Fig.2- Richard Dam overflow in America

Studying the effect of shape changes in plan of labyrinth weir on increasing flow discharge coefficient using Flow-3D numerical model

FLOW-3D 수치 모델을 이용하여 미로 위어 평면도의 형상 변화가 유량 계수 증가에 미치는 영향 연구

E. Zamiri 1
, H. Karami 2*
and S. Farzin3
1- M.S. Student, Department of Civil Engineering, Semnan University, Semnan, Iran.
2
*

  • Corresponding Author, Assistant Professor, Department of Civil Engineering, Semnan
    University, Semnan, Iran. (hkarami@semnan.ac.ir).
    3- Assistant Professor, Department of Civil Engineering, Semnan University, Semnan, Iran.

Keywords: : Flood control, Sidewall angle, Predicting discharge coefficient, Computational hydraulic,

Introduction

Weirs are hydraulic structures used to measure, regulate and control the water levels and are
fixed upon open channels and rivers width. Growing magnitude of probable maximum flood
events (PMF) has highlighted the demand for increasing discharge capacity. Application of
labyrinth weir has been suggested as a solution for increasing discharge capacity.
Tullis et al. (1995) evaluated the effective parameters in determining the capacity of a labyrinth
weir. They introduced total head, the effective crest length and the discharge coefficient as
parameters influencing the discharge capacity of a labyrinth weir. Khode et al. (2011)
experimentally studied the parameters of a flow-over labyrinth weir for different side wall angles
(α) from 8 to 30°. They found that discharge coefficient increases by growing side wall angle
values.
Crookston and Tullis (2012a) studied performance of different labyrinth weirs by making
differences between geometric shapes of weirs in plan. The results indicated that discharge
capacity of the arced labyrinth weirs is more than the discharge capacity of horseshoe weirs.
Seo et al. (2016) investigated the effect of weir shapes on discharge of weirs. It was shown that
the discharge of the labyrinth weir had an increase of approximately 71% in comparison with the
linear ogee weir.
In this research, labyrinth weir with sidewall angle equal to 6° was simulated through Flow3D model, using experimental results of previous researchers. After validation, the changes of
discharge coefficient of weir with angles of 45° and 85° and apex shapes of triangular and halfcircular shapes were analyzed.

Weirs는 수위를 측정, 조절 및 제어하는 ​​데 사용되는 수력 구조물이며 열린 수로 및 강 폭에 고정됩니다. 예상되는 최대 홍수 사건 (PMF)의 규모가 커짐에 따라 배출 용량 증가에 대한 요구가 강조되었습니다. 미로 위어 (labyrinth weir)의 적용은 배출 용량을 증가시키기 위한 해결책으로 제안 되었습니다.

Tullis et al. (1995)는 미로 위어의 용량을 결정하는데 효과적인 매개 변수를 평가했습니다. 그들은 미로 위어의 배출 용량에 영향을 미치는 매개 변수로 총 수두, 유효 문장 길이 및 배출 계수를 도입했습니다.

Khode et al. (2011)은 8 ~ 30 °의 다양한 측벽 각도 (α)에 대한 유동-오버 래비 린스 위어의 매개 변수를 실험적으로 연구했습니다.

그들은 측벽 각도 값이 증가함에 따라 방전 계수가 증가한다는 것을 발견했습니다. Crookston과 Tullis (2012a)는 평면에서 위어의 기하학적 모양을 차이를 만들어 서로 다른 미로 위어의 성능을 연구했습니다.

결과는 호형 미로 위어의 배출 용량이 말굽 위어의 배출 용량보다 더 많다는 것을 나타냅니다. Seo et al. (2016)은 위어의 배출에 대한 위어 모양의 영향을 조사했습니다. 미로 위어의 배출량은 선형 오지 위어에 비해 약 71 % 증가한 것으로 나타났습니다.

이 연구에서는 이전 연구자들의 실험 결과를 사용하여 Flow3D 모델을 통해 측벽 각도가 6 ° 인 미로 위어를 시뮬레이션했습니다. 검증 후 각 45 °, 85 °의 위어의 배출 계수 변화와 삼각형 및 반원 형태의 정점 형태를 분석 하였다.

Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.2- Richard Dam overflow in America
Fig.2- Richard Dam overflow in America
Fig.3- Plan of geometric parameters of congressional overflow
Fig.3- Plan of geometric parameters of congressional overflow
Fig. 4- The boundary conditions of the congressional overflow model
Fig. 4- The boundary conditions of the congressional overflow model
Fig.5- View of a simulated congressional overflow
Fig.5- View of a simulated congressional overflow
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow

Results

오버행의 넘침 흐름을 증가시키는 것이 중요하기 때문에 본 연구에서는 넘침 벽의 돌출부에 6, 45 및 85 도의 세 가지 값을 채점하고 넘침 개구부에 삼각형 및 반원 모양을 제안함으로써 , 오버 플로우의 오버 플로우 계수를 변경하여 3D 숫자 래치를 사용하십시오.

Irene Par Vahsh Bareh에서 얻은 결과는 다음과 같습니다.

1- 흐름을 따라 포병의 범람 벽 각도를 늘리면 방출 계수가 증가합니다. 벽 각도가 85도 및 45 도인 포병의 범람 계수는 벽 각도가 6 도인 범람 계수 평균의 2.28 및 1.24 배입니다.

2-구부러진 양고기를 먹은 상태에서 배수로 모양의 변화는 배출 계수를 증가시킨다. 삼각형과 비 삼각형 개구부가있는 오버플로의 배출 계수는 온대 개구부가있는 오버플로의 배출 계수에 비해 양고기가 50.29 및 4.16 % 증가했습니다.

3- 오버플로 양 (p / HT)의 부하와 함께 부하 부하의 무 차원 비율 값을 늘리면 혼잡 한 오버플로의 방전 계수가 감소합니다. 또한 p <HT / 0.5의 값에서 세 가지 형태의 오버플로 개구에 대한 배출 계수의 값은 서로 가깝고 오버플로 모양의 각 끝은 값에서 동일한 기능을 갖습니다. p / HT <0.5. 4-유량이 증가함에 따라 유량 계수가 감소합니다.

References

1- Azhdary Moghaddam, M. and Jafari Nodoushan, E., 2013. Optimization of Geometry of
trapezoidallabyrinth Spillway with using ANFIS Models and Genetic Algorithms (Ute Dam Case Study
in the United States of America). Journal of Civil Engineering. 24(2), pp. 129-138. (In Persian).
2- Canholi, J. F., Canholi, A. P. and Sobral, V., 2011. Hydraulic Design of a Labyrinth Weir in
Aclimação´s Lake. 12nd International Conference on Urban Drainage, Porto Alegre/Brazil.
3- Crookston, B. M. and Tullis, B. P., 2012a. Arced labyrinth weirs. Journal of Hydraulic
Engineering. 138(6), pp.555-562.
4- Crookston, B. M. and Tullis, B. P., 2012b, Hydraulic design and analysis of labyrinth weirs. I:
Discharge relationships. Journal of Irrigation and Drainage Engineering. 139(5), pp.363-370.
5- Esmaeili Varaki, M. and Safarrazavi Zadeh, M., 2013. Study of Hydraulic Features of Flow Over
Labyrinth Weir with Semi-circular Plan form. Journal of Water and Soil. 27(1), pp. 224-234. (In
Persian).
6- Farzin, S., Karami, H. and Zamiri, E., 2016. Study of the Flow over Rubber Dam Using Computational
Hydrodynamics. Journal of Dam and Hydroelectric Powerplant. 3(9), pp.1-11. (In Persian).
7- Hirt, C. W. and Richardson, J. E., 1999. The modeling of shallow flows, Flow Science, Technical
Notes. 48, pp.1-14.
8- Hosseini, K., Tajnesaie, M. and Jafari Nodoush, E., 2015. Optimization of the Geometry of Triangular
Labyrinth Spillways, Using Fuzzy‐Neural System and Differential Evolution Algorithm. Journal of
Civil and Environmental Engineering. 45(1), PP.81-91. (In Persian).
9- Khode, B. V., Tembhurkar, A. R., Porey, P. D. and Ingle, R. N., 2011. Experimental studies on flow
over labyrinth weir. Journal of Irrigation and Drainage Engineering. 138(6), pp.548-552.
10- Nezami, F., Farsadizadeh, D., Hosseinzadeh Delir, A. and Salmasi, F., 2012. Experimental Study of
Discharge Coefficient of Trapezoidal Labyrinth Side-Weirs. Journal of Water and Soil Science. 23(1),
PP.247-257. (In Persian).
11- Nikpiek, P. and Kashefipour, S. M., 2014. Effect of the hydraulic conditions and structure geometry on
mathematical modelling of discharge coefficient for duckbill and oblique weirs. Journal of Irrigation
Science and Engineering. 39(1), pp.1-10. (In Persian).
12- Noori, B. M. and Aaref, N. T., 2017. Hydraulic Performance of Circular Crested Triangular Plan Form
Weirs. Arabian Journal for Science and Engineering. pp.1-10.
13- Noruzi, S. and Ahadiyan, J., 2016. Effect of Vortex Breaker Blades 45 Degree on Discharge
Coefficient of Morning Glory Spillway Using Flow-3D. Journal of Irrigation Science and
Engineering. 39(4), PP. 47-58. (In Persian).
14- Paxson, G. and Savage, B., 2006. Labyrinth spillways: comparison of two popular USA design
methods and consideration of non-standard approach conditions and geometries. Proceedings of the
international junior researcher and engineer workshop on hydraulic structures, Montemor-o-Novo,
Portugal, Division of Civil Engineering, 37.
15- Payri, R., Tormos, B., Gimeno, J. and Bracho, G., 2010. The potential of Large Eddy Simulation (LES)
code for the modeling of flow in diesel injectors. Mathematical and Computer Modelling. 52(7),
pp.1151-1160.
16- Rezaee, M., Emadi, A. and Aqajani Mazandarani, Q., 2016. Experimental Study of Rectangular
Labyrinth Weir. Journal of Water and Soil. 29(6), pp. 1438-1446. (In Persian).
17- Seo, I. W., Do Kim, Y., Park, Y. S. and Song, C. G. 2016, Spillway discharges by modification of weir
shapes and overflow surroundings. Environmental Earth Sciences. 75(6), pp.1-13.
18- Suprapto, M., 2013. Increase spillway capacity using Labyrinth Weir. Procedia Engineering. 54, pp.
440-446.
19- Tullis, J. P., Amanian, N. and Waldron, D., 1995. Design of labyrinth spillways. Journal of Hydraulic
Engineering. 121(3), pp.247-255.
20- Zamiri, E., Karami, H. and Farzin, S., 2016. Numerical Study of Labyrinth Weir Using RNG
Turbulence Model. 15th Iranian Hydraulic Conference, Imam Khomeini International University,
Qazvin, Iran. (In Persian).

Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea

Jae-Seol Shim†, Jinah Kim†, Dong-Chul Kim‡, Kiyoung Heo†, Kideok Do†, Sun-Jung Park ‡
† Coastal Disaster Research Center,
Korea Institute of Ocean Science &
Technology, 426-744, Ansan, Gyeonggi,
Korea
jsshim@kiost.ac
jakim@kiost.ac
kyheo21@kiost.ac
kddo@kiost.ac
‡ Technology R&D Institute
Hyein E&C Co., Ltd., Seoul 157-861,
Korea
skkkdc@chol.com
Nayana_sj@nate.com

ABSTRACT

Shim, J., Kim, J., Kim, D., Heo, K., Do, K., Park, S., 2013. Storm surge inundation simulations comparing threedimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea. In:
Conley, D.C., Masselink, G., Russell, P.E. and O’Hare, T.J. (eds.), Proceedings 12th International Coastal Symposium
(Plymouth, England), Journal of Coastal Research, Special Issue No. 65, pp. 392-397, ISSN 0749-0208.
Severe storm surge inundation was caused by the typhoon Maemi in Masan Bay, South Korea in September 2003. To
investigate the differences in the storm surge inundation simulated by three-dimensional (3D) and two-dimensional
models, we used the ADvanced CIRCulation model (ADCIRC) and 3D computational fluid dynamics (CFD) model
(FLOW3D). The simulation results were compared to the flood plain map of Masan Bay following the typhoon Maemi.
To improve the accuracy of FLOW3D, we used a high-resolution digital surface model with a few tens of centimeterresolution, produced by aerial LIDAR survey. Comparison of the results between ADCRIC and FLOW3D simulations shows that the inclusion of detailed information on buildings and topography has an impact, delaying seawater propagation and resulting in a reduced inundation depth and flooding area. Furthermore, we simulated the effect of the installation of a storm surge barrier on the storm surge inundation. The barrier acted to decrease the water volume of the inundation and delayed the arrival time of the storm surge, implying that the storm surge barrier provides more time for residents’ evacuation.

Keywords: Typhoon Maemi, digital surface elevation model, Reynolds-Averaged NavierStokes equations.

2003 년 9 월 대한민국 마산만 태풍 매미에 의해 심한 폭풍 해일 침수가 발생했습니다. 3 차원 (3D) 및 2 차원 모델로 시뮬레이션 한 폭풍 해일 침수의 차이를 조사하기 위해 ADvanced CIRCulation 모델 ( ADCIRC) 및 3D 전산 유체 역학 (CFD) 모델 (FLOW3D).

시뮬레이션 결과는 태풍 매미 이후 마산만 범람원 지도와 비교되었다. FLOW-3D의 정확도를 높이기 위해 우리는 항공 LIDAR 측량으로 생성된 수십 센티미터 해상도의 고해상도 디지털 표면 모델을 사용했습니다.

ADCRIC과 FLOW3D 시뮬레이션의 결과를 비교하면 건물과 지형에 대한 자세한 정보를 포함하면 해수 전파가 지연되고 침수 깊이와 침수 면적이 감소하는 것으로 나타났습니다.

또한, 폭풍 해일 침수에 대한 폭풍 해일 장벽 설치의 효과를 시뮬레이션했습니다. 이 장벽은 침수 물량을 줄이고 폭풍 해일 도착 시간을 지연시키는 역할을 하여 폭풍 해일 장벽이 주민들의 대피에 더 많은 시간을 제공한다는 것을 의미합니다.

INTRODUCTION

2003 년 9 월 12 일 태풍 매미로 인한 강한 폭풍 해일이 남해안을 강타했습니다. 마산 만 일대는 심한 폭풍우 침수로 인해 최악의 피해를 입었고 광범위한 홍수를 겪었습니다. 따라서 마산 만에 예방 체계를 구축하기 위해 폭풍 해일에 의한 침수에 대한 수치 예측을 시도하는 선행 연구가 수행되었다 (Park et al. 2011).

그러나 일반적인 2 차원 (2D) 또는 3 차원 (3D) 수압 가정을 사용할 때 지형의 해상도는 복잡한 해안 구조를 표현하기에 충분하지 않습니다. 따라서 우리는 마산 만의 고해상도 지형도를 통해 전산 유체 역학 (CFD)의 침수 시뮬레이션을 제시한다.

태풍 매미는 2003 년 9 월 12 일 12시 (UTC)에 한반도에 상륙하여 남동부 해안을 따라 추적했습니다 (그림 1). 2003 년 9 월 13 일 6시 (UTC)에 동 일본해로 이동하여 온대 저기압이되었습니다.

풍속과 기압면에서 한국을 강타한 가장 강력한 태풍 중 하나입니다. 특히 마산 만에 접해있는 마산시는 폭풍 해일 홍수로 최악의 피해를 입어 32 명이 사망하고 심각한 해안 피해를 입었다. 태풍이 지나가는 동안 중앙 기압은 950hPa, 진행 속도는 45kmh-1로 마산항의 조 위계를 통해 최대 약 2.3m의 서지 높이를 기록했다.

마산 만에 접한 주거 및 상업 지역은 홍수가 심했고 지하 시설은 폭풍 해일로 침수로 어려움을 겪었습니다 (Yasuda et al. 2005). 이 논문에서는 3D CFD 모델 (FLOW 3D)과 2D ADvanced CIRCulation 모델 (ADCIRC)을 사용하여 기록 된 마산 만에서 가장 큰 폭풍 해일 중 하나에 의해 생성 된 해안 침수를 시뮬레이션했습니다.

건물의 높이와 공간 정보를 포함하는 디지털 표면 모델 (DSM)은 LiDAR (Airborne Light Detection and Ranging)에 의해 만들어졌으며, 폭풍 해일 침수 모델, 즉 3D CFD 모델 (FLOW 3D)의 입력 데이터로 사용되었습니다. ). 또한 ADCIRC의 시뮬레이션 결과는 FLOW3D의 경계 조건으로 사용됩니다.

