp
6.704.210.280.11No GoodAcceptAcceptAccept
14
Qe : 0.41QpQa : 0.56Qp
6.545.240.280.24No GoodNo GoodAcceptAccept
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F10.jpg
Fig. 10

Maximum velocity on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F11.jpg
Fig. 11

Maximum shear on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F12.jpg
Fig. 12

Maximum water surface elevation on section 1 & 2 according to total outflow

3. 결 론

본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.

수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.

본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.

Acknowledgements

본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.

References

1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.
2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.
3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.
4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.
5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.
6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.
7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.
9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.
10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593
11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279
12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.
13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.
14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.
15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.
16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230
17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112

Korean References Translated from the English

1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.
2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.
3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.
4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.
5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.
6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.
8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청.
9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731.
10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.

Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.

Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump over Triangular Macroroughnesses

Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션

by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater202113(5), 674; https://doi.org/10.3390/w13050674

Abstract

The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.

Keywords: submerged hydraulic jumptriangular macroroughnessesTKEbed shear stress coefficientvelocityFLOW-3D model

수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.

이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.

내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.

 Introduction

격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].

베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.

Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.

Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.

그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.

Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.

자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.

Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.

Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.

Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.

ReferenceShape Bed-Channel Type-
Jump Type
Channel Dimension (m)Roughness (mm)Fr1Investigated Flow
Properties
Ead and Rajaratnam [10]-Smooth and rough beds-Rectangular channel-Free jumpCL1 = 7.60
CW2 = 0.44
CH3 = 0.60
-Corrugated sheets (RH4 = 13 and 22)4–10-Upstream and tailwater depths-Jump length-Roller length-Velocity-Water surface profile
Tokyay et al. [11]-Smooth and rough beds-Rectangular channel-Free jumpCL = 10.50
CW = 0.253
CH = 0.432
-Two sinusoidal corrugated (RH = 10 and 13)5–12-Depth ratio-Jump length-Energy loss
Izadjoo and Shafai-Bejestan [14]-Smooth and rough beds-Two rectangular-channel-Free jumpCL = 1.2, 9
CW = 0.25, 0.50
CH = 0.40
Baffle with trapezoidal cross section
(RH: 13 and 26)
6–12-Upstream and tailwater depths-Jump length-Velocity-Bed shear stress coefficient
Abbaspour et al. [12]-Horizontal bed with slope 0.002-Rectangular channel—smooth and rough beds-Free jumpCL = 10
CW = 0.25
CH = 0.50
-Sinusoidal bed (RH = 15,20, 25 and 35)3.80–8.60-Water surface profile-Depth ratio-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Shafai-Bejestan and Neisi [13]-Smooth and rough beds-Rectangular channel-Free jumpCL = 7.50
CW = 0.35
CH = 0.50
Lozenge bed4.50–12-Sequent depth-Jump length
Elsebaie and Shabayek [18]-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jumpCL = 9
CW = 0.295
CH = 0.32
-Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)50-Water surface profile-Sequent depth-Jump length-Bed shear stress coefficient
Samadi-Boroujeni et al. [19]-Rectangular channel-Smooth and rough beds-Free jumpCL = 12
CW = 0.40
CH = 0.40
-Six triangular corrugated (RH = 2.5)6.10–13.10-Water surface profile-Sequent depth-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Ahmed et al. [20]-Smooth and rough beds-Rectangular channel-Submerged jumpCL = 24.50
CW = 0.75
CH = 0.70
-Triangular corrugated sheet (RH = 40)1.68–9.29-Conjugated and tailwater depths-Submerged ratio-Deficit depth-Relative jump length-Jump length-Relative roller jump length-Jump efficiency-Bed shear stress coefficient
Nikmehr and Aminpour [15]-Horizontal bed with slope 0.002-Rectangular channel-Rough bed-Free jumpCL = 12
CW = 0.25
CH = 0.50
-Trapezoidal blocks (RH = 2, 3 and 4)5.01–13.70-Water surface profile-Sequent depth-Jump length-Roller length-Velocity
Ghaderi et al. [17]-Smooth and rough beds-Rectangular channel-Free and submerged jumpCL = 4.50
CW = 0.75
CH = 0.70
-Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
Present studyRectangular channel
Smooth and rough beds
Submerged jump
CL = 4.50
CW = 0.75
CH = 0.70
-Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss

CL1: channel length, CW2: channel width, CH3: channel height, RH4: roughness height.

이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.

베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.

다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.

CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].

본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.

Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.

Table 2. Effective parameters in the numerical model.

Bed TypeQ
(l/s)
I
(cm)
T (cm)d (cm)y1
(cm)
y4
(cm)
Fr1= u1/(gy1)0.5SRe1= (u1y1)/υ
Smooth30, 4551.62–3.839.64–32.101.7–9.30.26–0.5039,884–59,825
Triangular macroroughnesses30, 454, 8, 12, 16, 20451.62–3.846.82–30.081.7–9.30.21–0.4439,884–59,825
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).

Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).

ModelsBed TypeQ (l/s)d (cm)y1 (cm)u1 (m/s)Fr1
Numerical and PhysicalSmooth4551.62–3.831.04–3.701.7–9.3
T/I = 0.54551.61–3.831.05–3.711.7–9.3
T/I = 0.254551.60–3.841.04–3.711.7–9.3
Figure 3. The boundary conditions governing the simulations.
Figure 3. The boundary conditions governing the simulations.
Figure 4. Sketch of mesh setup.
Figure 4. Sketch of mesh setup.

Table 4. Characteristics of the computational grids.

MeshNested Block Cell Size (cm)Containing Block Cell Size (cm)
10.551.10
20.651.30
30.851.70

Table 5. The numerical results of mesh convergence analysis.

ParametersAmounts
fs1 (-)7.15
fs2 (-)6.88
fs3 (-)6.19
K (-)5.61
E32 (%)10.02
E21 (%)3.77
GCI21 (%)3.03
GCI32 (%)3.57
GCI32/rp GCI210.98
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).

Conclusions

  • 본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
  • 개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
  • T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
  • 삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
  • 삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
  • 매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
  • 삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
  • 거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
  • 일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 ​​대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.

References

  1. White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
  2. Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci. 197919, 81–128. [Google Scholar] [CrossRef]
  3. McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
  4. Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids 201234, 35–46. [Google Scholar] [CrossRef]
  5. Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A 201394, 83–87. [Google Scholar] [CrossRef]
  6. Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech. 2016797, 60–94. [Google Scholar] [CrossRef]
  7. Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc. 2016108, 425–432. [Google Scholar] [CrossRef]
  8. Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng. 201742, 3751–3760. [Google Scholar] [CrossRef]
  9. De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech. 201818, 849–870. [Google Scholar] [CrossRef]
  10. Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 2002128, 656–663. [Google Scholar] [CrossRef]
  11. Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
  12. Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 20093, 109–117. [Google Scholar] [CrossRef]
  13. Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci. 20092, 436–445. [Google Scholar] [CrossRef]
  14. Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci. 20077, 1164–1169. [Google Scholar] [CrossRef]
  15. Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng. 201764, 396–407. [Google Scholar] [CrossRef]
  16. Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
  17. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform. 202022, 1554–1572. [Google Scholar] [CrossRef]
  18. Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS 201010, 37–47. [Google Scholar]
  19. Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng. 201340, 841–847. [Google Scholar] [CrossRef]
  20. Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J. 20145, 1033–1042. [Google Scholar] [CrossRef]
  21. Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water 201911, 28. [Google Scholar] [CrossRef]
  22. Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 2016142, 04015037. [Google Scholar] [CrossRef]
  23. Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng. 2017143, 04016091. [Google Scholar] [CrossRef]
  24. Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div. 196591, 107–132. [Google Scholar] [CrossRef]
  25. Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
  26. Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res. 199028, 437–460. [Google Scholar] [CrossRef]
  27. Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
  28. Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
  29. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139, 201–225. [Google Scholar] [CrossRef]
  30. Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng. 2020, 1–9. [Google Scholar] [CrossRef]
  31. Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water 201911, 235. [Google Scholar] [CrossRef]
  32. Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol. 201634, 186–190. [Google Scholar]
  33. Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res. 200846, 739–752. [Google Scholar] [CrossRef]
  34. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 201680, 322–335. [Google Scholar] [CrossRef]
  35. Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids 20205, 182. [Google Scholar] [CrossRef]
  36. Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā 201944, 216. [Google Scholar] [CrossRef]
  37. Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water 202012, 1992. [Google Scholar] [CrossRef]
  38. Ghaderi, A.; Abbasi, S.; Abraham, J.; Azamathulla, H.M. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Meas. Instrum. 202072, 101711. [Google Scholar] [CrossRef]
  39. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput. 19861, 3–51. [Google Scholar] [CrossRef] [PubMed]
  40. Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water 20168, 545. [Google Scholar] [CrossRef]
  41. Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour. 20204, 425–436. [Google Scholar] [CrossRef]
  42. Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev. 200962. [Google Scholar] [CrossRef]
  43. Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water 202113, 14. [Google Scholar] [CrossRef]
  44. Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008130, 0780011–0780013. [Google Scholar]
  45. Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis. 20069, 57–68. [Google Scholar] [CrossRef]
  46. Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math. 2020, 1–13. [Google Scholar] [CrossRef]
  47. Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res. 201227, 100–111. [Google Scholar] [CrossRef]
  48. Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
  49. Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
  50. Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng. 2015105, 160–175. [Google Scholar] [CrossRef]
  51. Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng. 201439, 6969–6981. [Google Scholar] [CrossRef]
  52. Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng. 1996122, 540–548. [Google Scholar] [CrossRef]
  53. De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 201715, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fig. 1. Nysted Offshore Wind Farm

FLOW-3D 모형을 이용한 해상풍력기초 세굴현상 분석

박영진1, 김태원2*1 서일대학교 토목공학과, 2 (주)지티이

Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode

Abstract

국내․외에서 다양한 형태의 석유 대체에너지는 온실효과 가스를 배출하지 않는 청정에너지로 개발되고 있으며, 특히 해상풍력은 풍력 자원이 풍부하고 육상보다 풍력 감소가 상대적으로 작아 다양하게 연구되고 있다. 본 연구에서는 해상 풍력기초의 세굴현상을 분석하기 위해서 Flow-3D 모형을 이용하여 모노 파일과 삼각대 파일 기초에 대하여 수치모의를 수행 하였다. 직경이 다른(D=5.0 m, d=1.69 m) 모노 파일 형식과 직경이 동일한(D=5.0 m) 모노파일에 대하여 세굴현상을 평가하 였다. 수치해석 결과, 동일한 직경을 가진 모노파일에서 하강류가 증가되었으며, 최대세굴심은 약 1.7배 이상 발생하였다. 삼각대 파일에 대하여 관측유속과 극치파랑 조건을 상류경계조건으로 각각 적용한 후 세굴현상을 평가하였다. 극치파랑조건 을 적용한 경우 최대 세굴심은 약 1.3배 정도 깊게 발생하였다. LES 모형을 적용하였을 경우 세굴심은 평형상태에 도달한 반면, RNG  모형은 해석영역 내 전반적으로 세굴현상이 발생하였으며, 세굴심은 평형상태에 도달하지 않았다. 해상풍 력기초에 대하여 세굴현상을 평가하기 위해서 수치모형 적용시 파랑조건 및 LES 난류모형을 적용하는 것이 타당할 것으로 판단된다.

Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.

Keywords : Flow-3D, LES model, Mono pile, Offshore wind foundation, RNG k-e model, Scour phenomenon, Tripod pile

서론

지구환경문제에 대한 관심이 증가되고 있는 현실에 서, 풍력발전은 석유 대체에너지로서 뿐만 아니라, 이산 화탄소 등 온실효과 가스를 배출하지 않는 청청에너지의 발전방식으로 국내․외에서 개발이 증가되고 있다. 특 히, 해상풍력은 풍력 자원이 풍부하고, 육상보다 풍력 감 소가 상대적으로 작아 전기 출력량이 크기 때문에 신재 생에너지원 확보 차원에서 국내․외 해상풍력단지 사업 계획이 수립되어 추진되고 있는 실정이다. Fig. 1은 세계 최대 네델란드 해상풍력단지인 Nysted Offshore Wind Farm의 사진이다.

Fig. 1. Nysted Offshore Wind Farm
Fig. 1. Nysted Offshore Wind Farm

하천 내 교각 주변에서 세굴 현상은 발생하며 교각의 안정성 측면에서 세굴보호공을 설치한다. 해양에서 해상 풍력발전 기초를 설치할 경우 구조물로 인해 교란된 흐 름은 세굴을 유발시킨다. 따라서 해상풍력기초를 계획할 경우 안정성 측면에서 세굴현상을 검토할 필요가 있다. 특히 하천의 경우 교각 세굴보호공에 대하여 다양한 공 법들이 설계에 반영되고 있으나, 해양구조물 기초에 대 한 연구는 미흡한 상태이다.

이에 본 연구에서는 수치모 형을 이용하여 해상풍력기초에 대한 세굴현상을 분석하 였다. 수치모형을 이용하여 세굴현상을 예측함에 있어서 본 연구와 연관된 연구동향으로는 양원준과 최성욱(2002) 은 FLOW-3D 모형을 이용하여 세굴영향 평가를 함에 있어서 난류모형을 비교․분석 하였다. 전반적으로 수리 모형실험 자료와 좀 더 잘 일치하는 난류모형은 LES 모 형으로 분석되었다[1]. 여창건 등(2010)은 세굴영향 평 가를 위해 FLOW-3D 모형을 이용할 경우 세굴에 미치 는 중요한 인자에 대하여 매개변수 민감도분석을 수행하 였다.

검토결과, 세굴에 민감한 변수는 유사의 입경, 세 굴조절계수, 안식각 등의 순서로 민감한 것으로 검토되 었다[2]. 오명학 등(2012)은 해상풍력발전기초 시설 주 변에서 FLOW-3D 모형을 이용하여 세굴영향 검토를 수 행하였다. 오명학 등이 검토한 지역은 본 연구 지역과 동 일한 지역이나 경계조건 및 세굴평가에서 가장 중요한 평균입경이 다르다. 세굴검토를 위해 수치모형에 입력한 경계조건은 대조기 창조 최강유속 1.0 m/s을 상류경계조 건으로, 평균입경은 0.0353 mm를 적용하였다. 이와 같은 조건에서 모노파일에서 발생하는 최대세굴심은 약 5.24 m로 분석되었다[3].

Stahlmann과 Schlurmann(2010)은 본 과업에서 적용할 해상풍력기초와 유사한 기초를 가진 구조물에 대하여 수리모형실험을 수행하였다. 연구대상 지역은 독일 해안가에 의한 해상풍력단지에 대하여 삼각 대 형식의 해상풍력기초에 대하여 1/40과 1/12 축척으로 각각 수리모형실험을 수행하였다. 1/40과 1/12 축척에 따라서 세굴분포양상 및 최대세굴심의 위치가 다르게 관 측되었다[4].

본 연구에서는 3차원 수치모형인 Flow-3D를 이용하 여 세굴현상을 평가함에 있어서, 파일 형상 변화, 경계조 건이 다른 경우 및 서로 다른 난류모형을 적용하였을 경 우에 대하여 수치해석이 국부세굴 현상에 미치는 영향을 검토하였다. 이와 같은 연구는 향후 수치모형을 이용하 여 해상풍력발전 기초에 대하여 세굴현상을 평가함에 있 어서 기초 자료로 활용될 수 있을 것으로 판단된다.

Fig. 2. Shape of Pile
Fig. 2. Shape of Pile
Fig. 3. Boundary Area and Grid of Flow-3D
Fig. 3. Boundary Area and Grid of Flow-3D
Fig. 4. Scour around Monopile
Fig. 4. Scour around Monopile
Fig. 5. Velocity Development around Monopile
Fig. 5. Velocity Development around Monopile
Fig. 6. Flow Phenomenon and Scour around Tripod Pile Foundation
Fig. 6. Flow Phenomenon and Scour around Tripod Pile Foundation
Fig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)
Fig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)

결론

본 연구에서는 해상풍력기초 형식이 모노파일과 삼각 대 파일일 경우 세굴현상을 평가하기 위해서 3차원 수치 모형인 Flow-3D를 이용하였다. 직경이 서로 다른(D=5.0 m, d=1.69 m) 모노파일과 직경이 동일한(D=5.0 m) 모노파일에 대하여 LES 모형 을 적용하여 세굴현상을 평가하였다. 서로 다른 직경을 가진 모노파일 주변에서 최대 세굴심은 4.13 m, 동일한 직경을 가진 모노파일 주변에서는 7.13 m의 최대 세굴 심이 발생하였다. 또한 동일한 직경을 가진 파일에서 하 강류가 증가되어 최대세굴심이 증가된 것으로 분석되었 다. 수치해석 결과, 세굴에 대한 기초의 안정성 측면에서 서로 다른 직경을 가진 기초 형식이 유리한 것으로 분석 되었다. 수치모형을 이용하여 세굴현상을 평가함에 있어서 경 계조건 및 난류모형의 선정은 중요하다. 본 연구에서는 서로 다른 직경을 가진 삼각대 형식의 해상풍력기초에 대하여 상류경계조건으로 관측유속과 극치파랑조건을 각각 적용하였을 경우 세굴현상을 평가하였다. 극치파랑 조건을 적용하였을 경우가 최대세굴심이 약 1.3배 정도 깊게 발생하였다. 또한 극치파랑조건에서 RNG 과 LES 모형을 적용하여 세굴현상을 평가하였다. LES 모 형을 적용하였을 경우 파일 주변에서 세굴현상이 발생하 였으며, 세굴심은 일정시간이 경과된 후에는 증가되지 않는 평형상태에 도달하였다. 그러나 RNG 모형을 적용한 경우는 평형상태에 도달하지 않고 계속해서 세굴 이 진행되어 세굴심을 평가할 수 없었다. 현재 해양구조 물 기초에 대한 세굴현상 연구는 미흡한 상태로 하천에 서 교각 세굴현상을 검토하기 위해서 적용되는 경계조건 을 적용하기보다는 해상 조건인 파랑조건을 적용하여 검 토하는 것이 기초의 안정성 측면에서 유리할 것으로 판 단된다. 또한 정확한 세굴현상을 예측하기 위해서는 RNG 모형보다는 LES 모형을 적용하는 것이 타당 할 것으로 판단된다. 향후 해상풍력기초에 대한 세굴관측을 수행하여 수치 모의 결과와 비교․분석이 필요하며, 또한 다양한 파랑 조건에서 난류모형에 대한 비교․분석이 필요할 것으로 생각된다.

References

[1] W. J. Yang, S. U. Choi. “Three- Dimensional Numerical
Simulation of Local Scour around the Bridge Pier using
Large Eddy Simulation”, Journal of KWRA, vol. 22, no.
4-B, pp. 437-446, 2002.
[2] C. G. Yeo, J. E. Lee, S. O. Lee, J. W. Song. “Sensitivity
Analysis of Sediment Scour Model in Flow-3D”,
Proceedings of KWRA, pp. 1750-1754, 2010.
[3] M. H. Oh, O. S. Kwon, W. M. Jeong, K. S. Lee.
“FLOW-3D Analysis on Scouring around Offshore Wind
Foundation”, Journal of KAIS, vol. 13, no. 3, pp.
1346-1351, 2012.
DOI: http://dx.doi.org/10.5762/KAIS.2012.13.3.1346

[4] A. Stahlmann, T. Schlurmann, “Physical Modeling of
Scour around Tripod Foundation Structures for Offshore
Wind Energy Converters”, Proceedings of 32nd
Conference on Coastal Engineering, Shanghai, China,
no. 32, pp. 1-12, 2010.
[5] Flow Science. Flow-3D User’s Manual. Los Alamos,
NM, USA, 2016.
[6] KEPRI. 『Test Bed for 2.5GW Offshore Wind Farm at
Yellow Sea』 Interim Design Report(in Korea), 2014.
[7] Germanischer Lloyd. Guideline for the Certification of
Offshore Wind Turbines. Hamburg, Germany, 2005.
[8] B. M. Sumer, J. Fredsøe, The Mechanics of Scour in the
Marine Environment. World Scientific Publishing Co.
Pte. Ltd. 2002.
[9] S. J. Ahn, U. Y. Kim, J. K. Lee. “Experimental Study
for Scour Protection around Bridge Pier by Falling-Flow
Interruption”, Journal of KSCE, vol. 19, no. II-1, pp.
57-65, 1999.
[10] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C.
G. Speziale, “Development of turbulence models for
shear flows by a double expansion technique”, Physics
of Fluids, vol. 4, no. 7, pp. 1510-1520, 1992.
DOI: https://doi.org/10.1063/1.858424

Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow

Numerical Methods in Civil Engineering

Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham****

토목공학의 수치해석법

Abstract

The main purpose of this study is to provide a method to increase energy dissipation on an inclined drop. Therefore, three types of rough elements with cylindrical, triangular and batshaped geometries are used on the inclined slope in the relative critical depth range of 0.128 to 0.36 and the effect of the geometry of these elements is examined using Flow 3D software. The results showed demonstrate that the downstream relative depth obtained from the numerical analysis is in good agreement with the laboratory results. The application of rough elements on the inclined drop increased the downstream relative depth and also the relative energy dissipation. The application of rough elements on the sloping surface of the drop significantly reduced the downstream Froude number, so that the Froude number in all models ranging from 4.7~7.5 to 1.45~3.36 also decreased compared to the plain drop. Bat-shaped elements are structurally smaller in size, so the use of these elements, in addition to dissipating more energy, is also economically viable.

이 연구의 주요 목적은 경사진 낙하에서 에너지 소산을 증가시키는 방법을 제공하는 것입니다. 따라서 0.128 ~ 0.36의 상대 임계 깊이 범위에서 경사면에 원통형, 삼각형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거친 요소가 사용되며 이러한 요소의 형상의 영향은 Flow 3D 소프트웨어를 사용하여 조사됩니다. 결과는 수치 분석에서 얻은 하류 상대 깊이가 실험실 결과와 잘 일치함을 보여줍니다. 경 사진 낙하에 거친 요소를 적용하면 하류 상대 깊이와 상대 에너지 소산이 증가했습니다. 낙차 경사면에 거친 요소를 적용하면 하류의 Froude 수를 크게 감소시켜 4.7~7.5에서 1.45~3.36 범위의 모든 모델에서 Froude 수도 일반 낙차에 비해 감소했습니다. 박쥐 모양의 요소는 구조적으로 크기가 더 작기 때문에 더 많은 에너지를 분산시키는 것 외에도 이러한 요소를 사용하는 것이 경제적으로도 가능합니다.

Keywords: Downstream depth, Energy dissipation, Froude number, Inclined drop, Roughness elements

Introduction

급수 네트워크 시스템, 침식 수로, 수처리 시스템 및 경사가 큰 경우 흐름 에너지를 더 잘 제어하기 위해 경사 방울을 사용할 수 있습니다. 낙하 구조는 지반의 자연 경사를 설계 경사로 변환하여 에너지 소산, 유속 감소 및 수심 증가를 유발합니다. 따라서 흐름의 하류 에너지를 분산 시키기 위해 에너지 분산 구조를 사용할 수 있습니다. 난기류와 혼합된 물과 공기의 형성은 에너지 소비를 증가 시키는 효과적인 방법입니다. 흐름 경로에서 거칠기 요소를 사용하는 것은 에너지 소산을 위한 알려진 방법입니다. 이러한 요소는 흐름 경로에 배치됩니다. 그들은 종종 에너지 소산을 증가시키기 위해 다른 기하학적 구조와 배열을 가지고 있습니다. 이 연구의 목적은 직사각형 경사 방울에 대한 거칠기 요소의 영향을 조사하는 것입니다.

Fig. 1: Model made in Ardabil, Iran
Fig. 1: Model made in Ardabil, Iran
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 5: Variation of the RMSE varying cell size
Fig. 5: Variation of the RMSE varying cell size
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 8: Relative edge depth versus the relative critical depth
Fig. 8: Relative edge depth versus the relative critical depth
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth

Conclusions

현재 연구에서 FLOW-3D 소프트웨어를 사용하여 한 높이, 한 각도, 밀도 15% 및 지그재그 배열에서 삼각형, 원통형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거칠기 요소를 사용하여 경사 낙하 수리학적 매개변수에 대한 거칠기 요소 형상의 영향 평가되었다. VOF 방법을 사용하여 자유 표면 흐름을 시뮬레이션하고 초기에 3개의 난류 모델 RNG, k-ɛ 및 kω를 검증에 사용하고 이를 검토한 후 RNG 방법을 사용하여 다른 모델을 시뮬레이션했습니다. 1- 수치 결과에서 얻은 부드러운 경사 방울의 하류 상대 깊이는 실험실 데이터와 매우 좋은 상관 관계가 있으며 원통형 요소가 장착 된 경사 방울의 상대 에지 깊이 값이 가장 높았습니다. 2- 하류 상대깊이는 임계상대깊이가 증가함에 따라 상승하는 경향을 나타내어 박쥐형 요소를 구비한 경사낙하와 완만한 경사낙하가 각각 하류상대깊이가 가장 높고 가장 낮았다. 3- 하류 깊이의 증가로 인해 상대적 임계 깊이가 증가함에 따라 상대적 에너지 소산이 감소합니다. 한편, 가장 높은 에너지 소산은 박쥐 모양의 요소가 장착된 경사 낙하와 관련이 있으며 가장 낮은 에너지 소산은 부드러운 낙하와 관련이 있습니다. 삼각형, 원통형 및 박쥐 모양의 거친 요소가 장착된 드롭은 부드러운 드롭보다 각각 65%, 76% 및 85% 더 많은 흐름 에너지를 소산합니다. 4- 낙차의 경사면에 거친 요소를 적용하여 다운 스트림 Froude 수를 크게 줄여 4.7 ~ 7.5에서 1.45 ~ 3.36까지의 모든 모델에서 Froude 수가 부드러운 낙하에 비해 감소했습니다. 또한, 다른 원소보다 부피가 작은 박쥐 모양의 거칠기의 부피로 인해 이러한 유형의 거칠기를 사용하는 것이 경제적입니다.

References

References:
[1] Abbaspour, A., Shiravani, P., and Hosseinzadeh dalir, A.,
“Experimental study of the energy dissipation on the rough ramps”,
ISH journal of hydraulic engineering, 2019, p. 1-9.
[2] Abraham, J.P., Sparrow, E.M., Gorman, J.M., Zhao, Y., and
Minkowycz, W.J., “Application of an Intermittency model for
laminar, transitional, and turbulent internal flows”, Journal of
Fluids Engineering, vol. 141, 2019, paper no. 071204.
[3] Ahmad, Z., Petappa, N.M., and Westrich, B., “Energy
dissipation on block ramps with staggered boulders”, Journal of
hydraulic engineering, vol. 135(6), 2009, p. 522-526.
[4] Babaali, H.R., Shamsai, A., and Vosoughifar, H.R.,
“Computational modeling of the hydraulic jump in the stilling
basin with convergence walls using CFD codes”, Arabian Journal
for Science and Engineering, vol. 40(2), 2014, p. 381-395.
[5] Castillo, L.G., Carrillo, J.M., and Cacía, J.T., “Numerical
simulations and laboratory measurements in hydraulic jumps”,
International conference on hydroinformatics. (2014, August) New
York city.
[6] Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S.,
and Abraham, J., “Experimental and numerical investigation for
energy dissipation of supercritical flow in sudden contractions”,
Journal of groundwater science and engineering, vol. 8(4), 2020a,
p. 396-406.
[7] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., and
Abraham, J., “Three-dimensional investigation of hydraulic
properties of vertical drop in the presence of step and grid
dissipators”, Symmetry, vol. 13 (5), 2021a, p. 895.
[8] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., and
Bagherzadeh, M., “SVM performance for predicting the effect of
horizontal screen diameters on the hydraulic parameters of a
vertical drop”, Applied sciences, vol. 11 (9), 2021b, p. 4238.
[9] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R.,
and Abraham, J. “Study of the performance of support vector
machine for predicting vertical drop hydraulic parameters in the
presence of dual horizontal screens”, Water supply, vol 21(1),
2021c, p. 217-231.
[10] Daneshfaraz, R., and Ghaderi, A., “Numerical investigation of
inverse curvature ogee spillways”, Civil engineering journal, vol.
3(11), 2017, p. 1146-1156.
[11] Daneshfaraz, R., Majedi Asl, M., and Bagherzadeh, M.,
“Experimental Investigation of the Energy Dissipation and the
Downstream Relative Depth of Pool in the Sloped Gabion Drop
and the Sloped simple Drop”, AUT Journal of Civil Engineering,
2020b (In persian).
[12] Daneshfaraz, R., Majedi Asl, M., Bazyar, A., Abraham, J.,
Norouzi, R., “The laboratory study of energy dissipation in inclined
drops equipped with a screen”, Journal of Applied Water
Engineering and Research, 2020c, p. 1-10.
[13] Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and
Ghaderi, A., “3-D Numerical simulation of water flow over a
broad-crested weir with openings”, ISH Journal of Hydraulic
Engineering, 2019, p.1-9.
[14] Daneshfaraz, R., Sadeghfam, S., and Kashani, M., “Numerical
simulation of flow over stepped spillways”, Research in civil
engineering and environmental engineering, vol. 2(4), 2014, p.
190-198.
[15] Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M.,
“Efficiency of trapezoidal labyrinth shaped stepped spillways”,
Flow measurement and instrumentation, vol. 72, 2020a.
[16] Ghaderi, A., Daneshfaraz, R., Dasineh, M., and Di Francesco,
S., “Energy dissipation and hydraulics of flow over trapezoidaltriangular labyrinth weirs”, Water, vol. 12(7), 2020b, p. 1-18.
[17] Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, and
Azamathulla, H.M. “Experimental investigation on effective
scouring parameters downstream from stepped spillways”, Water
supply, vol. 20(4), 2020c, p. 1-11.
[18] Ghare, A.D., Ingle, R.N., Porey, P.D., and Gokhale, S.S.
“Block ramp design for efficient energy dissipation”, Journal of
energy dissipation, vol. 136(1), 2010, p. 1-5.
[19] Gorman, J.M., Sparrow, E.M., Smith, C.J., Ghoash, A.,
Abraham, J.P., Daneshfaraz, R., Rezezadeh, J., “In-bend pressure
drop and post-bend heat transfer for a bend with partial blockage at
its inlet”, Numerical Heat Transfer A, vol, 73, 2018, p. 743-767.
[20] Jamil, M., and Khan, S.A., “Theorical study of hydraulic jump
in circular channel section”, ISH journal of hydraulic engineering,
vol. 16(1), 2010, p. 1-10.
[21] Katourani, S., and Kashefipour, S.M., “Effect of the geometric
characteristics of baffle on hydraulic flow condition in baffled
apron drop”, Irrigation sciences and engineering, vol. 37(2), 2012,
p. 51-59.
[22] Lai, Y.G., and Wu, K.A., “Three-dimensional flow and
sediment transport model for free surface open channel flow on
unstructured flexible meshes”, Fluids, vol. 4(1), 2019, p. 1-19.

