Lab-on-a-chip

다양한 표면 장력을 사용하여 도장된 표면

마이크로 채널의 패턴 표면은 액체 사이의 실제 물리적 벽 없이 여러 액체가 나란히 흐르는 특정 경로를 따라 한 저장 장치에서 다른 저장 장치로 액체를 운반하는 데 사용될 수 있습니다. 패턴이 있는 표면은 액체를 lab-on-a-chip, 생물학적 경로, 마이크로 프로세서 및 화학적, 생물학적 감지 장치로 운반하는 데 사용됩니다.

이 경우 표면 장력은 미세 채널의 유체 흐름을 조작하여 패턴이 있는 흐름을 만드는 데 사용됩니다. 고체 표면에 있는 유체의 친수성 또는 소수성 거동은 마이크로 채널을 통해 복수 유체의 움직임을 제어하기 위해 이용됩니다.

마이크로 채널 내부의 유체 흐름은 층류로, 이는 다중 유체 흐름(이 경우 2개)이 난류 혼합 없이 나란히 흐를 수 있음을 의미합니다. 유체 스트림 측면에 물리적 벽이 없기 때문에 스트림은 이른바 가상 벽으로 제한됩니다. 이 벽들은 기본적으로 두 액체 사이의 친수성 경계입니다.

세가지 단계를 보여 주는 실험 결과 – A, B및 C(왼쪽에서 오른쪽으로), Bin Zhao et al.

위의 그림은 실험에서의 마이크로 채널을 보여준다. 중앙 수평 채널의 중간 스트립은 친수성인 반면, 상단 및 하단 수직 채널과 함께 남아 있는 채널은 친수성의 정도가 다릅니다. 그들은 단지 몇도의 접촉점 각도에 의해서만 그들의 친수성이 다릅니다. 상부 채널의 접점 각도는 118o 이고 하부 채널의 접점 각도는 112o입니다. 그러나 이러한 접촉 각도의 작은 차이는 유체가 이러한 영역으로 흐르기 위해 상당히 다른 압력을 필요로 합니다.

수치해석 시뮬레이션

처음에는 모든 채널에 각기 다른 유체가 주입됩니다(투명). 분홍색 유체를 수평 채널로 밀어 넣으면 중앙 영역의 친수성 경로(PhaseA)를 따라 이동합니다. 압력이 증가함에 따라, 유체는 하부 친수성-친수성 장벽을 깨고 바닥 소수성 구역으로 흐르기 시작합니다(상 B). 압력이 더욱 증가하면 유체가 마침내 상부 친수성-친수성 장벽을 깨고 상부 영역에서도 흐르기 시작합니다(단계 C).

A, B, C의 세 단계를 보여주는 수치 결과입니다.

위의 수치해석 결과는 두가지 사이에 중요한 차이가 있다는 점을 고려할 때 실험에서 패턴이 있는 표면 연구의 전반적인 아이디어와 비교할 수 있는 합당한 수준을 보여줍니다. 위에 표시된 수치해석 결과는 과도 상태(압력이 지속적으로 증가함)이므로 유체 경계는 실험 결과와 정확히 동일하지 않습니다. 마찬가지로 유체 특성은 실험에 사용된 특성과 정확히 동일하지 않습니다.

그럼에도 불구하고 유체 1은 실험에서와 같이 압력이 증가함에 따라 A, B, C단계를 거칩니다. B단계에서는 투명한 유체가 상부 채널을 통해 계속 흐르지만, 하부 영역에서는 분홍색 유체만 흐릅니다. 이것은 실험과 일치합니다.

흥미로운 것은 C단계의 거품 형성입니다. C단계의 거품 형성과 같은 흥미로운 물리현상의 재현과 연구는 미세 유체학 장치의 설계와 제작 과정에 중요할 수 있습니다.

FLOW-3D 해석 결과

아래의 애니메이션은 위와 같은 실험에 대한 FLOW-3D 시뮬레이션 결과를 보여줍니다. 유체 1( 연한 파란 색)은 실험 중인 분홍색 유체와 같습니다. 처음에는 전체 영역이 Fluid2(투명 유체)로 채워집니다. 압력은 단계적으로 증가하며 시뮬레이션이 진행됨에 따라 세 단계를 모두 볼 수 있습니다.

Evolution of fluid flow with increasing pressure in patterned micro channels created by varying contact angles.

Ref: Bin Zhao, Jeffrey S. Moore, David J. Beebe, Surface-Directed Liquid Flow Inside Microchannels, Science 291, 1023 (2001)

Learn more about the power and versatility of modeling microfluidic applications with FLOW-3D