본 연구의 목적은 극심한 침수 높이와 해안 육지로의 범람을 포함하여 마산 만에서 태풍 매미로 인한 폭풍 해일 침수를 재현하는 것이다.

<중략>………………

Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

LITERATURE CITED

Bunya S, Kubatko EJ, Westerink JJ, Dawson C.,2010. A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Computer Methods in Applied Mechanics and Engineering, Oceanography and Coastal Research, 198, 1548-1562.
Chan, J.C.L. & Shi, J.,1996. Long term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophysical Research Letters 23, 2765-2767.
Choi, B.H., Kim, D.C., Pelinovsky, E. and Woo, S.B., 2007. Threedimensional simulation of tsunami run-up around conical island. Coastal Engineering, 54, 618-629.
Choi, B.H., Pelinovsky, E., Kim, D.C., Didenkulova, I. and Woo, S.B., Two- and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Processes in Geophysics, 15, 489-502.
Choi B.H., Pelinovsky E., Kim D.C., Lee H.J., Min B.I. and Kim K.H., Three-dimensional simulation of 1983 central East (Japan) Sea earthquake tsunami at the Imwon Port (Korea). Ocean Engineering, 35, 1545-1559.
Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. & Shim, J.S., 2004. Wave-tide-surge coupled simulation for typhoon Maemi, Workshop on waves and storm surges around Korean peninsula, 121-144.
Choi, K.S., & Kim, B.J., 2007. Climatological characteristics of tropical cyclone making landfall over the Korean Peninsula. Journal of the Korean Meteorological Society 43, 97-109.
Clark, J.D. & Chu, P., 2002. Interannual variation of tropical cyclone activity over the central North Pacific. Journal of the Meteorological Society of Japan, 80, 403-418.
Davies, A.M. & Flather, R.A., 1978. Application of numerical models of the North West European continental shelf and the North Sea to the computation of the storm surges of November to December 1973.
Deutsche Hydrographische Zeitschrift Ergänzungsheft Reihe A, 14, 72. Flow Science, 2010. FLOW-3D User’s Manual. Fujita, T., 1952. Pressure distribution in a typhoon. Geophysical Magazine 23.
Garratt, J.R., 1977. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105, 915-929.
Gary Padgett, 2004. Gary Padgett September 2003 Tropical Weather Summary. Typhoon 2000.
Goda Y., Kishira Y. and Kamiyama Y., 1975. Laboratory investigation on the overtopping rate of seawalls by irregular waves, Report of Port and Harbour Research Inst.,14(4), 3-44.
Heaps, N.S., 1965. Storm surges on a continental shelf. Philos. Trans. R. Soc. London, Ser. 257, 351-383.
Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225.
Holland, G.J., 1980. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, 108, 1212-1218.
Independent Levee Investigation Team, 2006. Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina on August 29, 2005
Klotzbach, P. J. , 2006. Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophysical Research Letters, 33.
Large, W.G. & Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11, 324-336.
Landsea, C.W., Nicholls, N., Gray, W.M. & Avila, L.A., 1996. Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophysical Research Letters, 23, 1697-1700.
Lighthill, J., Holland, G., Gray, W., Landsea, C., Creig, G., Evans, J., Kurikara, Y. and Guard, C., 1994. Global climate change and tropical cyclones. Bulletin of the American Meteorological Society, 75, 2147- 2157.
Luettich, R.A. & Westerink, J.J., 2004. Formulation and Numerical Implementation of the 2D/3D ADCIRC finite element model version 44.XX.
Matsumoto, K., Takanezawa, T. & Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, Journal of Oceanography, 56(5) 567-581.
Mitsuyasu, H. and Kusaba, T., 1984. Drag Coefficient over Water Surface Under the Action of Strong Wind. Natural Disaster Science, 6, 43-50.
Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda and K. Rikiishi, 1980. Observation of the power spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 10, 286- 296.
Multiple Lines of Defense Assessment Team, 2007. Comprehensive Recommendations Supporting the Use of the Multiple Lines of Defense Strategy to Sustain Coastal Louisiana.
Myers, V.A. and Malkin, W., 1961. Some Properties of Hurricane Wind Fields as Deduced from Trajectories. U.S. Weather Bureau, National Hurricane Research Project, Report 49.
Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito and Y. Yamazaki, 2006. The operational JMA Nonhydrostatic Mesoscale Model. Monthly Weather Review, 134, 1266-1298.
Shibaki H., Nakai K., Suzuyama K. and Watanabe A., 2004. Multi-level storm surge model incorporating density stratification and wave-setup. Proc. of 29th Int. Conf. on Coastal Eng., ASCE, 1539-1551.JSCE (1999). Hydraulic formulas, page 245 (in Japanese).
Shibaki, H., Suzuyama, K., Kim, J.I., & Sun, L., 2007. Numerical simulation of storm surge inundation induced by overflow, overtopping and dike breach. Asian and Pacific Coasts 2007, Nanjing, China.
Smagorinsky J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91, 99- 164.
Smith, S.D. & Banke, E.G., 1975. Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101, 665-673.
Versteeg, H.K., Malalasekera, W., 1995.An introduction to computational fluid dynamics. The Finite Volume Method. Prentice Hall, 257p.
Wang Xinian, Yin Qingjiang, Zhang Baoming, 1991. Research and Applications of a Forecasting Model of Typhoon Surges in China Seas. Advances In Water Science.
Wu, J., 1982. Wind-Stress Coefficients over Sea Surface from Breeze to Hurricane. Journal of Geophysical Research, 87, 9704-9706.
Yeh, H., Liu, P., Synolakis, C., 1996. Long-wave Runup Models. World Scientific.
Yakhot, V. and Orszag, S.A., 1986. Renormalization group analysis of turbulence, I. Basic theory. Journal of Scientific Computing, 1, 1-51.
Yakhot, V. and Smith, L.M., 1992. The renormalization group, the expansion and derivation of turbulence models, Journal of Scientific Computing, 7, 35-61
Yasuda, T., T. Hiraishi, H. Kawai, K. Nagase, S.W. Kang, and W.M. Jeong, 2005. Field survey and computation analysis of storm surge disaster in Masan due to Typhoon Maemi, Proceedings of Asian and Pacific Coasts 2005, Jeju, Korea.

Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.

ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현

최흥배․엄호식†․박종집․강태욱
*, *** ㈜지오시스템리서치 선임, ** ㈜지오시스템리서치 책임, **** 부경대학교 박사

Reproduction of Flood Inundation in Marine City, Busan During the Typhoon Chaba Invasion Using ADCSWAN and FLOW-3D Models

요 약 : 최근 연안지역의 대규모 개발로 인해 고파랑 내습과 강한 태풍으로 발생된 월파는 연안지역의 많은 인명 및 재산피해를 발생시 켰으나 연안지역의 특성을 고려한 침수·범람 연구는 미비한 실정이다. 본 연구는 ADCSWAN(ADCIRC+SWAN) 모델과 FLOW-3D 모델을 적용 하여 해일 및 파랑의 복합요소에 대한 침수범람을 재현하기 위한 방법론에 대한 연구이다. 본 연구에서는 ADCSWAN(ADCIRC+SWAN) 모 델을 이용하여 FLOW-3D 모델의 경계자료(해수위, 파랑)를 추출하고, FLOW-3D 모델 입력값으로 적용하여 태풍 차바 통과시 부산 마린시 티를 대상으로 해일과 월파에 의한 침수범람을 재현하였다. 또한 기존 월파량 경험식과 FLOW-3D 모델로 계산된 월파량을 비교하였으며, 침수범람은 한국국토정보공사의 침수흔적도를 활용하여 정성적인 검증을 수행하여, 본 연구의 유효성을 검토하였다.

Keywords : ADCSWAN, FLOW-3D, 태풍 차바, 월파, 침수범람, Typhoon Chaba, Wave overtopping, Inundation

서 론

연안지역에 인접한 도시지역의 침수피해는 일반적인 도 시침수피해의 특성뿐만 아니라 연안지역의 조위상승 및 월 파현상이 포함된 복합적인 형태의 침수피해가 발생한다. 최근 지구온난화로 인한 기후변화는 평균해수면 상승과 태풍 의 강도 증가로 인해 해안지역의 재해 위험을 높이고 있지 만, 해안지역의 대규모 매립과 개발로 인해 인명손실과 재 산피해를 야기하는 위험도를 증가시켰다. 해안지역은 만조시 해수면 상승, 폭풍해일로 인한 월류 및 월파와 같은 요인에 의해 침수가 발생할 수 있다. 실제로 2003년 태풍 매미로 인한 마산만 조수가 예보치와 비교하여 2 m 이상 상승하여 많은 지역이 침수 및 인명·재산 피해가 발생되었으며, 2016년 태풍 차바는 폭풍해일 내습시 동반되 는 고파랑 발생으로 부산 해운대구 마린 시티에 대규모 침 수범람을 발생시켰다. 그러나 국내 연안도시지역의 특성을 고려한 월파 및 침수에 대한 연구는 미비한 실정이다(Song et al., 2017). 하지만 복잡한 지형이나 연안지역의 경우 방파 제 및 구조물의 형상에 따른 월파를 정밀하게 계산하기 위 해 3차원 전산유체 수치모형(CFD)의 가능성 여부가 검토되 어 왔다. 그러나 지금까지 대부분의 전산유체 수치모형은 그 적용성의 한계성과 큰 영역에 대해 직접 수치모의 하여 월파량을 산정한 예는 드물다. Le Roy et al.(2014)는 프랑스 도시지역에서 월파로 인한 해 안 홍수 문제를 해결하기 위해 XBeach 수치모델 및 경험적 (EurOtop) 모델을 사용하여 최대 월파량과 처오름을 추정하 였다. 우리나라의 설계기준서인 “항만 및 어항 설계기준(Ministry of Oceans and Fisheries, 2014)” 경우에는 월파량 산정은 Goda 도표를 단순 직립식 구조물 및 소파호안에 적용하는 것을 제안하였다(Goda, 1970; Goda et al., 1975; Goda, 1985) 월파량 산정과 관련된 최근 연구 경향은 월파량 산정식을 대부분 지수함수 형태로 표현하고 있으며, 여유고와 입사파 고를 입력변수로 하여 월파량 산정이 가능하도록 제시하고 있다(van der Meer and Janssen, 1995; Franco and Franco, 1999; EurOtop, 2007; Anderson and Burcharth, 2009 등). 태풍에 의해 발생하는 폭풍해일의 영향을 예측하기 위해 서는 기본적으로 태풍에 의한 기압 강하, 해상풍, 진행 속도 등에 의한 해수면 변화 양상 및 조석-해일-파랑에 대해 충분 히 재현 가능해야 한다(Kang et al., 2019). 본 연구에서는 태풍 차바 내습시 폭풍해일 ADCSWAN (coupled model of ADCIRC and SWAN)모델과 FLOW-3D 수치 모형 결합을 통해 월파 특성을 재현하고 경험식을 통한 월 파량을 비교·검토하였다.

  1. 연구 개요
    2.1 대상 태풍

본 연구의 대상지역은 대한민국 부산 해안가에 위치한 수 변도시로, 수영만 매립지 일부에 조성된 주거형 타운 지역 이다. 주요 건물이 해안선에 인접해 있으며, 지역 주민의 바 다를 볼 수 있는 조망권 확보를 위해 월파로 인한 방지대책 이 제한적으로 설치되어 있다. 이러한 지역적 특성으로 인 해 2016년 태풍 차바와 2018년 태풍 콩 라이(Kong-Rai) 때 폭 우와 폭풍해일 동반으로 월파와 강우로 인해 마린 시티 주 변의 많은 도로와 상가 침수가 발생되었다.

Fig. 1. Typhoon Chaba route (KMA & JMA)
Fig. 1. Typhoon Chaba route (KMA & JMA)

ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현

Fig. 2. Marine City during Typhoon Chaba in 2016.
Fig. 2. Marine City during Typhoon Chaba in 2016.

2016년 발생한 제 18호 태풍 ‘차바(이하 Chaba로 표기함)’ 는 2016년 9월 28일 오전 3시에 중심기압 1,000 hPa, 최대풍속 18 m/s, 강풍 반경 280 km 크기의 ‘소형’ 열대폭풍으로 미국 괌 동쪽 약 590 km 부근 해상에서 발생하여 한반도의 제주 특별자치도 서귀포시와 경상남도 거제시, 부산광역시를 순 차적으로 통과하여 10월 6일 0시에 일본 센다이 서쪽 약 380 km부근 해상에서 중심기압 985 hPa의 온대저기압으로 세력 이 약화되면서 소멸하였다. 태풍의 일시별 정보와 피해사진 을 Fig. 1 및 Fig. 2에 제시하였다.

2.2 적용 모델
2.2.1 ADCSWAN(ADCIRC+SWAN) model

태풍에 의해 발생되는 폭풍해일의 영향을 예측하기 위해 서는 지형적인 특성과 태풍에 의한 기압강하, 해상풍, 진행 속도 등에 의한 해수면 변화 양상 및 조석-해일-파랑에 대 해 충분히 재현 가능해야 한다(Ferreira et al., 2014a, 2014b). 본 연구에서는 태풍에 의해 발생 가능한 현상에 대해 기존 의 다양한 연구에서 적용 및 활용성이 확보된 폭풍해일ADCIRC(ADvanced CIRCulation) 모델과 SWAN(Simulating WAves Nearshore) 파랑모델이 결합된 ADCSWAN(coupled model of ADCIRC and SWAN) 모델을 이용하였다(Dietrich et al., 2011; Suh et al., 2015; Xie et al., 2016; Deb and Ferreira, 2018). 사용한 ADCIRC 모델은 유한요소 유체역학모델로, 수직적 으로 통합된 일반파 연속방정식(generalised wave continuity equation: GWCE)과 운동량 방정식(각각 식(1)과 (2))을 적용하 는 2D 버전(Luettich and Westerink, 2004)을 사용하였다.

<중략> ….

Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.
Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.
Fig. 5. Simulation boundary of FLOW3D Model [a) Input boundary of wave and storm surge, b) output boundary of wave overtopping rate].
Fig. 5. Simulation boundary of FLOW3D Model [a) Input boundary of wave and storm surge, b) output boundary of wave overtopping rate].
Fig. 6. Verification of tidal level and storm surge during Typhoon Chaba(1618), Pre : tidal predication.
Fig. 6. Verification of tidal level and storm surge during Typhoon Chaba(1618), Pre : tidal predication.
Fig. 7. Verification of significant wave height the Typhoon Chaba.
Fig. 7. Verification of significant wave height the Typhoon Chaba.
Fig. 8. Averaged overtopping rate by empirical formula and FLOW3D model at Marine City during Typhoon Chaba.
Fig. 8. Averaged overtopping rate by empirical formula and FLOW3D model at Marine City during Typhoon Chaba.
Fig. 9. Comparison of inundation results due to Typhoon Chaba [a)Archived inundation map on Marine City area, b) Simulation results obtained from wave overtopping).
Fig. 9. Comparison of inundation results due to Typhoon Chaba [a)Archived inundation map on Marine City area, b) Simulation results obtained from wave overtopping).

<중략>…………

결 론

본 연구에서는 폭풍해일 모델과 3차원 전산유체 모델 연 계를 통해 태풍 차바 통과시 마린시티를 대상으로 침수범람 을 재현하였다. 먼저, 기존 월파량 경험식(EurOtop, 2016)과 FLOW-3D모델 로 산정된 월파량을 비교하였으며. 비교결과 경험식으로 산 정된 월파량은 2.237 m³/m/s이며, FLOW-3D로 계산된 월파량 은 6.438 m³/m/s로 약 2.8배의 차이를 보였다. 이는 경험식이 고파랑에 의한 처오름 등 실제 현상재현에 한계점을 가지고 있기 때문으로 사료된다. 태풍 차바로 인한 수위상승과 폭풍해일 등의 복합적 피해 가 발생한 부산 마린시티 적용결과 현장조사(침수흔적도)와 정량적 비교는 불가능하지만 침수범람 범위의 경우 현장조 사와 비교하여 유효한 결과를 도출할 수 있었다. 기존 월파량 추정은 경험식을 적용하여 산정하였으나, 본 연구에서는 동적모델(FLOW-3D)을 적용하여 월파량을 산정 하였다. 동적모델을 적용할 경우 해당지역의 보다 정확한 형상을 구현할 수 있다는 점에서 기존 경험식에 비하여 정 도 높은 월파량 재현이 가능한 것으로 판단된다. 현재 우리나라 연안을 대상으로 제작된 해안침수예상도 는 해일에 의한 침수범람을 외력요인으로 하고 있으나, 실제 발생하는 침수범람은 해일뿐만 아니라 월파의 영향이 크 게 발생하기도 한다. 본 연구에서는 해일과 월파에 의한 복 합원인에 의한 침수범람을 재현하기 위한 방법론에 대한 연 구를 수행하였다.