[23] Nayebzadeh, B., Lotfollahi yaghin, M.A., and Daneshfaraz,
R., “Numerical investigation of hydraulic characteristics of vertical
drops with screens and gradually wall expanding”, Amirkabir
journal of civil engineering, 2020 (In Persian).
[24] Nurouzi, R., Daneshfaraz, R., and Bazyar, A., “The study of
energy dissipation due to the use of vertical screen in the
downstream of inclined drop by adaptive Neuro-Fuzzy inference
system (ANFIS)”, AUT journal of civil engineering, 2019, (In
Persian).
[25] Ohtsu, I., and Yasuda, Y., “Hydraulic jump in sloping
channel”, Journal of hydraulic engineering, vol. 117(7), 1991, p.
905-921.
[26] Olsen, L., Abraham, J.P., Cheng, L.K., Gorman, J.M., and
Sparrow, E.M., “Summary of forced-convection fluid flow and
heat transfer for square cylinders of different aspect ratios ranging
from the cube to a two-dimensional cylinder”, Advances in Heat
Transfer, Vol. 51, 2019, p. 351-457.
[27] Pagliara, S., Das, R., and Palermo, M., “Energy dissipation on
submerged block ramps”, Journal of irrigation and drainage
engineering, vol. 134(4), 2008, p.527-532.
[28] Pagliara, S., and Palermo, M., “Effect of stilling basin
geometry on the dissipative process in the presence of block
ramps”, Journal of irrigation and drainage engineering, vol.
138(11), 2012, p. 1027-1031.
[29] Simsek, O., Akoz, M.S, and Soydan, N.G., “Numerical
validation of open channel flow over a curvilinear broad-creasted
weir”, Progress in computational fluid dynamics an international
journal, vol. 16(6), 2016, p. 364-378.
[30] Sharif, N., and Rostami, A., “Experimental and numerical
study of the effect of flow sepration on dissipating energy in
compound bucket”, APCBEE procedia, vol. 9, 2014, p. 334-338.
[31] Sparrow, E.M., Tong, J.C.K., and Abraham, J.P., “Fluid flow
in a system with separate laminar and turbulent zones”, Numerical
Heat Transfer A, vol. 53(4), 2008, p. 341-353.
[32] Sparrow, E.M., Gorman, J.M., Abraham, J.P., and
Minkowycz, W.J., “Validation of turbulence models for numerical
simulation of fluid flow and convective heat transfers”, Advances
in Heat Transfer, vol. 49, 2017, p. 397-421.
[33] Wagner, W.E., “Hydraulic model studies of the check intake
structure-potholes East canal”, Bureau of reclamation hydraulic
laboratory report hyd, 1956, 411.

Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).

Numerical analysis of water flow around a bridge pier in a sand mined channel

모래 채굴 수로에서 교각 주변의 물 흐름에 대한 수치 해석

Oscar HERRERA-GRANADOS1,, Abhijit LADE2, , Bimlesh KUMAR3
1 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
email: Oscar.Herrera-Granados@pwr.edu.pl
2 3Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
email: lade176104013@iitg.ac.in
email: bimk@iitg.ac.in

ABSTRACT

Extraction of sand from river beds has a variety of effects on the hydraulic and morphological characteristicsof the fluvial systems. Recent studies on mining pit have revealed that downstream reaches of the mining pitare more prone to erosion due to increased bed shear stresses. Bridge piers in the vicinity of such mining pitsare also prone to streambed instabilities due to turbulence alterations as suggested by a few recent studies.Thus, a numerical study was carried out to study the effects of a mining pit on the hydrodynamics around acircular pier. The numerical experiments were conducted with the Computational Fluid Dynamics (CFD) codeFlow-3D, which can run several turbulence model closures. In this contribution, the authors applied theclassical RANS equations with the volume of fluid (VOF) method (Savage and Johnson, 2001).

강바닥에서 모래를 추출하는 것은 하강 시스템의 수력 학적 및 형태 학적 특성에 다양한 영향을 미칩니다. 광산 구덩이에 대한 최근 연구에 따르면 광산 구덩이의 하류 도달은 베드 전단 응력 증가로 인해 침식되기 쉽습니다. 이러한 광산 구덩이 근처의 교각은 최근 몇 가지 연구에서 제안한 바와 같이 난류 변화로 인해 유동 불안정성이 발생하기 쉽습니다. 따라서 원형 부두 주변의 유체 역학에 대한 광산 구덩이의 영향을 연구하기 위해 수치 연구가 수행되었습니다. 수치 실험은 CFD (Computational Fluid Dynamics) 코드 Flow-3D로 수행되었으며, 여러 난류 모델 폐쇄를 실행할 수 있습니다. 이 공헌에서 저자는 VOF (volume of fluid) 방법 (Savage and Johnson, 2001)과 함께 고전적인 RANS 방정식을 적용했습니다.

1. Set-up and boundary conditions

두 번의 수치 실행 결과가 이 기여도에서 비교됩니다. 첫 번째 실험에서 0.044 [m3-s-1]의 정상 유량이 원통 부두가 있는 1.0 [m] 폭의 채널을 따라 흐르는 상류 경계 조건으로 설정되었습니다. 계산 영역은 IIT Guwahati 수력학 실험실 (Lade et al., 2019b)의 틸팅 유체 크기를 기반으로 정의됩니다. 두 번째 실행에서는 동일한 배출물이 실린더의 상류에 있는 준설 사다리꼴 구덩이와 함께 실린더 주위로 통과되었습니다. 구덩이의 깊이는 0.1 [m]이고 수로 전체에 걸쳐 확장되었습니다. 수로의 길이 방향을 따라 피트의 상단 너비는 0.67 [m], 하단 너비는 0.33 [m]였습니다.

이 연구의 주요 초점은 채굴 구덩이 (그림 1의 PF2)가있을 때 구덩이 하류 (그림 1의 PF1)와 실린더 하류의 흐름 특성의 변화를 조사하는 것이 었습니다. 따라서 채널 베드는 고정 베드 모델을 사용하여 시뮬레이션 되었습니다. 두 실험의 수압 조건은 CFD 경계 조건으로 설정된 표 1에 나와 있습니다. 배출구 (하류 경계 조건)는 실험실 기록 중에 측정된 수심을 사용하여 설정되었습니다 (Lade et al., 2019a).

Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).
Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).
Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).
Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).
Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2
Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2

References

Herrera-Granados O (2018) Turbulence flow modeling of one-sharp-groyne field. In Free surface flows and transport processes :
36th International School of Hydraulics. Geoplanet: Earth and Planetary Series. Springer IP AG, 207-218.
Lade AD, Deshpande V, Kumar B (2019a) Study of flow turbulence around a circular bridge pier in sand-mined stream channel.
Proceedings of the Institution of Civil Engineers – Water Management,https://doi.org/10.1680/jwama.19.00041
Lade AD, A, DT, Kumar B (2019b) Randomness in flow turbulence around a bridge pier in a sand
mined channel..Physica A 535 122426
Savage, BM, Johnson, M.C (2001). Flow over ogee spillway: Physical and numerical model case study. J. Hydraulic Eng.,
127(8), 640–649.

Numerical simulation of energy dissipation in crescent-shaped contraction of the flow path

Numerical simulation of energy dissipation in crescent-shaped contraction of the flow path

Authors

1 Professor, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran.
2 M.sc student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran.
3 M.sc student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran

Abstract

One of the methods of controlling and reducing flow energy is the use of energy dissipating structures and the formation of hydraulic jumps. One of these types of structures is the constriction elements in the flow path, which leads to a decrease in the energy of the passing flow. In the present study, the effect of crescent-shaped contraction as an energy dissipating structure in the supercritical flow path has been investigated using FLOW-3D software. Examining the simulation results, the RNG turbulence model due to its higher accuracy and lower relative error and absolute error percentage than other models, among the RNG turbulence models, k-ε, k-ω and LES was selected. In this study, the amplitude of the Froude number after the gate as the most effective dimensionless parameter in energy dissipation varied from 2.8 to 7.5 and the values of stenosis on both sides are 5 and 7.5 cm. The results show that in all cases of using the crescent-shaped contractions, the energy consumption due to the contraction is 5 and 7.5 cm, respectively, based on the energy drop relative to the upstream of 24.62% and 29.84% and compared to the downstream 46.14% and 48.42% more than the classic free jump. Also, by examining the obtained results, it was observed that the crescent-shaped contractions have a better performance in terms of energy loss compared to the sudden contraction, obtained from the studies of previous researchers. Based on the simulation results, with increasing the upstream Froude number, the relative energy dissipation to the upstream and downstream crescent-shaped contraction increased so that the use of contraction elements reduces the downstream Froude number of the contracted section in the range of 1.6 to 3/2.

흐름 에너지를 제어하고 줄이는 방법 중 하나는 에너지 소산 구조를 사용하고 유압 점프를 형성하는 것입니다. 이러한 유형의 구조 중 하나는 흐름 경로의 수축 요소로, 통과하는 흐름의 에너지를 감소시킵니다. 현재 연구에서는 초 임계 유동 경로에서 에너지 소산 구조로서 초승달 모양의 수축 효과가 FLOW-3D 소프트웨어를 사용하여 조사되었습니다. 시뮬레이션 결과를 살펴보면 RNG 난류 모델 중 k-ε, k-ω, LES 중에서 다른 모델보다 정확도가 높고 상대 오차와 절대 오차 비율이 낮은 RNG 난류 모델을 선택했습니다. 이 연구에서 에너지 소산에서 가장 효과적인 무 차원 매개 변수 인 게이트 뒤의 Froude 수의 진폭은 2.8에서 7.5까지 다양했으며 양쪽의 협착 값은 5cm와 7.5cm입니다. 결과는 초승달 모양의 수축을 사용하는 모든 경우에서 수축으로 인한 에너지 소비는 각각 5cm와 7.5cm로 상류에 비해 에너지 강하가 24.62 % 및 29.84 %이고 하류와 비교됩니다. 고전적인 자유 점프보다 46.14 % 및 48.42 % 더 많습니다. 또한 얻어진 결과를 살펴보면 초승달 모양의 수축이 이전 연구자들의 연구에서 얻은 갑작스런 수축에 비해 에너지 손실 측면에서 더 나은 성능을 보이는 것으로 나타났습니다. 시뮬레이션 결과에 따르면 상류 Froude 수를 증가 시키면 상류 및 하류 초승달 모양의 수축에 대한 상대적 에너지 소산이 증가하여 수축 요소를 사용하면 수축 된 부분의 하류 Froude 수가 1.6 ~ 3/2 범위에서 감소합니다. .

Keywords

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.

Experimental Method for the Measurements and Numerical Investigations of Force Generated on the Rotating Cylinder under Water Flow

by Teresa Abramowicz-Gerigk 1,*,Zbigniew Burciu 1,Jacek Jachowski 1,Oskar Kreft 2,Dawid Majewski 3,Barbara Stachurska 3,Wojciech Sulisz 3 andPiotr Szmytkiewicz 3

1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland
2AREX Ltd., 81-212 Gdynia, Poland
3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland
*Author to whom correspondence should be addressed.
Academic Editor: Remco J. WiegerinkSensors202121(6), 2216; https://doi.org/10.3390/s21062216
Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)

Abstract

본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.

테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.

실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.

The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.

The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.

Keywords: rotating cylinderforce sensor with built-in amplifierstrain gauge sensorCFD analysis

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 2. Scheme of the measurement area.
Figure 2. Scheme of the measurement area.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 16. Measured (EXP) and computed (CFD) lift force values.
Figure 16. Measured (EXP) and computed (CFD) lift force values.

결론

결론은 다음과 같습니다.
계산 결과가 일반적으로 실험 데이터와 일치하는 경우 계산 결과는 검증 된 것으로 간주되며 추가 예측에 사용할 수 있습니다. 검증 실험을 통해 메쉬 밀도와 난류 모델을 결정할 수있었습니다.
작은 전류 속도 0.4m / s 및 0.5m / s에서 직경 D3의 로터에 대해 계산 된 양력 값은 회전 속도가 200rpm 이상일 때의 실험 값과 달랐습니다. 그 이유는 실험 중에 관찰 된 강한 진동과 수치 시뮬레이션에서 모델링되지 않은 유동 분리 때문이었습니다.
D2 직경을 가진 로터의 경우 작은 rpm에서 양력의 반대 부호가 관찰되었습니다. 이 현상은 시뮬레이션 중에 관찰되지 않았습니다.
제시된 실험 테스트 설정은 드라이브,지지 구조물 및 측정 장치에 손상을 주지 않고 진동을 포함한 모든 현상을 관찰 할 수 있도록 구성되었습니다. Wang et al. [14]는 동일한 α 값에서 실린더 종횡비가 증가함에 따라 와류 유발 진동이 증가하는 것을 관찰했습니다.
실험의 원활한 진행은 장치 손상 가능성과 함께 약 4의 α에 영향을 미쳤습니다. 본 연구에서는 α = 4.8에서 시작하는 가장 큰 직경의 실린더에서 가장 강한 진동이 관찰되었습니다.
제시된 연구는 로터 생성 흐름의 능동적 제어에 대한 추가 연구의 첫 번째 부분으로 유체 역학적 힘의 신뢰할 수 있는 실험적 예측 방법을 설명했습니다 [22]. , 바람, 파도 [23].
논문의 참신함은 저상 실린더에 대해 회 전자에서 생성 된 유체 역학적 힘을 모델링 할 수있는 가능성에 대한 조사입니다.
이 방법의 주요 장점은 자유 표면 효과 및 유동 유도 회 전자 진동과 관련된 현상을 포함하여 회 전자 생성 유동장 및 유체 역학적 힘을 관찰 할 수 있다는 것입니다. 제안 된 테스트 설정 구성은 유체 역학적 힘의 매개 변수 연구, 스케일 효과 조사 및 낮은 전류 속도와 큰 회전 속도에서 큰 불일치가 확인 된 CFD 시뮬레이션 모델의 검증에 사용될 것입니다.

References

  1. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res. 201724, 27–34. [Google Scholar] [CrossRef]
  2. Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
  3. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec. 201960, 9–17. [Google Scholar]
  4. Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp. 20159, 591–596. [Google Scholar] [CrossRef]
  5. Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J. 201250, 271–283. [Google Scholar] [CrossRef]
  6. Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech. 1990220, 459. [Google Scholar] [CrossRef]
  7. Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model. 201236, 379–398. [Google Scholar] [CrossRef]
  8. Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol. 201924, 111–122. [Google Scholar] [CrossRef]
  9. Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng. 2015109, 7–13. [Google Scholar] [CrossRef]
  10. Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 1993255, 1–10. [Google Scholar] [CrossRef]
  11. Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 2017829, 486–511. [Google Scholar] [CrossRef]
  12. Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 2014740, 342–380. [Google Scholar] [CrossRef]
  13. Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy 20141, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
  14. Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl. 202019, 388–397. [Google Scholar] [CrossRef]
  15. Mobini, K.; Niazi, M. Simulation of unsteady flow around a rotating circular cylinder at various Reynolds numbers. JMEUT 201746, 249–257. Available online: https://www.researchgate.net/publication/323447030_Simulation_of_Unsteady_Flow_Around_a_Rotating_Circular_Cylinder_at_Various_Reynolds_Numbers (accessed on 15 January 2021).
  16. Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
  17. Nortek Manuals. The Comprehensive Manual for Velocimeters. 2018. Available online: https://support.nortekgroup.com/hc/en-us/articles/360029839351-The-Comprehensive-Manual-Velocimeters (accessed on 15 January 2021).
  18. Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG 20144, 280–290. [Google Scholar]
  19. Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
  20. Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
  21. FLOW-3D. Available online: https://www.flow3d.com/ (accessed on 15 January 2021).
  22. He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys. 2000163, 83–117. [Google Scholar] [CrossRef]
  23. Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies 202013, 1466. [Google Scholar] [CrossRef]
FIGURA 4.9. DISTRIBUCIÓN DE PRESIONES SOBRE EL PANEL SUMERGIDO ELABORADO: Jurado – Oñate, 2020

Analysis of Sediment Transport Downstream of Submerged Panels Applying the Flow 3D Program

Jurado Amaluisa, Luis Alfredo
Oñate Oñate, Veronica Cristina

FLOW-3D 프로그램을 적용한 수중 패널의 하류 퇴적물 이동 분석

이 조사의 목적은 실험 모델 f Khaled Hamad의 박사 학위 논문 인 Submerged Vanes의 실험적 난류 분석을 기반으로 FLOW 3D 컴퓨터 패키지를 사용하여 3 차원 수치 모델링을 개발하여 수치 및 실험 모델 둘 사이의 속도와 압력 결과를 비교하는 것입니다.

이 조사는 모래층에 설치된 침수 베인과 상호 작용할 때 흐름의 거동을 평가하고 이러한 유형의 수력 구조물을 구현할 때 퇴적물 수송 능력이 어떻게 변하는지 분석했습니다.

보정된 모델을 얻기 위해 민감도 분석이 수행되었고 보정은 메쉬 크기, 계산 비용, 시뮬레이션 시간 및 난류 모델을 정의했습니다. 원하는 결과가 얻어 질 때까지 23 번의 테스트가 수행되었고 실험 모델과 같았습니다.

난류 분석은 보정 된 모델 속도, 레이놀즈 전단, 난류 운동 에너지 및 그 소산 속도, 난류 강도 및 Kolmogorov 스케일로 수행되었습니다. 실험 모델과 수치 모델에서 얻은 결과를 비교했습니다. 수치 모형과 실험 모형의 결과를 비교하여 차이와 오차의 비율을 결정하여 수치 모형의 값을 검증 하였습니다.

FIGURA 1.2. (ARRIBA) EROSIÓN DE UN BANCO DE SEDIMENTOS POR LA CORRIENTE NATURAL;(ABAJO) MITIGACIÓN DE LA EROSIÓN MEDIANTE LA INSTALACIÓN DE PANELES SUMERGIDOS FUENTE: (Odgaard, 2009)
FIGURA 1.2. (ARRIBA) EROSIÓN DE UN BANCO DE SEDIMENTOS POR LA CORRIENTE NATURAL;(ABAJO) MITIGACIÓN DE LA EROSIÓN MEDIANTE LA INSTALACIÓN DE PANELES SUMERGIDOS FUENTE: (Odgaard, 2009)
FIGURA 1.3. REDISTRIBUCIÓN DEL FLUJO POR ACCIÓN DE PANELES SUMERGIDOS DENTRO DE UNA SECCIÓN TRANSVERSAL DEL CANAL FUENTE: (Odgaard, 2009)
FIGURA 1.3. REDISTRIBUCIÓN DEL FLUJO POR ACCIÓN DE PANELES SUMERGIDOS DENTRO DE UNA SECCIÓN TRANSVERSAL DEL CANAL FUENTE: (Odgaard, 2009)
FIGURA 2.2. BOSQUEJO DE LA CIRCULACIÓN INDUCIDA POR UNA SERIE DE TRES PANELES SUMERGIDOS FUENTE: (Odgaard, 2009)
FIGURA 2.2. BOSQUEJO DE LA CIRCULACIÓN INDUCIDA POR UNA SERIE DE TRES PANELES SUMERGIDOS FUENTE: (Odgaard, 2009)
FIGURA 2.3. ESQUEMA QUE MUESTRA EL CAMBIO PROVOCADO POR TRES PANELES SUMERGIDOS EN EL PERFIL DE LA CAMA DE SEDIMENTOS FUENTE: (Odgaard, 2009)
FIGURA 2.3. ESQUEMA QUE MUESTRA EL CAMBIO PROVOCADO POR TRES PANELES SUMERGIDOS EN EL PERFIL DE LA CAMA DE SEDIMENTOS FUENTE: (Odgaard, 2009)
FIGURA 2.4. ESQUEMA DEL TRANSPORTE DE SEDIMENTOS FUENTE: (Sarango, 2013)
FIGURA 2.4. ESQUEMA DEL TRANSPORTE DE SEDIMENTOS FUENTE: (Sarango, 2013)
FIGURA 2.5. FORMAS DEL TRANSPORTE DE SEDIMENTOS FUENTE: (Garcia & Maza, 1996)
FIGURA 2.5. FORMAS DEL TRANSPORTE DE SEDIMENTOS FUENTE: (Garcia & Maza, 1996)
FOTOGRAFÍA 3.1. VISTA EN PLANTA DEL CANAL FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.1. VISTA EN PLANTA DEL CANAL FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.2. PANEL SUMERGIDO INSTALADO FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.2. PANEL SUMERGIDO INSTALADO FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.3. SISTEMA DE COORDENADAS DEL PANEL SUMERGIDO FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.3. SISTEMA DE COORDENADAS DEL PANEL SUMERGIDO FUENTE: (Hamad, 2015)
FIGURA 4.9. DISTRIBUCIÓN DE PRESIONES SOBRE EL PANEL SUMERGIDO ELABORADO: Jurado – Oñate, 2020
FIGURA 4.9. DISTRIBUCIÓN DE PRESIONES SOBRE EL PANEL SUMERGIDO ELABORADO: Jurado – Oñate, 2020
FOTOGRAFÍA 4.1. TOPOGRAFÍA FINAL DEL LECHO DE ARENA EN MODELO EXPERIMENTAL FUENTE: (Hamad, 2015)
FOTOGRAFÍA 4.1. TOPOGRAFÍA FINAL DEL LECHO DE ARENA EN MODELO EXPERIMENTAL FUENTE: (Hamad, 2015)
FIGURA 4.15. TOPOGRAFÍA FINAL DEL LECHO DE ARENA TRAZADA EN MATLAB FUENTE: (Hamad, 2015)
FIGURA 4.15. TOPOGRAFÍA FINAL DEL LECHO DE ARENA TRAZADA EN MATLAB FUENTE: (Hamad, 2015)

TABLA 4.6. TENSIONES DE REYNOLDS TANTO PARA EL MODELO NUMÉRICO (PRUEBA 23) COMO PARA EL MODELO EXPERIMENTAL PARA LOS PUNTOS DE ESTUDIO
TABLA 4.6. TENSIONES DE REYNOLDS TANTO PARA EL MODELO NUMÉRICO (PRUEBA 23) COMO PARA EL MODELO EXPERIMENTAL PARA LOS PUNTOS DE ESTUDIO
Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software

Flow-3D를 이용한 Morning Glory Spillway의 배출 계수에 대한 소용돌이 차단 블레이드 45 도의 효과

Effect of Vortex Breaker Blades 45 Degree on Discharge Coefficient of Morning Glory Spillway Using Flow-3D

Authors

S. Noruzi1
and J. Ahadiyan2*
1– M.Sc. Student, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
2*-Corresponding Author, Associate Professor, Faculty of Water Sciences Engineering, Shahid Chamran
University of Ahvaz, Iran.

Abstract

The discharge coefficient of morning glory spillway is decreased with eddies created by vortex at the inlet part of weir. However, a series of specific blades can reduce vortices which result in the spillway efficiency is increased. Hence, in this research numerical modeling of installed breaker blade on morning glory spillway was evaluated using Flow-3D model. To achieve these purposes, morning glory spillway was modeled without and with blades 3, 4 and 6 blades at 45 degree angle. To simulate the turbulence fluctuations, the modified k-e model (RNG k-e) was used and its results were compared to the experimental data. Results showed that by installing blades, the discharge coefficient increases up to 42 percent with 25 percent decreasing in the upstream water level. Moreover, among the three different arrangements of blades, the six-blade model was found to have more satisfactory results than other models. In comparison to control model, for H/D between 0 to 0.1 and 0.1 to 0.2 the discharge coefficient has been increased 40 and 57 percent for six-blade arrangement, respectively. 

모닝 글로리의 배출 계수는 위어 입구 부분의 와류에 의해 생성된 소용돌이로 감소합니다. 그러나 일련의 특정 블레이드는 와류를 줄여 배수로 효율성을 높일 수 있습니다. 따라서 본 연구에서는 모닝 글로리 여수로에 설치된 브레이커 블레이드의 수치 모델링을 Flow-3D 모델을 사용하여 평가했습니다. 이러한 목적을 달성하기 위해 45도 각도에서 블레이드 3, 4 및 6 블레이드 없이 모닝 글로리 여수로를 모델링 했습니다. 난류 변동을 시뮬레이션하기 위해 수정된 k-e 모델 (RNG k-e)을 사용하고 그 결과를 실험 데이터와 비교했습니다. 결과에 따르면 블레이드를 설치하면 상류 수위가 25 % 감소하면서 배출 계수가 42 %까지 증가합니다. 또한 3 개의 블레이드 배열 중 6 개 블레이드 모델이 다른 모델보다 더 만족스러운 결과를 나타냈다. 제어 모델에 비해 H / D가 0 ~ 0.1 및 0.1 ~ 0.2 인 경우 방전 계수가 6- 블레이드 배열에서 각각 40 % 및 57 % 증가했습니다.

Keywords

Figure 1 - Dimensions of the vortex blade
Figure 1 – Dimensions of the vortex blade
Figure 3 - A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
Figure 3 – A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software
Figure 5 – Modeling a simple lotus overflow symmetrically in FLOW-3D software
Figure 7 - Comparison of Ashley flow chart with numerical model and laboratory
Figure 7 – Comparison of Ashley flow chart with numerical model and laboratory
Figure 8 - Comparison of flow coefficient diagram - immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades
Figure 8 – Comparison of flow coefficient diagram – immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades

Reference

1 -حیدری ارجلو، س.، موسوی جهرمی، س. ح. و ادیب، ا. 1386 .بررسی تاثیر شیب بر تعداد بهینه پلکانها در سرریزهای پلکانی، مجله علوم و مهندسی
.)123-136 :)2(33 ،كشاورزی علمی )آبیاری
2 -حاجیپور، گ. 1363 .بررسی آزمایشگاهی تأثیر تیغههای گردابشکن بر هیدرولیک جریان سرریز نیلوفری. پایاننامه كارشناسی ارشد رشته سازههای آبی،
دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
3 -رنجبر ملکشاه، م.، 1363 .بررسی رفتار سرریز نیلوفری با پایین دست تاج پلکانی بوسیله مدلسازی رایانهای، پایاننامه كارشناسی ارشد مهندسی عمران،
دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی.
4 -رمضانی، س. كاویانپور، م ر. و ع. حسنی نژاد. 1362 .بررسی پارامترهای مؤثر بر آبگذری سرریزهای نیلوفری. هفتمین كنگره ملی مهندسی عمران،
دانشکده مهندسی شهید نیکبخت، زاهدان.
1 -سامانی، م. 1331 .طراحی سازههای هیدرولیکی. انتشارات شركت مهندسی مشاور دز آب اهواز
1 -قاسمزاده، ف. 1362 .شبیه سازی مسائل هیدرولیکی در 3D-FLOW .تهران، نوآور.
3 -كمانبدست، 1 ،.موسوی، س.ر. 1361 .مطالعه آزمایشگاهی تأثیر تعداد و زاویه گرداب شکن بر مشخصات جریان در سرریز نیلوفری مربعی، نشریه علوم
آب و خاک )غعلوم و فنون كشاورزی و منابع طبیعی(، سال بیستم، شماره 38 ،صفحه 182-131 .
8 -نظری پوركیانی، ع ا. 1363 .بررسی فشار و سرعت جریان در سرریز نیلوفری سد البرز با استفاده از نرمافزار 3D-FLOW .اولین كنفرانس سراسری
توسعه محوری مهندسی عمران، معماری، برق و مکانیک ایران.
6 -نوحانی، ا.، جمالی امام قیس، ر. 1364 .بررسی آزمایشگاهی تأثیرشکل تیغه های ضد گرداب برراندمان تخلیهی سرریزهای نیلوفری، نشریه آبیاری و
زهکشی ایران، جلد 6 ،شماره 1 ،صفحه 346-341 .
10-Akbari, A A., Nohani, E and A. Afrous. 2015. Numerical study of the effect of anti-vortex plates on the
inflow pattern in shaft spillways. Indian Journal of Fundamental and Applied Life Sciences, 5(S1):
3819-3826.
11-Anonymous, 1965. Design of Small Dams. Water Resources Technical publication, U.S Department of
the interior Bureau of Reclamation.
12-Bagheri, A., Shafai Bajestan, M., Mousavi Jahromi, H., Kashkuli, H. and H. Sedghi. 2010. Hydraulic
evaluation of the flow over polyhedral morning glory spillways. Word Applied Sciences Journal, 9(7):
712-717.
13- Fattor, C. A. and J. D. Bacchiega. 2003. Analysis of instabilities in the charge of regime in morning
glory spillways. Journal of Hydraulic Research, 40(4): 114-123.
14- Khatsuria, R. M. 2005. Hydraulics of spillways and energy dissipaters. Marcel Dekker. Department of
Civil and Environmental Engineering Georgia, Institute of Technology Atlanta, Newyork, USA.
15-Mousavi. S. R., Kamanbedast, A.A., and H. Fathian. 2013. Experimental investigation of the effect of
number of anti-vortex piers on submergence threshold in morning glory spillway with square inlet.
Technical Journal of Engineering and Applied Sciences, 3(24): 3534-3540.
16- Novak, P. 2007. Hydraulic Structures, Fourth edition published by Taylor and Francis. University of
New Castle upon, Tyne, UK, Landon and Network.
17-Tavana, M H., Mousavi Jahromi, H., Shafai Bajestan, M., Masjedi, A. R. and H. Sedghi. 2011.
Optimization of number and direction of vortex breakers in the morning glory spillway using physical
model. Economy, Environmental and Conservation Journal, 17(2): 435-440.
18-Vresteeg. H. K and W. Malalasekera. 1995. An introduction to computational fluid dynamics. Longman
Scientific and Technical. New York.
19-Yakhot. V and L. M. Smith. 1992. The renormalization group. The e-expansion and of turbulence
models. Journal of Computing, 7(1): 35-61.

Figure 1 - General diagram of the forehead and body of the concentrated

Laboratory and Numerical Study of Dynamics Salty Density Current in The Reservoirs

저수지의 동적 염분 흐름의 실험 및 수치해석적 연구

Authors

1 Water resource expert Khuzestan Water and Power Authority
2 shahid chamran univercity of ahwaz

Since the characteristics of density current is affected by different parameters, the effect of discharge rate changes, gradient and the concentration of density current on speed of the forehead  and also the speed distribution in density current’s body have been investigated by physical and three-dimensional mathematical model (Flow-3d) in this research. For these purposes, different tests in the form of salty density current were done with three inflow discharge rates (0.7, 1 and 1.3 liters per second) and three different slopes (0, 1 and 2.2 percent). As well as to evaluate the effect of density changes on the flow characteristics, the concentration of 10, 15 and 20 grams per liter were used. In order to measure the speed of the forehead, velocity distribution in the body and its changes with flow, density and different slopes, video camera and ultrasound profiler speedometer were used in this study. Then, forehead speed and velocity distribution in the current’s body were achieved using six different turbulence models which are available on the software of “Flow-3D”. Comparing the results of physical and mathematical model showed that Eddy turbulence model and laminar flow mode have better accuracy in relation to other turbulent models. It should be noted that Reynolds number on experiments are at the range of  2000-4000.

밀도 흐름의 특성은 서로 다른 파라미터에 의해 영향을 받기 때문에 방출 속도 변화, 구배 및 밀도 흐름의 농도가 수두 속도에 미치는 영향과 밀도 흐름의 볼륨 속도 분포도 물리적 및 3차원 수학 모델(Flow-3d)에 의해 조사되었습니다.

이러한 목적을 위해 세 가지 유입 배출 속도(초당 0.7, 1 및 1.3L)와 세 가지 다른 경사도(0, 1, 2.2%)로 염분 밀도 흐름 형태의 다른 테스트가 수행되었습니다.

밀도 변화가 흐름 특성에 미치는 영향을 평가하기 위해 리터당 10, 15, 20g의 농도를 사용했습니다. 이 연구에서는 수두의 속도를 측정하기 위해 체내의 속도 분포와 흐름, 밀도 및 다양한 기울기와 함께 변화된 속도, 비디오 카메라 및 초음파 프로파일러 속도계를 사용했습니다.

그런 다음, “Flow-3D” 소프트웨어에서 사용할 수 있는 6가지 난류 모델을 사용하여 현재 볼륨의 수두 속도와 속도 분포를 달성했습니다.

물리적 모델과 수학적 모델의 결과를 비교한 결과, 에디 난류 모델과 층류 모드가 다른 난류 모델과 비교하여 더 나은 정확도를 가지고 있다는 것을 보여주었습니다.

레이놀즈 실험 번호는 2000-4000 범위라는 점에 유의해야 합니다.

Figure 1 - General diagram of the forehead and body of the concentrated
Figure 1 – General diagram of the forehead and body of the concentrated
Figure 2 - Dimensional profile of velocity distribution in concentrated flow (Graph and Altinacar, 1662)
Figure 2 – Dimensional profile of velocity distribution in concentrated flow (Graph and Altinacar, 1662)
Figure 1 - Schematic drawing of the physical model used
Figure 1 – Schematic drawing of the physical model used
Figure 0 - Sample of the concentrated flow created in the laboratory (front and body of concentrated flow)
Figure 0 – Sample of the concentrated flow created in the laboratory (front and body of concentrated flow)
Figure 6 - Mixing intensity values against Richardson number and comparing it with the results of other researchers
Figure 6 – Mixing intensity values against Richardson number and comparing it with the results of other researchers

Reference

1- حقی آبی، ا. 1383. بررسی اثر شیب کف بر پروفیل سرعت جریان غلیظ رساله دکتری رشته سازه های آبی ، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.