References

[1] Anderson, T. L. and H. F. Burcharth(2009), Three-dimensionalinvestigation of wave overtopping on rubble mound structures,Coastal Engineering, Vol. 56, No. 2, pp. 180-189.
[2] Booij, N., R. C. Ris, and L. H. Holthuijsen(1999), Athird-generation wave model for coastal regions: 1. Modeldescription and validation, J. Geophys. Res., Vol. 104, No.C4, pp. 7649-7666.
[3] Deb, M. and C. M. Ferreira(2018), Simulation of cycloneinduced storm surges in the low-lying delta of Bangladeshusing coupled hydrodynamic and wave model (SWAN +ADCIRC), J. Flood Risk Manag., Vol. 11, No. S2, pp.750-765.
[4] Dietrich, J. C., M. Zijlema, J. J. Westerink, L. H. Holthuijsen,C. Dawson, R. A. Luettich, R. E. Jensen, J. M. Smith, G. S.Stelling, and G. W. Stone(2011), Modeling hurricane wavesand storm surge using integrally-coupled scalable computations,Coast Eng., Vol. 58, No. 1, pp. 45-65.
[5] Dietrich, J. C., S. Bunya, J. J. Westerink, B. A. Ebersole, J.M. Smith, J. H. Atkinson, R. Jensen, D. T. Resio, R. A.Luettich, C. Dawson, V. J. Cardone, A. T. Cox, M. D.Powell, H. J. Westerink, and H. J. Roberts(2010), A highresolution coupled riverine flow, tide, wind, wind wave andstorm surge model for southern Louisiana and Mississippi.Part II: Synoptic description and analyses of HurricanesKatrina and Rita. Mon. Weather Rev., Vol. 138, No. 2, pp.378-404.
[6] EurOtop(2016), Manual on wave overtopping of sea defencesand related structures. An overtopping manual largely basedon European research, but for worldwide application. SecondEdition. Authors: J. W. van der Meer, N. W. H. Allsop, T. Bruce, J. DeRouck, A. Kortenhaus, T. Pullen, H. Schuttrumpf,P. Troch, and B. Zanuttigh, www.overtopping-manual.com.
[7] EurOtop(2007), EurOtop – Wave overtopping of sea defencesand related structures: Assessment Manual.
[8] Ferreira, C. M., J. L. Irish, and F. Olivera(2014a), Quantifyingthe potential impact of land cover changes due to sea-levelrise on storm surge on lower Texas coast bays, Coast Eng.,Vol. 94, pp. 102-111.
[9] Ferreira, C. M., J. L. Irish, and F. Olivera(2014b), Uncertaintyin hurricane surge simulation due to land cover specification,J. Geophys. Res. Ocean., Vol. 119, No. 3, pp. 1812-1827.
[10] Goda, Y.(1970), Estimation of the rate of irregular waveovertopping at seawalls, Technical Report of Port and AirportResearch Institute, Vol. 9, No. 4, pp. 3-42.
[11] Goda, Y.(1985), Random seas and design of maritimestructures 1st editionth ed. World Scientific Publishing.
[12] Goda, Y., Y. Kishira, and Y. Kamiyama(1975), Laboratoryinvestigation on the overtoppping rate of seawalls by irregularwaves, Technical Report of Port and Airport ResearchInstitute, Vol. 14, No. 4, pp. 3-44.
[13] Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E.Cartwright, E. Enke, J. A. Ewing, H. Gienapp, D. E.Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J.Olbers, K. Richter, W. Sell, and H. Walden(1973),Measurement of wind-wave growth and swell decay duringthe Joint North Sea Wave Project (JONSWAP), Dtsch.Hydrogr. Z. Suppl., Vol. 12, No. A8, pp. 1-95.
[14] Kang, T. W., S. H. Lee, H. B. Choi, and S. B. Yoon(2019),A Technical Review for Reducing Inundation Damage toHigh-Rise and Underground-Linked Complex Buildings inCoastal Areas (2): Case Analysis for Application, J. KoreanSoc. Hazard Mitig., Vol. 19, No. 5 (Oct.), pp. 45-53.
[15] Le Roy, S., R. Pedreros, C. André, F. Paris, S. Lecacheux, F.Marche, C. Vinchon(2014), Coastal flooding of urban areas byovertopping: dynamic modelling application to the Johannastorm (2008) in Gâvres (France), Natural Hazard and EarthSystem Sciences Discussions, Vol. 2, No. 8, pp. 4947-4985l.
[16] Luettich, R. A. and J. J. Westerink(2004), Formulation andNumerical Implementation of the 2D/3D ADCIRC FiniteElement Model Version 44.XX.
[17] Ministry of Oceans and Fisheries(2014), Harbour and FisheryDesign Criteria.
[18] Song, Y., J. Joo, J. Lee, and M. Park(2017), A Study onEstimation of Inundation Area in Coastal Urban Area Applying Wave Overtopping, J. Korean Soc. Hazard Mitig.,Vol. 17(2), pp. 501-510.
[19] Suh, S. W., H. Y. Lee, H. J. Kim, and J. G. Fleming(2015),An efficient early warning system for typhoon storm surgebased on time-varying advisories by coupled ADCIRC andSWAN, Ocean Dyn. 65, pp. 617-646.
[20] Van der Meer, J. W. and H. Janssen(1995). Wave run-up andovertopping at dikes, Wave forces on inclined and verticalwall structures, ASCE.
[21] Xie, D. M., Q. P. Zou, and J. W. Cannon(2016), Applicationof SWAN + ADCIRC to tide-surge and wave simulation inGulf of Maine during Patriot’s Day storm, Water Sci. Eng.,Vol. 9, No. 1, pp. 33-41.
[22] Yoon, H. S., J. H. Park, and Y. H. Jeon(2017), A Study onWave Overtopping of the Seawall at Haeundae Marine CityDuring the Passing of Typhoon Chaba, J. Korean Soc. Mar.Environ. Energy, Vol. 20(3), pp. 152-159.

Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.

Experimental Method for the Measurements and Numerical Investigations of Force Generated on the Rotating Cylinder under Water Flow

by Teresa Abramowicz-Gerigk 1,*,Zbigniew Burciu 1,Jacek Jachowski 1,Oskar Kreft 2,Dawid Majewski 3,Barbara Stachurska 3,Wojciech Sulisz 3 andPiotr Szmytkiewicz 3

1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland
2AREX Ltd., 81-212 Gdynia, Poland
3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland
*Author to whom correspondence should be addressed.
Academic Editor: Remco J. WiegerinkSensors202121(6), 2216; https://doi.org/10.3390/s21062216
Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)

Abstract

본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.

테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.

실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.

The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.

The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.

Keywords: rotating cylinderforce sensor with built-in amplifierstrain gauge sensorCFD analysis

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 2. Scheme of the measurement area.
Figure 2. Scheme of the measurement area.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 16. Measured (EXP) and computed (CFD) lift force values.
Figure 16. Measured (EXP) and computed (CFD) lift force values.

References

  1. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res. 201724, 27–34. [Google Scholar] [CrossRef]
  2. Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
  3. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec. 201960, 9–17. [Google Scholar]
  4. Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp. 20159, 591–596. [Google Scholar] [CrossRef]
  5. Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J. 201250, 271–283. [Google Scholar] [CrossRef]
  6. Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech. 1990220, 459. [Google Scholar] [CrossRef]
  7. Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model. 201236, 379–398. [Google Scholar] [CrossRef]
  8. Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol. 201924, 111–122. [Google Scholar] [CrossRef]
  9. Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng. 2015109, 7–13. [Google Scholar] [CrossRef]
  10. Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 1993255, 1–10. [Google Scholar] [CrossRef]
  11. Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 2017829, 486–511. [Google Scholar] [CrossRef]
  12. Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 2014740, 342–380. [Google Scholar] [CrossRef]
  13. Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy 20141, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
  14. Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl. 202019, 388–397. [Google Scholar] [CrossRef]
  15. Mobini, K.; Niazi, M. Simulation of unsteady flow around a rotating circular cylinder at various Reynolds numbers. JMEUT 201746, 249–257. Available online: https://www.researchgate.net/publication/323447030_Simulation_of_Unsteady_Flow_Around_a_Rotating_Circular_Cylinder_at_Various_Reynolds_Numbers (accessed on 15 January 2021).
  16. Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
  17. Nortek Manuals. The Comprehensive Manual for Velocimeters. 2018. Available online: https://support.nortekgroup.com/hc/en-us/articles/360029839351-The-Comprehensive-Manual-Velocimeters (accessed on 15 January 2021).
  18. Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG 20144, 280–290. [Google Scholar]
  19. Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
  20. Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
  21. FLOW-3D. Available online: https://www.flow3d.com/ (accessed on 15 January 2021).
  22. He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys. 2000163, 83–117. [Google Scholar] [CrossRef]
  23. Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies 202013, 1466. [Google Scholar] [CrossRef]
Figure 4. Structure of artificial neural network [37]

Turbulent Flow Modeling at Tunnel Spillway Concave Bends and Prediction of Pressure using Artificial Neural Network

터널 배수로 오목 굴곡에서 난류 유동 모델링 인공 신경망을 이용한 압력 예측 및 예측

Zeinab Bashari Moghaddam 1
Hossein Mohammad Vali Samani2
Seyed Habib Mousavi Jahromi 3

Abstract

터널 배수로는 높은 자유 표면 유속이 설정되는 배수로 유형 중 하나입니다. 회전 가속과 난류 흐름의 불규칙성으로 인해 오목한 수직 굽힘에서 압력이 증가합니다. 물리적 모델은 이 현상을 분석하는 가장 좋은 도구입니다.

모든 실제 프로토 타입 상태 분석을 포괄하는 데 필요한 물리적 모델의 수가 너무 많아 배치 및 비용 측면에서 비실용적입니다. 따라서 FLOW-3D 소프트웨어는 가능한 모든 실제 대안을 포괄하는 오목한 굴곡 터널의 난류 흐름 데이터베이스를 분석하고 생성하기 위해 선택되었습니다.

이 소프트웨어는 방전과 형상이 다른 다양한 터널을 시뮬레이션했습니다. 수치 결과는 Alborz Dam 터널 배수로의 건설 된 물리적 모델의 실험 결과로 검증되었으며 만족스러운 동의를 얻었습니다. 차원 분석은 문제의 관련 변수를 차원 없는 매개 변수로 그룹화하는 데 사용됩니다.

이러한 매개 변수는 인공 신경망 시뮬레이션에 사용됩니다. 결과는 Flow-3D 소프트웨어로 얻은 무 차원 매개 변수와 신경망에 의해 예측된 변수 사이의 상관 계수 R2 = 0.95를 보여 주었으며, 이와 관련하여 난류 모델링을 통해 얻은 데이터베이스를 기반으로 한 인공 신경망이 결론을 내릴 수있었습니다. 압력 예측을 위한 강력한 도구입니다.

Keywords: Flow-3D, Tunnel spillway concave bend, Numerical simulation, Turbulent flow,
Artificial neural network

본문 내용 생략 : 본문 내용은 내용 하단부에 첨부된 본문 링크를 참조하시기 바랍니다.

Figure 1. Flow in a concave curvature
Figure 1. Flow in a concave curvature
Figure 2. Flow in the curvature of the flip bucket
Figure 2. Flow in the curvature of the flip bucket
Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
Figure 4. Structure of artificial neural network [37]
Figure 4. Structure of artificial neural network [37]
Figure 5. Correlation coefficient of the Neural Network simulation and Flow-3D in the training
stage
Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)
Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)

현재 연구에서 FLOW-3D 소프트웨어는 처음에 다양한 크기와 배출의 터널 배수로에서 난류 흐름을 시뮬레이션하는데 사용되었습니다. 결과는 이란 에너지부 물 연구소에서 제공한 Alborz 저장 댐에서 얻은 실제 데이터와 비교하여 검증되었습니다.

시뮬레이션에는 다양한 난류 모델이 사용되었으며 RNG 방법이 관찰된 실제 결과와 가장 잘 일치하는 것으로 나타났습니다. 직경이 3 ~ 15m 인 다양한 터널 배수로, 곡률 반경 3 개, 거의 모든 실제 사례를 포괄하는 3개의 배출이 시뮬레이션에 사용되었습니다.

차원 분석을 사용하여 무 차원 매개 변수를 생성하고 문제의 변수 수를 줄였으며 마지막으로 두 개의 주요 무 차원 그룹이 결정되었습니다. 이러한 무 차원 변수 간의 관계를 얻기 위해 신경망을 사용하고 터널 배수로의 오목한 굴곡에서 압력 예측 단계에서 0.95의 상관 계수를 얻었습니다.

압력 계산 결과는 다른 일반적인 방법으로 얻은 결과와 비교되었습니다. 비교는 신경망 결과가 훨씬 더 정확하고 배수로 터널의 오목한 곡률에서 압력을 예측하는 강력한 도구로 간주 될 수 있음을 나타냅니다.