2- کاهه، م. قمشی، م. و س، ح، موسوی جهرمی، 1391. بررسی آزمایشگاهی سرعت پیشروی جریان غلیظ بر روی سطوح زبر. علوم و مهندسی آبیاری، 35(1): 101-110.

3- کشتکار، ش. ایوب زاده، س ع. و ب، فیروزآبادی، 1389 . بررسی پروفیل سرعت و غلظت جریان گل آلود با استفاده از مدل فیزیکی. پژوهش‌های آبخیزداری،87(2): 43-36.

4- کوتی، ف. کاشفی پور، س، م. و م قمشی، 1391. تجزیه و تحلیل پروفیل های سرعت در جریان غلیظ. مجله ی علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، 59: 29-15.

5- Altinakar, M.S., Graf, W.H. and , E.J, Hopfinger. 1990. Weakly depositing turbidity current on a small slope. Journal of Hydraulic Research. 28(1): 55-80.

6- Baas, J.H. McCaffrey, W.D. Haughton P.D.W. and C, Choux. 2005. Coupling between suspended sediment distribution and turbulence structure in a laboratory turbidity current. Journal of Geophysics Research, 110: 20-32.

7- Barahmand, N. and A, Shamsai. 2010. Experimental and theoretical study of density jumps on smooth and rough beds”. Lakes and Reservoirs: Research and Management, 15(4): 285-307.

8- Britter, R.E. and P, Linden. 1980.The motion of the front of a gravity current traveling down an incline. Journal of Fluid Mechanics, 99(3): 531- 543.

9- Buckee, C. Kneller, B. and J, Peakall. 2001. Turbulence structure in steady solute-driven gravity currents Blackwell Oxford pp, 173-188.

10- Choux, C.M.A. Baas, J.H. McCaffrey, W.D. and P.D.W, Haughton. 2005. Comparison of spatio–temporal evolution of experimental particulate gravity flows at two different initial concentrations based on velocity grain size and density data. Sedimentary Geology, 179: 49-69.

11- FathiMoghadam, M. TorabiPoudeh, H. Ghomshi, M. and M, Shafaei. 2008. The density current head velocity in expansion reaches. Lakes & Reservoirs: Research & Management, 13(1): 63-68.

12- Ghomeshi, M. 1995. Reservoir sedimentationmodeling. Ph.D. Thesis. University of Wollongong. Australia.

  1. Graf, W.H. and M, S, Altinakar. 1998. Fluvial Hydraulics, Flow and Transport Processes in Channels of Simple Geometry. John Wiley and Sons, Ltd, England.

14- Ieong, K, K. Mok, K,M. and H, Yeh. 2006. Fluctuation of the front propagation speed of developed gravity current. Journal of Hydrodynamics, 18(3): 351-355.

15- LaRocca, M. Adduce, C. Sciortino, G. And A, B, Pinzon. 2008. Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom. Physics of Fluids, 20, 106603.

16- McCaffrey, W, D. Choux, C, M. Baas, J, H. And P, D, W, Haughton. 2003. Spatio-temporal evolution of velocity structure concentration and grainsize stratification within experimental particulate gravity currents. Marine and Petroleum Geology. 20: 851-860.

17- Sequeiros, O, E. Spinewine, B. Beaubouef, R, T. Sun, T. Garcia, H. M., and G, Parker. 2010. Characteristics of Velocity and Excess Density Profiles of Saline Underflows and Turbidity Currents Flowing over a Mobile Bed”. Journal of Hydraulic Engineering, 136(7): 167-180.

18- Turner, J, S. 1973. Buoyancy Effects in Fluids. Cambridge University Press London, U.K, pp. 178-181.

19- Yu, W, S. Lee, H, Y. And M, S, Hsu. 2000. Experiments on deposition behavior of fine in a reservoir. Journal of Hydraulic Engineering, 126(12): 912-920.

Fig.2- Richard Dam overflow in America

Studying the effect of shape changes in plan of labyrinth weir on increasing flow discharge coefficient using Flow-3D numerical model

FLOW-3D 수치 모델을 이용하여 미로 위어 평면도의 형상 변화가 유량 계수 증가에 미치는 영향 연구

E. Zamiri 1
, H. Karami 2*
and S. Farzin3
1- M.S. Student, Department of Civil Engineering, Semnan University, Semnan, Iran.
2
*

  • Corresponding Author, Assistant Professor, Department of Civil Engineering, Semnan
    University, Semnan, Iran. (hkarami@semnan.ac.ir).
    3- Assistant Professor, Department of Civil Engineering, Semnan University, Semnan, Iran.

Keywords: : Flood control, Sidewall angle, Predicting discharge coefficient, Computational hydraulic,

Introduction

Weirs are hydraulic structures used to measure, regulate and control the water levels and are
fixed upon open channels and rivers width. Growing magnitude of probable maximum flood
events (PMF) has highlighted the demand for increasing discharge capacity. Application of
labyrinth weir has been suggested as a solution for increasing discharge capacity.
Tullis et al. (1995) evaluated the effective parameters in determining the capacity of a labyrinth
weir. They introduced total head, the effective crest length and the discharge coefficient as
parameters influencing the discharge capacity of a labyrinth weir. Khode et al. (2011)
experimentally studied the parameters of a flow-over labyrinth weir for different side wall angles
(α) from 8 to 30°. They found that discharge coefficient increases by growing side wall angle
values.
Crookston and Tullis (2012a) studied performance of different labyrinth weirs by making
differences between geometric shapes of weirs in plan. The results indicated that discharge
capacity of the arced labyrinth weirs is more than the discharge capacity of horseshoe weirs.
Seo et al. (2016) investigated the effect of weir shapes on discharge of weirs. It was shown that
the discharge of the labyrinth weir had an increase of approximately 71% in comparison with the
linear ogee weir.
In this research, labyrinth weir with sidewall angle equal to 6° was simulated through Flow3D model, using experimental results of previous researchers. After validation, the changes of
discharge coefficient of weir with angles of 45° and 85° and apex shapes of triangular and halfcircular shapes were analyzed.

Weirs는 수위를 측정, 조절 및 제어하는 ​​데 사용되는 수력 구조물이며 열린 수로 및 강 폭에 고정됩니다. 예상되는 최대 홍수 사건 (PMF)의 규모가 커짐에 따라 배출 용량 증가에 대한 요구가 강조되었습니다. 미로 위어 (labyrinth weir)의 적용은 배출 용량을 증가시키기 위한 해결책으로 제안 되었습니다.

Tullis et al. (1995)는 미로 위어의 용량을 결정하는데 효과적인 매개 변수를 평가했습니다. 그들은 미로 위어의 배출 용량에 영향을 미치는 매개 변수로 총 수두, 유효 문장 길이 및 배출 계수를 도입했습니다.

Khode et al. (2011)은 8 ~ 30 °의 다양한 측벽 각도 (α)에 대한 유동-오버 래비 린스 위어의 매개 변수를 실험적으로 연구했습니다.

그들은 측벽 각도 값이 증가함에 따라 방전 계수가 증가한다는 것을 발견했습니다. Crookston과 Tullis (2012a)는 평면에서 위어의 기하학적 모양을 차이를 만들어 서로 다른 미로 위어의 성능을 연구했습니다.

결과는 호형 미로 위어의 배출 용량이 말굽 위어의 배출 용량보다 더 많다는 것을 나타냅니다. Seo et al. (2016)은 위어의 배출에 대한 위어 모양의 영향을 조사했습니다. 미로 위어의 배출량은 선형 오지 위어에 비해 약 71 % 증가한 것으로 나타났습니다.

이 연구에서는 이전 연구자들의 실험 결과를 사용하여 Flow3D 모델을 통해 측벽 각도가 6 ° 인 미로 위어를 시뮬레이션했습니다. 검증 후 각 45 °, 85 °의 위어의 배출 계수 변화와 삼각형 및 반원 형태의 정점 형태를 분석 하였다.

Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.2- Richard Dam overflow in America
Fig.2- Richard Dam overflow in America
Fig.3- Plan of geometric parameters of congressional overflow
Fig.3- Plan of geometric parameters of congressional overflow
Fig. 4- The boundary conditions of the congressional overflow model
Fig. 4- The boundary conditions of the congressional overflow model
Fig.5- View of a simulated congressional overflow
Fig.5- View of a simulated congressional overflow
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow

Results

오버행의 넘침 흐름을 증가시키는 것이 중요하기 때문에 본 연구에서는 넘침 벽의 돌출부에 6, 45 및 85 도의 세 가지 값을 채점하고 넘침 개구부에 삼각형 및 반원 모양을 제안함으로써 , 오버 플로우의 오버 플로우 계수를 변경하여 3D 숫자 래치를 사용하십시오.

Irene Par Vahsh Bareh에서 얻은 결과는 다음과 같습니다.

1- 흐름을 따라 포병의 범람 벽 각도를 늘리면 방출 계수가 증가합니다. 벽 각도가 85도 및 45 도인 포병의 범람 계수는 벽 각도가 6 도인 범람 계수 평균의 2.28 및 1.24 배입니다.

2-구부러진 양고기를 먹은 상태에서 배수로 모양의 변화는 배출 계수를 증가시킨다. 삼각형과 비 삼각형 개구부가있는 오버플로의 배출 계수는 온대 개구부가있는 오버플로의 배출 계수에 비해 양고기가 50.29 및 4.16 % 증가했습니다.

3- 오버플로 양 (p / HT)의 부하와 함께 부하 부하의 무 차원 비율 값을 늘리면 혼잡 한 오버플로의 방전 계수가 감소합니다. 또한 p <HT / 0.5의 값에서 세 가지 형태의 오버플로 개구에 대한 배출 계수의 값은 서로 가깝고 오버플로 모양의 각 끝은 값에서 동일한 기능을 갖습니다. p / HT <0.5. 4-유량이 증가함에 따라 유량 계수가 감소합니다.

References

1- Azhdary Moghaddam, M. and Jafari Nodoushan, E., 2013. Optimization of Geometry of
trapezoidallabyrinth Spillway with using ANFIS Models and Genetic Algorithms (Ute Dam Case Study
in the United States of America). Journal of Civil Engineering. 24(2), pp. 129-138. (In Persian).
2- Canholi, J. F., Canholi, A. P. and Sobral, V., 2011. Hydraulic Design of a Labyrinth Weir in
Aclimação´s Lake. 12nd International Conference on Urban Drainage, Porto Alegre/Brazil.
3- Crookston, B. M. and Tullis, B. P., 2012a. Arced labyrinth weirs. Journal of Hydraulic
Engineering. 138(6), pp.555-562.
4- Crookston, B. M. and Tullis, B. P., 2012b, Hydraulic design and analysis of labyrinth weirs. I:
Discharge relationships. Journal of Irrigation and Drainage Engineering. 139(5), pp.363-370.
5- Esmaeili Varaki, M. and Safarrazavi Zadeh, M., 2013. Study of Hydraulic Features of Flow Over
Labyrinth Weir with Semi-circular Plan form. Journal of Water and Soil. 27(1), pp. 224-234. (In
Persian).
6- Farzin, S., Karami, H. and Zamiri, E., 2016. Study of the Flow over Rubber Dam Using Computational
Hydrodynamics. Journal of Dam and Hydroelectric Powerplant. 3(9), pp.1-11. (In Persian).
7- Hirt, C. W. and Richardson, J. E., 1999. The modeling of shallow flows, Flow Science, Technical
Notes. 48, pp.1-14.
8- Hosseini, K., Tajnesaie, M. and Jafari Nodoush, E., 2015. Optimization of the Geometry of Triangular
Labyrinth Spillways, Using Fuzzy‐Neural System and Differential Evolution Algorithm. Journal of
Civil and Environmental Engineering. 45(1), PP.81-91. (In Persian).
9- Khode, B. V., Tembhurkar, A. R., Porey, P. D. and Ingle, R. N., 2011. Experimental studies on flow
over labyrinth weir. Journal of Irrigation and Drainage Engineering. 138(6), pp.548-552.
10- Nezami, F., Farsadizadeh, D., Hosseinzadeh Delir, A. and Salmasi, F., 2012. Experimental Study of
Discharge Coefficient of Trapezoidal Labyrinth Side-Weirs. Journal of Water and Soil Science. 23(1),
PP.247-257. (In Persian).
11- Nikpiek, P. and Kashefipour, S. M., 2014. Effect of the hydraulic conditions and structure geometry on
mathematical modelling of discharge coefficient for duckbill and oblique weirs. Journal of Irrigation
Science and Engineering. 39(1), pp.1-10. (In Persian).
12- Noori, B. M. and Aaref, N. T., 2017. Hydraulic Performance of Circular Crested Triangular Plan Form
Weirs. Arabian Journal for Science and Engineering. pp.1-10.
13- Noruzi, S. and Ahadiyan, J., 2016. Effect of Vortex Breaker Blades 45 Degree on Discharge
Coefficient of Morning Glory Spillway Using Flow-3D. Journal of Irrigation Science and
Engineering. 39(4), PP. 47-58. (In Persian).
14- Paxson, G. and Savage, B., 2006. Labyrinth spillways: comparison of two popular USA design
methods and consideration of non-standard approach conditions and geometries. Proceedings of the
international junior researcher and engineer workshop on hydraulic structures, Montemor-o-Novo,
Portugal, Division of Civil Engineering, 37.
15- Payri, R., Tormos, B., Gimeno, J. and Bracho, G., 2010. The potential of Large Eddy Simulation (LES)
code for the modeling of flow in diesel injectors. Mathematical and Computer Modelling. 52(7),
pp.1151-1160.
16- Rezaee, M., Emadi, A. and Aqajani Mazandarani, Q., 2016. Experimental Study of Rectangular
Labyrinth Weir. Journal of Water and Soil. 29(6), pp. 1438-1446. (In Persian).
17- Seo, I. W., Do Kim, Y., Park, Y. S. and Song, C. G. 2016, Spillway discharges by modification of weir
shapes and overflow surroundings. Environmental Earth Sciences. 75(6), pp.1-13.
18- Suprapto, M., 2013. Increase spillway capacity using Labyrinth Weir. Procedia Engineering. 54, pp.
440-446.
19- Tullis, J. P., Amanian, N. and Waldron, D., 1995. Design of labyrinth spillways. Journal of Hydraulic
Engineering. 121(3), pp.247-255.
20- Zamiri, E., Karami, H. and Farzin, S., 2016. Numerical Study of Labyrinth Weir Using RNG
Turbulence Model. 15th Iranian Hydraulic Conference, Imam Khomeini International University,
Qazvin, Iran. (In Persian).

Journal of Irrigation Sciences and Engineering (JISE)

FLOW-3D 모델을 사용하여 오리피스 업스트림의 종 방향 및 횡 방향 속도 프로파일 모델링

Modeling Longitudinal and Transverse Velocity Profiles Upstream of an Orifice Using the FLOW-3D Model

Authors

1 MS Student, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Professor, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 shahid chamran university

Abstract

Due to the crisis of water scarcity, water resources management has become inevitable in Iran. Dam reservoirs are among the most important used water resources. Construction of a dam on a river reduces the flow velocity in the reservoir, finally resulting in the deposit of sediments in it. The depositing of sediments in the dam reservoir reduces its useful volume and disturbs the dam’s performance in terms of water storage. Therefore, solutions have always been proposed to manage and discharge sediments in the reservoir during the service period. In this regard, pressurized flushing is a common solution for eliminating sediments. In this method, by opening the bottom gates, the upstream water pressure discharges the sediments through the orifice. The volume of the exited sediments is a function of factors, such as gate diameter, sediments type and size, water height upstream the gate, and outflow discharge. Numerous studies have been conducted on the effect of the mentioned factors on the volume of sediments exited from an orifice. Shahmirzadi et al. (2010) experimentally evaluated the effect of the diameter of bottom dischargers on the dimensions of the flushing cone. Powell and Khan (2015) conducted tests to investigate the flow pattern upstream of a dam orifice under the fixed bed and equilibrium scour (mobile bed) conditions. Their results demonstrated that the velocity’s horizontal component was almost equal for both fixed and equilibrium scour conditions. The same conditions were also the case for the vertical component of the velocity.

Keywords : Flushing, orifice, turbulence model, shear stress

물 부족의 위기로 이란에서는 수자원 관리가 불가피해졌습니다. 댐 저수지는 가장 중요한 사용 수자원 중 하나 입니다. 강에 댐을 건설하면 저수지의 유속이 감소하여 결국 침전물이 퇴적됩니다. 댐 저수지에 퇴적물이 쌓이면 유용한 부피가 줄어들고 물 저장 측면에서 댐의 성능이 저하됩니다.

따라서 서비스 기간 동안 저수지의 퇴적물을 관리하고 배출하는 솔루션이 항상 제안 되었습니다. 이와 관련하여 가압 플러싱은 침전물 제거를 위한 일반적인 솔루션입니다.

이 방법에서는 하단 게이트를 열면 상류 수압이 오리피스를 통해 퇴적물을 배출합니다. 배출된 퇴적물의 부피는 게이트 직경, 퇴적물의 유형 및 크기, 게이트 상류의 수위, 유출 배출과 같은 요인의 함수입니다.

오리피스에서 배출되는 퇴적물의 양에 대한 언급 된 요인의 영향에 대한 수많은 연구가 수행되었습니다. Shahmirzadi et al. (2010)은 바닥 배출기의 직경이 플러싱 콘의 치수에 미치는 영향을 실험적으로 평가했습니다.

Powell and Khan (2015)은 고정층 아래의 댐 오리피스 상류의 유동 패턴과 평형 수색 (이동 층) 조건을 조사하기 위해 테스트를 수행했습니다. 그들의 결과는 속도의 수평 성분이 고정 및 평형 수색 조건 모두에서 거의 동일하다는 것을 보여주었습니다. 속도의 수직 성분에 대해서도 동일한 조건이 적용되었습니다.

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Numerical investigation of flow characteristics over stepped spillways

Güven, Aytaç
Mahmood, Ahmed Hussein
Water Supply (2021) 21 (3): 1344–1355.
https://doi.org/10.2166/ws.2020.283Article history

Abstract

Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

HIGHLIGHTS

ListenReadSpeaker webReader: Listen

  • A numerical model was developed for stepped spillways.
  • The turbulent flow was simulated by the Renormalized Group (RNG) model.
  • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

Keyword

CFDnumerical modellingslope changestepped spillwayturbulent flow

INTRODUCTION

댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

METHODOLOGY

ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

formula

(1)

formula

(2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

formula

(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

formula

(4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

formula

(5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

formula

(6)where ⁠: the turbulent length scale.

VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

formula

(7)

formula

(8)

formula

(9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

Case study

ListenReadSpeaker webReader: Listen

In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1

Location of pressure sensors on horizontal step faces

Θ(°)L(m)x/l (–)
50.0 0.050 0.35 0.64 – – – 
30.0 0.104 0.17 0.50 0.84 – – 
18.6 0.178 0.10 0.30 0.50 0.7 0.88 
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Numerical model set-up

ListenReadSpeaker webReader: Listen

A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2

Variables used in test runs

Test no.Θ1 (°)Θ2 (°)h(m)d0q (m3s1)dc/h (–)
50 18.6 0.06 0.045 0.1 2.6 
50 18.6 0.06 0.082 0.235 4.6 
50 30.0 0.06 0.045 0.1 2.6 
50 30.0 0.06 0.082 0.235 4.6 
Table 2 Variables used in test runs

For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.

The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.

Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Figure 3VIEW LARGEDOWNLOAD SLIDE

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.

There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).

The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.

RESULTS AND DISCUSSION

ListenReadSpeaker webReader: Listen

The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.

Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure 4VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 5VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 6VIEW LARGEDOWNLOAD SLIDE

Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

Figure 7VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.

The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.

Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.

Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 8VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.

Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.

Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.

Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

CONCLUSION

ListenReadSpeaker webReader: Listen

In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.

Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.

The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.

이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.

Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.

Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.

DATA AVAILABILITY STATEMENT

ListenReadSpeaker webReader: Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Boes R. M. Hager W. H. 2003a Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
Google Scholar
Boes R. M. Hager W. H. 2003b Two-Phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering 129 (9), 661–670.
Google Scholar
Chanson H. 1994 Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research 32 (3), 445–460.
Google Scholar
Chanson H. 1997 Air Bubble Entrainment in Free Surface Turbulent Shear Flows. Academic Press, London.
Google Scholar
Chanson H. 2002 The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands.
Google Scholar
Felder S. Chanson H. 2011 Energy dissipation down a stepped spillway with nonuniform step heights. Journal of Hydraulic Engineering 137 (11), 1543–1548.
Google Scholar
Flow Science, Inc. 2012 FLOW-3D v10-1 User Manual. Flow Science, Inc., Santa Fe, CA.
Ghaderi A. Daneshfaraz R. Torabi M. Abraham J. Azamathulla H. M. 2020a Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply 20 (5), 1988–1998.
Google Scholar
Ghaderi A. Abbasi S. Abraham J. Azamathulla H. M. 2020b Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation 72, 101711.
Google Scholar
Gonzalez C. A. Chanson H. 2008 Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research 46 (1), 65–72.
Google Scholar
Gunal M. 1996 Numerical and Experimental Investigation of Hydraulic Jumps. PhD Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK.
Hirt C. W. Nichols B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1), 201–225.
Google Scholar
Matos J. 2000 Hydraulic design of stepped spillways over RCC dams. In: Intl Workshop on Hydraulics of Stepped Spillways (H.-E. Minor & W. Hager, eds). Balkema Publ, Zurich, pp. 187–194.
Google Scholar
Mohammad Rezapour Tabari M. Tavakoli S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 41 (4), 1215–1224.
Google Scholar
Ostad Mirza M. J. 2016 Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics Over Stepped Spillways. Communications du Laboratoire de Constructions Hydrauliques, No. 64 (A. J. Schleiss, ed.). Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Roshan R. Azamathulla H. M. Marosi M. Sarkardeh H. Pahlavan H. Ab Ghani A. 2010 Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs 20 (3), 131–136.
Google Scholar
Shahheydari H. Nodoshan E. J. Barati R. Moghadam M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
Google Scholar
Takahashi M. Ohtsu I. 2012 Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research 50 (4), 427–434.
Google Scholar
Versteeg H. K. Malalasekera W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow.
Google Scholar
© 2021 The Authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.

Three-dimensional cellwise conservative unsplit geometric VOF schemes

3차원 셀별 보수 미분할 기하학적 VOF 체계

Raphaël Comminal, JonSpangenberg

Abstract

This work presents two unsplit geometric VOF schemes that extend the two-dimensional cellwise conservative unsplit (CCU) scheme [Comminal et al., J. Comput. Phys. 283 (2015) 582–608] to three dimensions. The novelty of the 3D-CCU schemes lies in the representation of the streaksurfaces of donating regions by polyhedral surfaces whose vertices are calculated with the 4th order Runge-Kutta scheme. Moreover, the advected liquid volumes are computed using a truncation algorithm [López et al., J. Comput. Phys. 392 (2019) 666–693] suited for arbitrary non-convex and self-intersecting polyhedra, which removes the need for tetrahedral decomposition. The 3D-CCU advection schemes were coupled to three interface reconstruction methods (Youngs’ method, the Mixed Youngs-Centered scheme, and the Least-Square Fit algorithm). The resulting VOF methods were tested in classical benchmark advection tests, including translation, rigid-body rotation, shear and deformation flows. The proposed 3D-CCU schemes conserve the liquid volume and maintain the physical boundedness of liquid volume fractions to the machine precision. The 3D-CCU schemes perform favorably compared to other unsplit geometric VOF schemes when coupled to Youngs’ interface reconstruction method. Moreover, the 3D-CCU schemes coupled to the Least-Square Fit algorithm are more accurate than most other VOF schemes that use a second-order accurate interface reconstruction, except those where a 3D extension of the Mosso-Swartz interface reconstruction is employed. The comparison of the different VOF schemes highlights the importance of coupling accurate interface reconstruction methods with accurate unsplit advection schemes.

이 연구는 2 차원 CCU (Cellwise Conservative Unsplit) 방식을 확장하는 두 가지 분할되지 않은 기하학적 VOF 방식을 제시합니다 [Comminal et al., J. Comput. Phys. 283 (2015) 582–608]을 3 차원으로 변경했습니다. 3D-CCU 체계의 참신함은 4 차 Runge-Kutta 체계로 정점이 계산되는 다면체 표면으로 기부 지역의 줄무늬 표면을 표현하는 데 있습니다.

더욱, 가변 액체 부피는 절단 알고리즘을 사용하여 계산됩니다 [López et al., J. Comput. Phys. 392 (2019) 666–693]은 임의의 볼록하지 않고 자기 교차하는 다면체에 적합하며, 이는 사면체 분해의 필요성을 제거합니다. 3D-CCU 이류 계획은 세 가지 인터페이스 재구성 방법 (Youngs의 방법, Mixed Youngs-Centered 계획 및 Least-Square Fit 알고리즘)과 결합되었습니다. 결과 VOF 방법은 평행 이동, 강체 회전, 전단 및 변형 흐름을 포함한 고전적인 벤치 마크 이류 테스트에서 테스트되었습니다.

제안된 3D-CCU 방식은 액체 부피를 보존하고 기계 정밀도에 대한 액체 부피 분율의 물리적 경계를 유지합니다. 3D-CCU 방식은 Youngs의 인터페이스 재구성 방식과 결합 할 때 다른 분할되지 않은 기하학적 VOF 방식에 비해 우수한 성능을 발휘합니다.

또한 Least-Square Fit 알고리즘과 결합 된 3D-CCU 체계는 Mosso-Swartz 인터페이스 재구성의 3D 확장이 사용되는 경우를 제외하고 2 차 정확한 인터페이스 재구성을 사용하는 대부분의 다른 VOF 체계보다 더 정확합니다. 서로 다른 VOF 체계의 비교는 정확한 인터페이스 재구성 방법과 정확한 분할되지 않은 이류 체계를 결합하는 것의 중요성을 강조합니다.

Keywords

Volume-of-fluid methodUnsplit geometric schemeCellwise advectionSemi-Lagrangian trackingVolume conservation

Fig. 1. Eulerian fluxwise advection. (a) Positive donating region with respect to the left cell; (b) Negative donating region; (c) Intersection of a donating region with the cell's face, yielding a positive and a negative region; (d) Temporally-consistent donating regions equivalent to a cellwise advection; (e) Temporal inconsistency of adjacent donating regions.
Fig. 1. Eulerian fluxwise advection. (a) Positive donating region with respect to the left cell; (b) Negative donating region; (c) Intersection of a donating region with the cell’s face, yielding a positive and a negative region; (d) Temporally-consistent donating regions equivalent to a cellwise advection; (e) Temporal inconsistency of adjacent donating regions.
Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.
Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.
Fig. 3. (a) Cartesian grid cell. (b) Images of the cell's vertices with ruled surfaces. (c) Polyhedral cell's image with triangulated faces.
Fig. 3. (a) Cartesian grid cell. (b) Images of the cell’s vertices with ruled surfaces. (c) Polyhedral cell’s image with triangulated faces.
Fig. 4. Construction of donating regions. (a) Streakline of a cell's vertex P0 represented by the 2-segment polygonal line P0–P1/2–P1. (b) Triangulated streaksurface of a cell's edge P0Q0. (c) Streaktube of a cell's face P0Q0R0S0. (d) Pyramidal volume flux correction  ⁎  capping the donating region of the face P0Q0R0S0.
Fig. 4. Construction of donating regions. (a) Streakline of a cell’s vertex P0 represented by the 2-segment polygonal line P0–P1/2–P1. (b) Triangulated streaksurface of a cell’s edge P0Q0. (c) Streaktube of a cell’s face P0Q0R0S0. (d) Pyramidal volume flux correction ⁎ capping the donating region of the face P0Q0R0S0.
Fig. 5. Interface reconstruction. (a) PLIC polygon in the grid cell, (b) Non-planar image of the PLIC polygon inside the cell's image by isomorphism, (c) Planar PLIC inside the cell's image by computation of the average normal vector. (Triangulation of the cell's image faces are omitted for clarity.)
Fig. 5. Interface reconstruction. (a) PLIC polygon in the grid cell, (b) Non-planar image of the PLIC polygon inside the cell’s image by isomorphism, (c) Planar PLIC inside the cell’s image by computation of the average normal vector. (Triangulation of the cell’s image faces are omitted for clarity.)
Fig. 6. Convergence of the geometric errors in the translation tests.
Fig. 6. Convergence of the geometric errors in the translation tests.
Fig. 7. Reconstructed PLIC polygons (in light blue) superimposed to the exact sphere position (in dark blue) at the end of the rotation tests for the LSF method and CFL = 1.
Fig. 7. Reconstructed PLIC polygons (in light blue) superimposed to the exact sphere position (in dark blue) at the end of the rotation tests for the LSF method and CFL = 1.
Fig. 8. Reconstructed PLIC polygons in the shear tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs' method.
Fig. 8. Reconstructed PLIC polygons in the shear tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs’ method.
Fig. 9. Reconstructed PLIC polygons in the deformation tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs' method.
Fig. 9. Reconstructed PLIC polygons in the deformation tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs’ method.