References

  1. Kim, D. G., & Park, J. H. (2005). Analysis of flow structure over ogee-spillway in
    consideration of scale and roughness effects by using CFD model. KSCE Journal of Civil
    Engineering, 9(2), 161-169.
  2. Sabbagh-Yazdi, S. R., Rostami, F., & Mastorakis, N. E. (2008, March). Simulation of selfaeration at steep chute spillway flow using VOF technique in a 3D finite volume software. In
    Am. Conf. on Appl. Maths. Harvard, Mass, 24-28.
  1. Nohani, E. (2015). Numerical simulation of the flow pattern on morning glory spillways.
    International Journal of Life Sciences, 9(4): 28-31.
  2. Parsaie, A., Dehdar-Behbahani, S., & Haghiabi, A. H. (2016). Numerical modeling of
    cavitation on spillway’s flip bucket. Frontiers of Structural and Civil Engineering, 10(4),
    438-444.
  3. Teuber, K., Broecker, T., Bay´on, A., N¨utzmann, G. and Hinkelmann, R. (2019) ‘CFDmodelling of free surface flows in closed conduits’, Progress in Computational Fluid
    Dynamics, 19(6), 368–380.
  4. Ghazanfari-Hashemi, R.S., Namin, M.M., Ghaeini-Hessaroeyeh, M. and Fadaei-Kermani,
    E., 2020. A Numerical Study on Three-Dimensionality and Turbulence in Supercritical Bend
    Flow. International Journal of Civil Engineering, 18(3), 381-391.
  5. Sha, H. F., Wu, S. Q., & Zhou, H. (2009). Flow characteristics in a circular-section bend of
    high head spillway tunnel. Advances in Water Science, (6), 14.
  6. Liu, Z., Zhang, D., Zhang, H., & Wu, Y. (2011). Hydraulic characteristics of converse
    curvature section and aerator in high-head and large discharge spillway tunnel. Science
    China Technological Sciences, 54(1), 33-39.
  7. Zheng, Q. W., Luo, S. J., & Zhang, F. X. (2012). The Effect of Concave Types on the
    Hydraulic Characteristics in Spillway Tunnels with High-Speed Velocity. China Rural
    Water and Hydropower, 4.
  8. Hongmin, G. U. O., Jiang, L. I., Shan, Q. I. N., & Yang, X. I. E. (2014). Three-Dimensional
    Numerical Simulation on Spillway Tunnel of Pankou Hydropower Station. Water Resources
    and Power, (4), 22.
  9. Wan, W., Liu, B., & Raza, A. (2018). Numerical Prediction and Risk Analysis of Hydraulic
    Cavitation Damage in a High-Speed-Flow Spillway. Shock and Vibration, 2018.
  10. Wei, W., Deng, J. and Xu, W. (2020). Numerical investigation of air demand by the free
    surface tunnel flows. Journal of Hydraulic Research, 1-8.
  11. Xu, W., Dang, Y., Li, G., Shao, J. and Chen, G. (2007) ‘Three-dimensional numerical
    simulation of the bi-tunnel spillway flow [J] ‘, Journal of Hydroelectric Engineering, 1, 56-
    60.
  12. Huang, H.Y., Gong, A.M., Qiu, Y. and Wangliang, Z.A. (2015) ‘ 3D Numerical Simulation
    and Experimental Analysis of Spillway Tunnel’ In Applied Mechanics and Materials. Trans
    Tech Publications Ltd. 723, 171-175.
  13. Li, S., Zhang, J. M., Xu, W. L., Chen, J. G., Peng, Y., Li, J. N., & He, X. L. (2016).
    Simulation and experiments of aerated flow in curve-connective tunnel with high head and
    large discharge. International Journal of Civil Engineering, 14(1), 23-33.
  14. Shilpakar, R., Hua, Z., Manandhar, B., Shrestha, N., Zafar, M. R., Iqbal, T., & Hussain, Z.
    (2017, August). Numerical simulation on tunnel spillway of Jingping-I hydropower project
    with four aerators. In IOP Conference Series: Earth and Environmental Science. 82, 012013.
  15. Song, C. C., & Zhou, F. (1999). Simulation of free surface flow over spillway. Journal of
    Hydraulic Engineering, 125(9), 959-967.
  16. Fais, L.M.C.F., Filho, J.G.D., Genovez, A.I.B. (2015). Geometry influence and discharge
    curve correction in morning glory spillways. Proceedings of the 36th IAHR World
    Congress.
  17. Falvey, H. T. (1990). Cavitation in chutes and spillways. Denver: US Department of the
    Interior, Bureau of Reclamation. 49-57.
  18. Chaudhry, M. H. (2007). Open-channel flow. Springer Science & Business Media.
  1. Novak, P., Moffat, A. I. B., Nalluri, C., & Narayanan, R. (2007). Hydraulic structures.
    Fourth Edition, Taylor & Francis, New York , 246–265.
  2. Jorabloo, M., Maghsoodi, R., Sarkardeh, H., & Branch, G. (2011). 3D simulation of flow
    over flip buckets at dams. Journal of American Science, 7(6), 931-936.
  3. Khani, S., Moghadam, M. A., & Nikookar, M. (2017). Pressure Fluctuations Investigation
    on the Curve of Flip Buckets Using Analytical and Numerical Methods. Vol. 03(04), 165-
    171.
  4. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
    activity. The bulletin of mathematical biophysics, 5(4), 115-133.
  5. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
    computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
  6. Wu,C.L. Huang, B. Xie, C.B. (2008) . Comparison of calculation methods for irrigation
    district water inlet, China Rural Water and Hydropower ,5 (71) ,74–77.
  7. Qiu,J. Huang, B.S. . Lai, G.W. (2002). Research and application of discharge coefficient of
    wide crest weir, China Rural Water and Hydropower ,9 ,41–42.
  8. Xiang, H.Q .Ba,D.D. Liu, J.J. (2012) . Acquiring of curved practical weir flow coefficient by
    curve-fitting based on Matlab, Hydropower Energy Sci. 3 ,97–99.
  9. Ye,Y.T. He,J.J.(2013).Experimental study on hydraulic calculation of discharge under plane
    gate on broad-crested weir, J. Water Resour. Archit. Eng. 11 (2), 138–141.
  10. Salmasi, F., Yıldırım, G., Masoodi, A., & Parsamehr, P. (2013). Predicting discharge
    coefficient of compound broad-crested weir by using genetic programming (GP) and
    artificial neural network (ANN) techniques. Arabian Journal of Geosciences, 6(7), 2709-
    2717.
  11. Noori, R.; Hooshyaripor, F. (2014). Effective prediction of scour downstream of ski-jump
    buckets using artificial neural networks. Water Resour. 41, 8–18.
  12. Flow-Science. (2014). FLOW-3D user manual. version11. In: Flow Science Santa Fe, NM.
  13. Yakhot, V. S. A. S. T. B. C. G., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G.
    (1992). Development of turbulence models for shear flows by a double expansion technique.
    Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520.
  14. Report on the hydraulic model of Alborz dam reservoir. (2001). Iran Water Research
    Institute
  15. Lippman, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine,
    4(2), pp.4-22.
  16. Baylar, A., Ozgur, K.I.S.I. and Emiroglu, M.E. (2009). Modeling air entrainment rate and
    aeration efficiency of weirs using ANN approach. Gazi University Journal of Science, 22(2),
    107-116.
  17. Maureen, C. and Caudill, M. (1989). Neural network primer: Part I. AI Expert, 2(12),
    p.1987.
planar representation (cross-section at tank centre).

Analysis of cryogenic propellant behaviour in microgravity and low thrust environments*

미세 중력 및 저 추력 환경에서 극저온 추진체 거동 분석

M.F. Fisher, G.R. Schmidt and J.J. Martin
NASA Marshall Space Flight Center, Huntsville, AL 35824, USA

Abstract

우주선 비행 작업 (예 : 엔진 재시동 및 유체 전달) 중 극저온 추진제의 동작과 반응을 이해하는 것은 추진체 설계에서 매우 중요한 측면입니다. 엔진 연소 전 적절한 안정과 임무의 모든 단계에서 효과적인 차량 제어를 보장하려면 유체 움직임 및 슬로시 증폭에 대한 정확한 예측이 필요합니다.

이러한 유형의 분석을 강화하기 위해 Marshall Space Flight Center (MSFC)는 최근 Flow Sciences Inc에서 개발 한 CFD 패키지인 FLOW-3D를 인수했습니다. 이 문서에서는 FLOW-3D 모델 예측을 MSFC 드롭 타워 테스트 데이터와 비교한 최근 검증에 대해 설명합니다. 테스트는 원래 Saturn S-IVB 단계 액체 수소 (LH 2) 탱크의 설계 및 성능 평가를 지원하기 위해 1960 년대에 수행되었지만, 데이터는 FLOW-3D 모델의 정확성을 검증하는데 유용한 것으로 입증되었습니다.

Understanding the behaviour and response of cryogenic propellants during spacecraft flight operations (e.g., engine restart and fluid transfer) is an extremely important aspect of vehicle design. Accurate predictions of fluid motion and slosh amplification are needed to ensure proper settling prior to engine burn and effective vehicle control throughout all phases of the mission. To augment analyses of this type, Marshall Space Flight Center (MSFC) recently acquired FLOW-3D, a CFD package developed by Flow Sciences Inc. This paper describes a recent validation in which FLOW-3D model predictions were compared with MSFC drop tower test data. Although the tests were originally conducted in the 1960s to support design and performance assessments of the Saturn S-IVB stage liquid hydrogen (LH 2) tank, the data have proven useful for verifying the accuracy of the FLOW3D model.

Keywords: space cryogenics; propellants; microgravity

planar representation (cross-section at tank centre).
planar representation (cross-section at tank centre).
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).

Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey

Abstract:

차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 차량의 탱크에서 유체 슬로싱의 복잡한 역학을 정확하게 시뮬레이션할 수 없다. 

유체 슬로쉬를 예측할 수 있는 컴퓨터 유체역학 CFD 분석 소프트웨어를 이용할 수 있지만, 군용 차량 애플리케이션용 유체 슬로쉬를 정확하게 예측하는데 이 소프트웨어의 사용은 입증되지 않았다. 이것은 차량 역학 분석과 결합된 CFD 분석의 사용을 개발 및 입증하여 유체 수송 시스템의 역학을 보다 정확하게 예측하는 다중 효소 프로그램의 첫 번째 단계다. 

이 단계의 목적은 일반적인 기동에 직면한 차량의 움직임에 따른 탱크에서 슬로시 역학을 예측하는 CFD 분석을 검증하는 것이다. 이를 위해, 5톤 FMTV 트럭을 시뮬레이션하는 시험 설비뿐만 아니라, 1/4 규모의 TOD 탱크 모델이 건설되었다. CFD 분석과 실험실 시험의 반응력과 유동 운동을 차선 변경과 요철을 포함한 6가지 모의 차량 기동에서 비교했다. 

CFD 분석은 상용 소프트웨어 패키지인 FLOW-3D-로 수행되었다. 테스트 탱크의 해당 측정값과 비교하기 위해 빈 탱크의 강체 동적 해석의 힘과 모멘트 예측에 순유체 힘과 모멘트 예측이 추가되었다. 

전반적으로, 그 결과는 CFD가 트럭에 탑재된 수상 수송 탱크의 유체 운동 및 유체 구조 상호작용 연구에 성공적으로 적용될 수 있음을 보여준다. 예측된 롤 모멘트와 측정된 롤 모멘트 사이에는 좋은 상관관계가 있다. 

여기에 제시된 CFD 시뮬레이션의 빠른 전환 시간을 감안할 때, 전술에 대한 전체 차량 반응의 높은 충실도 시뮬레이션을 위해 차량 강체 차체 동적 분석을 유체 역학 분석과 결합하는 것이 바람직하다는 전망이 나온다.

Computer simulation of vehicle dynamics has become a valuable tool in the design of vehicles. They are, however, unable to accurately simulate the complex dynamics of fluid sloshing in a tank on the vehicle. Computational Fluid Dynamics CFD analysis software is available that can predict fluid slosh, however, the use of this software in accurately predicting fluid slosh for a military vehicle application has not been demonstrated. This is the first phase of a multiphase program to develop and demonstrate the use of CFD analysis, coupled with vehicle dynamics analysis, to more accurately predict the dynamics of a fluid transport system. The objective of this phase is to validate the CFD analysis in predicting slosh dynamics on a tank subjected to motions of a vehicle encountering typical maneuvers. To accomplish this, a one-quarter-scale model of a TOLD tank was constructed, as well as a test fixture to simulate a five-ton FMTV truck. The reaction forces and the fluid motions of the CFD analysis and the laboratory test were compared for six simulated vehicle maneuvers including lane changes and bumps. The CFD analysis was conducted with the commercially available software package, FLOW-3D-. The net fluid force and moment predictions were added to the force and moment predictions of a rigid body dynamic analysis of the empty tank alone to compare to the corresponding measured values for the test tank. Overall, the results show that CFD can successfully be applied to the study of fluid motions and the fluid- structure interactions in truck-mounted water transport tanks. There is good correlation between the predicted and measured roll moment. Given the rapid turnaround time for the CFD simulations presented here, the outlook is encouraging for coupling a vehicle rigid body dynamics analysis to a fluid dynamics analysis for a high fidelity simulation of the complete vehicle response to maneuvers.

Keywords

Keywords: COMPUTATIONAL,FLUID,DYNAMICS,VEHICLES,*SLOSHING,TEST,AND,EVALUATION,COMPUTER,PROGRAMS,COMPUTERIZED,SIMULATION,COUPLING(INTERACTION),SIMULATION,ROLL,LABORATORY,TESTS,PREDICTIONS,VALIDATION,INTERACTIONS,MILITARY,VEHICLES,REACTION,TIME,MOTION,RESPONSE,TRANSPORT,MILITARY,APPLICATIONS,FLUIDS,TRUCKS,MANEUVERS,RIGIDITY,TEST,FIXTURES,WATER,TANKS

CFD 분석과 실험실 테스트의 작용력과 유체 운동은 다음과 같은 시뮬레이션 된 차량 기동에 대해 비교되었습니다.

  • AVTP Lane Change at 20 mph
  • AVTP Lane Change at 40 mph
  • 9” Half-Round Symmetric Bump at 10 mph
  • 12” Half-Round Symmetric Bump at 5 mph
  • 9” Trapezoidal Asymmetric Bump at 15 mph
  • 12” Trapezoidal Asymmetric Bump at 10 mph

CFD 분석은 상용 소프트웨어 패키지 FLOW-3D를 사용하여 수행되었습니다.

Rear Axle Roll Moment, 40-mph Lane Change.
Rear Axle Roll Moment, 40-mph Lane Change.
Figure 2.1.  Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).
Figure 2.2.  Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.
Figure 2.2. Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.
Figure 3.1.  Computational Mesh Definition
Figure 3.1. Computational Mesh Definition
Figure 3.2.  Rear Axle Roll Moment, 20-mph Lane Change
Figure 3.2. Rear Axle Roll Moment, 20-mph Lane Change
Figure 3.3.  Rear Axle Roll Moment, 40-mph Lane Change
Figure 3.3. Rear Axle Roll Moment, 40-mph Lane Change
Figure 3.4.  Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mph
Figure 3.4. Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mph
Figure 3.5.  Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mph
Figure 3.5. Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mph
Figure 3.8.  Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction.  Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.8. Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.9.  Fluid Configuration for 12” Trapezoidal Bump at 10 mph.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction.  Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.9. Fluid Configuration for 12” Trapezoidal Bump at 10 mph.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.

REFERENCES

Abramson, H.N. [1966], The Dynamic Behavior of Liquids in Moving Containers,NASA SP-106.Flow Science, Inc. [2001], FLOW-3D, Version 8.0.1, Santa Fe, New Mexico.Working Model, Inc. [1997], Working Model 3D, Version 2.0, San Mateo, California.Coleman, H.W., Steele, W.G. [1989], Experimentation and Uncertainty Analysis forEngineers, John Wiley and Sons, New York, 1989

Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section

A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process

Keyhole에 대한 수치적 연구 : 레이저 분말 중 형성 베드 퓨전 공정

Subin Shrestha1
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: subin.shrestha@louisville.edu

Y. Kevin Chou
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: kevin.chou@louisville.edu

LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.

이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.

이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.

전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.

또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 ​​안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity

Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 2 3D computational domain used for single-track simulation
Fig. 2 3D computational domain used for single-track simulation
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 4 Powder and substrate melting during laser application
Fig. 4 Powder and substrate melting during laser application
Fig. 5 Melt region formed after complete melting and solidification
Fig. 5 Melt region formed after complete melting and solidification
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 12 Melt region formed after complete melting and solidification
Fig. 12 Melt region formed after complete melting and solidification
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm

References

[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and
Propagation Mechanism During Additive Manufacturing by Selective Beam
Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528.
[2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect
Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive
Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98.
[3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for
High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24
(9), pp. 1469–1478.
[4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of
Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol.,
214(11), pp. 2627–2636.
[5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track
Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process.
Technol., 210(12), pp. 1624–1631.
[6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch
Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability
During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools
Manuf., 109(2016), pp. 147–157.
[7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and
Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser
Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188.
[8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and
Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective
Laser Melting with Random Powder Distribution and Experimental
Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78.
[9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser
Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and
Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta
Materialia, 108(2016), pp. 36–45.
[10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity
Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans.
A, 49A(8), pp. 3663–3673.
[11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl,
L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,”
Metal Powder Report, 72(5), pp. 331–338.
[12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett,
A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion
Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1),
p. 3602.
[13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W.,
Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser–
Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5),
pp. 1467–1477.
[14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T.,
and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting
Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852.
[15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in
Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,”
ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23.
[16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018,
“Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive
Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations,
Optical Society of America, San Jose, CA, May 13–18, Optical Society of
America, p. JW2A.117.
[17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the
Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604.
[18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018,
“Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective
Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and
Design, 141(2018), pp. 210–219.
[19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models,
Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog.
Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152.
[20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart,
W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading
Dynamics in Powder-Bed-Based Additive Manufacturing Process by
High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079.
[21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth,
J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser
Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform
Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267.
[22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for
Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
[23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed
Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and
White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49.
[24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple
Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D:
Appl. Phys., 39(24), p. 5372.
[25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B.,
2017, “Influence of Processing Parameters on the Evolution of Melt Pool,
Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective
Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167.
[26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung,
J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design
Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340.
[27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of
the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3),
p. 474.
[28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R.,
Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics
of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ
X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002.
[29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions
of laser power and scanning speed towards process-induced porosity in selective
laser melting,” Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, Aug. 13–15, pp. 1400–1409.
[30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting
Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl.
Phys., 44(44), p. 445401.
[31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ
Absorptivity Measurements of Metallic Powders During Laser Powder-bed
Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.

Figure 12 Experimental set-up of particle image velocimetry (PIV) system.

A comparison study between CFD analysis and PIV technique for velocity distribution over the Standard Ogee crested spillways

Rizgar Ahmed Karim 1Jowhar Rasheed Mohammed 2Affiliations expand

Free PMC article

Abstract

실험 및 수치 모델을 사용하여 표준 Ogee-crested 여수로에서 유속, 평균 속도, 수직 속도 분포 및 최대 속도 dm이 발생하는 위치를 비교하기 위해 포괄적인 연구가 수행되었습니다. 미국 육군 공병대 (USACE)의 사양에 따라 rigid foam으로 5 가지 다른 모델이 제작되었습니다.

유동의 속도는 0.50, 1.00 및 1.33의 다른 비 차원 수두 비 H/Hd를 갖는 모든 모델에 대해 모델의 하류 곡선을 따라 기록되었습니다. 입자 이미지 유속계 (PIV)를 사용하여 유속을 측정했습니다. 속도 분포는 Matlab 코드를 사용하여 캡처된 일련의 이미지를 분석하여 얻었습니다.

시판되는 CFD (Computational Fluid Dynamics) 소프트웨어 패키지인 Flow-3D가 실험 모델 설정을 모델링하는데 사용되었습니다. Flow-3D는 레이놀즈 평균 Navier-Stokes 방정식을 분석하고 배수로 흐름 분석 분야에서 사용하기 위해 널리 검증되었습니다.

수치와 실험의 최대 차이는 수두비의 모든 값에 대해 6.2 %를 초과하지 않는 평균 속도 값을 나타냅니다. PIV 기법에 의해 기록 된 최대 속도의 보간된 값은 수치적으로 계산 된 값보다 작습니다.

낮은 d m 위치에서 이 지역 간의 백분율 차이는 -8.65 %에 이릅니다. 상위 위치는 2.87 %입니다. 수직 위치 (d m)는 상류 수두가 증가하면 아래쪽 위치로 떨어지고 배수로 축으로부터의 거리가 선형으로 감소합니다.

A comprehensive study was performed to compare flow rate, mean velocity, vertical velocity distribution, and locations where the maximum velocity, d m , occurs on standard Ogee-crested spillways using experimental and numerical models. Five different models were constructed from rigid foam according to the specifications of the United States Army Corps of Engineers (USACE). The velocity of the flow was recorded along the downstream curve of the model for all models with different non-dimensional head ratios H/H d of 0.50, 1.00, and 1.33. Particle Image Velocimetry (PIV) was used to measure the flow velocities. Velocity distributions were obtained by analyzing a series of captured images using Matlab codes. A commercially available Computational Fluid Dynamics (CFD) software package, Flow-3D, was used for modelling the experimental model setups. Flow-3D analyzes the Reynolds-averaged Navier-Stokes equations and is widely verified for use in the field of spillway flow analysis. The maximum difference between numerical and experimental results in mean velocity values that do not exceed 6.2% for all values of head ratios. The interpolated values of recorded maximum velocity by the PIV technique are smaller than those values numerically computed. In the lower d m locations, the percent difference between these regions reaches -8.65%; the upper locations are 2.87%. The vertical location (d m ) drops to the lower location when the upstream head increases, and the distance from the spillway axis decreases linearly.

Keywords: Applied fluid mechanics; Civil engineering; Computational fluid dynamics; Finite element methods; Hydraulics; Hydrodynamics; Ogee-crested spillway; Particle image velocimetry; Physical model; Velocity distribution.

Figure 1 Dimensions of standard ogee-crested spillway, (a) dimensions and flow parameters, and (b) detail of upstream quadrant.
Figure 1 Dimensions of standard ogee-crested spillway, (a) dimensions and flow parameters, and (b) detail of upstream quadrant.
Figure 2 Side view of the experimental model.
Figure 2 Side view of the experimental model.
Figure 3 Laboratory setup.
Figure 3 Laboratory setup.
Figure 4 Discharge Coefficients of Experimental and Numerical results plotted together with USACE-WES Published Data, (a) for model No. 1, (b) for model No. 3.
Figure 4 Discharge Coefficients of Experimental and Numerical results plotted together with USACE-WES Published Data, (a) for model No. 1, (b) for model No. 3.
Figure 5 Rating curves of theoretical discharge and flowmeter reading.
Figure 5 Rating curves of theoretical discharge and flowmeter reading.
Figure 6 Mesh geometry.
Figure 6 Mesh geometry.
Figure 7 Numerical model geometry.
Figure 7 Numerical model geometry.
Figure 8 Mesh geometry.
Figure 8 Mesh geometry.
Figure 9 Boundary conditions of the Modeling.
Figure 9 Boundary conditions of the Modeling.
Figure 10 Normalized discharge comparison.
Figure 10 Normalized discharge comparison.
Figure 11 Relative percent difference in discharge.
Figure 11 Relative percent difference in discharge.
Figure 12 Experimental set-up of particle image velocimetry (PIV) system.
Figure 12 Experimental set-up of particle image velocimetry (PIV) system.
Figure 13 (a) Spillway Model setup, (b) Raw Image, and (c) Post-processed Image.
Figure 13 (a) Spillway Model setup, (b) Raw Image, and (c) Post-processed Image.
Figure 14 Cross-correlation algorithm.
Figure 14 Cross-correlation algorithm.
Figure 15 Velocity field and streamlines measured by PIV and simulated with CFD for flow over ogee spillway, (a) model no. 1 and (b) model no. 3.
Figure 15 Velocity field and streamlines measured by PIV and simulated with CFD for flow over ogee spillway, (a) model no. 1 and (b) model no. 3.
Figure 16 Comparison of head-mean velocity of experimental and numerical analysis for all models.
Figure 16 Comparison of head-mean velocity of experimental and numerical analysis for all models.
Figure 17 Sketch of velocity profile and its position for model no. 1.
Figure 17 Sketch of velocity profile and its position for model no. 1.
Figure 18 Vertical Distribution of Velocity for Different Runs of model No. 1.
Figure 18 Vertical Distribution of Velocity for Different Runs of model No. 1.
Figure 19 Vertical location of maximum velocity.
Figure 19 Vertical location of maximum velocity.

Conclusions

이 연구는 최대 속도를위한 수직 위치를 선택하는 동시에 설계 헤드보다 높은 수두에 대해 제어 된 환경에서 Ogee 볏이있는 배수로의 흐름을 더 잘 이해하는 데 기여하기 위해 수행되었습니다. 여기에서 5 개의 실험 모델이 USACE-WES 표준 여수로 모양에 따라 설계 및 제작되었으며 실험실 수로에서 테스트되었습니다. PIV 카메라는 유속을 측정하는 데 사용되었으며 CFD 소프트웨어는 실험 설정을 모델링하는 데 사용되었습니다.

수치 결과는 실험과 잘 일치했습니다. 등급 곡선 결과는 수치 값과 PIV 값의 최대 차이가 평균 속도 값이 모든 수 두비 값에 대해 5.59 %를 초과하지 않음을 나타냅니다. 정규화 된 WES 공개 데이터와 실험 결과 간의 최대 차이는 -7.54 %였습니다.

PIV 카메라로 기록 된 평균 속도는 CFD 모델에서 수치 적으로 분석되었으며, 비교 결과는 수치 데이터와 실험 데이터가 잘 일치 함을 보여줍니다. 최대 차이는 모든 헤드 비율에 대해 6.54 %를 초과하지 않습니다.

속도 비 (v / vmax.)의 실험적 보간 데이터는 dm 이하의 위치에서 수치 적으로 계산 된 데이터보다 작지만 반대로 dm보다 높은 위치에 있습니다. 이 현상은 수치 모델링에서 표면 거칠기를 고려하지 않았기 때문에 발생합니다. 방수로 모델의 표면은 매끄러운 표면으로 가정되었습니다. 최대 속도가 발생하는 수직 위치는 상류 수두가 증가함에 따라 낮은 위치에 있습니다. 위치는 방수로 축으로부터의 거리에 따라 거의 선형 적으로 증가합니다.

필요한 메시 미세 조정 및 구성은 원하는 데이터 유형에 따라 다릅니다. 일반적으로 속도 프로파일을 모델링하는 데는 0.33cm 메쉬로 충분했으며 더 작은 그리드 크기도 평가했지만 변경 사항은 없습니다.

실험적 모델링과 수치 적 모델링의 비교와 관련하여 실험적 모델링이 여전히 더 확립되어 있음이 분명합니다. CFD 모델은 실험 모델보다 속도와 난류에 대해 더 자세한 정보를 제공 할 수 있지만 경우에 따라 더 경제적 일 수 있습니다.

References

  • Adrian R.J. Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 1991;23(1):261–304. [Google Scholar]
  • Adrian L., Adrian R.J., Westrweel J. Cambridge University Press; 2011. Particle Image Velocimetry. [Google Scholar]
  • Chanel P.G. University of Manitoba; Winnipeg, Manitoba, Canada: 2009. An Evaluation of Computational Fluid Dynamics for Spillway Modeling.http://hdl.handle.net/1993/3112 M.Sc. Thesis. [Google Scholar]
  • Engineers U.A. C.o. Waterways Experiment Station Vicksburg, Miss. 1952. Corps of Engineers hydraulic design criteria. [Google Scholar]
  • Fujita I. Large-scale particle image velocimetery for flow analysis in hydraulic engineering applications. J. Hydraul. Res. 1998;36(3):397–414. [Google Scholar]
  • Ho D.K. Taylor and Francis group; London, UK: 2006. Application of Numerical Modelling to Spillways in Australia; pp. 951–959. [Google Scholar]
  • Kanyabujinja P.N. Stellenbosch university; Stellenbosch, South Africa: 2015. CFD Modelling of Ogee Spillway Hydraulics and Comparison with Experimental Mosel Tests.http://hdl.handle.net/10019.1/96787 M.Sc. thesis. [Google Scholar]
  • Khatsuria R.M. CRC Press; 2004. Hydraulics of Spillways and Energy Dissipators. [Google Scholar]
  • Kim D.G., Park J.H. Analysis of flow structure over ogee-spillway in considration of scale and roughness effects by using CFD model. KSCE J. Civil Eng. 2005;9(2):161–169. [Google Scholar]
  • Kuok K.k., Chiu P.C. Application of particle image velocimetry (PIV) for measuring water velocity in laboratory sedimentation tank” IRA Int. J. Technol. Eng. 2017;9(3):16–26. [Google Scholar]
  • Maynord S.T. Technical Report HL-85-1, US Army Engineering Waterways Experiment Station, Vicksburg, Mississippi. 1985. General spillway investigation: hydraulic model investigation.https://apps.dtic.mil/dtic/tr/fulltext/u2/a156686.pdf [Google Scholar]
  • Peltier Y. 2nd International Workshop on Hydraulic Structure. Coimbra; Portugal: 2015. Pressure and velocity on an ogee spillway crest operating at high head ratio: experimental measurements and validation; pp. 128–136. [Google Scholar]
  • Peltier Y., Dewals B., Archambeau P., Pirotton M., Erpicum S. Pressure and velocity on an ogee spillway crest operating at high head ratio: experimental measurements and validation. J. Hydro-Environ. Res. 2018;19:128–136. [Google Scholar]
  • Savage B.M., Johnson M.C. Flow over ogee spillway:experimental and numerical model case study” J. Hydraul. Eng. 2001;127(8):640–649. [Google Scholar]
  • Sveen J.K., Cowen E.A. Advances in Coastal and Ocean/Engineering PIV and Water Waves. Would Scientific; 2004. Quantitative imaging techniques and their application to wavy flows, in PIV and water waves” pp. 1–49. [Google Scholar]
  • U.S. Bureau of Reclamation . Water Resources Technical Publication, U.S. Department of the Interior, Bureau of Reclamation; 1987. Design of Small Dams. [Google Scholar]
  • Willey J., Ewing T., Wark B., Lesleighter E. Commission International Des Grands Barrages,Kyoto. 2012. Complementary use of experimental and numerical modelling techniques in spillway design refinement; pp. 1–22.https://books.google.com_books_about_An_Introduction_to_Computati [Google Scholar]
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.

Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment

by Ana L. Quaresma *OrcID andAntónio N. PinheiroOrcID
CERIS—Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal*
Author to whom correspondence should be addressed.
Academic Editor: Bommanna Krishnappan
Water 2021, 13(6), 851; https://doi.org/10.3390/w13060851
Received: 16 January 2021 / Revised: 8 March 2021 / Accepted: 18 March 2021 / Published: 20 March 2021
(This article belongs to the Special Issue Ecohydraulics of Pool-Type Fishways)

Abstract

이 연구에서는 전산 유체 역학 (CFD) 소프트웨어 (FLOW-3D®)를 사용하여 바닥 오리피스가 있는 풀형 어로에서 흐름의 3D 수치 모델링을 수행했습니다. 수치 결과는 음향 도플러 속도계 (ADV) 및 입자 이미지 속도계 (PIV) 측정에서 얻은 실험 데이터와 비교되었습니다.

흐름 깊이, 흐름 패턴, 수속, 난류 운동 에너지, Reynolds 수직 응력 및 바닥 구성 요소에 평행한 Reynolds 전단 응력과 같이 어로 효율에 영향을 미치는 여러 유체 역학적 변수를 정성 및 정량적으로 비교했습니다.

수치 모델은 복잡한 유동장을 정확하게 재현하여 수치 모델 예측과 분석 된 변수에 대한 실험 데이터 사이에 전반적으로 좋은 일치를 보여줍니다. 분석중인 모든 매개 변수에 대한 수치 모델 검증 수행의 중요성이 강조되었습니다.

또한 프로토 타입 어로의 업 스케일 된 수치 모델을 실행하여 스케일링 효과를 분석했습니다. 스케일 효과의 증거없이 실제 모델과 프로토 타입 치수 모두에 대해 유사한 정확도로 모델을 수행했습니다.

현재 연구는 CFD 모델 (즉, FLOW-3D®)이 새로운 수영장 유형 어로 형상을 위한 적절하고 효율적인 설계 및 분석 도구로 사용될 수 있으며 물리적 모델 테스트를 줄이고 보완 할 수 있다고 결론지었습니다.

In this study, the 3D numerical modelling of flow in a pool-type fishway with bottom orifices was performed using computational fluid dynamics (CFD) software (FLOW-3D®). Numerical results were compared with experimental data obtained from acoustic Doppler velocimetry (ADV) and particle image velocimetry (PIV) measurements. Several hydrodynamic variables that influence fishways efficiencies, such as flow depths, flow patterns, water velocity, turbulent kinetic energy, Reynolds normal stresses, and Reynolds shear stress parallel to the bottom component, were qualitatively and quantitatively compared. The numerical model accurately reproduced the complex flow field, showing an overall good agreement between the numerical model predictions and the experimental data for the analysed variables. The importance of performing a numerical model validation for all the parameters under analyses was highlighted. Additionally, scaling effects were analysed by running an upscaled numerical model of the prototype fishway. The model performed with similar accuracy for both physical model and prototype dimensions with no evidence of scale effects. The present study concludes that CFD models (namely FLOW-3D®) may be used as an adequate and efficient design and analysis tool for new pool-type fishways geometries, reducing and complementing physical model testing.Keywords: pool-type fishways3D numerical modellingLESscale effectsflow patternsCFD model assessment

Introduction

강의 종단 연결성을 복원하는 것은 담수 생태계의 회복에있어 여전히 중요한 문제입니다 [1,2]. 잘 설계되고 건설된 경우 어로는 물고기가 댐과 둑을 지나 계속 이동할 수 있는 경로를 제공합니다.

물고기 통과 효율성에 대한 검토에서 Noonan et al. [3]은 기존의 많은 어로의 설계 특성이 어종의 요구를 적절하게 충족시키지 못했지만, 풀형 어로가 모든 어류 그룹에 대해 가장 높은 효율성을 보여 주었다는 것을 발견했습니다.
여러 어종에 적합한 수영 조건을 제공하는 것은 어항의 흐름과 난류 패턴이 성공에 중요한 역할을 하기 때문에 다소 어려운 일입니다 [2,4,5,6,7,8,9,10,11,12].

물리적 모델링은 풀형 유형 어로의 유체 역학을 연구하기 위한 주요 접근 방식이었습니다 (예 : [13,14,15,16,17,18,19,20,21,22]). 그러나 물리적 실험은 비용과 시간이 많이 소요됩니다. 따라서 컴퓨터 기술의 발전으로 인해 물리적 모델 테스트를 줄이기 위해 복잡한 기하학적 구조를 가진 유압 구조의 흐름 패턴을 분석하는 데 전산 유체 역학 (CFD) 3 차원 (3D) 모델이 점점 더 많이 사용되고 있습니다 [23,24].

따라서 이러한 모델은 어로 유체 역학 연구 및 효율적인 어로 설계에 필수적인 역할을 할 수 있습니다.
어로에 대한 수치 모델링 연구는 주로 수직 슬롯 어로에 초점을 맞추고 있습니다 [12,25,26,27,28,29,30,31,32,33,34,35,36,37]. 수영장의 주요 부분에서 수직 슬롯 어로 흐름은 거의 2 차원 (2D)이고 수직 속도 구성 요소가 수평 요소 [26]보다 훨씬 작기 때문에 이러한 연구의 대부분은 2D 모델을 사용했습니다.

바닥 오리피스가있는 수영장 유형 어로에서는 흐름이 매우 복잡하고 3D이므로 정확한 유동장 특성화를 얻기 위해 3D 모델을 사용해야합니다. 이 어로 구성을 모델링하는 것은 높은 속도 구배, 높은 와도 및 높은 전단 영역을 포함하기 때문에 다소 어렵습니다.