References
[1]
C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981) 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
Google Scholar
[2]
F.H. Harlow, J.E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, The Physics of Fluids 8 (1965) 2182–2189. https://doi.org/10.1063/1.1761178.
Google Scholar
[3]
S. McKee, M.F. Tomé, V.G. Ferreira, J.A. Cuminato, A. Castelo, F.S. Sousa, N. Mangiavacchi, The MAC method, Computers & Fluids 37 (2008) 907–930. https://doi.org/10.1016/j.compfluid.2007.10.006.
Google Scholar
[4]
G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A front-tracking method for the computations of multiphase flow, Journal of Computational Physics 169 (2001) 708–759. https://doi.org/10.1006/jcph.2001.6726.
Google Scholar
[5]
S. Shin, D. Juric, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, Journal of Computational Physics 180 (2002) 427–470. https://doi.org/10.1006/jcph.2002.7086.
Google Scholar
[6]
M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics 114 (1994) 146–159. https://doi.org/10.1006/jcph.1994.1155.
Google Scholar
[7]
E. Olsson, G. Kreiss, A conservative level set method for two phase flow, Journal of Computational Physics 210 (2005) 225–246. https://doi.org/10.1016/j.jcp.2005.04.007.
Google Scholar
[8]
D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, Journal of Computational Physics 155 (1999) 96–127. https://doi.org/10.1006/jcph.1999.6332.
Google Scholar
[9]
M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, Journal of Computational Physics 162 (2000) 301–337. https://doi.org/10.1006/jcph.2000.6537.
Google Scholar
[10]
M. Sussman, A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, Journal of Computational Physics 187 (2003) 110–136. https://doi.org/10.1016/S0021-9991(03)00087-1.
Google Scholar
[11]
N. Balcázar, O. Lehmkuhl, L. Jofre, J. Rigola, A. Oliva, A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes, Computers & Fluids 124 (2016) 12–29. https://doi.org/10.1016/j.compfluid.2015.10.005.
Google Scholar
[12]
Y. Liu, X. Yu, A coupled phase–field and volume-of-fluid method for accurate representation of limiting water wave deformation, Journal of Computational Physics 321 (2016) 459–475. https://doi.org/10.1016/j.jcp.2016.05.059.
Google Scholar
[13]
E. Aulisa, S. Manservisi, R. Scardovelli, A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking, Journal of Computational Physics 197 (2004) 555–584. https://doi.org/10.1016/j.jcp.2003.12.009.
Google Scholar
[14]
D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, Journal of Computational Physics 183 (2002) 83–116. https://doi.org/10.1006/jcph.2002.7166.
Google Scholar
[15]
T. Marić, H. Marschall, D. Bothe, lentFoam – A hybrid Level Set/Front Tracking method on unstructured meshes, Computers & Fluids 113 (2015) 20–31. https://doi.org/10.1016/j.compfluid.2014.12.019.
Google Scholar
[16]
S. Mirjalili, S.S. Jain, M. Dodd, Interface-capturing methods for two-phase flows: An overview and recent developments, In: Center for Turbulence Research Annual Research Briefs (2017) 117–135.
Google Scholar
[17]
D. Fuster, A. Bagué, T. Boeck, L. Le Moyne, A. Leboissetier, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, International Journal of Multiphase Flow 35 (2009) 550–565. https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.014.
Google Scholar
[18]
X. Chen, D. Ma, V. Yang, S. Popinet, High-fidelity simulations of impinging jet atomization, Atomization and Sprays 23 (2013) 1079–1101. https://doi.org/10.1615/AtomizSpr.2013007619.
Google Scholar
[19]
J. Delteil, S. Vincent, A. Erriguible, P. Subra-Paternault, Numerical investigations in Rayleigh breakup of round liquid jets with VOF methods, Computers & Fluids 50 (2011) 10–23. https://doi.org/10.1016/j.compfluid.2011.05.010.
Google Scholar
[20]
Agbaglah, S. Delaux, D. Fuster, J. Hoepffner, C. Josserand, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method, Comptes Rendus Mecanique 339 (2011) 194–207. https://doi.org/10.1016/j.crme.2010.12.006.
Google Scholar
[21]
H. Grosshans, A. Movaghar, L. Cao, M. Oevermann, R.Z. Szász, L. Fuchs, Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters, Computers & Fluids 136 (2016) 312–323. https://doi.org/10.1016/j.compfluid.2016.06.018.
Google Scholar
[22]
D. Lörstad, L. Fuchs, High-order surface tension VOF-model for 3D bubble flows with high density ratio, Journal of Computational Physics 200 (2004) 153–176. https://doi.org/10.1016/j.jcp.2004.04.001.
Google Scholar
[23]
D. Fuster, S. Popinet, An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension, Journal of Computational Physics 374 (2018) 752–768. https://doi.org/10.1016/j.jcp.2018.07.055.
Google Scholar
[24]
N. Nikolopoulos, K.S. Nikas, G. Bergeles, A numerical investigation of central binary collision of droplets, Computers & Fluids 38 (2009) 1191–1202. https://doi.org/10.1016/j.compfluid.2008.11.007.
Google Scholar
[25]
G. Strotos, I. Malgarinos, N. Nikolopoulos, M. Gavaises, Predicting droplet deformation and breakup for moderate Weber numbers, International Journal of Multiphase Flow 85 (2016) 96–109. https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.001.
Google Scholar
[26]
D. Jiao, K. Jiao, F. Zhang, Q. Du, Direct numerical simulation of droplet deformation in turbulent flows with different velocity profiles, Fuel 247 (2019) 302–314. https://doi.org/10.1016/j.fuel.2019.03.010.
Google Scholar
[27]
F. Giussani, F. Piscaglia, G. Saez-Mischlich, J. Hèlie, A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization, Journal of Computational Physics 406 (2020) 109068. https://doi.org/10.1016/j.jcp.2019.109068.
Google Scholar
[28]
M.R. Pendar, E. Roohi, Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models, Ocean Engineering 112 (2016) 287–306. https://doi.org/10.1016/j.oceaneng.2015.12.010.
Google Scholar
[29]
Flow Science, Inc., Santa Fe, NM, USA. FLOW-3D® Version 12.0 (2019). https://www.flow3d.com.
Google Scholar
[30]
O. Ubbink, R.I. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, Journal of Computational Physics 153 (1999) 26–50. https://doi.org/10.1006/jcph.1999.6276.
Google Scholar
[31]
S. Muzaferija, A two-fluid Navier-Stokes solver to simulate water entry, In: Proceedings of 22nd Symposium on Naval Architecture (1999) 638–651.
Google Scholar
[32]
M. Darwish, F. Moukalled, Convective schemes for capturing interfaces of free-surface flows on unstructured grids, Numerical Heat Transfer, Part B: Fundamentals 49 (2006) 19–42. https://doi.org/10.1080/10407790500272137.
Google Scholar
[33]
S.S. Deshpande, L. Anumolu, M.F. Trujillo, Evaluating the performance of the two-phase flow solver interFoam, Computational Science & Discovery 5 (2012) 014016. https://doi.org/10.1088/1749-4699/5/1/014016.
Google Scholar
[34]
J.A. Heyns, A.G. Malan, T.M. Harms, O.F. Oxtoby, Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach, International Journal for Numerical Methods in Fluids 71 (2013) 788–804. https://doi.org/10.1002/fld.3694.
Google Scholar
[35]
S. Ii, K. Sugiyama, S. Takeuchi, S. Takagi, Y. Matsumoto, F. Xiao, An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction, Journal of Computational Physics 231 (2012) 2328–2358. https://doi.org/10.1016/j.jcp.2011.11.038.
Google Scholar
[36]
B. Xie, S. Ii, F. Xiao, An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: The THINC method with quadratic surface representation, International Journal for Numerical Methods in Fluids 76 (2014) 1025–1042. https://doi.org/10.1016/j.jcp.2013.11.034.
Google Scholar
[37]
Q. Zhang, On Donating Regions: Lagrangian Flux through a Fixed Curve, SIAM Review 55 (2013) 443–461. https://doi.org/10.1137/100796406.
Google Scholar
[38]
E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, Journal of Computational Physics 225 (2007) 2301–2319. https://doi.org/10.1016/j.jcp.2007.03.015.
Google Scholar
[39]
G.D. Weymouth, D.K.-P. Yue, Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids, Journal of Computational Physics 229 (2010) 2853–2865. https://doi.org/10.1016/j.jcp.2009.12.018.
Google Scholar
[40]
C.S. Wu, D.L. Young, H.C. Wu, Simulations of multidimensional interfacial flows by an improved volume-of-fluid method, International Journal of Heat and Mass Transfer 60 (2013) 739–755. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.049.
Google Scholar
[41]
T. Marić, D.B. Kothe, D. Bothe, Unstructured un-split geometrical Volume-of-Fluid methods – A review, Journal of Computational Physics 420 (2020) 109695. https://doi.org/10.1016/j.jcp.2020.109695.
Google Scholar
[42]
Q. Zhang, On a Family of Unsplit Advection Algorithms for Volume-of-Fluid Methods, SIAM Journal on Numerical Analysis 51 (2013) 2822–2850. https://doi.org/10.1137/120897882.
Google Scholar
[43]
W.J. Rider, D.B. Kothe, Reconstructing Volume Tracking, Journal of Computational Physics 141 (1998) 112–152. https://doi.org/10.1006/jcph.1998.5906.
Google Scholar
[44]
J. López, J. Hernández, P. Gómez, F. Faura, A volume of fluid method based on multidimensional advection and spline interface reconstruction, Journal of Computational Physics 195 (2004) 718–742. https://doi.org/10.1016/j.jcp.2003.10.030.
Google Scholar
[45]
D.J.E. Harvie, D.F. Fletcher, A new volume of fluid advection algorithm: the defined donating region scheme, International Journal for Numerical Methods in Fluids 35 (2001) 151–172. https://doi.org/10.1002/1097-0363(20010130)35:2<151::AID-FLD87>3.0.CO;2-4.
Google Scholar
[46]
D.J.E. Harvie, D.F. Fletcher, A New Volume of Fluid Advection Algorithm: The Stream Scheme, Journal of Computational Physics 162 (2000) 1–32. https://doi.org/10.1006/jcph.2000.6510.
Google Scholar
[47]
J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, Journal of Computational Physics 199 (2004) 465–502. https://doi.org/10.1016/j.jcp.2003.12.023.
Google Scholar
[48]
A. Cervone, S. Manservisi, R. Scardovelli, S. Zaleski, A geometrical predictor–corrector advection scheme and its application to the volume fraction function, Journal of Computational Physics 228 (2009) 406–419. https://doi.org/10.1016/j.jcp.2008.09.016.
Google Scholar
[49]
R. Comminal, J. Spangenberg, J.H. Hattel, Cellwise conservative unsplit advection for the volume of fluid method, Journal of Computational Physics 283 (2015) 582–608. https://doi.org/10.1016/j.jcp.2014.12.003.
Google Scholar
[50]
J. Mencinger, I. Žun, A PLIC–VOF method suited for adaptive moving grids, Journal of Computational Physics 230 (2011) 644–663. https://doi.org/10.1016/j.jcp.2010.10.010.
Google Scholar
[51]
P. Liovic, M. Rudman, J.-L. Liow, D. Lakehal, D. Kothe, A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction, Computers & Fluids 35 (2006) 1011–1032. https://doi.org/10.1016/j.compfluid.2005.09.003.
Google Scholar
[52]
J. Hernández, J. López, P. Gómez, C. Zanzi, F. Faura, A new volume of fluid method in three dimensions—Part I: Multidimensional advection method with face-matched flux polyhedra, International Journal for Numerical Methods in Fluids 58 (2008) 897–921. https://doi.org/10.1002/fld.1776.
Google Scholar
[53]
V. Le Chenadec, H. Pitsch, A 3D Unsplit Forward/Backward Volume-of-Fluid Approach and Coupling to the Level Set Method, Journal of Computational Physics 233 (2013) 10–33. https://doi.org/10.1016/j.jcp.2012.07.019.
Google Scholar
[54]
M. Owkes, O. Desjardins, A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method, Journal of Computational Physics 270 (2014) 587–612. https://doi.org/10.1016/j.jcp.2014.04.022.
Google Scholar
[55]
L. Jofre, O. Lehmkuhl, J. Castro, A. Oliva, A 3-D Volume-of-Fluid advection method based on cell-vertex velocities for unstructured meshes, Computers & Fluids 94 (2014) 14–29. https://doi.org/10.1016/j.compfluid.2014.02.001.
Google Scholar
[56]
T. Marić, H. Marschall, D. Bothe, voFoam – A geometrical Volume of Fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using OpenFOAM, arXiv preprint (2013) arXiv:1305.3417.
Google Scholar
[57]
T. Marić, H. Marschall, D. Bothe, An enhanced un-split face-vertex flux-based VoF method, Journal of Computational Physics 371 (2018) 967–993. https://doi.org/10.1016/j.jcp.2018.03.048.
Google Scholar
[58]
C.B. Ivey, P. Moin, Conservative volume of fluid advection method on unstructured grids in three dimensions, In: Center for Turbulence Research Annual Research Briefs (2012) 179–192.
Google Scholar
[59]
C.B. Ivey, P. Moin, Conservative and bounded volume-of-fluid advection on unstructured grids, Journal of Computational Physics 350 (2017) 387–419. https://doi.org/10.1016/j.jcp.2017.08.054.
Google Scholar
[60]
J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, Royal Society Open Science 3 (2016) 160405. https://doi.org/10.1098/rsos.160405.
Google Scholar
[61]
J. López, P. Gómez, C. Zanzi, F. Faura, H. Hernández, Application of Non-Convex Analytic and Geometric Tools to a PLIC-VOF Method. In: ASME International Mechanical Engineering Congress and Exposition (2016) V007T09A005. https://doi.org/10.1115/IMECE2016-67409.
Google Scholar
[62]
J. López, J. Hernández, P. Gómez, F. Faura, Non-convex analytical and geometrical tools for volume truncation, initialization and conservation enforcement in VOF methods, Journal of Computational Physics 392 (2019) 666–693. https://doi.org/10.1016/j.jcp.2019.04.055.
Google Scholar
[63]
J. López, J. Hernández, P. Gómez, C. Zanzi, R. Zamora, VOFTools 5: An extension to non-convex geometries of calculation tools for volume of fluid methods, Computer Physics Communications (2020) 107277. https://doi.org/10.1016/j.cpc.2020.107277.
Google Scholar
[64]
D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, In: Numerical Methods for Fluid Dynamics, Eds: K.W. Morton, M.J. Baines, Academic Press New York, 1982, pp. 273–285.
Google Scholar
[65]
R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection, International Journal for Numerical Methods in Fluids 41 (2003) 251–274. https://doi.org/10.1002/fld.431.
Google Scholar
[66]
R. Scardovelli, S. Zaleski, Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids, Journal of Computational Physics 164 (2000) 228–237. https://doi.org/10.1006/jcph.2000.6567.
Google Scholar
[67]
D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, Journal of Computational Physics 152 (1999) 423–456. https://doi.org/10.1006/jcph.1998.6168.
Google Scholar
[68]
V. Dyadechko, M. Shashkov, Moment-of-fluid interface reconstruction, Los Alamos Report LA-UR-07-1537 (2007).
Google Scholar
[69]
F. Tampieri, Newell’s method for computing the plane equation of a polygon, In: Graphics Gems III (1992) 231–232. https://doi.org/10.1016/B978-0-08-050755-2.50052-X.
Google Scholar
[70]
J. López, J. Hernández, P. Gómez, F. Faura, A new volume conservation enforcement method for PLIC reconstruction in general convex grids, Journal of Computational Physics 316 (2016) 338–359. https://doi.org/10.1016/j.jcp.2016.04.018.
Google Scholar
[71]
C.W.S. Bruner, Geometric Properties of Arbitrary Polyhedra in Terms of Face Geometry, AIAA Journal 33 (1995) 1350–1350. https://doi.org/10.2514/3.12556.
Google Scholar
[72]
R.N. Goldman, Area of planar polygons and volume of polyhedra, In: Graphics Gems II (1991) 170–171. https://doi.org/10.1016/B978-0-08-050754-5.50043-8.
Google Scholar
[73]
B. Freireich, M. Kodam, C. Wassgren, An exact method for determining local solid fractions in discrete element method simulations, AIChE Journal 56 (2010) 3036–3048. https://doi.org/10.1002/aic.12223.
Google Scholar
[74]
J. López, C. Zanzi, P. Gómez, F. Faura, J. Hernández, A new volume of fluid method in three dimensions—Part II: Piecewise-planar interface reconstruction with cubic-Bézier fit, International Journal for Numerical Methods in Fluids 58 (2008) 923–944. https://doi.org/10.1002/fld.1775.
Google Scholar
[75]
P. Cifani, W.R. Michalek, G.J.M. Priems, J.G. Kuerten, C.W.M. van der Geld, B.J. Geurts, A comparison between the surface compression method and an interface reconstruction method for the VOF approach, Computers & Fluids 136 (2016) 421–435. https://doi.org/10.1016/j.compfluid.2016.06.026.
Google Scholar
[76]
A. Asuri Mukundan, T. Ménard, J.C. Brändle de Motta, A. Berlemont, A 3D Moment of Fluid method for simulating complex turbulent multiphase flows, Computers & Fluids 198 (2020) 104364. https://doi.org/10.1016/j.compfluid.2019.104364.
Google Scholar
[77]
C.B. Ivey, P. Moin, Accurate interface normal and curvature estimates on three-dimensional unstructured non-convex polyhedral meshes, Journal of Computational Physics 300 (2015) 365–386. https://doi.org/10.1016/j.jcp.2015.07.055.
Google Scholar
[78]
H.T. Ahn, M. Shashkov, Multi-material interface reconstruction on generalized polyhedral meshes, Journal of Computational Physics 226 (2007) 2096–2132. https://doi.org/10.1016/j.jcp.2007.06.033.
Google Scholar
[79]
G. Černe, S. Petelin, I. Tiselj, Numerical errors of the volume-of-fluid interface tracking algorithm, International Journal for Numerical Methods in Fluids 38 (2002) 329–350. https://doi.org/10.1002/fld.228.
Google Scholar
[80]
S.J. Mosso, B.K. Swartz, D.B. Kothe, R.C. Ferrell, A parallel, volume-tracking algorithm for unstructured meshes, In: Parallel Computational Fluid Dynamics 1996: Algorithms and Results Using Advanced Computers, 1997, pp. 368–375. https://doi.org/10.1016/B978-044482327-4/50113-3.
Google Scholar
1
This definition of the CFL number is different from the usual definition used in multi-dimensional algebraic advection schemes. However, the component-wise definition is more meaningful in the context of geometric VOF schemes, because it determines the number of layers of cells around the interfacial cells where the liquid volume fractions need to be updated.

Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea

Jae-Seol Shim†, Jinah Kim†, Dong-Chul Kim‡, Kiyoung Heo†, Kideok Do†, Sun-Jung Park ‡
† Coastal Disaster Research Center,
Korea Institute of Ocean Science &
Technology, 426-744, Ansan, Gyeonggi,
Korea
jsshim@kiost.ac
jakim@kiost.ac
kyheo21@kiost.ac
kddo@kiost.ac
‡ Technology R&D Institute
Hyein E&C Co., Ltd., Seoul 157-861,
Korea
skkkdc@chol.com
Nayana_sj@nate.com

ABSTRACT

Shim, J., Kim, J., Kim, D., Heo, K., Do, K., Park, S., 2013. Storm surge inundation simulations comparing threedimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea. In:
Conley, D.C., Masselink, G., Russell, P.E. and O’Hare, T.J. (eds.), Proceedings 12th International Coastal Symposium
(Plymouth, England), Journal of Coastal Research, Special Issue No. 65, pp. 392-397, ISSN 0749-0208.
Severe storm surge inundation was caused by the typhoon Maemi in Masan Bay, South Korea in September 2003. To
investigate the differences in the storm surge inundation simulated by three-dimensional (3D) and two-dimensional
models, we used the ADvanced CIRCulation model (ADCIRC) and 3D computational fluid dynamics (CFD) model
(FLOW3D). The simulation results were compared to the flood plain map of Masan Bay following the typhoon Maemi.
To improve the accuracy of FLOW3D, we used a high-resolution digital surface model with a few tens of centimeterresolution, produced by aerial LIDAR survey. Comparison of the results between ADCRIC and FLOW3D simulations shows that the inclusion of detailed information on buildings and topography has an impact, delaying seawater propagation and resulting in a reduced inundation depth and flooding area. Furthermore, we simulated the effect of the installation of a storm surge barrier on the storm surge inundation. The barrier acted to decrease the water volume of the inundation and delayed the arrival time of the storm surge, implying that the storm surge barrier provides more time for residents’ evacuation.

Keywords: Typhoon Maemi, digital surface elevation model, Reynolds-Averaged NavierStokes equations.

2003 년 9 월 대한민국 마산만 태풍 매미에 의해 심한 폭풍 해일 침수가 발생했습니다. 3 차원 (3D) 및 2 차원 모델로 시뮬레이션 한 폭풍 해일 침수의 차이를 조사하기 위해 ADvanced CIRCulation 모델 ( ADCIRC) 및 3D 전산 유체 역학 (CFD) 모델 (FLOW3D).

시뮬레이션 결과는 태풍 매미 이후 마산만 범람원 지도와 비교되었다. FLOW-3D의 정확도를 높이기 위해 우리는 항공 LIDAR 측량으로 생성된 수십 센티미터 해상도의 고해상도 디지털 표면 모델을 사용했습니다.

ADCRIC과 FLOW3D 시뮬레이션의 결과를 비교하면 건물과 지형에 대한 자세한 정보를 포함하면 해수 전파가 지연되고 침수 깊이와 침수 면적이 감소하는 것으로 나타났습니다.

또한, 폭풍 해일 침수에 대한 폭풍 해일 장벽 설치의 효과를 시뮬레이션했습니다. 이 장벽은 침수 물량을 줄이고 폭풍 해일 도착 시간을 지연시키는 역할을 하여 폭풍 해일 장벽이 주민들의 대피에 더 많은 시간을 제공한다는 것을 의미합니다.

INTRODUCTION

2003 년 9 월 12 일 태풍 매미로 인한 강한 폭풍 해일이 남해안을 강타했습니다. 마산 만 일대는 심한 폭풍우 침수로 인해 최악의 피해를 입었고 광범위한 홍수를 겪었습니다. 따라서 마산 만에 예방 체계를 구축하기 위해 폭풍 해일에 의한 침수에 대한 수치 예측을 시도하는 선행 연구가 수행되었다 (Park et al. 2011).

그러나 일반적인 2 차원 (2D) 또는 3 차원 (3D) 수압 가정을 사용할 때 지형의 해상도는 복잡한 해안 구조를 표현하기에 충분하지 않습니다. 따라서 우리는 마산 만의 고해상도 지형도를 통해 전산 유체 역학 (CFD)의 침수 시뮬레이션을 제시한다.

태풍 매미는 2003 년 9 월 12 일 12시 (UTC)에 한반도에 상륙하여 남동부 해안을 따라 추적했습니다 (그림 1). 2003 년 9 월 13 일 6시 (UTC)에 동 일본해로 이동하여 온대 저기압이되었습니다.

풍속과 기압면에서 한국을 강타한 가장 강력한 태풍 중 하나입니다. 특히 마산 만에 접해있는 마산시는 폭풍 해일 홍수로 최악의 피해를 입어 32 명이 사망하고 심각한 해안 피해를 입었다. 태풍이 지나가는 동안 중앙 기압은 950hPa, 진행 속도는 45kmh-1로 마산항의 조 위계를 통해 최대 약 2.3m의 서지 높이를 기록했다.

마산 만에 접한 주거 및 상업 지역은 홍수가 심했고 지하 시설은 폭풍 해일로 침수로 어려움을 겪었습니다 (Yasuda et al. 2005). 이 논문에서는 3D CFD 모델 (FLOW 3D)과 2D ADvanced CIRCulation 모델 (ADCIRC)을 사용하여 기록 된 마산 만에서 가장 큰 폭풍 해일 중 하나에 의해 생성 된 해안 침수를 시뮬레이션했습니다.

건물의 높이와 공간 정보를 포함하는 디지털 표면 모델 (DSM)은 LiDAR (Airborne Light Detection and Ranging)에 의해 만들어졌으며, 폭풍 해일 침수 모델, 즉 3D CFD 모델 (FLOW 3D)의 입력 데이터로 사용되었습니다. ). 또한 ADCIRC의 시뮬레이션 결과는 FLOW3D의 경계 조건으로 사용됩니다.

본 연구의 목적은 극심한 침수 높이와 해안 육지로의 범람을 포함하여 마산 만에서 태풍 매미로 인한 폭풍 해일 침수를 재현하는 것이다.

<중략>………………

Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

LITERATURE CITED

Bunya S, Kubatko EJ, Westerink JJ, Dawson C.,2010. A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Computer Methods in Applied Mechanics and Engineering, Oceanography and Coastal Research, 198, 1548-1562.
Chan, J.C.L. & Shi, J.,1996. Long term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophysical Research Letters 23, 2765-2767.
Choi, B.H., Kim, D.C., Pelinovsky, E. and Woo, S.B., 2007. Threedimensional simulation of tsunami run-up around conical island. Coastal Engineering, 54, 618-629.
Choi, B.H., Pelinovsky, E., Kim, D.C., Didenkulova, I. and Woo, S.B., Two- and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Processes in Geophysics, 15, 489-502.
Choi B.H., Pelinovsky E., Kim D.C., Lee H.J., Min B.I. and Kim K.H., Three-dimensional simulation of 1983 central East (Japan) Sea earthquake tsunami at the Imwon Port (Korea). Ocean Engineering, 35, 1545-1559.
Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. & Shim, J.S., 2004. Wave-tide-surge coupled simulation for typhoon Maemi, Workshop on waves and storm surges around Korean peninsula, 121-144.
Choi, K.S., & Kim, B.J., 2007. Climatological characteristics of tropical cyclone making landfall over the Korean Peninsula. Journal of the Korean Meteorological Society 43, 97-109.
Clark, J.D. & Chu, P., 2002. Interannual variation of tropical cyclone activity over the central North Pacific. Journal of the Meteorological Society of Japan, 80, 403-418.
Davies, A.M. & Flather, R.A., 1978. Application of numerical models of the North West European continental shelf and the North Sea to the computation of the storm surges of November to December 1973.
Deutsche Hydrographische Zeitschrift Ergänzungsheft Reihe A, 14, 72. Flow Science, 2010. FLOW-3D User’s Manual. Fujita, T., 1952. Pressure distribution in a typhoon. Geophysical Magazine 23.
Garratt, J.R., 1977. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105, 915-929.
Gary Padgett, 2004. Gary Padgett September 2003 Tropical Weather Summary. Typhoon 2000.
Goda Y., Kishira Y. and Kamiyama Y., 1975. Laboratory investigation on the overtopping rate of seawalls by irregular waves, Report of Port and Harbour Research Inst.,14(4), 3-44.
Heaps, N.S., 1965. Storm surges on a continental shelf. Philos. Trans. R. Soc. London, Ser. 257, 351-383.
Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225.
Holland, G.J., 1980. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, 108, 1212-1218.
Independent Levee Investigation Team, 2006. Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina on August 29, 2005
Klotzbach, P. J. , 2006. Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophysical Research Letters, 33.
Large, W.G. & Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11, 324-336.
Landsea, C.W., Nicholls, N., Gray, W.M. & Avila, L.A., 1996. Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophysical Research Letters, 23, 1697-1700.
Lighthill, J., Holland, G., Gray, W., Landsea, C., Creig, G., Evans, J., Kurikara, Y. and Guard, C., 1994. Global climate change and tropical cyclones. Bulletin of the American Meteorological Society, 75, 2147- 2157.
Luettich, R.A. & Westerink, J.J., 2004. Formulation and Numerical Implementation of the 2D/3D ADCIRC finite element model version 44.XX.
Matsumoto, K., Takanezawa, T. & Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, Journal of Oceanography, 56(5) 567-581.
Mitsuyasu, H. and Kusaba, T., 1984. Drag Coefficient over Water Surface Under the Action of Strong Wind. Natural Disaster Science, 6, 43-50.
Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda and K. Rikiishi, 1980. Observation of the power spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 10, 286- 296.
Multiple Lines of Defense Assessment Team, 2007. Comprehensive Recommendations Supporting the Use of the Multiple Lines of Defense Strategy to Sustain Coastal Louisiana.
Myers, V.A. and Malkin, W., 1961. Some Properties of Hurricane Wind Fields as Deduced from Trajectories. U.S. Weather Bureau, National Hurricane Research Project, Report 49.
Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito and Y. Yamazaki, 2006. The operational JMA Nonhydrostatic Mesoscale Model. Monthly Weather Review, 134, 1266-1298.
Shibaki H., Nakai K., Suzuyama K. and Watanabe A., 2004. Multi-level storm surge model incorporating density stratification and wave-setup. Proc. of 29th Int. Conf. on Coastal Eng., ASCE, 1539-1551.JSCE (1999). Hydraulic formulas, page 245 (in Japanese).
Shibaki, H., Suzuyama, K., Kim, J.I., & Sun, L., 2007. Numerical simulation of storm surge inundation induced by overflow, overtopping and dike breach. Asian and Pacific Coasts 2007, Nanjing, China.
Smagorinsky J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91, 99- 164.
Smith, S.D. & Banke, E.G., 1975. Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101, 665-673.
Versteeg, H.K., Malalasekera, W., 1995.An introduction to computational fluid dynamics. The Finite Volume Method. Prentice Hall, 257p.
Wang Xinian, Yin Qingjiang, Zhang Baoming, 1991. Research and Applications of a Forecasting Model of Typhoon Surges in China Seas. Advances In Water Science.
Wu, J., 1982. Wind-Stress Coefficients over Sea Surface from Breeze to Hurricane. Journal of Geophysical Research, 87, 9704-9706.
Yeh, H., Liu, P., Synolakis, C., 1996. Long-wave Runup Models. World Scientific.
Yakhot, V. and Orszag, S.A., 1986. Renormalization group analysis of turbulence, I. Basic theory. Journal of Scientific Computing, 1, 1-51.
Yakhot, V. and Smith, L.M., 1992. The renormalization group, the expansion and derivation of turbulence models, Journal of Scientific Computing, 7, 35-61
Yasuda, T., T. Hiraishi, H. Kawai, K. Nagase, S.W. Kang, and W.M. Jeong, 2005. Field survey and computation analysis of storm surge disaster in Masan due to Typhoon Maemi, Proceedings of Asian and Pacific Coasts 2005, Jeju, Korea.

Figure 4. Structure of artificial neural network [37]

Turbulent Flow Modeling at Tunnel Spillway Concave Bends and Prediction of Pressure using Artificial Neural Network

터널 배수로 오목 굴곡에서 난류 유동 모델링 인공 신경망을 이용한 압력 예측 및 예측

Zeinab Bashari Moghaddam 1
Hossein Mohammad Vali Samani2
Seyed Habib Mousavi Jahromi 3

Abstract

터널 배수로는 높은 자유 표면 유속이 설정되는 배수로 유형 중 하나입니다. 회전 가속과 난류 흐름의 불규칙성으로 인해 오목한 수직 굽힘에서 압력이 증가합니다. 물리적 모델은 이 현상을 분석하는 가장 좋은 도구입니다.

모든 실제 프로토 타입 상태 분석을 포괄하는 데 필요한 물리적 모델의 수가 너무 많아 배치 및 비용 측면에서 비실용적입니다. 따라서 FLOW-3D 소프트웨어는 가능한 모든 실제 대안을 포괄하는 오목한 굴곡 터널의 난류 흐름 데이터베이스를 분석하고 생성하기 위해 선택되었습니다.

이 소프트웨어는 방전과 형상이 다른 다양한 터널을 시뮬레이션했습니다. 수치 결과는 Alborz Dam 터널 배수로의 건설 된 물리적 모델의 실험 결과로 검증되었으며 만족스러운 동의를 얻었습니다. 차원 분석은 문제의 관련 변수를 차원 없는 매개 변수로 그룹화하는 데 사용됩니다.

이러한 매개 변수는 인공 신경망 시뮬레이션에 사용됩니다. 결과는 Flow-3D 소프트웨어로 얻은 무 차원 매개 변수와 신경망에 의해 예측된 변수 사이의 상관 계수 R2 = 0.95를 보여 주었으며, 이와 관련하여 난류 모델링을 통해 얻은 데이터베이스를 기반으로 한 인공 신경망이 결론을 내릴 수있었습니다. 압력 예측을 위한 강력한 도구입니다.

Keywords: Flow-3D, Tunnel spillway concave bend, Numerical simulation, Turbulent flow,
Artificial neural network

본문 내용 생략 : 본문 내용은 내용 하단부에 첨부된 본문 링크를 참조하시기 바랍니다.

Figure 1. Flow in a concave curvature
Figure 1. Flow in a concave curvature
Figure 2. Flow in the curvature of the flip bucket
Figure 2. Flow in the curvature of the flip bucket
Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
Figure 4. Structure of artificial neural network [37]
Figure 4. Structure of artificial neural network [37]
Figure 5. Correlation coefficient of the Neural Network simulation and Flow-3D in the training
stage
Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)
Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)

현재 연구에서 FLOW-3D 소프트웨어는 처음에 다양한 크기와 배출의 터널 배수로에서 난류 흐름을 시뮬레이션하는데 사용되었습니다. 결과는 이란 에너지부 물 연구소에서 제공한 Alborz 저장 댐에서 얻은 실제 데이터와 비교하여 검증되었습니다.

시뮬레이션에는 다양한 난류 모델이 사용되었으며 RNG 방법이 관찰된 실제 결과와 가장 잘 일치하는 것으로 나타났습니다. 직경이 3 ~ 15m 인 다양한 터널 배수로, 곡률 반경 3 개, 거의 모든 실제 사례를 포괄하는 3개의 배출이 시뮬레이션에 사용되었습니다.

차원 분석을 사용하여 무 차원 매개 변수를 생성하고 문제의 변수 수를 줄였으며 마지막으로 두 개의 주요 무 차원 그룹이 결정되었습니다. 이러한 무 차원 변수 간의 관계를 얻기 위해 신경망을 사용하고 터널 배수로의 오목한 굴곡에서 압력 예측 단계에서 0.95의 상관 계수를 얻었습니다.

압력 계산 결과는 다른 일반적인 방법으로 얻은 결과와 비교되었습니다. 비교는 신경망 결과가 훨씬 더 정확하고 배수로 터널의 오목한 곡률에서 압력을 예측하는 강력한 도구로 간주 될 수 있음을 나타냅니다.