이 연구에서는 FLOW-3D® (Flow Science, Inc., Santa Fe, NM, USA)를 사용하여 바닥 오리피스가 있는 수영장 유형 어로의 3D 수치 시뮬레이션을 수행하여 흐름 깊이, 속도 및 난류 패턴을 예측하는 능력을 평가했습니다. .

최근 몇 년 동안 실내에 가까운 프로토 타입 수영장 형 어로가 사이프 린드 종의 행동과 움직임을 연구하는데 사용되었습니다 [1,7,8,11,38,39,40,41,42,43]. Silva et al. [38]은 노치, 급락 및 스트리밍에 대한 두 가지 다른 유동 체제와 관련하여 조정 가능한 치수를 가진 침수된 오리피스와 표면 노치의 동시 존재에 대한 Iberian barbel Luciobarbus bocagei (Steindachner, 1864)의 반응을 평가했습니다.

이 연구의 결과는 이베리아 바벨이 어로를 협상하기 위해 오리피스 (76 %)를 선호했으며 어로에 들어가는 데 걸리는 시간도 오리피스에 비해 훨씬 적다는 것을 보여주었습니다.

Silva et al. [39] 오프셋 및 직선 오리피스가있는 수영장 유형 어로의 이베리아 바벨에 대한 적합성을 테스트했습니다. 이 연구는 오프셋 구성이 직선 오리피스 레이아웃 (28 %)에 비해 물고기 통과 성공률 (68 %)이 훨씬 더 높음을 발견했습니다. 어로를 성공적으로 협상하는 데 걸리는 시간도 오프셋 구성, 특히 작은 성인의 경우 훨씬 더 낮았습니다.

이 연구에서는 유속과 난류 매개 변수가 물고기 수영 성능에 미치는 영향을 분석했습니다. 수영장의 유동장을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다.

이 연구의 결과에 따르면 레이놀즈 전단 응력은 어로 내 이베리아 미늘의 움직임에 가장 큰 영향을 미치는 매개 변수임이 입증되었습니다. Branco et al. [40] 두 가지 다른 흐름을 가진 오리피스와 노치가 있는 풀형 유형 어로에서 형태 학적 및 생태학적 특성이 다른 두 종, 바닥 지향 이베리아 바벨 Luciobarbus bocagei 및 물기둥 수영 자 Iberian chub Squalius pyrenaicus의 거동과 성능을 평가했습니다.

풀의 유체 역학을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다. 결과는 두 종 모두 흐름 흐름이있는 노치를 선호했으며 이 흐름 체제로 상류로 이동하는데 더 성공적이었습니다.
이 연구에서는 이 시설의 1 : 2.5 스케일 어로 모델을 사용하여 Silva et al.에 의해 테스트된 바닥 오리피스 구성이 있는 풀형 유형 어로의 속도와 난류를 측정했습니다.

[7,38] 효과가 입증된 바벨 사용. 2D 입자 이미지 속도계 (PIV) 시스템 및 음향 도플러 속도계 (ADV)를 사용하여 순간 속도의 광범위한 측정을 수행하고, 후 처리하고, 수치 모델 정확도를 평가하는 데 사용했습니다.

Haque et al. [44] 대부분의 경우 수치 모델의 검증에 사용할 수있는 실험 데이터 세트에 높은 측정 오류가 있고 / 또는 측정 메시가 너무 거칠어 서 이들의 예측 기능을 올바르게 평가할 수없는 문제를 언급했습니다.

모델. Blocken과 Gualtieri [23]는 검증 및 검증 연구가 필수적이며 CFD 연구를 검증하기위한 데이터를 제공하기 위해 고품질 실험이 필요하다고 언급합니다.

Fuentes-Pérez et al. [35]는 특히 난류 메트릭에 대한 어로 연구에서 수치 모델 검증 데이터를 찾는 데 어려움을 언급합니다. 두 가지 측정 기술을 사용하고 상당한 양의 실험 데이터를 얻었기 때문에 이 연구에서는 이러한 문제를 극복했습니다.

물리적 모델은 종종 Froude 수 유사성을 기반으로하며, 두 유사성 법칙을 모두 충족하는 데 어려움이있어 무시되는 레이놀즈 수 유사성입니다. 프로토 타입 레이놀즈 수가 일반적으로 훨씬 더 크기 때문에 레이놀즈 수 관련 스케일 효과가 도입될 수 있습니다.

레이놀즈 수 증가는 속도 분포와 경계층 속성에 영향을 미칠 수 있습니다 [45]. 척도 효과를 평가하기 위해 수치 시뮬레이션을 사용할 수 있습니다 [46,47]. 따라서 본 연구에서는 바닥 오리피스 흐름이있는 풀형어도에 대한 스케일 효과를 분석하기 위해 두 가지 크기의 수치 모델을 개발했습니다.

프로토 타입 치수의 대형 모델과 물리적 모델 치수의 스케일 된 소형 모델입니다. .
바닥 오리피스가있는 수영장 형 어로의 유동장은 수직 슬롯 어로 (VSF)의 유동장보다 매우 3 차원 적이며 훨씬 더 복잡합니다. 이는 어로 수치 모델 검증에 대한 이전 연구에서 더 자주 고려 된 설계입니다 [26, 27,28,29,35].

저자가 아는 한, 이것은 바닥 오리피스가있는 풀형 어로에 대한 최초의 CFD 연구이며, 여기에는 실험 속도 데이터와 풀형 어로에 대한 3 차원 수치 모델링 결과 간의 가장 광범위한 비교도 포함됩니다. 두 가지 다른 측정 기술 (PIV 및 ADV)이 사용되어 자세한 비교가 가능하고 이러한 유형의 유동장에 대한 CFD 시뮬레이션 결과에 대한 확신을 제공합니다.

이 연구는 다른 어로 유형의 이전 수치 모델 연구에서 제시되지 않았던 난류 매개 변수를 포함하여 수치 모델 결과와 측정 간의 일치에 대한 통계적 테스트를 통해 정성적 비교 뿐만 아니라 상세한 정량적 비교도 제공합니다. 스케일 효과도 다룹니다.

따라서 이 연구는 전 세계적으로 가장 많이 사용되는 풀 유형 어로의 CFD 모델 검증을 원활하게 할 것이며 [10] 설계자들의 사용을 장려 할 것입니다.
또한 새로운 풀 유형 어로 형상을 위한 설계 도구로 CFD 모델 (즉, FLOW 3D®)을 사용하는 방법에 대해 설명합니다.

Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).

References

  1. Santos, J.M.; Branco, P.J.; Silva, A.T.; Katopodis, C.; Pinheiro, A.N.; Viseu, T.; Ferreira, M.T. Effect of two flow regimes on the upstream movements of the Iberian barbel (Luciobarbus bocagei) in an experimental pool-type fishway. J. Appl. Ichthyol. 2012, 29, 425–430. [CrossRef]
  2. Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thinking like a fish: A key ingredient for development of
    effective fish passage facilities at river obstructions. River Res. Appl. 2012, 28, 407–417. [CrossRef]
  3. Noonan, M.J.; Grand, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [CrossRef]
  4. Haro, A.; Kynard, B. Video Evaluation of Passage Efficiency of American Shad and Sea Lamprey in a Modified Ice Harbor Fishway. N. Am. J. Fish. Manag. 1997, 17, 981–987. [CrossRef]
  5. Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish; Contract no. 00000022, Project no. 200005700 (BPA Report DOE/BP-00000022-1); Report to the Bonneville Power
    Administration: Portland, Oregon, 2002.
  6. Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juveniles of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [CrossRef]
  7. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [CrossRef]
  8. Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [CrossRef]
  9. Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The IPOS framework: Linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res. Appl. 2012, 28, 429–443. [CrossRef]
  10. Santos, J.M.; Silva, A.T.; Katopodis, C.; Pinheiro, P.J.; Pinheiro, A.N.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: Getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [CrossRef]
  11. Branco, P.J.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Ferreira, M.T. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 2013, 714,
    145–154. [CrossRef]
  12. Gao, Z.; Andersson, H.I.; Dai, H.; Jiang, F.; Zhao, L. A new Eulerian-Lagrangian agent method to model fish paths in a vertical slot fishways. Ecol. Eng. 2016, 88, 217–225. [CrossRef]
  13. Rajaratnam, N.; Katopodis, C.; Mainali, M. Pool-orifice and pool-orifice-weir fishways. Can. J. Civ. Eng. 1989, 16, 774–777. [CrossRef]
  14. Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng. 1999, 125, 351–360. [CrossRef]
  15. Kim, J.H. Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 2001, 16, 425–433. [CrossRef]
  16. Ead, S.A.; Katopodis, C.; Sikora, G.J.; Rajaratnam, N. Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 2004, 3, 379–390. [CrossRef]
  17. Puertas, J.; Pena, L.; Teijeiro, T. Experimental approach to the hydraulics of vertical slot fishways. J. Hydraul. Eng. 2004, 130,10–23. [CrossRef]
  18. Liu, M.; Rajaratnam, N.; Zhu, D.D. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132,765–777. [CrossRef]
  19. Yagci, O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 2010, 36, 36–46. [CrossRef]
  20. Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [CrossRef]
  21. Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [CrossRef]
  22. Ballu, A.; Calluaud, D.; Pineau, G.; David, L. Experimental study of the influence of macro-roughnesses on vertical slot fishway flows. La Houille Blanche 2017, 2, 9–14. [CrossRef]
  23. Blocken, B.; Gualtieri, C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for
    environmental fluid mechanics. Environ. Model. Softw. 2012, 33, 1–22. [CrossRef]
  24. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection
    technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58, 71–85. [CrossRef]
  25. Khan, L.A. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics and Fish Passage Energetics in a Vertical-Slot Fishway. N. Am. J. Fish. Manag. 2006, 26, 255–267. [CrossRef]
  26. Cea, L.; Pena, L.; Puertas, J.; Vazquez-Cendon, M.E.; Peña, E. Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 2007, 133, 160–172. [CrossRef]
  27. Barton, A.F.; Keller, R.J.; Katopodis, C. Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics. Aust. J. Water Res. 2009, 13, 53–60. [CrossRef]
  28. Chorda, J.; Maubourguet, M.M.; Roux, H.; George, J.; Larinier, M.; Tarrade, L.; David, L. Two-dimensional free surface flow numerical model for vertical slot fishways. J. Hydraul. Res. 2010, 48, 141–151. [CrossRef]
  29. Bombaˇc, M.; Novak, G.; Rodiˇc, P.; Cetina, M. Numerical and physical model study of a vertical slot fishway. ˇ J. Hydrol. Hydromech.
    2014, 62, 150–159. [CrossRef]
  30. Bombaˇc, M.; Novak, G.; Mlacnik, J.; Cetina, M. Extensive field measurements of flow in vertical slot fishway as data for validation ˇ of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [CrossRef]
  31. Bombaˇc, M.; Cetina, M.; Novak, G. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. ˇ Ecol.
    Eng. 2017, 107, 126–136. [CrossRef]
  32. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [CrossRef]
  33. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Cooke, S.J.; Katopodis, C. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol. Eng. 2016, 90, 190–202. [CrossRef]
  34. Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Res. Appl. 2017, 33, 1295–1305. [CrossRef]
  35. Fuentes-Pérez, J.F.; Silva, A.T.; Tuhtan, J.A.; García-Vega, A.; Carbonell-Baeza, R.; Musall, M.; Kruusmaa, M. 3D modelling of
    non-uniform and turbulent flow in vertical slot fishways. Environ. Model. Softw. 2018, 99, 156–169. [CrossRef]
  36. Stamou, A.; Mitsopoulos, G.; Rutschmann, P.; Bui, M. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid
    Mech. 2018, 18, 1435–1461. [CrossRef]
  37. Sanagiotto, D.; Rossi, J.; Bravo, J. Applications of computational fluid dynamics in the design and rehabilitation of nonstandard
    vertical slot fishways. Water 2019, 11, 199. [CrossRef]
  38. Silva, A.T.; Santos, J.M.; Franco, A.C.; Ferreira, M.T.; Pinheiro, A.N. Selection of Iberian barbel Barbus bocagei (Steindachner, 1864)
    for orifices and notches upon different hydraulic configurations in an experimental pool-type fishway. J. Appl. Ichthyol. 2009, 25,
    173–177. [CrossRef]
  39. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Passage efficiency of offset and straight orifices for upstream movements of Iberian barbel in a pool-type fishway. River Res. Appl. 2012, 28, 529–542. [CrossRef]
  40. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows. PLoS ONE 2013, 8, e65089. [CrossRef]
  41. Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage performance
    of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [CrossRef]
  42. Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [CrossRef]
  43. Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N. Cyprinid passage performance in an experimental multislot fishway across distinct seasons. Mar. Freshw. Res. 2019, 70, 881–890. [CrossRef]
  44. Haque, M.M.; Constantinescu, G.; Weber, L. Validation of a 3D RANS model to predict flow and stratification effects related to fish passage at hydropower dams. J. Hydraul. Res. 2007, 45, 787–796. [CrossRef]
  45. Dargahi, B. Flow characteristics of bottom outlets with moving gates. J. Hydraul. Res. 2010, 48, 476–482. [CrossRef]
  46. Huang, W.; Yang, Q.; Xiao, H. CFD modelling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluids 2009, 38, 1050–1058. [CrossRef]
  47. Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [CrossRef]
  48. Larinier, M. Pool fishways, pre-barrages and natural bypass channels. Bull. Français de la Pêche et de la Piscic. 2002, 364, 54–82. [CrossRef]
  49. Quaresma, A.L.; Ferreira, R.M.L.; Pinheiro, A.N. Comparative analysis of particle image velocimetry and acoustic Doppler
    velocimetry in relation to a pool-type fishway flow. J. Hydraul. Res. 2017, 55, 582–591. [CrossRef]
  50. Flow Science, Inc. Flow-3D Version 11.2 User Manual; Flow Science, Inc.: Los Alamos, NM, USA, 2016.
  51. Hirt, C.W.; Sicilian, J.M. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the International Conference on Numerical Ship Hydrodynamics, Washington, DC, USA, 4 September 1985.
  52. Savage, B.M.; Johnson, M.C. Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 2001, 127, 640–649. [CrossRef]
  53. Abad, J.D.; Rhoads, B.L.; Güneralp, I.; García, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063. [CrossRef]
  54. Bombardelli, F.A.; Meireles, I.; Matos, J. Laboratory measurements and multi-block numerical simulations of the mean flow and
    turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11, 263–288. [CrossRef]
  55. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
  56. Duguay, J.M.; Lacey, R.W.J.; Gaucher, J. A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol. Eng. 2017, 103, 31–42. [CrossRef]
  1. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 1981, 39, 201–225. [CrossRef]
  2. Van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comp. Phys. 1977, 23, 276–299. [CrossRef]
  3. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due
    to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001 (4pages). [CrossRef]
  4. Smagorinsky, J. General circulation experiments with the primitive equations: I. The Basic Experiment. Mon. Weather Rev. 1963,
    91, 99–164. [CrossRef]
  5. Meyers, J.; Geurts, B.J.; Baelmans, M. Database analysis of errors in large-eddy simulation. Phys. Fluids 2003, 15, 2740–2755.[CrossRef]
  6. Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of Resolution Quality for Large Eddy Simulations. J. Fluids Eng. 2005, 127, 949–958. [CrossRef]
  7. Freitag, M.; Klein, M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering. J. Turbul. 2006, 7, 1–11. [CrossRef]
  8. Gousseau, P.; Blocken, B.; van Heijst, G.J.F. Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Comput. Fluids 2013, 79, 120–133. [CrossRef]
  9. Celik, I.; Li, J.; Hu, G.; Shaffer, C. Limitations of Richardson Extrapolation and Some Possible Remedies. J. Fluids Eng. 2005, 127, 795–805. [CrossRef]
  10. Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
  11. Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]
  12. Bennett, N.D.; Crok, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newhama, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [CrossRef]
  13. Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [CrossRef]
  14. Lane, S.N.; Richards, K.S. The “validation” of hydrodynamic models: Some critical perspectives. In Model Validation for Hydrological
    and Hydraulic Research; Bates, P.D., Anderson, M.G., Eds.; John Wiley: Hoboken, NJ, USA, 2001; pp. 413–438.
  15. Bradbrook, K.F.; Biron, P.M.; Lane, S.N.; Richards, K.S.; Roy, A.G. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol. Process. 1998, 12, 1371–1396. [CrossRef]
  16. Bradbrook, K.F.; Lane, S.N.; Richards, K.S.; Biron, P.M.; Roy, A.G. Role of bed discordance at asymmetrical river confluences. J. Hydraul. Eng. 2001, 127, 351–368. [CrossRef]
  17. Ferguson, R.I.; Parsons, D.R.; Lane, S.N.; Hardy, R.J. Flow in meander bends with recirculation at the inner bank. Water Resour. Res. 2003, 39, 1322–1334. [CrossRef]
  18. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Predicting equilibrium scour-hole geometry near angled stream deflectors using a three-dimensional numerical flow model. J. Hydraul. Eng. 2007, 133, 983–988. [CrossRef]
  19. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Three-dimensional numerical simulation of flow around stream deflectors: The effects of obstruction angle and length. J. Hydraul. Res. 2007, 45, 227–238. [CrossRef]
  20. Han, S.S.; Biron, P.M.; Ramamurthy, A.S. Three-dimensional modelling of flow in sharp open-channel bends with vanes. J. Hydraulic Res. 2011, 49, 64–72. [CrossRef]
  21. Klein, M. An Attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 2005, 75, 131–147. [CrossRef]
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.

Numerical Study of Fluctuating Pressure on Stilling Basin Slab with Sudden Lateral Enlargement and Bottom Drop

급격한 측면 확대 및 바닥 낙하에 따른 정류지(stilling basin) 슬래브의 변동 압력에 대한 수치 연구

by Yangliang Lu,Jinbu Yin *OrcID,Zhou Yang,Kebang Wei andZhiming Liu
College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road, Yangling 712100, China*
Author to whom correspondence should be addressed.
Water 2021, 13(2), 238; https://doi.org/10.3390/w13020238
Received: 6 November 2020 / Revised: 7 January 2021 / Accepted: 11 January 2021 / Published: 19 January 2021
(This article belongs to the Special Issue Physical Modelling in Hydraulics Engineering)

Abstract

갑작스런 확장 및 바닥 낙하가 있는 고요한 정류지(stilling basin) 유역은 복잡한 수력 특성, 특히 3D 공간 수력 점프 아래에서 변동하는 압력 분포로 이어집니다.

이 논문은 FLOW-3D 소프트웨어를 기반으로 한 LES (Large Eddy Simulation) 모델과 TruVOF 방법을 사용하여 시간 평균 압력, 변동 압력의 RMS (Root Mean Square), 정물(stilling basin) 조 슬래브의 최대 및 최소 압력을 시뮬레이션했습니다.

실제 모델 결과와 비교하여 시뮬레이션 결과는 LES 모델이 정물 유역의 변동하는 수류 압력을 안정적으로 시뮬레이션 할 수 있음을 보여줍니다. 변동 압력의 RMS의 최대 값은 정수조 전면과 측벽의 연장선 부근에 나타납니다.

이 논문은 변동 압력의 생성 메커니즘과 Navier-Stokes 방정식에서 파생된 Poisson 방정식을 기반으로 영향 요인 (변동 속도, 속도 구배, 변동 와도)의 정량 분석과 특성의 정성 분석을 결합하는 연구 방법을 제공합니다.

변동하는 압력의. 정류 지의 소용돌이 영역과 벽에 부착 된 제트 영역의 변동 압력 분포는 주로 각각 와류 및 변동 유속의 영향을 받으며 충돌 영역의 분포는 변동 속도, 속도 구배 및 변동에 의해 발생합니다.

A stilling basin with sudden enlargement and bottom drop leads to complicated hydraulic characteristics, especially a fluctuating pressure distribution beneath 3D spatial hydraulic jumps. This paper used the large eddy simulation (LES) model and the TruVOF method based on FLOW-3D software to simulate the time-average pressure, root mean square (RMS) of fluctuating pressure, maximum and minimum pressure of a stilling basin slab. Compared with physical model results, the simulation results show that the LES model can simulate the fluctuating water flow pressure in a stilling basin reliably. The maximum value of RMS of fluctuating pressure appears in the vicinity of the front of the stilling basin and the extension line of the side wall. Based on the generating mechanism of fluctuating pressure and the Poisson Equation derived from the Navier–Stokes Equation, this paper provides a research method of combining quantitative analysis of influencing factors (fluctuating velocity, velocity gradient, and fluctuating vorticity) and qualitative analysis of the characteristics of fluctuating pressure. The distribution of fluctuating pressure in the swirling zone of the stilling basin and the wall-attached jet zone is mainly affected by the vortex and fluctuating flow velocity, respectively, and the distribution in the impinging zone is caused by fluctuating velocity, velocity gradient and fluctuating vorticity. 

Keywords: submerged jumpsudden lateral enlargement and bottom droplarge eddy simulationvortexfluctuating pressure

Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.

Table 1. Operating conditions.

ConditionFlow Discharge
(m3/s)
Inflow Froude NumberInflow Velocity (m/s)Inflow Water Depth (m)
10.9425.2955.6110.114
20.6434.5454.4890.097
30.2324.2273.0180.052
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.

Table 2. Grid independence test.

GridContaining Block Cell Size (m)Nested Block Cell Size (m)Discharge
(m3/s)
Relative Error (%)
10.0500.0250.9905.10
20.0400.0200.9692.70
30.0300.0150.9561.49
40.0200.0100.9521.06
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 7. Comparison of bottom velocity.
Figure 7. Comparison of bottom velocity.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 13. Variance of fluctuating pressure coefficient (Cp′).
Figure 13. Variance of fluctuating pressure coefficient (Cp′).

References

  1. Liu, P.Q.; Dong, J.R.; Yu, C. Experimental investigation of fluctuation uplift on rock blocks at the bottom of the scour pool downstream of Three-Gorges spillway. J. Hydraul. Res. 199836, 55–68. [Google Scholar] [CrossRef]
  2. Liu, P.Q.; Li, A.H. Model discussion of pressure fluctuations propagation within lining slab joints in stilling basins. J. Hydraul. Eng. 2007133, 618–624. [Google Scholar] [CrossRef]
  3. Mousavi, S.N.; Júnior, R.S.; Teixeira, E.D.; Bocchiola, D.; Nabipour, N.; Mosavi, A.; Shamshirband, S. Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods. Mathematics 20208, 323. [Google Scholar] [CrossRef]
  4. Sun, S.-K.; Liu, H.-T.; Xia, Q.-F.; Wang, X.-S. Study on stilling basin with step down floor for energy dissipation of hydraulic jump in high dams. J. Hydraul. Eng. 200536, 1188–1193. (In Chinese) [Google Scholar]
  5. Li, Q.; Li, L.; Liao, H. Study on the Best Depth of Stilling Basin with Shallow-Water Cushion. Water 201810, 1801. [Google Scholar] [CrossRef]
  6. Luo, Y.-Q.; He, D.-M.; Zhang, S.-C.; Bai, S. Experimental Study on Stilling Basin with Step-down for Floor Slab Stability Characteristics. J. Basic Sci. Eng. 201220, 228–236. (In Chinese) [Google Scholar]
  7. Zhang, J.; Zhang, Q.; Wang, T.; Li, S.; Diao, Y.; Cheng, M.; Baruch, J. Experimental Study on the Effect of an Expanding Conjunction Between a Spilling Basin and the Downstream Channel on the Height After Jump. Arab. J. Sci. Eng. 201742, 4069–4078. [Google Scholar] [CrossRef]
  8. Ram, K.V.S.; Prasad, R. Spatial B-jump at sudden channel enlargements with abrupt drop. J. Hydraul. Eng. -Asce 1998124, 643–646. [Google Scholar] [CrossRef]
  9. Hassanpour, N.; Hosseinzadeh Dalir, A.; Farsadizadeh, D.; Gualtieri, C. An Experimental Study of Hydraulic Jump in a Gradually Expanding Rectangular Stilling Basin with Roughened Bed. Water 20179, 945. [Google Scholar] [CrossRef]
  10. Siuta, T. The impact of deepening the stilling basin on the characteristics of hydraulic jump. Czas. Tech. 2018. [Google Scholar] [CrossRef]
  11. Babaali, H.; Shamsai, A.; Vosoughifar, H. Computational Modeling of the Hydraulic Jump in the Stilling Basin with Convergence Walls Using CFD Codes. Arab. J. Sci. Eng. 201440, 381–395. [Google Scholar] [CrossRef]
  12. Dehdar-behbahani, S.; Parsaie, A. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alex. Eng. J. 201655, 467–473. [Google Scholar] [CrossRef]
  13. Macián-Pérez, J.F.; García-Bartual, R.; Huber, B.; Bayon, A.; Vallés-Morán, F.J. Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water 202012, 227. [Google Scholar] [CrossRef]
  14. Tajabadi, F.; Jabbari, E.; Sarkardeh, H. Effect of the end sill angle on the hydrodynamic parameters of a stilling basin. Eur. Phys. J. Plus 2018133. [Google Scholar] [CrossRef]
  15. Valero, D.; Bung, D.B.; Crookston, B.M. Energy Dissipation of a Type III Basin under Design and Adverse Conditions for Stepped and Smooth Spillways. J. Hydraul. Eng. 2018144. [Google Scholar] [CrossRef]
  16. Liu, D.; Fei, W.; Wang, X.; Chen, H.; Qi, L. Establishment and application of three-dimensional realistic river terrain in the numerical modeling of flow over spillways. Water Supply 201818, 119–129. [Google Scholar] [CrossRef]
  17. Epely-Chauvin, G.; De Cesare, G.; Schwindt, S. Numerical Modelling of Plunge Pool Scour Evolution In Non-Cohesive Sediments. Eng. Appl. Comput. Fluid Mech. 20158, 477–487. [Google Scholar] [CrossRef]
  18. Zhang, J.-M.; Chen, J.-G.; Xu, W.-L.; Peng, Y. Characteristics of vortex structure in multi-horizontal submerged jets stilling basin. Proc. Inst. Civ. Eng. Water Manag. 2014167, 322–333. [Google Scholar] [CrossRef]
  19. Li, L.-X.; Liao, H.-S.; Liu, D.; Jiang, S.-Y. Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrodyn. 201527, 522–529. [Google Scholar] [CrossRef]
  20. Ferreri, G.B.; Nasello, C. Hydraulic jumps at drop and abrupt enlargement in rectangular channel. J. Hydraul. Res. 201040, 491–505. [Google Scholar] [CrossRef]
  21. Naseri, F.; Sarkardeh, H.; Jabbari, E. Effect of inlet flow condition on hydrodynamic parameters of stilling basins. Acta Mech. 2017229, 1415–1428. [Google Scholar] [CrossRef]
  22. Zhou, Z.; Wang, J.-X. Numerical Modeling of 3D Flow Field among a Compound Stilling Basin. Math. Probl. Eng. 2019, 5934274. [Google Scholar] [CrossRef]
  23. Qian, Z.; Hu, X.; Huai, W.; Amador, A. Numerical simulation and analysis of water flow over stepped spillways. Sci. China Ser. E Technol. Sci. 200952, 1958–1965. [Google Scholar] [CrossRef]
  24. Liu, F. Study on Characteristics of Fluctuating Wall-Pressure and Its Similarity Law. Ph.D. Thesis, Tianjin University, Tianjin, China, May 2007. (In Chinese). [Google Scholar]
  25. Yan, Z.-M.; Zhou, C.-T.; Lu, S.-Q. Pressure fluctuations beneath spatial hydraulic jumps. J. Hydrodyn. 200618, 723–726. [Google Scholar] [CrossRef]
  26. Moin, P.; Kim, J. Numerical investigation of turbulent channel flow. J. Fluid Mech. 2006118. [Google Scholar] [CrossRef]
  27. Rezaeiravesh, S.; Liefvendahl, M. Effect of grid resolution on large eddy simulation of wall-bounded turbulence. Phys. Fluids 201830. [Google Scholar] [CrossRef]
  28. Stamou, A.I.; Chapsas, D.G.; Christodoulou, G.C. 3-D numerical modeling of supercritical flow in gradual expansions. J. Hydraul. Res. 201046, 402–409. [Google Scholar] [CrossRef]
  29. Savage, B.M.; Crookston, B.M.; Paxson, G.S. Physical and Numerical Modeling of Large Headwater Ratios for a 15 degrees Labyrinth Spillway. J. Hydraul. Eng. 2016142. [Google Scholar] [CrossRef]
  30. Aydin, M.C.; Ozturk, M. Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators. Can. J. Civ. Eng. 200936, 826–836. [Google Scholar] [CrossRef]
  31. Ma, B.; Liang, S.; Liang, C.; Li, Y. Experimental Research on an Improved Slope Protection Structure in the Plunge Pool of a High Dam. Water 20179, 671. [Google Scholar] [CrossRef]
  32. Bai, L.; Zhou, L.; Han, C.; Zhu, Y.; Shi, W.D. Numerical Study of Pressure Fluctuation and Unsteady Flow in a Centrifugal Pump. Processes 20197, 354. [Google Scholar] [CrossRef]
  33. Guven, A. A predictive model for pressure fluctuations on sloping channels using support vector machine. Int. J. Numer. Methods Fluids 201166, 1371–1382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure 6. Scour depth (in negative value) at different views around pier

Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software

Flow-3D 소프트웨어를 이용한 원형 교각 주변 지역 scour의 3 차원 수치 시뮬레이션

To cite this article: Halah Kais Jalal and Waqed H. Hassan 2020 IOP Conf. Ser.: Mater. Sci. Eng. 745 012150

Halah Kais Jalal1
, Waqed H. Hassan2
1 Graduate student, Civil Engineering Department, University of Kerbala, Kerbala, Iraq.
2 Professor, University of Kerbala, Kerbala, Iraq.
E-mail: halah.q@s.uokerbala.edu.iq, Waaqidh@uokerbala.edu.iq

Abstract

주어진 값의 내부 드리프트를 나타내는 다항식 순서 또는 자체 정의 함수 목록을 제공 할 수 있습니다. 이 드리프트는 kriging 보간 동안 내부적으로 적합합니다. 다음에서는 선형 드리프트가 추가된 인공 데이터를 생성합니다. 그런 다음 결과 샘플은 Universal kriging의 입력으로 사용됩니다. 그런 다음 보간 중에 “선형”드리프트가 추정됩니다. 추정된 평균 / 드리프트에만 액세스하기 위해 호출 루틴에 스위치 only_mean을 제공합니다. 원형 교각 주변의 국부 수색 문제는 Flow-3D 모델을 사용하여 전산 유체 역학 (CFD)에서 국부적 진화를 나타냅니다. 교각 설계에서 중요한 scour 및 scour 구멍의 최대 깊이. 이 연구의 목적은 교각 주변의 수색 깊이를 정확하게 시뮬레이션하고 예측하는 수치 시뮬레이션 모델 Flow-3D의 능력을 검증하는 것입니다. 이 검증은 수치 결과를 Melville 실험실 실험 모델과 비교하여 수행됩니다. 30 분후 수치 결과에서 얻은 원형 부두 주변의 최대 scour 깊이는 3.6cm이고 Melville 모델에서 얻은 scour 깊이는 4cm입니다. 이 결과에 따르면 수치 모델과 실험 모델 간의 오류율 비율은 10 %에 가깝습니다. 결과는 실험 결과와 함께 좋은 검증을 보여주었습니다. 마지막으로 제안 된 Flow-3D 모델은 교각 주변의 수색 깊이를 예측하고 시뮬레이션 하는데 효과적인 도구를 고려하고 잠재적인 결과를 예측하는 경제적인 방법을 고려했습니다.

The problem of local scouring around circular bridge pier has been studied numerically
by Computational Fluid Dynamics (CFD) using Flow-3D model to represent the evolution of local
scour and the maximum depth of the scour hole which is important in the bridge pier design. The
aim of this study is to verify the ability of the numerical simulation model Flow-3D to accurately
simulate and predict the scour depth around the bridge pier. This verification is conducted by
comparison the numerical results with Melville laboratory experimental model. The maximum
scours depth around the circular pier obtained from numerical results after 30 min is 3.6 cm, while
the scouring depth obtained from Melville model is 4 cm. According to these results, the error rate
ratio between the numerical and experimental models is close to 10%. The results showed a good
validation with experimental results. Finally, the proposed Flow-3D model considered an effective
tool in predicting and simulating the scour depth around bridge pier and considered an economic
method to predict potential results.
Keywords: Local scour, Flow-3D, CFD, Verfication

scour은 흐르는 물의 침식 작용으로 정의 할 수 있으며, 이는 가까운 교각 및 교각에서 베드를 제거하고 침식합니다 [1]. 다리의 교각 주변을 scour하는 것은 다리의 실패 원인이 충돌 및 과부하와 함께 엄청난 인명 손실과 경제적 영향으로 이어지는 주요 원인 중 하나로 간주됩니다 [2], 지역 scour 예측, 특히 최대 scour 깊이는 다음과 같습니다.