References

  1. Kim, D. G., & Park, J. H. (2005). Analysis of flow structure over ogee-spillway in
    consideration of scale and roughness effects by using CFD model. KSCE Journal of Civil
    Engineering, 9(2), 161-169.
  2. Sabbagh-Yazdi, S. R., Rostami, F., & Mastorakis, N. E. (2008, March). Simulation of selfaeration at steep chute spillway flow using VOF technique in a 3D finite volume software. In
    Am. Conf. on Appl. Maths. Harvard, Mass, 24-28.
  1. Nohani, E. (2015). Numerical simulation of the flow pattern on morning glory spillways.
    International Journal of Life Sciences, 9(4): 28-31.
  2. Parsaie, A., Dehdar-Behbahani, S., & Haghiabi, A. H. (2016). Numerical modeling of
    cavitation on spillway’s flip bucket. Frontiers of Structural and Civil Engineering, 10(4),
    438-444.
  3. Teuber, K., Broecker, T., Bay´on, A., N¨utzmann, G. and Hinkelmann, R. (2019) ‘CFDmodelling of free surface flows in closed conduits’, Progress in Computational Fluid
    Dynamics, 19(6), 368–380.
  4. Ghazanfari-Hashemi, R.S., Namin, M.M., Ghaeini-Hessaroeyeh, M. and Fadaei-Kermani,
    E., 2020. A Numerical Study on Three-Dimensionality and Turbulence in Supercritical Bend
    Flow. International Journal of Civil Engineering, 18(3), 381-391.
  5. Sha, H. F., Wu, S. Q., & Zhou, H. (2009). Flow characteristics in a circular-section bend of
    high head spillway tunnel. Advances in Water Science, (6), 14.
  6. Liu, Z., Zhang, D., Zhang, H., & Wu, Y. (2011). Hydraulic characteristics of converse
    curvature section and aerator in high-head and large discharge spillway tunnel. Science
    China Technological Sciences, 54(1), 33-39.
  7. Zheng, Q. W., Luo, S. J., & Zhang, F. X. (2012). The Effect of Concave Types on the
    Hydraulic Characteristics in Spillway Tunnels with High-Speed Velocity. China Rural
    Water and Hydropower, 4.
  8. Hongmin, G. U. O., Jiang, L. I., Shan, Q. I. N., & Yang, X. I. E. (2014). Three-Dimensional
    Numerical Simulation on Spillway Tunnel of Pankou Hydropower Station. Water Resources
    and Power, (4), 22.
  9. Wan, W., Liu, B., & Raza, A. (2018). Numerical Prediction and Risk Analysis of Hydraulic
    Cavitation Damage in a High-Speed-Flow Spillway. Shock and Vibration, 2018.
  10. Wei, W., Deng, J. and Xu, W. (2020). Numerical investigation of air demand by the free
    surface tunnel flows. Journal of Hydraulic Research, 1-8.
  11. Xu, W., Dang, Y., Li, G., Shao, J. and Chen, G. (2007) ‘Three-dimensional numerical
    simulation of the bi-tunnel spillway flow [J] ‘, Journal of Hydroelectric Engineering, 1, 56-
    60.
  12. Huang, H.Y., Gong, A.M., Qiu, Y. and Wangliang, Z.A. (2015) ‘ 3D Numerical Simulation
    and Experimental Analysis of Spillway Tunnel’ In Applied Mechanics and Materials. Trans
    Tech Publications Ltd. 723, 171-175.
  13. Li, S., Zhang, J. M., Xu, W. L., Chen, J. G., Peng, Y., Li, J. N., & He, X. L. (2016).
    Simulation and experiments of aerated flow in curve-connective tunnel with high head and
    large discharge. International Journal of Civil Engineering, 14(1), 23-33.
  14. Shilpakar, R., Hua, Z., Manandhar, B., Shrestha, N., Zafar, M. R., Iqbal, T., & Hussain, Z.
    (2017, August). Numerical simulation on tunnel spillway of Jingping-I hydropower project
    with four aerators. In IOP Conference Series: Earth and Environmental Science. 82, 012013.
  15. Song, C. C., & Zhou, F. (1999). Simulation of free surface flow over spillway. Journal of
    Hydraulic Engineering, 125(9), 959-967.
  16. Fais, L.M.C.F., Filho, J.G.D., Genovez, A.I.B. (2015). Geometry influence and discharge
    curve correction in morning glory spillways. Proceedings of the 36th IAHR World
    Congress.
  17. Falvey, H. T. (1990). Cavitation in chutes and spillways. Denver: US Department of the
    Interior, Bureau of Reclamation. 49-57.
  18. Chaudhry, M. H. (2007). Open-channel flow. Springer Science & Business Media.
  1. Novak, P., Moffat, A. I. B., Nalluri, C., & Narayanan, R. (2007). Hydraulic structures.
    Fourth Edition, Taylor & Francis, New York , 246–265.
  2. Jorabloo, M., Maghsoodi, R., Sarkardeh, H., & Branch, G. (2011). 3D simulation of flow
    over flip buckets at dams. Journal of American Science, 7(6), 931-936.
  3. Khani, S., Moghadam, M. A., & Nikookar, M. (2017). Pressure Fluctuations Investigation
    on the Curve of Flip Buckets Using Analytical and Numerical Methods. Vol. 03(04), 165-
    171.
  4. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
    activity. The bulletin of mathematical biophysics, 5(4), 115-133.
  5. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
    computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
  6. Wu,C.L. Huang, B. Xie, C.B. (2008) . Comparison of calculation methods for irrigation
    district water inlet, China Rural Water and Hydropower ,5 (71) ,74–77.
  7. Qiu,J. Huang, B.S. . Lai, G.W. (2002). Research and application of discharge coefficient of
    wide crest weir, China Rural Water and Hydropower ,9 ,41–42.
  8. Xiang, H.Q .Ba,D.D. Liu, J.J. (2012) . Acquiring of curved practical weir flow coefficient by
    curve-fitting based on Matlab, Hydropower Energy Sci. 3 ,97–99.
  9. Ye,Y.T. He,J.J.(2013).Experimental study on hydraulic calculation of discharge under plane
    gate on broad-crested weir, J. Water Resour. Archit. Eng. 11 (2), 138–141.
  10. Salmasi, F., Yıldırım, G., Masoodi, A., & Parsamehr, P. (2013). Predicting discharge
    coefficient of compound broad-crested weir by using genetic programming (GP) and
    artificial neural network (ANN) techniques. Arabian Journal of Geosciences, 6(7), 2709-
    2717.
  11. Noori, R.; Hooshyaripor, F. (2014). Effective prediction of scour downstream of ski-jump
    buckets using artificial neural networks. Water Resour. 41, 8–18.
  12. Flow-Science. (2014). FLOW-3D user manual. version11. In: Flow Science Santa Fe, NM.
  13. Yakhot, V. S. A. S. T. B. C. G., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G.
    (1992). Development of turbulence models for shear flows by a double expansion technique.
    Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520.
  14. Report on the hydraulic model of Alborz dam reservoir. (2001). Iran Water Research
    Institute
  15. Lippman, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine,
    4(2), pp.4-22.
  16. Baylar, A., Ozgur, K.I.S.I. and Emiroglu, M.E. (2009). Modeling air entrainment rate and
    aeration efficiency of weirs using ANN approach. Gazi University Journal of Science, 22(2),
    107-116.
  17. Maureen, C. and Caudill, M. (1989). Neural network primer: Part I. AI Expert, 2(12),
    p.1987.
Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan

Velocity distribution and discharge calculation at a sharp-crested weir

Shun-Chung Tsung • Jihn-Sung Lai •
Der-Liang Young

sharp-crested weir에서 속도 분포 및 배출 계산

개방 수로의 harp-crested 위어는 수두-방류 관계를 통해 방류를 계산하는데 유용한 장치입니다. 그러나 수위 측정 사이트와 배출 계수는 배출 계산 정확도에 큰 영향을 미칩니다. 따라서 본 연구는 각각 16MHz MicroADV와 FLOW-3D를 사용하여 위어 부분의 속도 분포를 측정하고 시뮬레이션합니다. 감마 확률 밀도 함수를 사용하여 속도 분포를 특성화하기 위해 위어 섹션의 수심 및 표면 속도가 선택됩니다. 본 연구에서는 측정된 수심과 수면 속도에서 도출된 속도 분포를 기반으로 속도-면적 통합 방법으로 정확한 배출을 계산합니다. 이 연구의 주요 기여는 정확한 측정 사이트를 제공하고, 속도 분포와 방류를 연결하고, 방류 계수 영향을 피하고, 방류 계산 정확도를 향상시키는 것입니다.

A sharp-crested weir in open channel is a useful device to calculate discharge via head-discharge relationship. However, water stage measurement site and discharge coefficient significantly influence discharge calculation accuracy. Therefore, this study measures and simulates velocity distribution at the weir section using 16-MHz MicroADV and FLOW-3D, respectively. The water depth and surface velocity at the weir section are selected to characterize velocity distribution using gamma probability density function. In this study, accurate discharge is calculated by velocity–area integration method based on velocity distribution derived from measured water depth and surface velocity. The main contributions of this study are to give an exact measurement site, link velocity distribution and discharge, avoid discharge coefficient influence, and improve discharge calculation accuracy.

Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan
Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan

References

  • Ackers P, White WR, Perkins JA, Harrison AJM (1978) Weirs and flumes for flow measurement. Wiley, New York
  • Bagheri S, Heidarpour M (2010) Application of free vortex theory to estimating discharge coefficient for sharp-crested weirs. Biosyst Eng 105:423–427
  • Chanson H, Montes JS (1998) Overflow characteristics of circular weirs: effects of inflow conditions. J Irrig Drain Eng 124(3):152–162
  • Costa JE, Cheng RT, Haeni FP, Melcher N, Spicer KR, Hayes E, Plant W, Hayes K, Teague C, Barrick D (2006) Use of radars to monitor stream discharge by noncontact methods. Water Resour Res 42:1–14
  • Ferrari A (2010) SPH simulation of free surface flow over a sharpcrested weir. Adv Water Resour 33:270–276
  • Ghodsian M (2003) Supercritical flow over a rectangular side weir. Can J Civ Eng 30:596–600
  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225
  • Hirt CW, Sicilian JM (1985) A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int. Conf. Ship Hydrodynamics, National Academy of Science, Washington, DChttp://www.flow3d.com/. Accessed 20 Nov 2012
  • Kindsvater CE, Carter R (1957) Discharge characteristics of rectangular thin-plate weirs. J Hydraul Div 83(3):1–36
  • Lai JS, Tsorng SC, Tan YC, Hwang CY (2008) Measurements and analysis of flow field over sharp-crested weir. Taiwan Water Conservancy 56(1):49–59 (in Chinese)
  • Lin C, Huang WY, Suen HF, Hsieh SC (2002) Study on the characteristics of velocity field of free overfalls over a vertical drop. In: Proc. Hydraul Meas Exp Methods Conf, Estes Park, CO, USA
  • Muson BR, Young DF, Okiishi TH (1990) Fundamentals of fluid mechanics. Wiley, New York
  • Qu J, Ramamurthy AS, Tadayon R, Chen Z (2009) Numerical simulation of sharp-crested weir flows. Can J Civ Eng 36:1530–1534
  • Rajaratnam N, Muralidhar D (1971) Pressure and velocity distribution for sharp-crested weirs. J Hydraul Res 9(2):241–248
  • Ramamurthy AS, Tim US, Rao MV (1987) Flow over sharp-crested weirs. J Irrig Drain Eng 113(2):163–172
  • Rehbock T (1929) Discussion of ‘‘precise weir measurements’’ by Schoder EW and Turner KB Trans ASCE 93: 1143–1162
  • Rouse H (1936) Discharge characteristics of the free overfall. Civ Eng ASCE 6(4):257–260
  • Samani AK, Ansari A, Borghei SM (2010) Hydraulic behaviour of flow over an oblique weir. J Hydraul Res 48(5):669–673
  • Sargisonl JE, Percy A (2009) Hydraulics of broad-crested weirs with varying side slopes. J Irrig Drain Eng 135(1):115–118
  • Subramanya K (1986) Flow in open channels. Tata McGraw-Hill, New Delhi
  • Swamee PK (1988) Generalized rectangular weir equation. J Hydraul Eng 114(8):945–949
  • Tadayon R, Ramamurthy AS (2009) Turbulence modeling of flows over circular spillways. J Irrig Drain Eng 135(4):493–498
  • U.S. Bureau of Reclamation (1997) Water measurement manual. 3rd (ed.), U.S. Government Printing Office, Washington, DC
  • Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Longman Scientific & Technical, UK
  • Zhang X, Yuan L, Peng R, Chen Z (2010) Hydraulic relations for clinging flow of sharp-crested weir. J Hydraul Eng 136(6): 385–390
Fig. 4 Current lines in the horizontal level in: a 0.70 and b 14 cm from the streambed in tandem pies

3D numerical simulation of flow field around twin piles

트윈 말뚝 주위의 유동장 3D 수치 시뮬레이션

Amini, A; Parto, AA
Amini, A (reprint author), AREEO, Kurdistan Agr & Nat Resources Res & Educ Ctr, Sanandaj, Iran.
, 2017; 65 (6): 1243

Abstract

이 연구에서는, 파일 그룹 주위의 흐름 패턴과 국소적 스크루 메커니즘을 식별하기 위해, 플로우 필드를 FLOW-3D 소프트웨어를 사용해 시뮬레이션했다. 편평한 침대 채널에 나란히 배열되어 있는 한 쌍의 말뚝이 조사되었다. Navier-Stokes 방정식을 확립하기 위해 RNGk-epsilon 난류 모델을 사용하였고 실험 데이터를 사용하여 결과를 검증하였다. FLOW-3D 기능의 경우, 소프트웨어가 파일 그룹 간의 예상 상호작용을 적절히 시뮬레이션할 수 있는 것으로 확인되었다. 플로우 필드 시뮬레이션 결과는 레이놀즈 숫자와 말뚝 간격이 vortices 형성에 가장 큰 영향을 미치는 변수라는 것을 보여주었다. 탠덤 더미 주변의 흐름과 웨이크 바이크 주변의 하향 흐름은 측면 배치와 단일 더미에 비해 더 강렬하고 복잡했다.

In this study to identify the flow pattern and local scour mechanism around pile groups, the flow field was simulated using FLOW-3D software. A pair of pile on a flat-bed channel with side by side and tandem arrangements was investigated. To establish Navier–Stokes equations, the RNGk-e turbulence model was used and the results were verified using experimental data. In case of FLOW-3D capability, it was found that the software was able to properly simulate the expected interaction between the pile groups. The results of flow field simulation showed that Reynolds number and the pile spacing are the most influential variables in forming vortices. The flow around tandem pile and the downward flow around wake vortices were more intense and complicate in comparison with side by side arrangements and single pile.

Keywords : Bridge, Sediment, Flow pattern, Pile group, Local scour

Fig. 1 General view of the channel and measured points a side by side b tandem arrangement
Fig. 1 General view of the channel and measured points a side by side b tandem arrangement
Fig. 2 Meshing around the two side by side piles: a plan and b side view
Fig. 2 Meshing around the two side by side piles: a plan and b side view
Fig. 3 Meshing around the two tandem piles: a plan and b side view
Fig. 3 Meshing around the two tandem piles: a plan and b side view
Fig. 4 Current lines in the horizontal level in: a 0.70 and b 14 cm from the streambed in tandem pies
Fig. 4 Current lines in the horizontal level in: a 0.70 and b 14 cm from the streambed in tandem pies
Fig. 5 Current lines in the horizontal level in: a 0.70 cm, and b 14 cm from the streambed in side by side piles
Fig. 5 Current lines in the horizontal level in: a 0.70 cm, and b 14 cm from the streambed in side by side piles
Fig. 6 Comparing iso-velocity line in longitudinal direction (u): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated in 14 cm
Fig. 6 Comparing iso-velocity line in longitudinal direction (u): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated in 14 cm
Fig. 7 Comparing iso-velocity line in latitudinal direction (v): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated in 14 cm
Fig. 7 Comparing iso-velocity line in latitudinal direction (v): a observed in 0.7 cm; b observed in 14 cm; c simulated in 0.7 cm and d simulated in 14 cm
Fig. 8 3D velocity profiles in x–z plane in the center of the pile (Y = 0): a x = - 1.65D; b x = - 6.59D; c x = 0.69D; d x = 1.32D; e x = 3.69D and f x = 7.60D
Fig. 8 3D velocity profiles in x–z plane in the center of the pile (Y = 0): a x = – 1.65D; b x = – 6.59D; c x = 0.69D; d x = 1.32D; e x = 3.69D and f x = 7.60D
Fig. 9 Comparison of simulated and observed velocity in x–y plane in center of piles
Fig. 9 Comparison of simulated and observed velocity in x–y plane in center of piles

References

  • Akilli AA, Karakus C (2004) Flow characteristics of circular cylinders arranged side-by- side in shallow water. Flow Meas Instrum 15(4):187–189
  • Amini A, Mohammad TM (2017) Local scour prediction in complex pier. Mar Georesour Geotechnol 35(6):857–864
  • Amini A, Melville B, Thamer M, Halim G (2012) Clearwater local scour around pile groups in shallow-water flow. J Hydraul Eng (ASCE) 138(2):177–185
  • Amini A, Mohd TA, Ghazali H, Bujang H, Azlan A (2011) A local scour prediction method for pile cap in complex piers. ICE-water Manag. 164(2):73–80
  • Aslani A (2008) Experimental evaluation of flow pattern around double piles. MSc thesis, Sharif University, Tehran
  • Gu ZF, Sun TF (1999) On interference between two circular cylinders in staged arrangement at high sub-critical Reynolds numbers. J Wind Eng Ind Aerodyn 80:287–309
  • Hang-Wook P, Hyun P, Yang-Ki C (2014) Evaluation of the applicability of pier local scour formulae using laboratory and field data. Mar Georesour Geotechnol. https://doi.org/10.1080/ 1064119X.2014.954658
  • Hannah CR (1978) Scour at pile groups. Research Rep. No. 78-3, Civil Engineering, Univ. of Canterbury, Christchurch
  • Hosseini R, Amini A (2015) Scour depth estimation methods around pile groups. J Civ Eng KSCE 19(7):2144–2156
  • Lanca R, Fael C, Maia R, Peˆgo J, Cardoso A (2013) Clear-water scour at pile groups. J Hydraul Eng. ttps://doi.org/10.1061/ (ASCE)HY.1943-7900.0000770
  • Mohamed HI (2013) Numerical simulation of flow and local scour at two submerged-emergent tandem cylindrical piers. J Eng Sci 41(1):1–19
  • Palau-Salvador G, Stoesser T, Rodi W (2008) LES of the flow around two cylinders in tandem. J Fluids Struct 24(8):1304–1312
  • Papaionannou GV, Yuea DKP, Triantafylloua MS, Karniadakis GE (2008) On the effect of spacing on the vortex-induced vibrations of tandem cylinders. J Fluids Struct 24:833–854
  • Price SJ, Paidoussis MP (1989) The flow induced response of a single flexible cylinder in an in-line array of rigid cylinder. J Fluid Struct 3:61–82
  • Raudkivi AJ (1998) Loose boundary hydraulics. A. A. Balkema, Rotterdam, pp 8–28. https://doi.org/10.1080/02508069608686502
  • Salim MS, Cheah SC (2009) Wall y ? strategy for dealing with wallbounded turbulent flows. In: Proceedings of the international multiconference of engineers and computer scientists, vol II, IMECS, Hong Kong
  • Shin JH, Park HI (2010) Neural network formula for local scour at piers using field data. Mar Georesour Geotechnol 28(1):37–48
  • Sicilian JM, Hirt CW, Harper RP (1987) FLOW-3D. Computational modeling power for scientists and engineers. Report FSI-87-00-Flow Science. Los Alamos, NM
  • Solaimani N, Amini A, Banejad H, Taheri P (2017) The effect of pile spacing and arrangement on bed formation and scour hole dimensions in pile groups. Int J River Basin Manag 15(2):219–225
  • Sumer BM, Fredsøe J (2002) The mechanics of scour in the marine environment. World Scientific, Farrer Road, Singapore
  • Sumer B, Chua L, Cheng N, Fredsøe J (2003) Influence of turbulence on bed load sediment transport. J Hydraul Eng. https://doi.org/ 10.1061/(ASCE)0733-9429(2003)129:8(585)
  • Sun TF, Gu ZF, He DX, Zhang LL (1992) Fluctuating pressure on two circular cylinder at high Reynolds number. J Wind Eng Ind Aero. 42:577–588
Figure Top view of velocity distribution of tailings mortar

Study on discharge velocity of tailings mortar in dam break based on FLOW-3D

Jiahao Hu1, Chengwei Na1, Yi Wang1*
College of Water Conservancy,Shenyang Agricultural University ,Shenyang,
Liaoning, 110866, China
*Corresponding author’s e-mail: yiwang@syau.edu.cn

Abstract

Tailings pond is used to store the tailings discharged from the mine after separation
and mining. As a potential hazard source with high potential energy, the tailings mortar with
high potential energy after dam break is transformed into high-speed dynamic energy sand
flow to impact the downstream area through energy conversion. In this paper, through the
establishment of a three-dimensional model of a tailings pond, the FLOW-3D software is used
for numerical simulation, and the influence of correlation coefficient on the discharge speed of
tailings mortar after dam break is analyzed, and the relevant migration law is obtained. The
test in this paper can provide a reference for the corresponding disaster and protection
engineering research.

Tailings pond은 분리와 채굴 후 광산에서 방출된 Tailings 을 보관하는 데 사용됩니다. 잠재적 위험원으로서 댐 붕괴 후 높은 잠재적 에너지를 가진 Tailings Mortar는 고속 동적 에너지 및 흐름으로 변환되어 에너지 변환을 통해 다운스트림 영역에 영향을 미칩니다. 본 논문에서는 Tailings pond의 3차원 모델 구축을 통해 FLOW-3D 소프트웨어를 수치 시뮬레이션에 활용하고 댐 붕괴 후 Tailings Mortar의 배출 속도에 대한 상관계수의 영향을 분석하여 관련 이주법을 도출하였습니다. 본 문서의 테스트는 해당 재해 및 보호 엔지니어링 연구에 대한 참조를 제공할 수 있습니다.

Figure 1 Calculation model of a tailings pond
Figure 1 Calculation model of a tailings pond
Figure Top view of velocity distribution of tailings mortar
Figure Top view of velocity distribution of tailings mortar
Figure 6 Relationship between velocity and time of tailings mortar movement at 200m and 400m away from the breach
Figure 6 Relationship between velocity and time of tailings mortar movement at 200m and 400m away from the breach
Figure Relationship between migration distance and time of tailings mortar
Figure Relationship between migration distance and time of tailings mortar

References

[1] Chopra, M.,Rohit, R.,Kumar, A.V.,Sunny F.,Nair R.N. Response Surface Method Coupled with
First-Order Reliability Method Based Methodology for Groundwater Flow and Contaminant
Transport Model for the Uranium Tailings Pond Site[J]. Environmental Modeling &
Assessment,2013,18(4):439-150.
[2] Christina, C.S.,Sunny,C.,Hashisho, Z.,Ulrich, A.C. Emissions from oil sands tailings ponds:
Review of tailings pond parameters and emission estimates[J]. Journal of Petroleum Science
and Engineering,2015,127.
[3] Dimache,L.B.,Iancu, I.,Pante, G.,Omer, I. Numerical Modelling of Exfiltrations from Leaching
Tailing Ponds[J]. Energy Procedia,2016,85:193-200.
[4] Dibike, Y.B.,Shakibaeinia, A,Droppo, I.G.,Caron, E. Modelling the potential effects of Oil-Sands tailings pond breach on the water and sediment quality of the Lower Athabasca River[J].
Science of the Total Environment,2018,642:1263-1281.
[5] Willis, C.E.,Louis, V.,Kirk, J.L.,Pierre, K.A.,Dodge, C. Tailings ponds of the Athabasca Oil Sands
Region, Alberta, Canada, are likely not significant sources of total mercury and
methylmercury to nearby ground and surface waters[J]. Science of the Total
Environment,2019,647.
[6] Taylor, C.,Hughes, TG.,Morgan, K. Analysis of turbulent flow in pipes[J].Compute
Fluids,1973,1(1):73-100.
[7] Yakhot, V.,Smith, L.M. The renormalization group, the ɛ-expansion and derivation of turbulence
models[J]. Journal of Scientific Computing,1992,7(1).
[8] Kang.Z.-C.Mechanics analysis of accelerated motion for viscous flow[J].Mountain
Research,1991(03):193-196.(In Chinese˅
[9] Fu.X.-D,Planar Velocity Distribution of Viscous Debris Flow at Jiangjia Ravine,Yunnan,China:A
Field Measurement Using Two Radar Velocimeters[J].Wuhan University Journal of Natural Sciences,2007(04):583-587.

Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.

Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment

by Ana L. Quaresma *OrcID andAntónio N. PinheiroOrcID
CERIS—Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal*
Author to whom correspondence should be addressed.
Academic Editor: Bommanna Krishnappan
Water 2021, 13(6), 851; https://doi.org/10.3390/w13060851
Received: 16 January 2021 / Revised: 8 March 2021 / Accepted: 18 March 2021 / Published: 20 March 2021
(This article belongs to the Special Issue Ecohydraulics of Pool-Type Fishways)

Abstract

이 연구에서는 전산 유체 역학 (CFD) 소프트웨어 (FLOW-3D®)를 사용하여 바닥 오리피스가 있는 풀형 어로에서 흐름의 3D 수치 모델링을 수행했습니다. 수치 결과는 음향 도플러 속도계 (ADV) 및 입자 이미지 속도계 (PIV) 측정에서 얻은 실험 데이터와 비교되었습니다.

흐름 깊이, 흐름 패턴, 수속, 난류 운동 에너지, Reynolds 수직 응력 및 바닥 구성 요소에 평행한 Reynolds 전단 응력과 같이 어로 효율에 영향을 미치는 여러 유체 역학적 변수를 정성 및 정량적으로 비교했습니다.

수치 모델은 복잡한 유동장을 정확하게 재현하여 수치 모델 예측과 분석 된 변수에 대한 실험 데이터 사이에 전반적으로 좋은 일치를 보여줍니다. 분석중인 모든 매개 변수에 대한 수치 모델 검증 수행의 중요성이 강조되었습니다.

또한 프로토 타입 어로의 업 스케일 된 수치 모델을 실행하여 스케일링 효과를 분석했습니다. 스케일 효과의 증거없이 실제 모델과 프로토 타입 치수 모두에 대해 유사한 정확도로 모델을 수행했습니다.

현재 연구는 CFD 모델 (즉, FLOW-3D®)이 새로운 수영장 유형 어로 형상을 위한 적절하고 효율적인 설계 및 분석 도구로 사용될 수 있으며 물리적 모델 테스트를 줄이고 보완 할 수 있다고 결론지었습니다.

In this study, the 3D numerical modelling of flow in a pool-type fishway with bottom orifices was performed using computational fluid dynamics (CFD) software (FLOW-3D®). Numerical results were compared with experimental data obtained from acoustic Doppler velocimetry (ADV) and particle image velocimetry (PIV) measurements. Several hydrodynamic variables that influence fishways efficiencies, such as flow depths, flow patterns, water velocity, turbulent kinetic energy, Reynolds normal stresses, and Reynolds shear stress parallel to the bottom component, were qualitatively and quantitatively compared. The numerical model accurately reproduced the complex flow field, showing an overall good agreement between the numerical model predictions and the experimental data for the analysed variables. The importance of performing a numerical model validation for all the parameters under analyses was highlighted. Additionally, scaling effects were analysed by running an upscaled numerical model of the prototype fishway. The model performed with similar accuracy for both physical model and prototype dimensions with no evidence of scale effects. The present study concludes that CFD models (namely FLOW-3D®) may be used as an adequate and efficient design and analysis tool for new pool-type fishways geometries, reducing and complementing physical model testing.Keywords: pool-type fishways3D numerical modellingLESscale effectsflow patternsCFD model assessment

Introduction

강의 종단 연결성을 복원하는 것은 담수 생태계의 회복에있어 여전히 중요한 문제입니다 [1,2]. 잘 설계되고 건설된 경우 어로는 물고기가 댐과 둑을 지나 계속 이동할 수 있는 경로를 제공합니다.

물고기 통과 효율성에 대한 검토에서 Noonan et al. [3]은 기존의 많은 어로의 설계 특성이 어종의 요구를 적절하게 충족시키지 못했지만, 풀형 어로가 모든 어류 그룹에 대해 가장 높은 효율성을 보여 주었다는 것을 발견했습니다.
여러 어종에 적합한 수영 조건을 제공하는 것은 어항의 흐름과 난류 패턴이 성공에 중요한 역할을 하기 때문에 다소 어려운 일입니다 [2,4,5,6,7,8,9,10,11,12].

물리적 모델링은 풀형 유형 어로의 유체 역학을 연구하기 위한 주요 접근 방식이었습니다 (예 : [13,14,15,16,17,18,19,20,21,22]). 그러나 물리적 실험은 비용과 시간이 많이 소요됩니다. 따라서 컴퓨터 기술의 발전으로 인해 물리적 모델 테스트를 줄이기 위해 복잡한 기하학적 구조를 가진 유압 구조의 흐름 패턴을 분석하는 데 전산 유체 역학 (CFD) 3 차원 (3D) 모델이 점점 더 많이 사용되고 있습니다 [23,24].

따라서 이러한 모델은 어로 유체 역학 연구 및 효율적인 어로 설계에 필수적인 역할을 할 수 있습니다.
어로에 대한 수치 모델링 연구는 주로 수직 슬롯 어로에 초점을 맞추고 있습니다 [12,25,26,27,28,29,30,31,32,33,34,35,36,37]. 수영장의 주요 부분에서 수직 슬롯 어로 흐름은 거의 2 차원 (2D)이고 수직 속도 구성 요소가 수평 요소 [26]보다 훨씬 작기 때문에 이러한 연구의 대부분은 2D 모델을 사용했습니다.

바닥 오리피스가있는 수영장 유형 어로에서는 흐름이 매우 복잡하고 3D이므로 정확한 유동장 특성화를 얻기 위해 3D 모델을 사용해야합니다. 이 어로 구성을 모델링하는 것은 높은 속도 구배, 높은 와도 및 높은 전단 영역을 포함하기 때문에 다소 어렵습니다.

이 연구에서는 FLOW-3D® (Flow Science, Inc., Santa Fe, NM, USA)를 사용하여 바닥 오리피스가 있는 수영장 유형 어로의 3D 수치 시뮬레이션을 수행하여 흐름 깊이, 속도 및 난류 패턴을 예측하는 능력을 평가했습니다. .

최근 몇 년 동안 실내에 가까운 프로토 타입 수영장 형 어로가 사이프 린드 종의 행동과 움직임을 연구하는데 사용되었습니다 [1,7,8,11,38,39,40,41,42,43]. Silva et al. [38]은 노치, 급락 및 스트리밍에 대한 두 가지 다른 유동 체제와 관련하여 조정 가능한 치수를 가진 침수된 오리피스와 표면 노치의 동시 존재에 대한 Iberian barbel Luciobarbus bocagei (Steindachner, 1864)의 반응을 평가했습니다.

이 연구의 결과는 이베리아 바벨이 어로를 협상하기 위해 오리피스 (76 %)를 선호했으며 어로에 들어가는 데 걸리는 시간도 오리피스에 비해 훨씬 적다는 것을 보여주었습니다.

Silva et al. [39] 오프셋 및 직선 오리피스가있는 수영장 유형 어로의 이베리아 바벨에 대한 적합성을 테스트했습니다. 이 연구는 오프셋 구성이 직선 오리피스 레이아웃 (28 %)에 비해 물고기 통과 성공률 (68 %)이 훨씬 더 높음을 발견했습니다. 어로를 성공적으로 협상하는 데 걸리는 시간도 오프셋 구성, 특히 작은 성인의 경우 훨씬 더 낮았습니다.

이 연구에서는 유속과 난류 매개 변수가 물고기 수영 성능에 미치는 영향을 분석했습니다. 수영장의 유동장을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다.

이 연구의 결과에 따르면 레이놀즈 전단 응력은 어로 내 이베리아 미늘의 움직임에 가장 큰 영향을 미치는 매개 변수임이 입증되었습니다. Branco et al. [40] 두 가지 다른 흐름을 가진 오리피스와 노치가 있는 풀형 유형 어로에서 형태 학적 및 생태학적 특성이 다른 두 종, 바닥 지향 이베리아 바벨 Luciobarbus bocagei 및 물기둥 수영 자 Iberian chub Squalius pyrenaicus의 거동과 성능을 평가했습니다.

풀의 유체 역학을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다. 결과는 두 종 모두 흐름 흐름이있는 노치를 선호했으며 이 흐름 체제로 상류로 이동하는데 더 성공적이었습니다.
이 연구에서는 이 시설의 1 : 2.5 스케일 어로 모델을 사용하여 Silva et al.에 의해 테스트된 바닥 오리피스 구성이 있는 풀형 유형 어로의 속도와 난류를 측정했습니다.

[7,38] 효과가 입증된 바벨 사용. 2D 입자 이미지 속도계 (PIV) 시스템 및 음향 도플러 속도계 (ADV)를 사용하여 순간 속도의 광범위한 측정을 수행하고, 후 처리하고, 수치 모델 정확도를 평가하는 데 사용했습니다.

Haque et al. [44] 대부분의 경우 수치 모델의 검증에 사용할 수있는 실험 데이터 세트에 높은 측정 오류가 있고 / 또는 측정 메시가 너무 거칠어 서 이들의 예측 기능을 올바르게 평가할 수없는 문제를 언급했습니다.

모델. Blocken과 Gualtieri [23]는 검증 및 검증 연구가 필수적이며 CFD 연구를 검증하기위한 데이터를 제공하기 위해 고품질 실험이 필요하다고 언급합니다.

Fuentes-Pérez et al. [35]는 특히 난류 메트릭에 대한 어로 연구에서 수치 모델 검증 데이터를 찾는 데 어려움을 언급합니다. 두 가지 측정 기술을 사용하고 상당한 양의 실험 데이터를 얻었기 때문에 이 연구에서는 이러한 문제를 극복했습니다.

물리적 모델은 종종 Froude 수 유사성을 기반으로하며, 두 유사성 법칙을 모두 충족하는 데 어려움이있어 무시되는 레이놀즈 수 유사성입니다. 프로토 타입 레이놀즈 수가 일반적으로 훨씬 더 크기 때문에 레이놀즈 수 관련 스케일 효과가 도입될 수 있습니다.

레이놀즈 수 증가는 속도 분포와 경계층 속성에 영향을 미칠 수 있습니다 [45]. 척도 효과를 평가하기 위해 수치 시뮬레이션을 사용할 수 있습니다 [46,47]. 따라서 본 연구에서는 바닥 오리피스 흐름이있는 풀형어도에 대한 스케일 효과를 분석하기 위해 두 가지 크기의 수치 모델을 개발했습니다.

프로토 타입 치수의 대형 모델과 물리적 모델 치수의 스케일 된 소형 모델입니다. .
바닥 오리피스가있는 수영장 형 어로의 유동장은 수직 슬롯 어로 (VSF)의 유동장보다 매우 3 차원 적이며 훨씬 더 복잡합니다. 이는 어로 수치 모델 검증에 대한 이전 연구에서 더 자주 고려 된 설계입니다 [26, 27,28,29,35].

저자가 아는 한, 이것은 바닥 오리피스가있는 풀형 어로에 대한 최초의 CFD 연구이며, 여기에는 실험 속도 데이터와 풀형 어로에 대한 3 차원 수치 모델링 결과 간의 가장 광범위한 비교도 포함됩니다. 두 가지 다른 측정 기술 (PIV 및 ADV)이 사용되어 자세한 비교가 가능하고 이러한 유형의 유동장에 대한 CFD 시뮬레이션 결과에 대한 확신을 제공합니다.

이 연구는 다른 어로 유형의 이전 수치 모델 연구에서 제시되지 않았던 난류 매개 변수를 포함하여 수치 모델 결과와 측정 간의 일치에 대한 통계적 테스트를 통해 정성적 비교 뿐만 아니라 상세한 정량적 비교도 제공합니다. 스케일 효과도 다룹니다.

따라서 이 연구는 전 세계적으로 가장 많이 사용되는 풀 유형 어로의 CFD 모델 검증을 원활하게 할 것이며 [10] 설계자들의 사용을 장려 할 것입니다.
또한 새로운 풀 유형 어로 형상을 위한 설계 도구로 CFD 모델 (즉, FLOW 3D®)을 사용하는 방법에 대해 설명합니다.

Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).

References

  1. Santos, J.M.; Branco, P.J.; Silva, A.T.; Katopodis, C.; Pinheiro, A.N.; Viseu, T.; Ferreira, M.T. Effect of two flow regimes on the upstream movements of the Iberian barbel (Luciobarbus bocagei) in an experimental pool-type fishway. J. Appl. Ichthyol. 2012, 29, 425–430. [CrossRef]
  2. Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thinking like a fish: A key ingredient for development of
    effective fish passage facilities at river obstructions. River Res. Appl. 2012, 28, 407–417. [CrossRef]
  3. Noonan, M.J.; Grand, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [CrossRef]
  4. Haro, A.; Kynard, B. Video Evaluation of Passage Efficiency of American Shad and Sea Lamprey in a Modified Ice Harbor Fishway. N. Am. J. Fish. Manag. 1997, 17, 981–987. [CrossRef]
  5. Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish; Contract no. 00000022, Project no. 200005700 (BPA Report DOE/BP-00000022-1); Report to the Bonneville Power
    Administration: Portland, Oregon, 2002.
  6. Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juveniles of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [CrossRef]
  7. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [CrossRef]
  8. Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [CrossRef]
  9. Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The IPOS framework: Linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res. Appl. 2012, 28, 429–443. [CrossRef]
  10. Santos, J.M.; Silva, A.T.; Katopodis, C.; Pinheiro, P.J.; Pinheiro, A.N.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: Getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [CrossRef]
  11. Branco, P.J.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Ferreira, M.T. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 2013, 714,
    145–154. [CrossRef]
  12. Gao, Z.; Andersson, H.I.; Dai, H.; Jiang, F.; Zhao, L. A new Eulerian-Lagrangian agent method to model fish paths in a vertical slot fishways. Ecol. Eng. 2016, 88, 217–225. [CrossRef]
  13. Rajaratnam, N.; Katopodis, C.; Mainali, M. Pool-orifice and pool-orifice-weir fishways. Can. J. Civ. Eng. 1989, 16, 774–777. [CrossRef]
  14. Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng. 1999, 125, 351–360. [CrossRef]
  15. Kim, J.H. Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 2001, 16, 425–433. [CrossRef]
  16. Ead, S.A.; Katopodis, C.; Sikora, G.J.; Rajaratnam, N. Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 2004, 3, 379–390. [CrossRef]
  17. Puertas, J.; Pena, L.; Teijeiro, T. Experimental approach to the hydraulics of vertical slot fishways. J. Hydraul. Eng. 2004, 130,10–23. [CrossRef]
  18. Liu, M.; Rajaratnam, N.; Zhu, D.D. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132,765–777. [CrossRef]
  19. Yagci, O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 2010, 36, 36–46. [CrossRef]
  20. Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [CrossRef]
  21. Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [CrossRef]
  22. Ballu, A.; Calluaud, D.; Pineau, G.; David, L. Experimental study of the influence of macro-roughnesses on vertical slot fishway flows. La Houille Blanche 2017, 2, 9–14. [CrossRef]
  23. Blocken, B.; Gualtieri, C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for
    environmental fluid mechanics. Environ. Model. Softw. 2012, 33, 1–22. [CrossRef]
  24. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection
    technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58, 71–85. [CrossRef]
  25. Khan, L.A. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics and Fish Passage Energetics in a Vertical-Slot Fishway. N. Am. J. Fish. Manag. 2006, 26, 255–267. [CrossRef]
  26. Cea, L.; Pena, L.; Puertas, J.; Vazquez-Cendon, M.E.; Peña, E. Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 2007, 133, 160–172. [CrossRef]
  27. Barton, A.F.; Keller, R.J.; Katopodis, C. Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics. Aust. J. Water Res. 2009, 13, 53–60. [CrossRef]
  28. Chorda, J.; Maubourguet, M.M.; Roux, H.; George, J.; Larinier, M.; Tarrade, L.; David, L. Two-dimensional free surface flow numerical model for vertical slot fishways. J. Hydraul. Res. 2010, 48, 141–151. [CrossRef]
  29. Bombaˇc, M.; Novak, G.; Rodiˇc, P.; Cetina, M. Numerical and physical model study of a vertical slot fishway. ˇ J. Hydrol. Hydromech.
    2014, 62, 150–159. [CrossRef]
  30. Bombaˇc, M.; Novak, G.; Mlacnik, J.; Cetina, M. Extensive field measurements of flow in vertical slot fishway as data for validation ˇ of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [CrossRef]
  31. Bombaˇc, M.; Cetina, M.; Novak, G. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. ˇ Ecol.
    Eng. 2017, 107, 126–136. [CrossRef]
  32. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [CrossRef]
  33. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Cooke, S.J.; Katopodis, C. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol. Eng. 2016, 90, 190–202. [CrossRef]
  34. Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Res. Appl. 2017, 33, 1295–1305. [CrossRef]
  35. Fuentes-Pérez, J.F.; Silva, A.T.; Tuhtan, J.A.; García-Vega, A.; Carbonell-Baeza, R.; Musall, M.; Kruusmaa, M. 3D modelling of
    non-uniform and turbulent flow in vertical slot fishways. Environ. Model. Softw. 2018, 99, 156–169. [CrossRef]
  36. Stamou, A.; Mitsopoulos, G.; Rutschmann, P.; Bui, M. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid
    Mech. 2018, 18, 1435–1461. [CrossRef]
  37. Sanagiotto, D.; Rossi, J.; Bravo, J. Applications of computational fluid dynamics in the design and rehabilitation of nonstandard
    vertical slot fishways. Water 2019, 11, 199. [CrossRef]
  38. Silva, A.T.; Santos, J.M.; Franco, A.C.; Ferreira, M.T.; Pinheiro, A.N. Selection of Iberian barbel Barbus bocagei (Steindachner, 1864)
    for orifices and notches upon different hydraulic configurations in an experimental pool-type fishway. J. Appl. Ichthyol. 2009, 25,
    173–177. [CrossRef]
  39. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Passage efficiency of offset and straight orifices for upstream movements of Iberian barbel in a pool-type fishway. River Res. Appl. 2012, 28, 529–542. [CrossRef]
  40. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows. PLoS ONE 2013, 8, e65089. [CrossRef]
  41. Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage performance
    of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [CrossRef]
  42. Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [CrossRef]
  43. Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N. Cyprinid passage performance in an experimental multislot fishway across distinct seasons. Mar. Freshw. Res. 2019, 70, 881–890. [CrossRef]
  44. Haque, M.M.; Constantinescu, G.; Weber, L. Validation of a 3D RANS model to predict flow and stratification effects related to fish passage at hydropower dams. J. Hydraul. Res. 2007, 45, 787–796. [CrossRef]
  45. Dargahi, B. Flow characteristics of bottom outlets with moving gates. J. Hydraul. Res. 2010, 48, 476–482. [CrossRef]
  46. Huang, W.; Yang, Q.; Xiao, H. CFD modelling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluids 2009, 38, 1050–1058. [CrossRef]
  47. Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [CrossRef]
  48. Larinier, M. Pool fishways, pre-barrages and natural bypass channels. Bull. Français de la Pêche et de la Piscic. 2002, 364, 54–82. [CrossRef]
  49. Quaresma, A.L.; Ferreira, R.M.L.; Pinheiro, A.N. Comparative analysis of particle image velocimetry and acoustic Doppler
    velocimetry in relation to a pool-type fishway flow. J. Hydraul. Res. 2017, 55, 582–591. [CrossRef]
  50. Flow Science, Inc. Flow-3D Version 11.2 User Manual; Flow Science, Inc.: Los Alamos, NM, USA, 2016.
  51. Hirt, C.W.; Sicilian, J.M. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the International Conference on Numerical Ship Hydrodynamics, Washington, DC, USA, 4 September 1985.
  52. Savage, B.M.; Johnson, M.C. Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 2001, 127, 640–649. [CrossRef]
  53. Abad, J.D.; Rhoads, B.L.; Güneralp, I.; García, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063. [CrossRef]
  54. Bombardelli, F.A.; Meireles, I.; Matos, J. Laboratory measurements and multi-block numerical simulations of the mean flow and
    turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11, 263–288. [CrossRef]
  55. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
  56. Duguay, J.M.; Lacey, R.W.J.; Gaucher, J. A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol. Eng. 2017, 103, 31–42. [CrossRef]
  1. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 1981, 39, 201–225. [CrossRef]
  2. Van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comp. Phys. 1977, 23, 276–299. [CrossRef]
  3. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due
    to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001 (4pages). [CrossRef]
  4. Smagorinsky, J. General circulation experiments with the primitive equations: I. The Basic Experiment. Mon. Weather Rev. 1963,
    91, 99–164. [CrossRef]
  5. Meyers, J.; Geurts, B.J.; Baelmans, M. Database analysis of errors in large-eddy simulation. Phys. Fluids 2003, 15, 2740–2755.[CrossRef]
  6. Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of Resolution Quality for Large Eddy Simulations. J. Fluids Eng. 2005, 127, 949–958. [CrossRef]
  7. Freitag, M.; Klein, M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering. J. Turbul. 2006, 7, 1–11. [CrossRef]
  8. Gousseau, P.; Blocken, B.; van Heijst, G.J.F. Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Comput. Fluids 2013, 79, 120–133. [CrossRef]
  9. Celik, I.; Li, J.; Hu, G.; Shaffer, C. Limitations of Richardson Extrapolation and Some Possible Remedies. J. Fluids Eng. 2005, 127, 795–805. [CrossRef]
  10. Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
  11. Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]
  12. Bennett, N.D.; Crok, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newhama, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [CrossRef]
  13. Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [CrossRef]
  14. Lane, S.N.; Richards, K.S. The “validation” of hydrodynamic models: Some critical perspectives. In Model Validation for Hydrological
    and Hydraulic Research; Bates, P.D., Anderson, M.G., Eds.; John Wiley: Hoboken, NJ, USA, 2001; pp. 413–438.
  15. Bradbrook, K.F.; Biron, P.M.; Lane, S.N.; Richards, K.S.; Roy, A.G. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol. Process. 1998, 12, 1371–1396. [CrossRef]
  16. Bradbrook, K.F.; Lane, S.N.; Richards, K.S.; Biron, P.M.; Roy, A.G. Role of bed discordance at asymmetrical river confluences. J. Hydraul. Eng. 2001, 127, 351–368. [CrossRef]
  17. Ferguson, R.I.; Parsons, D.R.; Lane, S.N.; Hardy, R.J. Flow in meander bends with recirculation at the inner bank. Water Resour. Res. 2003, 39, 1322–1334. [CrossRef]
  18. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Predicting equilibrium scour-hole geometry near angled stream deflectors using a three-dimensional numerical flow model. J. Hydraul. Eng. 2007, 133, 983–988. [CrossRef]
  19. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Three-dimensional numerical simulation of flow around stream deflectors: The effects of obstruction angle and length. J. Hydraul. Res. 2007, 45, 227–238. [CrossRef]
  20. Han, S.S.; Biron, P.M.; Ramamurthy, A.S. Three-dimensional modelling of flow in sharp open-channel bends with vanes. J. Hydraulic Res. 2011, 49, 64–72. [CrossRef]
  21. Klein, M. An Attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 2005, 75, 131–147. [CrossRef]
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.

Numerical Study of Fluctuating Pressure on Stilling Basin Slab with Sudden Lateral Enlargement and Bottom Drop

급격한 측면 확대 및 바닥 낙하에 따른 정류지(stilling basin) 슬래브의 변동 압력에 대한 수치 연구

by Yangliang Lu,Jinbu Yin *OrcID,Zhou Yang,Kebang Wei andZhiming Liu
College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road, Yangling 712100, China*
Author to whom correspondence should be addressed.
Water 2021, 13(2), 238; https://doi.org/10.3390/w13020238
Received: 6 November 2020 / Revised: 7 January 2021 / Accepted: 11 January 2021 / Published: 19 January 2021
(This article belongs to the Special Issue Physical Modelling in Hydraulics Engineering)

Abstract

갑작스런 확장 및 바닥 낙하가 있는 고요한 정류지(stilling basin) 유역은 복잡한 수력 특성, 특히 3D 공간 수력 점프 아래에서 변동하는 압력 분포로 이어집니다.

이 논문은 FLOW-3D 소프트웨어를 기반으로 한 LES (Large Eddy Simulation) 모델과 TruVOF 방법을 사용하여 시간 평균 압력, 변동 압력의 RMS (Root Mean Square), 정물(stilling basin) 조 슬래브의 최대 및 최소 압력을 시뮬레이션했습니다.

실제 모델 결과와 비교하여 시뮬레이션 결과는 LES 모델이 정물 유역의 변동하는 수류 압력을 안정적으로 시뮬레이션 할 수 있음을 보여줍니다. 변동 압력의 RMS의 최대 값은 정수조 전면과 측벽의 연장선 부근에 나타납니다.

이 논문은 변동 압력의 생성 메커니즘과 Navier-Stokes 방정식에서 파생된 Poisson 방정식을 기반으로 영향 요인 (변동 속도, 속도 구배, 변동 와도)의 정량 분석과 특성의 정성 분석을 결합하는 연구 방법을 제공합니다.

변동하는 압력의. 정류 지의 소용돌이 영역과 벽에 부착 된 제트 영역의 변동 압력 분포는 주로 각각 와류 및 변동 유속의 영향을 받으며 충돌 영역의 분포는 변동 속도, 속도 구배 및 변동에 의해 발생합니다.

A stilling basin with sudden enlargement and bottom drop leads to complicated hydraulic characteristics, especially a fluctuating pressure distribution beneath 3D spatial hydraulic jumps. This paper used the large eddy simulation (LES) model and the TruVOF method based on FLOW-3D software to simulate the time-average pressure, root mean square (RMS) of fluctuating pressure, maximum and minimum pressure of a stilling basin slab. Compared with physical model results, the simulation results show that the LES model can simulate the fluctuating water flow pressure in a stilling basin reliably. The maximum value of RMS of fluctuating pressure appears in the vicinity of the front of the stilling basin and the extension line of the side wall. Based on the generating mechanism of fluctuating pressure and the Poisson Equation derived from the Navier–Stokes Equation, this paper provides a research method of combining quantitative analysis of influencing factors (fluctuating velocity, velocity gradient, and fluctuating vorticity) and qualitative analysis of the characteristics of fluctuating pressure. The distribution of fluctuating pressure in the swirling zone of the stilling basin and the wall-attached jet zone is mainly affected by the vortex and fluctuating flow velocity, respectively, and the distribution in the impinging zone is caused by fluctuating velocity, velocity gradient and fluctuating vorticity. 

Keywords: submerged jumpsudden lateral enlargement and bottom droplarge eddy simulationvortexfluctuating pressure

Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.

Table 1. Operating conditions.

ConditionFlow Discharge
(m3/s)
Inflow Froude NumberInflow Velocity (m/s)Inflow Water Depth (m)
10.9425.2955.6110.114
20.6434.5454.4890.097
30.2324.2273.0180.052
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.

Table 2. Grid independence test.

GridContaining Block Cell Size (m)Nested Block Cell Size (m)Discharge
(m3/s)
Relative Error (%)
10.0500.0250.9905.10
20.0400.0200.9692.70
30.0300.0150.9561.49
40.0200.0100.9521.06
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 7. Comparison of bottom velocity.
Figure 7. Comparison of bottom velocity.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 13. Variance of fluctuating pressure coefficient (Cp′).
Figure 13. Variance of fluctuating pressure coefficient (Cp′).

References

  1. Liu, P.Q.; Dong, J.R.; Yu, C. Experimental investigation of fluctuation uplift on rock blocks at the bottom of the scour pool downstream of Three-Gorges spillway. J. Hydraul. Res. 199836, 55–68. [Google Scholar] [CrossRef]
  2. Liu, P.Q.; Li, A.H. Model discussion of pressure fluctuations propagation within lining slab joints in stilling basins. J. Hydraul. Eng. 2007133, 618–624. [Google Scholar] [CrossRef]
  3. Mousavi, S.N.; Júnior, R.S.; Teixeira, E.D.; Bocchiola, D.; Nabipour, N.; Mosavi, A.; Shamshirband, S. Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods. Mathematics 20208, 323. [Google Scholar] [CrossRef]
  4. Sun, S.-K.; Liu, H.-T.; Xia, Q.-F.; Wang, X.-S. Study on stilling basin with step down floor for energy dissipation of hydraulic jump in high dams. J. Hydraul. Eng. 200536, 1188–1193. (In Chinese) [Google Scholar]
  5. Li, Q.; Li, L.; Liao, H. Study on the Best Depth of Stilling Basin with Shallow-Water Cushion. Water 201810, 1801. [Google Scholar] [CrossRef]
  6. Luo, Y.-Q.; He, D.-M.; Zhang, S.-C.; Bai, S. Experimental Study on Stilling Basin with Step-down for Floor Slab Stability Characteristics. J. Basic Sci. Eng. 201220, 228–236. (In Chinese) [Google Scholar]
  7. Zhang, J.; Zhang, Q.; Wang, T.; Li, S.; Diao, Y.; Cheng, M.; Baruch, J. Experimental Study on the Effect of an Expanding Conjunction Between a Spilling Basin and the Downstream Channel on the Height After Jump. Arab. J. Sci. Eng. 201742, 4069–4078. [Google Scholar] [CrossRef]
  8. Ram, K.V.S.; Prasad, R. Spatial B-jump at sudden channel enlargements with abrupt drop. J. Hydraul. Eng. -Asce 1998124, 643–646. [Google Scholar] [CrossRef]
  9. Hassanpour, N.; Hosseinzadeh Dalir, A.; Farsadizadeh, D.; Gualtieri, C. An Experimental Study of Hydraulic Jump in a Gradually Expanding Rectangular Stilling Basin with Roughened Bed. Water 20179, 945. [Google Scholar] [CrossRef]
  10. Siuta, T. The impact of deepening the stilling basin on the characteristics of hydraulic jump. Czas. Tech. 2018. [Google Scholar] [CrossRef]
  11. Babaali, H.; Shamsai, A.; Vosoughifar, H. Computational Modeling of the Hydraulic Jump in the Stilling Basin with Convergence Walls Using CFD Codes. Arab. J. Sci. Eng. 201440, 381–395. [Google Scholar] [CrossRef]
  12. Dehdar-behbahani, S.; Parsaie, A. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alex. Eng. J. 201655, 467–473. [Google Scholar] [CrossRef]
  13. Macián-Pérez, J.F.; García-Bartual, R.; Huber, B.; Bayon, A.; Vallés-Morán, F.J. Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water 202012, 227. [Google Scholar] [CrossRef]
  14. Tajabadi, F.; Jabbari, E.; Sarkardeh, H. Effect of the end sill angle on the hydrodynamic parameters of a stilling basin. Eur. Phys. J. Plus 2018133. [Google Scholar] [CrossRef]
  15. Valero, D.; Bung, D.B.; Crookston, B.M. Energy Dissipation of a Type III Basin under Design and Adverse Conditions for Stepped and Smooth Spillways. J. Hydraul. Eng. 2018144. [Google Scholar] [CrossRef]
  16. Liu, D.; Fei, W.; Wang, X.; Chen, H.; Qi, L. Establishment and application of three-dimensional realistic river terrain in the numerical modeling of flow over spillways. Water Supply 201818, 119–129. [Google Scholar] [CrossRef]
  17. Epely-Chauvin, G.; De Cesare, G.; Schwindt, S. Numerical Modelling of Plunge Pool Scour Evolution In Non-Cohesive Sediments. Eng. Appl. Comput. Fluid Mech. 20158, 477–487. [Google Scholar] [CrossRef]
  18. Zhang, J.-M.; Chen, J.-G.; Xu, W.-L.; Peng, Y. Characteristics of vortex structure in multi-horizontal submerged jets stilling basin. Proc. Inst. Civ. Eng. Water Manag. 2014167, 322–333. [Google Scholar] [CrossRef]
  19. Li, L.-X.; Liao, H.-S.; Liu, D.; Jiang, S.-Y. Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrodyn. 201527, 522–529. [Google Scholar] [CrossRef]
  20. Ferreri, G.B.; Nasello, C. Hydraulic jumps at drop and abrupt enlargement in rectangular channel. J. Hydraul. Res. 201040, 491–505. [Google Scholar] [CrossRef]
  21. Naseri, F.; Sarkardeh, H.; Jabbari, E. Effect of inlet flow condition on hydrodynamic parameters of stilling basins. Acta Mech. 2017229, 1415–1428. [Google Scholar] [CrossRef]
  22. Zhou, Z.; Wang, J.-X. Numerical Modeling of 3D Flow Field among a Compound Stilling Basin. Math. Probl. Eng. 2019, 5934274. [Google Scholar] [CrossRef]
  23. Qian, Z.; Hu, X.; Huai, W.; Amador, A. Numerical simulation and analysis of water flow over stepped spillways. Sci. China Ser. E Technol. Sci. 200952, 1958–1965. [Google Scholar] [CrossRef]
  24. Liu, F. Study on Characteristics of Fluctuating Wall-Pressure and Its Similarity Law. Ph.D. Thesis, Tianjin University, Tianjin, China, May 2007. (In Chinese). [Google Scholar]
  25. Yan, Z.-M.; Zhou, C.-T.; Lu, S.-Q. Pressure fluctuations beneath spatial hydraulic jumps. J. Hydrodyn. 200618, 723–726. [Google Scholar] [CrossRef]
  26. Moin, P.; Kim, J. Numerical investigation of turbulent channel flow. J. Fluid Mech. 2006118. [Google Scholar] [CrossRef]
  27. Rezaeiravesh, S.; Liefvendahl, M. Effect of grid resolution on large eddy simulation of wall-bounded turbulence. Phys. Fluids 201830. [Google Scholar] [CrossRef]
  28. Stamou, A.I.; Chapsas, D.G.; Christodoulou, G.C. 3-D numerical modeling of supercritical flow in gradual expansions. J. Hydraul. Res. 201046, 402–409. [Google Scholar] [CrossRef]
  29. Savage, B.M.; Crookston, B.M.; Paxson, G.S. Physical and Numerical Modeling of Large Headwater Ratios for a 15 degrees Labyrinth Spillway. J. Hydraul. Eng. 2016142. [Google Scholar] [CrossRef]
  30. Aydin, M.C.; Ozturk, M. Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators. Can. J. Civ. Eng. 200936, 826–836. [Google Scholar] [CrossRef]
  31. Ma, B.; Liang, S.; Liang, C.; Li, Y. Experimental Research on an Improved Slope Protection Structure in the Plunge Pool of a High Dam. Water 20179, 671. [Google Scholar] [CrossRef]
  32. Bai, L.; Zhou, L.; Han, C.; Zhu, Y.; Shi, W.D. Numerical Study of Pressure Fluctuation and Unsteady Flow in a Centrifugal Pump. Processes 20197, 354. [Google Scholar] [CrossRef]
  33. Guven, A. A predictive model for pressure fluctuations on sloping channels using support vector machine. Int. J. Numer. Methods Fluids 201166, 1371–1382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure 6. Scour depth (in negative value) at different views around pier

Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software

Flow-3D 소프트웨어를 이용한 원형 교각 주변 지역 scour의 3 차원 수치 시뮬레이션

To cite this article: Halah Kais Jalal and Waqed H. Hassan 2020 IOP Conf. Ser.: Mater. Sci. Eng. 745 012150

Halah Kais Jalal1
, Waqed H. Hassan2
1 Graduate student, Civil Engineering Department, University of Kerbala, Kerbala, Iraq.
2 Professor, University of Kerbala, Kerbala, Iraq.
E-mail: halah.q@s.uokerbala.edu.iq, Waaqidh@uokerbala.edu.iq

Abstract

주어진 값의 내부 드리프트를 나타내는 다항식 순서 또는 자체 정의 함수 목록을 제공 할 수 있습니다. 이 드리프트는 kriging 보간 동안 내부적으로 적합합니다. 다음에서는 선형 드리프트가 추가된 인공 데이터를 생성합니다. 그런 다음 결과 샘플은 Universal kriging의 입력으로 사용됩니다. 그런 다음 보간 중에 “선형”드리프트가 추정됩니다. 추정된 평균 / 드리프트에만 액세스하기 위해 호출 루틴에 스위치 only_mean을 제공합니다. 원형 교각 주변의 국부 수색 문제는 Flow-3D 모델을 사용하여 전산 유체 역학 (CFD)에서 국부적 진화를 나타냅니다. 교각 설계에서 중요한 scour 및 scour 구멍의 최대 깊이. 이 연구의 목적은 교각 주변의 수색 깊이를 정확하게 시뮬레이션하고 예측하는 수치 시뮬레이션 모델 Flow-3D의 능력을 검증하는 것입니다. 이 검증은 수치 결과를 Melville 실험실 실험 모델과 비교하여 수행됩니다. 30 분후 수치 결과에서 얻은 원형 부두 주변의 최대 scour 깊이는 3.6cm이고 Melville 모델에서 얻은 scour 깊이는 4cm입니다. 이 결과에 따르면 수치 모델과 실험 모델 간의 오류율 비율은 10 %에 가깝습니다. 결과는 실험 결과와 함께 좋은 검증을 보여주었습니다. 마지막으로 제안 된 Flow-3D 모델은 교각 주변의 수색 깊이를 예측하고 시뮬레이션 하는데 효과적인 도구를 고려하고 잠재적인 결과를 예측하는 경제적인 방법을 고려했습니다.

The problem of local scouring around circular bridge pier has been studied numerically
by Computational Fluid Dynamics (CFD) using Flow-3D model to represent the evolution of local
scour and the maximum depth of the scour hole which is important in the bridge pier design. The
aim of this study is to verify the ability of the numerical simulation model Flow-3D to accurately
simulate and predict the scour depth around the bridge pier. This verification is conducted by
comparison the numerical results with Melville laboratory experimental model. The maximum
scours depth around the circular pier obtained from numerical results after 30 min is 3.6 cm, while
the scouring depth obtained from Melville model is 4 cm. According to these results, the error rate
ratio between the numerical and experimental models is close to 10%. The results showed a good
validation with experimental results. Finally, the proposed Flow-3D model considered an effective
tool in predicting and simulating the scour depth around bridge pier and considered an economic
method to predict potential results.
Keywords: Local scour, Flow-3D, CFD, Verfication

scour은 흐르는 물의 침식 작용으로 정의 할 수 있으며, 이는 가까운 교각 및 교각에서 베드를 제거하고 침식합니다 [1]. 다리의 교각 주변을 scour하는 것은 다리의 실패 원인이 충돌 및 과부하와 함께 엄청난 인명 손실과 경제적 영향으로 이어지는 주요 원인 중 하나로 간주됩니다 [2], 지역 scour 예측, 특히 최대 scour 깊이는 다음과 같습니다.

교량 설계, 유지 보수 및 평가에 필수적입니다. 전 세계의 많은 연구자들은 다양한 관점과 다양한 조건에서 광범위하게 scour 문제를 연구했습니다.

교량 부지에서 만든 scour에는 일반적으로 세 가지 유형이 포함되어 있습니다. 일반 scour, 수축 scour 및 국부 scour [3], 세 가지 scour 유형 중, scour는 다리와 관련된 위험에서 가장 중요한 역할을 하기 때문에, local scour는 이 연구의 중요한 부분으로 간주됩니다.

많은 선행 연구가 경험적 테스트를 사용하여 교량의 국부 scour을 분석하는 기술과 방법론을 목표로 했습니다 [4], [5], [6], [7], [8], [9], [10], [11] . 이러한 경험적 scour 테스트의 대부분은 비용이 많이 들고 노동 집약적이기 때문에 크고 중요한 교량에서 종종 수행됩니다.

그러나 가장 인기 있는 고속도로 교량의 경우 경험적 테스트가 적용되지 않지만 이러한 일반 교량에서 scour이 자주 발생하지만 일부 연구에서는 경제적이고 실용적인 목적으로 교량 scour에 대한 분석 솔루션을 조사했습니다.

지난 몇 년 동안 전산 유체 역학 (CFD를 사용하여 산업 및 환경 응용 분야에서 유체 흐름 동작을 결정하는 데 사용)을 더 많이 사용할 수 있는 컴퓨터 및 소프트웨어의 기능이 증가함에 따라 scour의 3 차원 시뮬레이션 방법이 더욱 널리 보급되었습니다.

FLUENT, CFX, PHOENIX와 같은 CFD 소프트웨어는 실험 설정과 여러면에서 유사하므로 이 수치 시뮬레이션의 원래 개념은 속도계와 같은 확장된 부속품을 사용하여 물리적 모델을 설계하고 구성하는 것입니다. 복잡한 모델 실험실 조건에서 모델링하기 어려운 모델은 수치 시뮬레이션을 사용하여 간단하게 모델링 할 수 있습니다.

좋은 수치 모델은 확실히 모델 테스트를 보완 할 수 있으며 설계 엔지니어가 모델 테스트를 수행 할 수 있는 가장 중요한 사례를 식별하는 데 도움이 될 수 있다는 것이 널리 알려져 있습니다.

복잡한 문제와 대규모 모델 연구를 해결할 수 있는 매력적인 아이디어입니다. 실제 결과를 결정하기 위해 추가 작업자 또는 기존의 대규모 설정이 필요하지 않습니다.

CFD (Computational Fluid Dynamics) 방법은 Navier-Stokes의 이산화 및 해석과 계산 셀의 연속성 방정식을 통해 유동 프로세스 시뮬레이션에 항상 사용됩니다. 현재 연구에서 상용 코드 Flow-3D는 교각 주변의 scour 깊이를 모델링하는 데 사용됩니다.

Flow-3D 모델은 유압 공학 응용을 위한 특수 장치가 있는 CFD 패키지입니다. 수치 기법은 다중 스케일 다중 물리 흐름 문제를 얻기 위해 과도 및 3 차원 솔루션에 대한 유체 운동 방정식을 해결하는 데 사용됩니다.

물리적 옵션과 수치 옵션의 조합을 통해 사용자는 Flow-3D를 광범위한 유체 흐름 및 열 전달 현상에 적용 할 수 있으며 다양한 유압 문제를 해결하는 데 널리 사용됩니다 [12]. Flow-3D에 의한 scour의 수치 시뮬레이션은 많은 연구자들에 의해 제안 되었습니다.

Flow-3D에 의한 Scour의 수치 시뮬레이션은 많은 연구자들에 의해 제안 되었습니다.

예를 들어, [13]은 Scour Hole 내의 원형 브리지 부두의 기초에서 발생하는 흐름을 시뮬레이션하기 위해 Flow-3D를 사용했고, [14]는 조수 아래의 복잡한 브리지 피어에서 국소 스캐닝을 시뮬레이션하기 위해 숫자 모델을 사용했고 [15]는 Flow-3D를 사용했습니다.다양한 조건에서 국부적 골절 깊이의 더미 모양과 [16] CFD 코드를 사용하여 3D 흐름과 다양한 모양의 교량 부두 주위의 국부적 스캐닝을 시뮬레이션했습니다.

이 모든 연구는 맑은 물 조건에서 흐르는 물이 주로 흐름과 강바닥 사이의 대부분의 상호 작용으로 이어진다는 가설을 세웠습니다.

본 논문에서는 [4]의 실험실 모델에 의한 수치 시뮬레이션 검증을 통해 교량 주변의 국부 scour 실험 결과를 CFD 코드 Flow-3D의 수치 시뮬레이션 결과와 비교하여 검증을 목적으로 합니다. 이 검증의 주요 목적은 교량 부두 주변의 scour 깊이를 예측할 때 수치 모델 Flow-3D의 효과를 테스트하는 것입니다.

Figure 1. Plan view of Melville experimental setup [4]
Figure 1. Plan view of Melville experimental setup [4]
Figure 2. Geometry of the numerical model configured by the FLOW-3D
Figure 2. Geometry of the numerical model configured by the FLOW-3D
Figure 3. Effect of Cell Size on Scour Depth
Figure 3. Effect of Cell Size on Scour Depth
Figure 4. Meshing Plane Structure Around a Circular Pier
Figure 4. Meshing Plane Structure Around a Circular Pier
Figure 6. Scour depth (in negative value) at different views around pier
Figure 6. Scour depth (in negative value) at different views around pier
Figure 7. Contour Lines Represented the Depth of Scour Around Circular Bridge Pier for Melville Model
Figure 7. Contour Lines Represented the Depth of Scour Around Circular Bridge Pier for Melville Model
Figure 8. Contour Lines Represented the Depth of Scour Around the bridge Pier for the Numerical model
Figure 8. Contour Lines Represented the Depth of Scour Around the bridge Pier for the Numerical model
Figure 9. Scour depth against time around cylindrical pier.
Figure 9. Scour depth against time around cylindrical pier.
Figure 10. Contour map of flow velocity around a pier at 30 min resulted by Melville [4]
Figure 10. Contour map of flow velocity around a pier at 30 min resulted by Melville [4]
Figure 11. Contour map of flow velocity distribution around a pier at 30 min resulted by numerical simulation.
Figure 11. Contour map of flow velocity distribution around a pier at 30 min resulted by numerical simulation.

Conclusion

이 연구는 교각에서 scour깊이의 발달을 예측하는 데 있어 이 수치 시뮬레이션의 효과를 검증하는 것을 목표로 합니다. 검증은 30 분의 scour 깊이 공식화 후 Flow-3D의 수치 결과를 Melville 실험 모델과 비교하여 결론을 내립니다.

결과의 비교는 최대 수세공 깊이에 대한 오류율이 10 %임을 나타내며,이 관찰은 수치 및 실험 작업 사이에 좋은 검증을 보여 주므로 수치 시뮬레이션은 scour 깊이를 성공적으로 재현합니다.

이러한 결과에 따르면 제안된 수치 모델 Flow-3D는 교각 주변의 scour 깊이와 유동장을 시뮬레이션하고 예측하는데 효과적인 도구로 간주되었습니다.

References
[1] Breusers Nicollet and Shen 1977 Local scour around cylindrical piers Journal of Hydraulic
Research, IAHR,15 (3): 211-252.
[2] Shepherd R. and Frost J D 1995 Failures in civil engineering: Structural, foundation and
geoenvironmental case studies Journal of Hydraulic Engineering, Puolisher ASCE.
[3] Cheremisinoff N P and Cheng S L 1987 Hydraulic mechanics 2 Civil Engineering Practice,
Technomic Published Company, Lancaster, Pennsylvania, U.S.A. 780 p.
[4] Melville B W 1975 Local scour at bridge sites University of Auckland, New Zealand, phd. Thesis,
Dept. of Civil eng., Rep. No. 117.
[5] Abdul-Nour M 1990 Scouring depth around multiple M.Sc. Thesis , Department of Irrigation and
Drainage , University of Baghdad.
[6] Hosny M M 1995 Experimental study of local scour around circular bridge piers in cohesive soils
Colorado State University, Fort Collins.
[7] Ansari S A Kothyari U C and Ranga Raju K G 2002 Influence of cohesion on scour around bridge
piers Journal of Hydraulic Research, IAHR, pp. 40(6): 717-729.
[8] Khsaf S I 2010 A study of scour around Al-Kufa bridge piers Kufa Engineering
Journal.Vol.1No.1,2010, University of Kufa / College Engineering / Civil Department.
[9] Hassan W H Jassem M H and Mohammed S S 2018 A GA-HP Model for the Optimal Design of
Sewer Networks Water Resour. Manag., vol. 32, no. 3, pp. 865–879.
[10] Hassan W H 2017 Application of a genetic algorithm for the optimization of a cutoff wall under
hydraulic structures J. Appl. Water Eng. Res., vol. 5, no. 1, pp. 22–30, Jan.
[11] Ataie-Ashtiani B 2013 Flow field around single and tandem piers Flow Turbulence and Combustion
Journal of Hydraulic Engineering,volume 9429.
[12] Flow -3D manual 2014 Flow-3D user manual version 11, Flow Science Santa Fe, NM.
[13] Richardson J E and Panchang V G 1998 Three-Dimensional Simulation of Scour Inducing Flow at
Bridge Piers Journal of Hydraulic Engineering, 124(5), pp. 530–540. doi: 10.1061/(asce)0733-
9429(1998)124:5(530).
[14] Vasquez J and Walsh B 2009 CFD simulation of local scour in complex piers under tidal flow
Proceedings of the thirty-third IAHR Congress: Water Engineering for a Sustainable Environment,
(604), pp. 913–920.
[15] W H H and Halah k Jalal 2019 Effect of Bridge Pier Shape on Depth of Scour Iop, Conf. Ser.,(under
puplication).
[16] Obeid Z H 2016 3D numerical simulation of local scouring and velocity distributions around bridge
piers with different shapes A Peer Reviewed International Journal of Asian Academic Research
Associates, 20(16), p. 2801. doi: 10.1186/1757-7241-20-67.
[17] Drikakis D 2003 Advances in turbulent flow computations using high-resolution methods Progress
in Aerospace Sciences, 39(6–7), pp. 405–424. doi: 10.1016/S03760421(03)00075-7.
[18] Yakhot and Orszag 1986 Renormalization Group Analysis of Turbulence, Basic Theory Journal of
Scientific Computing, pp. 3–51. 1, pp. 3–51.
[19] Mastbergen D R and Van Den Berg J H 2003 Breaching in fine sands and the generation of
sustained turbidity currents in submarine canyons Sedimentology, 50(4), pp. 625–637. doi:
10.1046/j.1365-3091.2003.00554.x.
[20] Soulsby R L and Whitehouse R J S W 1997 Threshold of sediment motion in Coastal Environments
Proc. Combined Australian Coastal Engineering and Port Conference, EA, pp. 149-154.
[21] Meyer-Peter E and Müller R 1948 Formulas for bed-load transport Proceedings of the 2nd Meeting
of the International Association for Hydraulic Structures Research, 39– 64.
[22] Wei G Brethour J Grünzner M and Burnham J 2014 Sedimentation Scour Model Flow Science
Report 03-14.

Figure 1. The bathymetry provided with the benchmark problem.

Performance Assessment of NAMI DANCE in Tsunami Evolution and Currents Using a Benchmark Problem

1Civil Engineering Department, Middle East Technical University, Ankara 06800, Turkey
2Ocean Engineering Department, University of Rhode Island, Narragansett, RI 02882, USA
3Civil Engineering Department, Middle East Technical University, Ankara 06800, Turkey
4Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod 603950, Russia
*
Author to whom correspondence should be addressed.
Academic Editor: Richard P. Signell
J. Mar. Sci. Eng. 20164(3), 49; https://doi.org/10.3390/jmse4030049
Received: 5 July 2016 / Revised: 2 August 2016 / Accepted: 12 August 2016 / Published: 18 August 2016

Abstract

쓰나미 진화, 전파 및 침수의 수치 모델링은 현상에 관련된 수많은 매개 변수로 인해 복잡합니다. 쓰나미 모션을 해결하는 숫자 코드의 성능과 흐름 및 속도 패턴을 평가하는 것이 중요합니다. NAMI DANCE는 긴 파도 모델링을 위해 개발된 계산 도구입니다.

쓰나미 생성, 전파 및 침수 메커니즘의 수치 모델링 및 효율적인 시각화를 제공하고 쓰나미 매개 변수를 계산합니다. 긴 파도 이론에서, 물 입자의 수직 움직임은 압력 분포에 영향을 미치지 않습니다.

이러한 근사치와 소홀히 하는 수직 가속을 기반으로 질량 보존 및 모멘텀 방정식은 2차원 깊이 평균 방정식으로 줄어듭니다. NAMI DANCE는 유한차 계산 방법을 사용하여 긴 파도 문제에서 선형 및 비선형 형태의 깊이 평균 얕은 수식을 해결합니다.

이 연구에서 NAMI DANCE는 미국 포틀랜드에서 열린 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 연례 회의에서 논의된 벤치 마크 문제에 적용됩니다.

벤치마크 문제는 하나의 독방 파도가 해양 섬 특징이 있는 삼각형 모양의 선반을 전파하는 일련의 실험을 특징으로 합니다. 이 문제는 섬 부근에서 상세한 무료 표면 고도 및 속도 의 타임 시리즈를 제공합니다. 결과를 비교한 결과, NAMI DANCE는 긴 파도 진화, 전파, 증폭 및 쓰나미 전류를 만족스럽게 예측할 수 있음을 보여주었습니다.

키워드: 수치 모델링;쓰나미 전류;깊이 평균 방정식;벤치마크,numerical modelingtsunami currentsdepth-averaged equationbenchmark

쓰나미는 해저 지진, 수중 산사태, 화산 폭발 또는 큰 운석 파업으로 인한 해저의 갑작스런 움직임에 의해 생성되는 큰 파도입니다. 쓰나미 파도는이 현상의 가장 파괴적인 매개 변수로 받아 들여진다; 그러나 큰 파도 움직임에 의해 트리거되는 전류는 경우에 따라 매우 치명적일 수 있습니다.

분지 공명 및 기하학적 증폭은 폐쇄 된 분지에서 쓰나미 영향의 지역 배율에 대한 두 가지 합리적으로 잘 이해된 메커니즘이며, 일반적으로 항구 또는 항구에서 쓰나미 위험 잠재력을 추정 할 때 조사 되는 메커니즘입니다. 반면에 전류에 대한 이해력과 예측 능력은부족하다[1]. 

이 연구는 수치 도구를 사용하여 쓰나미 진화, 전파 및 증폭뿐만 아니라 쓰나미 전류의 추정에 2 차원 깊이 평균 얕은 물 방정식의 충분성을 조사하는 것을 목표로; 즉 나미 댄스. 1970 년대 이후, 독방 파도는 일반적으로 실험 및 수학 연구에서, 쓰나미를 모델링하는 데 사용되었습니다[2]. 

이러한 점에서 수치 코드는 복잡한 목욕을 통해 단일 독방 파도의 진화와 전파에 초점을 맞춘 벤치마크 문제에 적용됩니다. 이 문제는 선반의 근해에 위치한 섬 특징이 있는 삼각형 모양의 선반을 전파할 때 단일 고독한 파도의 변형을 분석하는 일련의 실험을 설명합니다. 섬 부근에 형성되는 해류도 실험에서 조사된다.

이 연구에 사용된 벤치마크 문제는 미국 포틀랜드에서 개최된 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 워크샵의 벤치마크 문제 #5.3]. 벤치마크 데이터와 수치 결과를 비교하여 2차원 깊이 평균 얕은 수식은 쓰나미 파도 진화와 해류에 대해 만족스러운 결과를 제공하므로 쓰나미 완화 전략을 결정하는 동안 사용하기에 충분한 도구임을 관찰합니다.

Figure 1. The bathymetry provided with the benchmark problem.
Figure 1. The bathymetry provided with the benchmark problem.
Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.
Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.
Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.
Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.
Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.
Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.

References

  1. Lynett, P.J.; Borrero, J.C.; Weiss, R.; Son, S.; Greer, D.; Renteria, W. Observations and modeling of tsunami-induced currents in ports and harbors. EPSL 2012327, 68–74. [Google Scholar]
  2. Madsen, P.A.; Fuhrman, D.R.; Schaffer, H.A. On the solitary wave paradigm for tsunamis. J. Geophys. Res. 2008113. [Google Scholar] [CrossRef]
  3. NTHMP Mapping & Modeling Benchmarking Workshop: Tsunami Currents. Benchmark #5. Available online: http://coastal.usc.edu/currents_workshop/problems/prob5.html (accessed on 2 August 2016).
  4. Onat, Y.; Yalciner, A.C. Initial stage of database development for tsunami warning system along Turkish coasts. Ocean Eng. 201374, 141–154. [Google Scholar] [CrossRef]
  5. Kian, R.; Yalciner, A.C.; Aytore, B.; Zaytsev, A. Wave Amplification and Resonance in Enclosed Basins; A Case Study in Haydarpasa Port of Istanbul. In Proceedings of the 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement, St. Petersburg, VA, USA, 2–6 March 2015; Volume 11, pp. 1–7.
  6. Patel, V.M.; Dholakia, M.B.; Singh, A.P. Emergency preparedness in the case of Makran tsunami: A case study on tsunami risk visualization for the western parts of Gujarat, India. Geomat. Nat. Hazards Risk 20167, 826–842. [Google Scholar] [CrossRef]
  7. Yalciner, A.C.; Pelinovsky, E.; Zaytsev, A.; Kurkin, A.; Ozer, C.; Karakus, H.; Ozyurt, G. Modeling and visualization of tsunamis: Mediterranean examples. In Tsunami and Nonlinear Waves, 1st ed.; Kundu, A., Ed.; Springer: Berlin, Germany, 2007; pp. 273–283. [Google Scholar]
  8. Synolakis, C.E.; Bernard, E.N.; Titov, V.; Kanoglu, U.; Gonzalez, F. Validation and verification of tsunami numerical models. PAGEOPH 2008165, 2197–2228. [Google Scholar] [CrossRef]
  9. Yalciner, A.C.; Zaytsev, A.; Kanoglu, U.; Velioglu, D.; Dogan, G.G.; Kian, R.; Sharghivand, N.; Aytore, B. NTHMP Mapping and Modeling Benchmarking Workshop: Tsunami Currents. Available online: http://coastal.usc.edu/currents_workshop/presentations/Yalciner.pdf (accessed on 2 August 2016).
  10. Ozer, C.; Yalciner, A.C. Sensitivity study of hydrodynamic parameters during numerical simulations of tsunami inundation. PAGEOPH 2011168, 2083–2095. [Google Scholar]
  11. Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A. Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts. PAGEOPH 2014172, 931–952. [Google Scholar] [CrossRef]
  12. Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A.; Suppasri, A.; Imamura, F. Investigation of hydrodynamic parameters and the effects of breakwaters during the 2011 Great East Japan Tsunami in Kamaishi Bay. PAGEOPH 2015172, 3473–3491. [Google Scholar] [CrossRef]
  13. Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Performance Comparison of Numerical Codes for Tsunami Inundation. In Proceedings of the 2015 American Geophysical Union Fall Meeting, San Francisco, CA, USA, 14–18 December 2015.
  14. Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems. In Proceedings of the 2016 European Geosciences Union, Vienna, Austria, 17–22 April 2016.
  15. Dilmen, D.I.; Kemec, S.; Yalciner, A.C.; Düzgün, S.; Zaytsev, A. Development of a tsunami inundation map in detecting tsunami risk in Gulf of Fethiye, Turkey. PAGEOPH 2015172. [Google Scholar] [CrossRef]
  16. Heidarzadeh, M.; Krastel, S.; Yalciner, A.C. The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In Submarine Mass Movements and Their Consequences, 6th ed.; Sebastian, K., Jan-Hinrich, B., David, V., Michael, S., Christian, B., Roger, U., Jason, C., Katrin, H., Michael, S., Carl, B.H., Eds.; Springer: Bern, Switzerland, 2013; Volume 37, pp. 483–495. [Google Scholar]
  17. Yalciner, A.C.; Gülkan, P.; Dilmen, D. I.; Aytore, B.; Ayca, A.; Insel, I.; Zaytsev, A. Evaluation of tsunami scenarios for western Peloponnese, Greece. Boll. Geofis. Teor. Appl. 201455, 485–500. [Google Scholar]
  18. Zahibo, N.; Pelinovsky, E.; Kurkin, A.; Kozelkov, A. Estimation of far-field tsunami potential for the Caribbean Coast based on numerical simulation. Sci. Tsunami Hazards 200321, 202–222. [Google Scholar]
  19. Swigler, D.T. Laboratory Study Investigating the Three-dimensıonal Turbulence and Kinematic Properties Associated with a Breaking Solitary Wave. Master’s Thesis, Texas A&M University, College Station, TX, USA, August 2009. [Google Scholar]
  20. National Tsunami Hazard Mitigation Program. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Available online: http://nws.weather.gov/nthmp/documents/nthmpWorkshopProcMerged.pdf (accessed on 21 July 2016).
FLOW-3D (x) Workflow

Calibrating Simulation Parameters

시뮬레이션 매개 변수 보정

교정 연구의 목표

계단식 배수로에서 공기 유입 시뮬레이션에 대한 다양한 수치 매개 변수의 영향을 조사합니다.

엔지니어링 과제

쉽게 실험 데이터와 일치하도록 공기 유입 및 도움말 보정의 최초의 시뮬레이션에 수치 매개 변수의 영향을 연구에 사용할 수 있는 자동화된 워크 플로우 생성 1 .

연구할 매개 변수는 메쉬 크기, 난류 모델, 난류 길이 스케일 및 동적 대 고정 난류 길이 스케일입니다. 또한 FLOW-3D (x) 는 마지막 시간 단계에서 유입된 공기 농도의 이미지와 시뮬레이션에서 공기 유입의 진화를 보여주는 애니메이션을 생성합니다.

FLOW-3D (x) 워크 플로우

시뮬레이션은 동반된 공기의 양을 보고하기 위해 3, 4, 5 단계의 샘플링 볼륨으로 설정됩니다. FLOW-3D (x) 는 노드를 사용하여 자동화된 워크 플로를 구성합니다. 

첫 번째 노드는 .csv 파일에서 시뮬레이션 매개 변수를 읽는데 사용됩니다. 그런 다음 매개 변수는 시뮬레이션을 실행 하기 위해 FLOW-3D 노드로 전송됩니다 . 후 처리 노드는 배수로의 각 단계에서 샘플링 볼륨에서 동반된 공기 볼륨을 추출하고, 마지막 시간 단계에서 동반된 공기의 이미지를 생성하고, 공기 동반 애니메이션을 생성합니다. 마지막 노드는 샘플링 볼륨에서 보고된 동반 공기 값을 .csv 파일에 씁니다.

매개 변수 정의 입력 파일에 18 개의 매개 변수 세트가 지정되어 있으므로 예산 또는 허용되는 반복 횟수가 18로 설정되었습니다. 단일 시뮬레이션의 런타임은 각 반복에서 사용되는 메시 크기에 따라 다릅니다.

시뮬레이션 매개 변수를 보정하는 계단식 방수로

매개 변수 연구 결과

사용 FLOW-3D (X) 의 데이터 분석 기능 및 자동 화상 생성하면 빠른 시각적 평가 결과의 검증을 허용합니다. 또한 각 시뮬레이션 실행에 대한 각 단계의 공기 유입 값은 보고된 .csv 파일에서 쉽게 액세스 할 수 있습니다. 최적화 연구 시간을 절약하기 위해 배치 실행이 사용되었습니다.

교정 전

보정 전 계단식 배수로 동반 공기

0.01m의 메쉬 크기, k-ω 난류 모델 및 0.005m와 동일한 난류 길이 척도를 사용하는 시뮬레이션의 마지막 시간 단계에서 유입 공기

References

메쉬 크기 = 0.005m, k-ω 난류 모델 및 0.005m와 같은 난류 길이 척도의 시뮬레이션에서 마지막 시간 단계에서 혼입된 공기. 2 배 더 미세한 메쉬를 사용한 공기 혼입의 시작은 0.01m 메쉬보다 실험 결과와 유사하게 비교됩니다.

참고 문헌

1 Felder, Stefan (2013). Air-water flow properties on stepped spillways for embankment dams: Aeration, energy dissipation and turbulence on uniform, non-uniform and pooled stepped chutes. PhD Thesis, School of Civil Engineering, The University of Queensland.

Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

수자원/수처리/환경분야

수자원 분야

Water & Environmental

FLOW-3D는 작은 하수 처리 시스템부터 대형 수력 발전 프로젝트까지 수처리 및 환경 산업에 직면한 광범위한 문제를 해결할 수 있는 뛰어난 CFD 소프트웨어 입니다. FLOW-3D는 시뮬레이션의 복잡성을 감소시키고 최적의 솔루션에 대해 노력을 집중할 수 있도록 해줍니다. 이를 통해 통해 파악된 가치 있는 통찰력은 귀하의 상당한 시간과 비용을 절약 할 수 있습니다.

실제 지형을 적용하여 3차원 shallow water hybrid model을 이용한 댐 붕괴 시뮬레이션

FLOW-3D는 자유표면 흐름이 있는 수치해석 알고리듬에 의해 유동의 표면이 시공간적으로 변하는 모사를 위한 이상적인 도구라고 할 수 있습니다. 자유 표면은 물과 공기 같은 높은 비율의 밀도 변화를 가지는 유체들 사이의 특정한 경계를 일컫습니다. 자유 표면 흐름을 모델링하는 것은 일반적인 유동방정식과 난류 모델이 결합된 고급 알고리즘을 필요로 합니다. 이 기능은 FLOW-3D로 하여금 침수 구조에 의해 형성된 방수, 수력 점프 및 수면 변화의 흐름의 궤적을 포착 할 수 있습니다.


Bibliography & Technical Data

Figure 3.4 Upstream View of the Radial Gated-Spillway

방사형 게이트 아래의 흐름에 대한 실험 및 수치 조사

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLOW UNDER RADIAL GATES submitted by MAHMUT TANYERİ in partial fulfillment of the requirements forthe ...
더 보기
Dynamic Pressure at Flip Buckets of Chute Spillways

낙하 배수로의 플립 버킷에서의 동적 압력: 수치 해석

Dynamic Pressure at Flip Buckets of Chute Spillways: A Numerical Study Yasamin Aghaei, Fouad Kilanehei, Shervin Faghihirad & Mohammad Nazari-Sharabian ...
더 보기
Numerical Simulation of the Geothechnical Effects on Local Scour in Inclined Pier Group with FLow-3D Softaware

FLOW-3D 소프트웨어를 사용한 경사 교각 그룹의 국부 세굴에 대한 지반 공학 효과의 수치 시뮬레이션

Numerical Simulation of the Geothechnical Effects on Local Scour in Inclined Pier Group with FLow-3D Softaware Authors Ramtin Sobhkhiz Alireza ...
더 보기
e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.

유체 역학 및 응용 유압 분야에서 사용하기 위한 수치 모델링(CFD)을 적용한 가상 실험실 실습 매뉴얼

This manual was developed with the purpose of presenting and executing basic numerical models in the software known as Flow ...
더 보기
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).

그리스 수로의 작은 수력 전위를 활용하는 관형 아르키메데스 스크류 터빈의 CFD 시뮬레이션

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses Alkistis Stergiopoulou1, Vassilios Stergiopoulos21Institut für Wasserwirtschaft, ...
더 보기
Figure 7 | Variation of flow field of elliptical bridge pier with different axis ratios under multi-year average flow. (a) Axis ratio ¼ 1. (b) Axis ratio ¼ 0.85. (c) Axis ratio ¼ 0.75. (d) Axis ratio ¼ 0.5. (e) Axis ratio ¼ 0.25. (f) Axis ratio ¼ 0.15. (continued.)

교각의 형태학적 변화가 물의 이동 특성에 미치는 영향에 관한 연구

Study on the effect of morphological changes of bridge piers on water movement properties Xianqi Zhanga,b,c, Tao Wanga,* and Bingsen ...
더 보기
Figure 9. Scour morphology under different times for case 7.

Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves

무작위 파동에서 우산 흡입 앵커 기초 주변의 세굴 특성 및 평형 세굴 깊이 예측 Ruigeng Hu 1, Hongjun Liu 2, ...
더 보기
Fig. 1  Layout of spillway tunnel

Experimental study and numerical simulation of hydraulic characteristics of ogee spillway tunnel

WU Jingxia1, ZHANG Chunjin2,3(1. Xi’an Water Conservancy Survey Design Institute, Xi’an  710054, Shaanxi, China; 2. Key Laboratory ofYellow River Sediment ...
더 보기
Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s.

Optimization Algorithms and Engineering: Recent Advances and Applications

Mahdi Feizbahr,1 Navid Tonekaboni,2Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4Show moreAcademic Editor: Mohammad YazdiReceived08 Apr 2021Revised18 Jun 2021Accepted17 Jul 2021Published11 Aug 2021 ...
더 보기
Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

Flow-3D 수치 모델링 결과를 기반으로 하는 슈트 여수로의 캐비테이션 발생 확률적 조사

Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling Amin Hasanalipour Shahrabadi1*, Mehdi ...
더 보기


FLOW-3D Water & Environmental Brochure (FSI) Bibliography

Models

Case Studies

Conference Proceedings

레이놀즈 수

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Reynolds Number

레이놀즈 수

주어진 수치 방법에 의해 정확하게 계산 될 수 있는 유동에 대해서 가장 높고, 가장 낮은 레이놀즈 수 무엇입니까? 이 질문은 다양한 답과 그리고 가장 기술적인 문제들로서 주어진 답을 포함하는 가정들로부터 다양한 답을 가지고 있습니다.

본 목적을 위해, 레이놀즈 수는 R = R LU / ν로 정의되며, 여기서 L과 U는 유동 특성 길이 및 스케일이고, ν는 유체의 동점도(kinematic viscosity )입니다. 즉 물체의 관성이 점성에 비해서 얼마나 큰가를 나타내는 척도로 이 레이놀즈 수가 작을수록 층류(유체의 유선이 유지되면서 흐르는 유동)가, 클수록 난류가 형성된다. 무 차원 레이놀즈 수가 점성의 관성 효과의 측정을 중요성을 상기시킵니다. 높은 레이놀즈 수에서의 흐름은 정성적으로 다른 행동을 나타내고, 난류 될 수 있습니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류가 난류로의 분해 또는 경계층이 표면에서 분리되는 위치에 따라 달라지는 몸체의 양력 및 항력을 예측하는 데 계산이 사용될 수 있는 한계입니다. 유동에 대한 점성 응력의 상대적 효과를 정확하게 시뮬레이션 하는 것이 중요한 이러한 또는 다른 유형의 유동 프로세스에서는 계산에서 어떤 수준의 정확도를 기대할 수 있는지에 대한 아이디어를 갖는 것이 유용합니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류에서 난류로 붕괴되는 것을 예측하곤 하는 계산의 한계치이며, 유동의 경계층이 그 표면에서부터 박리되는 곳에서의 물체의 양력과 항력을 예측하는 한계치이기도 합니다. 유동의 다양한 유형에서 유동의 점성 응력의 상대적 효과를 정확하게 시뮬레이션하는 것은 중요하며, 계산상 예측되는 정확도의 수준에 대한 어떤 아이디어를 확보하는 것 또한 매우 유용할 것입니다.

높은 레이놀즈 수 제한 – 물리적 인수

흐름을 정확하게 표현하는데 필요한 계산 요구 사항 (즉, 해상도)을 추정하기 위해 간단한 물리적 인수를 사용할 수 있습니다. 이 주장은 흐름 영역이 작은 요소로 세분화 될 때 요소 내의 모든 흐름량이 천천히 변한다는 가정을 기반으로 합니다. 이 가정은 각 요소의 평균 수량 값이 요소 내의 실제 값에 대한 좋은 근사치라는 의미를 전달합니다.

요소 내에서 느리게 변하는 속도를 가지려면 요소 크기의 척도에서 흐름의 레이놀즈 수가 작아야 합니다 (예 : 1 차 Rd = dx · du / ν ≤ 1.0). 이 표현에서 dx와 du는 요소의 길이와 속도 스케일입니다. 이 물리적 요구 사항, 요소의 흐름의 부드러움 (즉, 낮은 레이놀즈 수, 이 척도의 층류 흐름)은 정확한 수치 분해능에 필요한 요소의 크기를 정의하는데 사용될 수 있습니다.

위의 부등식은 L = Ndx 및 U = Ndu 관계에 의해 거시적 레이놀즈 수로 변환 될 수 있으며, 이는 R ≤ N 2로 이어집니다 . 즉, 개별 요소의 규모에 대한 부드러운 흐름의 물리적 정확도 요구 사항은 정확도로 계산할 수 있는 최대 레이놀즈 넘버원이 NN 2 정도라는 것을 의미합니다. 여기서 N은 특성을 해결하는 데 사용되는 요소의 수입니다. 길이 L.

대표적인 응용에서 N은 종종10 내지 20의 범위에 있는 수로서 매우 큰 수 아닙니다. 그리고 이는 단지 약400 의 정확한 계산을 위해 최대 레이놀즈 수로 변환합니다. 이 결과에 대해 해석을 달기 전에 정확한 레이놀즈 수 계산을 위한 추정을 위해서 다른 접근 방법을 시도하는 유익합니다.

High Reynolds Number Limit – A Numerical Argument

수치 근사에 의해서 계산 도입된 viscous-like smoothing의 양은 truncation error로부터 평가 될 수 있습니다. 알다시피 아이디어는 요소 크기 (그리고 적정한 시간 간격 크기) 멱함수을 미분 근사하는 테일러 급수 전개를 하는 것입니다. 물론, 일관성 있는 근사는 원래 근사환 된 편미분 방정식의 가장 낮은 차수를 이용하는 것입니다.

다음으로 높은 차수는 보통 확산 (즉, 2차 차수 공간 미분형태) 항입니다. 점성 계수와 더불어 이러한 항의 계수 비교는 점성 효과를 더 정확하게 계산 할 수 없을 때의 추정치를 제공합니다.

1차 수치 근사 (예를 들어 대류에 대한donor cell 또는upwind technique )에 대해서 정확도를 위해서 1보다 적어야만 하는 항들의 비는 다음의 판별식을 유도하게 됩니다( R ≤ 2N.) 그리고 2차 수치 근사의 결과, R ≤ N얻어지고 물리적인 인자(Physical Argument)로부터 같은 결과가 얻어 집니다.

이러한 관계의 우변을 곱하는 작은 숫자 요소가 사용되며, 이는 사용 된 특정 수치 근사에 따라 달라 지지만 N에 대한 기본 종속성은 변경되지 않습니다. 모든 2 차 방법이 1 차 방법보다 분명히 훨씬 낫지 만 결과는 고무적이지 않습니다. 정확하게 계산할 수 있는 최대 레이놀즈 수는 N을 늘리지 않는 한 매우 제한적인 것으로 보입니다. 이는 매우 큰 그리드를 처리한다는 의미입니다.

하이 레이놀즈 수에 대한 일반적인 의견

이러한 평가들은 첫 발생 시에는 실망스런 부분도 있으나 종종 완화되는 상황으로 전개됩니다. 무엇보다도 중용한 것은 대부분의 문제들은 점성 응력에 대한 정확한 처리를 요구하지 않습니다. 이러한 문제에 대해서 높은 레이놀즈 수의 상한은 점성 효과가 중요하지 않다는 것을 의도한 의미를 갖습니다.

어떤 유동이 난류에 의해 운동량 혼합이 이루워진 fully turbulent 되기 위해 충분히 높은 레이놀즈 수를 가질 때, 종종 잘 분류될 수 있는 scale을 가진 영역 내에서 100 미만의 유효한 레이놀즈 수의 평균 유동으로 진행되곤 합니다. 물론, 이것은 난류를 기술할 수 있는 적당한 난류 모델이 사용되고 있다는 것을 가정합니다.

마지막으로 점성 효과의 정확한 정보에 따라 일부 유동 특성을 가질 필요가 있을 때 인위적인 의미의 효과를 유도하는 것이 가능 할 수 있습니다. 예를 들어, 풍동 trip wire는 종종 레이놀즈 수 상사성( similarity )의 부족을 고려하여 trigger 유동의 박리에 사용되곤 합니다. 비슷한 처리가 풍동의 수치 시뮬레이션에 추가 될 수 있습니다.

결론은 CFD 방법을 사용하여 높은 레이놀즈 수 흐름을 계산하는 데 사용할 수 있지만 수치해석상의 전산 오차가 물리적인 효과를 압도 할 수 있는 상황에 대한 경고는 해당 난류 모델에 달려있다고 말할 수 있습니다.

낮은 레이놀즈 수 제한

낮은 레이놀즈 수에서 한계는 정밀도의 한계가 아니라 계산을 완료하는데 필요한 계산 시간을 기준으로 한계입니다.  점성 응력 항에 explicit 수치 근사를 사용하면 숫자의 안정성을 유지하기 위해 시간 단계의 크기에 한계가 있습니다.  이 한계는 본질적으로 점성으로 인한 운동량의 변화는 하나의 시간 단계에서 대략 1 개의 요소를 넘어 전파하는 것은 아니라는 것을 보여줍니다.  단순한 2 차원의 경우에는 이 한계는 νdt ≤ dx2/4입니다.

이것은 T = Mdt 및 TU = L이라는 대응을 작성하여 레이놀즈 수를 포함하는 식으로 변형 할 수 있습니다.  즉, 흐름의 특성 시간은 속도 U의 유체가 거리 L을 이동하는 시간이며, 시간 T를 분해 시간 단계의 수는 M입니다.  이러한 관계식에 의해 안정된 조건은 M = 4N2/R 입니다.

이 결과에서 중요한 것은 M이 R에 반비례하여 증가하는 것입니다.  레이놀즈 수가 매우 작은 흐름의 경우 explicit 수치 법에는 매우 많은 시간 단계가 필요할 수 있으며,이 숫자는 해상도의 상승에 따라 급속히 증가하고 있습니다.  낮은 레이놀즈 수의 한계를 가장 효과적으로 제거하는 방법은 implicit 수치 법을 사용하여 점성 응력을 평가하는 것입니다.


Reynolds Number

What are the highest and lowest Reynolds number flows that can be accurately computed by a given numerical method? This question has a variety of answers, and, as with most technical issues, the variety of answers arises from the assumptions involved in giving the answer.

For present purposes, the Reynolds number R is defined as R=LU/ν, where L and U are characteristic length and velocity scales for a flow, and ν is the kinematic viscosity of the fluid. It will be recalled that the non dimensional Reynolds number is a measure of the importance of inertia to viscosity effects. At high Reynolds numbers a flow may become turbulent, exhibiting qualitatively different behavior.

Generally, the most important limit to consider is that of high Reynolds numbers. This is the limit where computations might be used to predict the breakdown of a laminar flow into turbulence, or the lift and drag of a body that is dependent on where boundary layers separate from its surface. In these or other types of flow processes in which it is critical to correctly simulate the relative effect of viscous stresses on the flow, it is useful to have some idea of what level of accuracy can be expected in a computation.

The reason that a Reynolds number limitation exists in computational fluid dynamics CFD) is that the computational stability of most CFD methods relies on some type of numerical smoothing or homogenizing within the computational elements. Since viscosity is a physical mechanism for smoothing flow variations, there can be a problem differentiating between numerical and physical smoothing. This is especially important when critical Reynolds number situations are encountered, because they require an especially accurate estimate of viscous stresses.

High Reynolds Number Limit – A Physical Argument

A simple physical argument can be used to estimate the computational requirements (i.e., resolution) needed to achieve an accurate representation of a flow. The argument is based on the assumption that when a flow region is subdivided into small elements all flow quantities within an element are slowly varying. This assumption carries the implication that the average values of quantities in each element are good approximations for the actual values within the element.

To have a slowly varying velocity within an element, the Reynolds number of the flow on scales of the element size must be small, say of order one, Rd=dx·du/ν ≤ 1.0. In this expression dx and du are length and velocity scales characteristic of the element. This physical requirement, the smoothness of the flow in elements (i.e., a low Reynolds number, laminar flow on this scale), may be used to define the size of elements needed for an accurate numerical resolution.

The above inequality can be converted to a macroscopic Reynolds number by the relations, L=Ndx and U=Ndu, which leads to R ≤ N2. In other words, the physical accuracy requirement of a smooth flow on the scale of individual elements implies that the maximum Reynolds number one can expect to compute with accuracy is on the order of NN2 where N is the number of elements used to resolve a characteristic length L.

In typical applications, N is often in the range of 10 to 20, which translates to a maximum Reynolds number for accurate computations of only about 400, not a very large number! Before commenting on this result it is instructive to try a different approach for estimating the limit for accurate Reynolds number computations.

High Reynolds Number Limit – A Numerical Argument

The amount of viscous-like smoothing introduced into a computation by numerical approximations can be estimated from truncation errors. The idea is to do a Taylor Series expansion on the difference approximations in powers of the element size (and time-step size if that is appropriate). Of course, a consistent approximation should have as its lowest order terms the partial differential equation that was originally being approximated.

At the next higher order there are usually terms that have the character of a diffusion (i.e., second-order space derivatives). A comparison of the coefficients of these terms with the coefficient of viscosity gives an estimate of when viscous effects would no longer be computed accurately.

For a first-order numerical approximation (e.g., a donor cell or upwind technique for advection) the ratio of terms, which must be less than one for accuracy, leads to the criteria R ≤ 2N. With a second-order approximation the result is R ≤ N2, the same result obtained from the “Physical Argument.”

There are small numerical factors multiplying the right-hand sides of these relations, which depend on the specific numerical approximations used, but the basic dependencies on N remain unchanged. Any second-order method is clearly much better than a first-order method, but the results are not encouraging. The maximum Reynolds number that can be computed accurately appears to be quite limited, unless one is willing to increase N, which means dealing with extremely large grids.

General Comments on High Reynolds Numbers

These estimates are discouraging when first encountered, but there are frequently mitigating circumstances. Foremost is the realization that most problems do not require an accurate treatment of viscous stresses. For these problems the high Reynolds number limit has the intended meaning that viscous effects are not important.

When flows have a high enough Reynolds number to be fully turbulent the momentum mixing induced by the turbulence often leads to a mean flow with an effective Reynolds number that is less than 100, well within the range of resolvable scales. Of course, this assumes that a suitable turbulence model is available to describe the turbulence.

Finally, when it is necessary to have some flow property that depends on an accurate knowledge of viscous effects, it may be possible to induce that effect by artificial means. For example, in wind tunnels trip wires are sometimes used to trigger flow separations to account for a lack of Reynolds number similarity. A similar treatment can be added to a numerical simulation of a wind tunnel.

The bottom line is, CFD methods can be used to compute high Reynolds number flows, but it is up to the modeler to be alert for situations where numerical errors could overshadow physical effects.

Low Reynolds Number Limit

At low Reynolds numbers the limit is not one of accuracy but a limit based on the computational time necessary to complete a computation. When explicit numerical approximations are used for viscous stress terms there is a limit on the size of the time step to maintain numerical stability. That limit is essentially a statement that momentum changes caused by viscosity do not propagate more than about one element in one time step. In a simple two-dimensional case this limit is νdt ≤ dx2/4.

This can be transformed into an expression involving the Reynolds number by making the correspondences: T=Mdt and TU=L. That is, the characteristic time for a flow is the time for fluid at velocity U to move a distance L, and the number of time steps resolving time T is M. With these relations the stability condition is then, M = 4N2/R.

The importance of this result is that M increases inversely with R. For very low Reynolds number flows, explicit numerical methods may require a very large number of time steps, and this number increases rapidly with an increase in resolution. The low Reynolds number limit is best eliminated by employing an implicit numerical method for evaluating viscous stresses.

Figure 1. Right: Absolute velocities in the vertical sluice gate fish pass. Level difference between the pools is 0.20 m. Left: Isosurface of the surface structure (blue), Right and left: Isosurface of absolute velocity 1.50 m/s (yellow)

Success Criterion for Fish Passages |수력 발전소 물고기 통로

São Roque 수력 발전소 물고기 통로

이 기사는 Matthias Haselbauer, RMD Consult  및 Carlos Barreira Martinez (  Minas Gerais 연방 대학교) 가 기고했습니다  .

브라질에서는 지난 150 년 동안 지표수의 사용이 지속적으로 증가했습니다. 항행성을 유지하고, 수력을 생성하고, 홍수를 방지하기 위해 자연 흐름을 방해하는 많은 장애물과 우회로가 세워졌습니다. 강에 서식하는 물고기 및 기타 작은 동물은 이러한 변화로 고통 받습니다. 일부 종의 멸종 시점까지 어류 수가 크게 감소한 것이 관찰되었습니다. 어류, 조류 및 포유류 개체수가 동시에 감소함에 따라 먹이 사슬에 대한 인간의 엄청난 영향이 분명해졌습니다.

강을 물고기를 위해 개방하기 위해 브라질에 많은 수의 물고기 통로가 건설되었지만 생물학적 및 기술적 측면에서 효율성이 떨어지는 경우가 많았습니다. 종종 1 차원적이고 경험적인 가정을 사용하여 설계된 통로의 흐름 상황은 과도한 선택과 열악한 위치를 초래합니다. 전통적인 1 차원 디자인의 물고기 통로와 달리 오늘날 더 적절한 도구를 사용할 수 있습니다. CFD (전산 유체 역학) 시뮬레이션을 사용하면 평균 속도 필드 뿐만 아니라 물고기 통로의 유용성에 상당한 영향을 미치는 과도 흐름 효과를 조사 할 수 있습니다. 최적의 결과를 얻으려면 설계 프로세스에서 수력 학적 고려 사항과 생물학적 고려 사항의 결합이 필수적입니다.

이 연구에서는주기적인 수직 수문 물고기 통로 내부의 난류 응집 구조에 대해 논의합니다. 길이가 4.50m이고 너비가 각각 3.30 인 두 개의 웅덩이 사이에서 흐름은 0.50m의 확장이 있는 작은 수직 개구부를 통과해야 합니다 (그림 1). 

CFD 시뮬레이션은 FLOW-3D 로 수행되었습니다 . 흐름 방향의 주기적 경계 조건에서 달성 가능한 해상도는 약 2.5cm입니다. 두 웅덩이 사이의 수면 Δh의 레벨 차이는 20cm였다. 따라서 절대 속도의 최대 값은 약 2m / s ≈ Δh * 2g입니다. 전체 위치 에너지는 운동 에너지로 변환되고 나중에 풀에서 소멸됩니다. 제트가 벽에서 분리되는 고속 영역이 형성됩니다.

절대 속도 수문 물고기 통과
그림 1. 오른쪽 : 수직 수문 물고기 통과의 절대 속도. 수영장 사이의 레벨 차이는 0.20m입니다. 왼쪽 : 표면 구조의 등면 (파란색), 오른쪽 및 왼쪽 : 절대 속도 1.50m / s (노란색)의 등면

LES (Large Eddy Simulation)를 통해 순간 흐름 영역에 대한 자세한 분석이 가능했습니다. 속도 및 난류 장의 분포와 풀 내의 일관된 난류 구조는 물고기의 행동을 더 잘 이해할 수있게했습니다.

난류 압력 변동

순간 속도 또는 압력 필드는 평균 값과 해당 변동으로 나눌 수 있습니다. 변동 압력에 대한 각 방정식은 다음과 같습니다.

{\tilde{p}}’=\tilde{p}-\left\langle {\tilde{p}} \right\rangle

난류 압력 장을 살펴보면 와류 내부의 난류 압력이 음수임을 알 수 있습니다. 난류 압력의 국부적 최소값은 그림 2와 같이 대규모 와류의 코어를 나타냅니다. 물고기 통로에서 여러 개의 수평 롤러가 관찰 될 수 있습니다. 와류는 수 문의 전 단층 내부에 형성됩니다. 정점의 주행 거리가 증가하면 와류 직경이 증가하고 난류 압력 진폭이 감소하여 롤러 내부의 난류 압력이 증가합니다.

일관된 구조와 관련하여 개방 채널 흐름의 난류 압력을 분석하는 것은 매우 어렵습니다. 대규모 와류는 직접 관찰로 거의 감지 할 수 없습니다. 이는 수면의 변동과 전체 전류 내부의 관련 압력 변동 때문입니다. 표면파에 의해 유발 된 압력 변동은 다음 지수 법칙에 따라 수심 z에 따라 감소합니다 [Kundu, 2004] :

{p}’\propto {{e}^{{-kz}}}

난류 압력 장을 살펴보면 와류 내부의 난류 압력이 음수임을 알 수 있습니다. 난류 압력의 국부적 최소값은 그림 2와 같이 대규모 와류의 코어를 나타냅니다. 물고기 통로에서 여러 개의 수평 롤러가 관찰 될 수 있습니다. 와류는 수 문의 전 단층 내부에 형성됩니다. 정점의 주행 거리가 증가하면 와류 직경이 증가하고 난류 압력 진폭이 감소하여 롤러 내부의 난류 압력이 증가합니다.

개방 채널 흐름의 난류 압력
그림 2 : 난류 압력 변동의 등면 = -500 Pa.

일관된 구조와 관련하여 개방 채널 흐름의 난류 압력을 분석하는 것은 매우 어렵습니다. 대규모 와류는 직접 관찰로 거의 감지 할 수 없습니다. 이는 수면의 변동과 전체 전류 내부의 관련 압력 변동 때문입니다. 표면파에 의해 유발 된 압력 변동은 다음 지수 법칙에 따라 수심 z에 따라 감소합니다 [Kundu, 2004] :

서로 다른 압력 변동의 중첩으로 인해 표면 근처의 대규모 일관된 구조를 감지하기가 어렵습니다.

Q- 기준

와류 감지를위한 또 다른 도구는 Dubrief (2000)와 Hunt (1988)가 제안했으며, 이들은 압력, 와도 및 Q- 기준의 등면을 비교했습니다. Q- 기준은 다음과 같이 계산됩니다.

\displaystyle {{\tilde{\Omega }}{{ij}}}=\frac{1}{2}\left( {\frac{{\partial {{{\tilde{U}}}{i}}}}{{{{x}{j}}}}-\frac{{{{{\tilde{U}}}{j}}}}{{\partial {{x}_{i}}}}} \right)

\displaystyle {\tilde{\Omega }}{ij}=\frac{1}{2}\left( {\frac{\tilde{U}{i}} {x}{j}-\frac{\tilde{U}{j}} {x}_{i}} \right)

공간적으로 필터링 된 속도 구배의 비대칭 및 대칭 부분. 그림 3에서는 Q ~ = 50s-2의 계산 된 등가 곡면이 표시됩니다. Q- 기준으로 소규모 와류가 감지됩니다. 난류 압력 변동과는 달리, Q- 기준 계산을 위해 자유 표면 상태는 탐지 가능성을 방해하지 않습니다. 이는 ∇²p 계산에 선형 정압 분포가 사용되지 않기 때문 입니다. 흐름에서 흐름 방향으로 작은 헤어 라인 소용돌이를 볼 수 있습니다.

Isosurfaces 난류 압력 변동
그림 3 : 난류 압력 변동의 등면

토론

다른 스케일의 소용돌이를 시각화하면 엔지니어는 물고기가 수로를 통과해야하는 일관된 구조에 대해 좋은 느낌을 갖게됩니다. 감지 된 대규모 롤러가 주요 구조입니다. 물고기는 이러한 구조에 대한 흐름에서 안정화되어야합니다. 이 롤러의 축은 메인 스트림 방향에 부분적으로 수직이므로 물고기가 안정화를 위해 메인 핀을 사용할 수 있습니다.

소규모 구조물은 물고기의 수영 방향과 평행합니다. 물고기는 이러한 와류에서 안정화를 위해 수직 지느러미 만 사용할 수 있기 때문에 대규모 롤러보다 안정화를 위해 더 많은 노력을 기울여야합니다.

계산 된 LES 결과를 사용하여 물고기 통과 내부의 흐름 조건에 대한 생물 학자와 엔지니어 간의 예비 토론을 시작할 수 있습니다. 감지 된 난류 구조는 물고기 통과의 성공에 중요합니다. 이러한 구조를 통과하는 데는 고속 영역을 통과하는 것보다 더 많은 에너지가 필요할 수 있습니다.

다음 달에 브라질 벨루 오리 존치에있는 미나스 제 라이스 연방 대학교에서 이러한 난류 구조와 물고기가 이러한 구조를 탐색하는 능력 사이의 상관 관계를 확인하기 위해 일련의 실험실 실험이 수행 될 것입니다.

참고 문헌

Dubrief, Yves; Delcayre, Frank: On Coherent-vortex identification in turbulence. In: Journal of Turbulence 1 (2000), pp. 1-22

Haselbauer M.: Geräuscharme Fischaufstiegsgerinne – Experimentelle und numerische Analyse des Fischpasses vom Typ periodische Schütze. PhD-Thesis, Fachgebiet Hydromechanik, TU München, 2008

Hunt, J.C.R.; Wray, A.A.; Moin, P.: Eddies, streams, and convergence zones in turbulent flows. In: CTR-S88 (1988), pp. 193-208

Kundu, Pijush K; Cohen, Ira M: Fluid Mechanics. San Diego: Elsevier Academic Press, 2004

Wilczak, J. M: Large-scale eddies in the unstably stratified atmospheric surface layer. Part I: Velocity and temperature structure. In: J. Atmos. Sci. 41 (1984), pp. 3537-3550

Acknowledgement: All results were post-processed with Paraview.

FLOW-3D HYDRO- Dams & Spillways

Dams & spillways Long history of success

  • Government regulators
  • Hydro-power utilities
  • Engineering consultants
  • Hydraulics laboratories
  • CFD consultants
  • Academia

Dams & spillways

•Wide range of applications

•Wide range of flow conditions:
–Open channel
–Pressurized –Mixed

•Wide range of models
FLOW-3D HYDRO is a solution that is:

  • Versatile
  • Robust
  • Accurate

Spillway rating curve
Draft tube exit hydraulics
Flow distribution at turbine entrance
Head loss & energy dissipation
Forces on dams
Aerated flows
Spillway approach conditions
Jet deflection on upper spillway
Spillway water profile
Fish passage hydraulics
Forces on Spillways
Sediment & Scour

Limitless dam, spillway & stilling basin configurations

–Weirs & hydraulic controls
–Ogee
–Gated
–Staircase
–Siphon
–Bucket
–Morning glory
–Labyrinth
–Piano Key weir
–Arced weirs
–…

FLOW-3D HYDRO에는 수십 가지 예가 사전 탑재되어 있어 응용 프로그램 모델링을 시작할 수 있는 좋은 출발점을 제공합니다.

Ray-tracing an upcoming post-processing feature

Fishways

기하학적 또는 흐름 구성에 대한 제한 없음: FLOW-3D HYDO는 속도, 공기 흡입 및 난류장과 같은 중요한 흐름 특성을 매우 정확하게 표현합니다.

  • Natural fishways
  • Pool & weir
  • Pool & orifice
  • Larinier
  • Ice-harbor
  • Natural
  • Baffle
  • Vertical slot
  • Denil •…
  • Simulation outputs
  • Detail of velocity field
  • Water elevation profiles

Spatial mapping of turbulence intensity

Determination of flow conditions:
–Skimming
–Plunging
–Intermittent

FLOW-3D 튜토리얼 V12

FLOW-3D 튜토리얼 V12

빠른 시작

이 튜토리얼 매뉴얼은 FLOW-3D 처음 사용하는 사용자에게 그래픽 사용자 인터페이스(GUI)의 주요 구성 요소를 쉽게 익히도록 하고, 다양한 시뮬레이션의 설정 및 실행 방법을 안내하기 위한 것입니다.

이 매뉴얼에 있는 실습과정은 FLOW-3D의 기본 사항을 다루기 위한 것입니다. 이 매뉴얼에서 제시하는 문제는 다양한 주제를 설명하고, 발생할 수 있는 많은 질문을 해결하기 위해 선정되었습니다. 이 매뉴얼의 실습과정은 FLOW-3D실행하는 컴퓨터에 앉아 사용하는 것이 가장 좋습니다.

CFD 사용 철학에 대한 간단한 섹션 다음에는 중요 파일과 시뮬레이션 파일을 실행하는 방법이 소개되어 있습니다. 이 소개 섹션 다음에는 모델 설정, 시뮬레이션 실행 및 포스트 프로세스, Simulation Manager 탐색 방법에 대한 설명이 있습니다. 이러한 각 단계에 대한 자세한 내용은 모델 설정, 컴퓨팅 결과 및 후처리 장에서 확인할 수 있습니다.

1.CFD 사용에 대한 철학

CFD (Computational Fluid Dynamics)는 유체 흐름(질량, 운동량 및 에너지 보존)에 대한 지배 방정식의 컴퓨터 솔루션입니다. 지정된 지배방정식은 이론 장에 설명된 Numerical방법을 사용하여 이산화되고 계산됩니다.

CFD 소프트웨어를 사용하는 것은 여러 면에서 실험을 설정하는 것과 유사합니다. 실제 상황을 시뮬레이션하기 위해 실험을 올바르게 설정하지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 같은 방법으로 수치 모델이 실제 상황을 정확하게 나타내지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 사용자는 어떤 것이 중요한지, 어떻게 표현해야 하는지를 결정해야 합니다. 시작하기 전에 다음과 같은 질문을 하는 것이 중요합니다.

  • CFD 계산에서 무엇을 알고 싶습니까?
  • 중요한 현상을 포착하기 위해 규모와 Mesh는 어떻게 설계되어야 하는가?
  • 실제 물리적 상황을 가장 잘 나타내는 경계 조건은 무엇입니까?
  • 어떤 종류의 유체를 사용해야합니까?
  • 이 문제에 어떤 유체 특성이 중요합니까?
  • 다른 어떤 물리적 현상이 중요합니까?
  • 초기 유체 상태는 어떻게 됩니까?
  • 어떤 단위 시스템을 사용해야합니까?

모델링 되는 문제가 실제 상황을 가능한 한 유사하게 나타내는지 확인하는 것이 중요합니다. 사용자는 복잡한 시뮬레이션 작업을 해결 가능한 부분으로 나누는 것이 좋습니다.

복잡한 물리 효과를 추가하기 전에, 간단하고 쉽게 이해할 수 있는 근사값으로 점차적으로 시작하여 프로세스 진행하십시오. 간단한 손 계산(베르누이 방정식, 에너지 균형, 파동
전파, 경계층 성장 등)은 물리 및 매개 변수를 선택하는데 도움이 되고, 결과와 비교할 수 있는 점검항목을 제공합니다.

CFD의 장단점을 이해하면 분석을 진행하는데 도움이 될 수 있습니다. CFD는 다음과 같은 경우 탁월한 분석 옵션입니다.

  • 기하 구조, 물리학 또는 필요한 상세 수준으로 인해 표준 엔지니어링 계산이 유용하지 않은 경우가 많습니다.
  • 실제 실험은 비용이 많이 소요됩니다.
  • 실험에서 수집할 수 있는 것보다 유체흐름에 대한 자세한 정보가 필요한 경우 유용합니다.
  • 위험하거나 적대적인 조건, 확장이 잘되지 않는 프로세스 등으로 인해 정확한 실험 측정을 하기가 어려운 경우
  • 복잡한 흐름 정보에 대한 커뮤니케이션

CFD는 다음과 같은 경우에 덜 효과적입니다.

  • 솔루션이 계산 리소스가 매우 많이 소요되거나, 도메인 크기를 줄이기 위한 가정 또는 해결되지 않은 물리적 현상을 설명하기 위한 반 임계 모델이 필요한 경우
  • CFD 시뮬레이션에 대한 입력이 되는 중요한 물리적 현상이 알려지지 않은 경우
  • 물리적 현상이 잘 이해되지 않거나 매우 복잡한 경우

CFD를 사용할 때 명심해야 할 몇 가지 중요한 참고 사항이 있습니다.

  • CFD는 규정된 초기 및 경계 조건에 따라 지정된 지배 방정식의 수치해석 솔루션입니다. 따라서 모델 설정, 즉 어떤 방정식을 풀어야 하는지, 재료 특성, 초기 조건 및 경계 조건이, 가능한 한 물리적 상황과 최대한 일치해야 합니다.
  • 방정식의 수치 해는 일반적으로 어떤 종류의 근사치를 필요로 합니다. 물리적 모델에 대한 가정과 해결방법을 검토한 후 사용하는 것이 좋습니다.
  • 디지털 컴퓨터는 숫자가 유한 정밀도로 이진수로 표시되는 방식으로 인해 반올림 오류가 발생합니다. 이는 문제를 악화시키기 때문에 매우 근소한 숫자의 차이를 계산해야 하는 상황을 피하십시오. 이러한 상황의 예는 시뮬레이션 도메인이 원점에서 멀리 떨어져 있을 때입니다.

 

2.중요한 파일

FLOW-3D 시뮬레이션과 관련된 많은 파일이 있습니다. 가장 중요한 것들이 아래에 설명되어 있습니다. 모든 prepin.* 파일의 명칭에서 prepin는 파일 형식을 의미하며, 별표시* 위치는 시뮬레이션 이름을 의미합니다. ( : prepin.example_simulation.)

  • ·prepin.*: 시뮬레이션용 입력 파일입니다. 시뮬레이션 설정을 설명하는 모든 입력 변수가 포함되어 있습니다.
  • ·prpgrf.*: 이것은 전 처리기 출력 파일입니다. 여기에는 계산된 초기 조건이 포함되며 시뮬레이션을 실행하기 전에 설정을 확인하는 데 사용될 수 있습니다.
  • ·flsgrf.*: 솔버 출력 파일입니다. 시뮬레이션의 최종 결과가 포함됩니다.
  • ·prperr.*, report.*, prpout.*: 이 파일들은 Preprocessor Diagnostic Files.
  • ·hd3err.*, hd3msg.*, hd3out.*: 이 파일들은 Solver Diagnostic Files.

모든 시뮬레이션 파일은 단일 폴더에 함께 유지하므로, 설명이 될 수 있는 시뮬레이션 이름을 사용하는 것이 좋습니다. 그러나 매우 긴 파일 이름은 운영 체제에 따라 문제가 될 수 있습니다.

노트

  • 시뮬레이션 이름이 inp(즉, 입력 파일이 있다면 prepin.inp) 출력 및 진단 파일은 모두 .dat이름을 갖습니다. 예: flsgrf.dat.
  • 모든 입력 파일은 네트워크 위치의 컴퓨터 대신 로컬 디렉토리에 저장하는 것이 좋습니다. 이것은 솔버가 더 빠르게 실행되고 GUI의 응답 속도가 빨라지며 실행중인 시뮬레이션을 방해하는 네트워크 문제 가능성을 제거합니다.

3.시뮬레이션 관리자

FLOW-3D 시뮬레이션 관리자의 탭은 주로 시뮬레이션을 실행할 수 있도록 시뮬레이션 환경을 구성하고 실행 시뮬레이션에 대한 상태 정보를 표시하는데 사용됩니다.

작업 공간 (Workspaces)

작업 공간(Workspaces)Simulation Manager의 필수 부분이며 파일을 FLOW-3D에서 처리하는 방식입니다. 기본적으로 시뮬레이션을 포함하고 구성하는 폴더입니다. 몇 가지 예를 들면 시뮬레이션과 또 다른 작업 공간인 검증 사례를 포함하도록 할 수 있습니다:

포트폴리오의 작업 공간

새로운 작업 공간 만들기

튜토리얼에서는 작성하려는 시뮬레이션을 포함할 작업 공간(Workspaces)을 작성하십시오.

1.File -> New workspace 이동

2.작업 공간 이름으로 Tutorial를 입력하십시오.

3.기본 위치는 현재 사용자의 홈 디렉토리에 있습니다. 다른 곳에서 찾을 수 있지만 기본 위치가 우리의 목적에 적합합니다.

4.하위 디렉토리를 사용하여 작업 공간 이름 만들기 확인란을 선택합니다. 이렇게 하면 파일 시스템에서 작업 공간에 대한 새로운 하위 디렉토리가 만들어져 시뮬레이션 파일을 훨씬 쉽게 구성할 수 있습니다.

새로운 작업 공간 만들기

5.확인을 눌러 새 작업 공간을 작성하십시오. 이제 포트폴리오에 표시됩니다.

새로운 작업 공간 만들기

작업 공간 닫기

포트폴리오를 정리하고 탐색하기 쉽도록 필요 없는 작업공간을 닫는 것이 편리합니다. 작업 공간을 닫으면 포트폴리오에서 해당 작업 공간만 제거됩니다. 그러나, 컴퓨터에서 작업 공간을 삭제하지는 않습니다.

작업 공간을 닫으려면

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 작업 Close Workspace 선택하십시오. 또는 포트폴리오에서 작업 공간을 선택 (왼쪽 클릭) 하고 Delete 키를 누를 수 있습니다.

2.작업 공간을 닫을 것인지 묻는 메세지가 표시됩니다. 예를 선택하십시오.

3.포트폴리오는 더 이상 닫힌 작업 공간을 포함하지 않습니다.

기존 작업 공간 열기

오래된 작업 공간을 열어야 할 때가 있을 것입니다. 예를 들어, 새 프로젝트에 유사한 시뮬레이션을 작성하기 전에 기존 시뮬레이션의 설정을 검토할 수 있습니다. 기존 작업 공간을 열려면

1.File -> Open Workspace를 선택하십시오