교량 설계, 유지 보수 및 평가에 필수적입니다. 전 세계의 많은 연구자들은 다양한 관점과 다양한 조건에서 광범위하게 scour 문제를 연구했습니다.

교량 부지에서 만든 scour에는 일반적으로 세 가지 유형이 포함되어 있습니다. 일반 scour, 수축 scour 및 국부 scour [3], 세 가지 scour 유형 중, scour는 다리와 관련된 위험에서 가장 중요한 역할을 하기 때문에, local scour는 이 연구의 중요한 부분으로 간주됩니다.

많은 선행 연구가 경험적 테스트를 사용하여 교량의 국부 scour을 분석하는 기술과 방법론을 목표로 했습니다 [4], [5], [6], [7], [8], [9], [10], [11] . 이러한 경험적 scour 테스트의 대부분은 비용이 많이 들고 노동 집약적이기 때문에 크고 중요한 교량에서 종종 수행됩니다.

그러나 가장 인기 있는 고속도로 교량의 경우 경험적 테스트가 적용되지 않지만 이러한 일반 교량에서 scour이 자주 발생하지만 일부 연구에서는 경제적이고 실용적인 목적으로 교량 scour에 대한 분석 솔루션을 조사했습니다.

지난 몇 년 동안 전산 유체 역학 (CFD를 사용하여 산업 및 환경 응용 분야에서 유체 흐름 동작을 결정하는 데 사용)을 더 많이 사용할 수 있는 컴퓨터 및 소프트웨어의 기능이 증가함에 따라 scour의 3 차원 시뮬레이션 방법이 더욱 널리 보급되었습니다.

FLUENT, CFX, PHOENIX와 같은 CFD 소프트웨어는 실험 설정과 여러면에서 유사하므로 이 수치 시뮬레이션의 원래 개념은 속도계와 같은 확장된 부속품을 사용하여 물리적 모델을 설계하고 구성하는 것입니다. 복잡한 모델 실험실 조건에서 모델링하기 어려운 모델은 수치 시뮬레이션을 사용하여 간단하게 모델링 할 수 있습니다.

좋은 수치 모델은 확실히 모델 테스트를 보완 할 수 있으며 설계 엔지니어가 모델 테스트를 수행 할 수 있는 가장 중요한 사례를 식별하는 데 도움이 될 수 있다는 것이 널리 알려져 있습니다.

복잡한 문제와 대규모 모델 연구를 해결할 수 있는 매력적인 아이디어입니다. 실제 결과를 결정하기 위해 추가 작업자 또는 기존의 대규모 설정이 필요하지 않습니다.

CFD (Computational Fluid Dynamics) 방법은 Navier-Stokes의 이산화 및 해석과 계산 셀의 연속성 방정식을 통해 유동 프로세스 시뮬레이션에 항상 사용됩니다. 현재 연구에서 상용 코드 Flow-3D는 교각 주변의 scour 깊이를 모델링하는 데 사용됩니다.

Flow-3D 모델은 유압 공학 응용을 위한 특수 장치가 있는 CFD 패키지입니다. 수치 기법은 다중 스케일 다중 물리 흐름 문제를 얻기 위해 과도 및 3 차원 솔루션에 대한 유체 운동 방정식을 해결하는 데 사용됩니다.

물리적 옵션과 수치 옵션의 조합을 통해 사용자는 Flow-3D를 광범위한 유체 흐름 및 열 전달 현상에 적용 할 수 있으며 다양한 유압 문제를 해결하는 데 널리 사용됩니다 [12]. Flow-3D에 의한 scour의 수치 시뮬레이션은 많은 연구자들에 의해 제안 되었습니다.

Flow-3D에 의한 Scour의 수치 시뮬레이션은 많은 연구자들에 의해 제안 되었습니다.

예를 들어, [13]은 Scour Hole 내의 원형 브리지 부두의 기초에서 발생하는 흐름을 시뮬레이션하기 위해 Flow-3D를 사용했고, [14]는 조수 아래의 복잡한 브리지 피어에서 국소 스캐닝을 시뮬레이션하기 위해 숫자 모델을 사용했고 [15]는 Flow-3D를 사용했습니다.다양한 조건에서 국부적 골절 깊이의 더미 모양과 [16] CFD 코드를 사용하여 3D 흐름과 다양한 모양의 교량 부두 주위의 국부적 스캐닝을 시뮬레이션했습니다.

이 모든 연구는 맑은 물 조건에서 흐르는 물이 주로 흐름과 강바닥 사이의 대부분의 상호 작용으로 이어진다는 가설을 세웠습니다.

본 논문에서는 [4]의 실험실 모델에 의한 수치 시뮬레이션 검증을 통해 교량 주변의 국부 scour 실험 결과를 CFD 코드 Flow-3D의 수치 시뮬레이션 결과와 비교하여 검증을 목적으로 합니다. 이 검증의 주요 목적은 교량 부두 주변의 scour 깊이를 예측할 때 수치 모델 Flow-3D의 효과를 테스트하는 것입니다.

Figure 1. Plan view of Melville experimental setup [4]
Figure 1. Plan view of Melville experimental setup [4]
Figure 2. Geometry of the numerical model configured by the FLOW-3D
Figure 2. Geometry of the numerical model configured by the FLOW-3D
Figure 3. Effect of Cell Size on Scour Depth
Figure 3. Effect of Cell Size on Scour Depth
Figure 4. Meshing Plane Structure Around a Circular Pier
Figure 4. Meshing Plane Structure Around a Circular Pier
Figure 6. Scour depth (in negative value) at different views around pier
Figure 6. Scour depth (in negative value) at different views around pier
Figure 7. Contour Lines Represented the Depth of Scour Around Circular Bridge Pier for Melville Model
Figure 7. Contour Lines Represented the Depth of Scour Around Circular Bridge Pier for Melville Model
Figure 8. Contour Lines Represented the Depth of Scour Around the bridge Pier for the Numerical model
Figure 8. Contour Lines Represented the Depth of Scour Around the bridge Pier for the Numerical model
Figure 9. Scour depth against time around cylindrical pier.
Figure 9. Scour depth against time around cylindrical pier.
Figure 10. Contour map of flow velocity around a pier at 30 min resulted by Melville [4]
Figure 10. Contour map of flow velocity around a pier at 30 min resulted by Melville [4]
Figure 11. Contour map of flow velocity distribution around a pier at 30 min resulted by numerical simulation.
Figure 11. Contour map of flow velocity distribution around a pier at 30 min resulted by numerical simulation.

Conclusion

이 연구는 교각에서 scour깊이의 발달을 예측하는 데 있어 이 수치 시뮬레이션의 효과를 검증하는 것을 목표로 합니다. 검증은 30 분의 scour 깊이 공식화 후 Flow-3D의 수치 결과를 Melville 실험 모델과 비교하여 결론을 내립니다.

결과의 비교는 최대 수세공 깊이에 대한 오류율이 10 %임을 나타내며,이 관찰은 수치 및 실험 작업 사이에 좋은 검증을 보여 주므로 수치 시뮬레이션은 scour 깊이를 성공적으로 재현합니다.

이러한 결과에 따르면 제안된 수치 모델 Flow-3D는 교각 주변의 scour 깊이와 유동장을 시뮬레이션하고 예측하는데 효과적인 도구로 간주되었습니다.

References
[1] Breusers Nicollet and Shen 1977 Local scour around cylindrical piers Journal of Hydraulic
Research, IAHR,15 (3): 211-252.
[2] Shepherd R. and Frost J D 1995 Failures in civil engineering: Structural, foundation and
geoenvironmental case studies Journal of Hydraulic Engineering, Puolisher ASCE.
[3] Cheremisinoff N P and Cheng S L 1987 Hydraulic mechanics 2 Civil Engineering Practice,
Technomic Published Company, Lancaster, Pennsylvania, U.S.A. 780 p.
[4] Melville B W 1975 Local scour at bridge sites University of Auckland, New Zealand, phd. Thesis,
Dept. of Civil eng., Rep. No. 117.
[5] Abdul-Nour M 1990 Scouring depth around multiple M.Sc. Thesis , Department of Irrigation and
Drainage , University of Baghdad.
[6] Hosny M M 1995 Experimental study of local scour around circular bridge piers in cohesive soils
Colorado State University, Fort Collins.
[7] Ansari S A Kothyari U C and Ranga Raju K G 2002 Influence of cohesion on scour around bridge
piers Journal of Hydraulic Research, IAHR, pp. 40(6): 717-729.
[8] Khsaf S I 2010 A study of scour around Al-Kufa bridge piers Kufa Engineering
Journal.Vol.1No.1,2010, University of Kufa / College Engineering / Civil Department.
[9] Hassan W H Jassem M H and Mohammed S S 2018 A GA-HP Model for the Optimal Design of
Sewer Networks Water Resour. Manag., vol. 32, no. 3, pp. 865–879.
[10] Hassan W H 2017 Application of a genetic algorithm for the optimization of a cutoff wall under
hydraulic structures J. Appl. Water Eng. Res., vol. 5, no. 1, pp. 22–30, Jan.
[11] Ataie-Ashtiani B 2013 Flow field around single and tandem piers Flow Turbulence and Combustion
Journal of Hydraulic Engineering,volume 9429.
[12] Flow -3D manual 2014 Flow-3D user manual version 11, Flow Science Santa Fe, NM.
[13] Richardson J E and Panchang V G 1998 Three-Dimensional Simulation of Scour Inducing Flow at
Bridge Piers Journal of Hydraulic Engineering, 124(5), pp. 530–540. doi: 10.1061/(asce)0733-
9429(1998)124:5(530).
[14] Vasquez J and Walsh B 2009 CFD simulation of local scour in complex piers under tidal flow
Proceedings of the thirty-third IAHR Congress: Water Engineering for a Sustainable Environment,
(604), pp. 913–920.
[15] W H H and Halah k Jalal 2019 Effect of Bridge Pier Shape on Depth of Scour Iop, Conf. Ser.,(under
puplication).
[16] Obeid Z H 2016 3D numerical simulation of local scouring and velocity distributions around bridge
piers with different shapes A Peer Reviewed International Journal of Asian Academic Research
Associates, 20(16), p. 2801. doi: 10.1186/1757-7241-20-67.
[17] Drikakis D 2003 Advances in turbulent flow computations using high-resolution methods Progress
in Aerospace Sciences, 39(6–7), pp. 405–424. doi: 10.1016/S03760421(03)00075-7.
[18] Yakhot and Orszag 1986 Renormalization Group Analysis of Turbulence, Basic Theory Journal of
Scientific Computing, pp. 3–51. 1, pp. 3–51.
[19] Mastbergen D R and Van Den Berg J H 2003 Breaching in fine sands and the generation of
sustained turbidity currents in submarine canyons Sedimentology, 50(4), pp. 625–637. doi:
10.1046/j.1365-3091.2003.00554.x.
[20] Soulsby R L and Whitehouse R J S W 1997 Threshold of sediment motion in Coastal Environments
Proc. Combined Australian Coastal Engineering and Port Conference, EA, pp. 149-154.
[21] Meyer-Peter E and Müller R 1948 Formulas for bed-load transport Proceedings of the 2nd Meeting
of the International Association for Hydraulic Structures Research, 39– 64.
[22] Wei G Brethour J Grünzner M and Burnham J 2014 Sedimentation Scour Model Flow Science
Report 03-14.

Figure 1. The bathymetry provided with the benchmark problem.

Performance Assessment of NAMI DANCE in Tsunami Evolution and Currents Using a Benchmark Problem

1Civil Engineering Department, Middle East Technical University, Ankara 06800, Turkey
2Ocean Engineering Department, University of Rhode Island, Narragansett, RI 02882, USA
3Civil Engineering Department, Middle East Technical University, Ankara 06800, Turkey
4Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod 603950, Russia
*
Author to whom correspondence should be addressed.
Academic Editor: Richard P. Signell
J. Mar. Sci. Eng. 20164(3), 49; https://doi.org/10.3390/jmse4030049
Received: 5 July 2016 / Revised: 2 August 2016 / Accepted: 12 August 2016 / Published: 18 August 2016

Abstract

쓰나미 진화, 전파 및 침수의 수치 모델링은 현상에 관련된 수많은 매개 변수로 인해 복잡합니다. 쓰나미 모션을 해결하는 숫자 코드의 성능과 흐름 및 속도 패턴을 평가하는 것이 중요합니다. NAMI DANCE는 긴 파도 모델링을 위해 개발된 계산 도구입니다.

쓰나미 생성, 전파 및 침수 메커니즘의 수치 모델링 및 효율적인 시각화를 제공하고 쓰나미 매개 변수를 계산합니다. 긴 파도 이론에서, 물 입자의 수직 움직임은 압력 분포에 영향을 미치지 않습니다.

이러한 근사치와 소홀히 하는 수직 가속을 기반으로 질량 보존 및 모멘텀 방정식은 2차원 깊이 평균 방정식으로 줄어듭니다. NAMI DANCE는 유한차 계산 방법을 사용하여 긴 파도 문제에서 선형 및 비선형 형태의 깊이 평균 얕은 수식을 해결합니다.

이 연구에서 NAMI DANCE는 미국 포틀랜드에서 열린 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 연례 회의에서 논의된 벤치 마크 문제에 적용됩니다.

벤치마크 문제는 하나의 독방 파도가 해양 섬 특징이 있는 삼각형 모양의 선반을 전파하는 일련의 실험을 특징으로 합니다. 이 문제는 섬 부근에서 상세한 무료 표면 고도 및 속도 의 타임 시리즈를 제공합니다. 결과를 비교한 결과, NAMI DANCE는 긴 파도 진화, 전파, 증폭 및 쓰나미 전류를 만족스럽게 예측할 수 있음을 보여주었습니다.

키워드: 수치 모델링;쓰나미 전류;깊이 평균 방정식;벤치마크,numerical modelingtsunami currentsdepth-averaged equationbenchmark

쓰나미는 해저 지진, 수중 산사태, 화산 폭발 또는 큰 운석 파업으로 인한 해저의 갑작스런 움직임에 의해 생성되는 큰 파도입니다. 쓰나미 파도는이 현상의 가장 파괴적인 매개 변수로 받아 들여진다; 그러나 큰 파도 움직임에 의해 트리거되는 전류는 경우에 따라 매우 치명적일 수 있습니다.

분지 공명 및 기하학적 증폭은 폐쇄 된 분지에서 쓰나미 영향의 지역 배율에 대한 두 가지 합리적으로 잘 이해된 메커니즘이며, 일반적으로 항구 또는 항구에서 쓰나미 위험 잠재력을 추정 할 때 조사 되는 메커니즘입니다. 반면에 전류에 대한 이해력과 예측 능력은부족하다[1]. 

이 연구는 수치 도구를 사용하여 쓰나미 진화, 전파 및 증폭뿐만 아니라 쓰나미 전류의 추정에 2 차원 깊이 평균 얕은 물 방정식의 충분성을 조사하는 것을 목표로; 즉 나미 댄스. 1970 년대 이후, 독방 파도는 일반적으로 실험 및 수학 연구에서, 쓰나미를 모델링하는 데 사용되었습니다[2]. 

이러한 점에서 수치 코드는 복잡한 목욕을 통해 단일 독방 파도의 진화와 전파에 초점을 맞춘 벤치마크 문제에 적용됩니다. 이 문제는 선반의 근해에 위치한 섬 특징이 있는 삼각형 모양의 선반을 전파할 때 단일 고독한 파도의 변형을 분석하는 일련의 실험을 설명합니다. 섬 부근에 형성되는 해류도 실험에서 조사된다.

이 연구에 사용된 벤치마크 문제는 미국 포틀랜드에서 개최된 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 워크샵의 벤치마크 문제 #5.3]. 벤치마크 데이터와 수치 결과를 비교하여 2차원 깊이 평균 얕은 수식은 쓰나미 파도 진화와 해류에 대해 만족스러운 결과를 제공하므로 쓰나미 완화 전략을 결정하는 동안 사용하기에 충분한 도구임을 관찰합니다.

Figure 1. The bathymetry provided with the benchmark problem.
Figure 1. The bathymetry provided with the benchmark problem.
Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.
Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.
Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.
Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.
Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.
Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.

References

  1. Lynett, P.J.; Borrero, J.C.; Weiss, R.; Son, S.; Greer, D.; Renteria, W. Observations and modeling of tsunami-induced currents in ports and harbors. EPSL 2012327, 68–74. [Google Scholar]
  2. Madsen, P.A.; Fuhrman, D.R.; Schaffer, H.A. On the solitary wave paradigm for tsunamis. J. Geophys. Res. 2008113. [Google Scholar] [CrossRef]
  3. NTHMP Mapping & Modeling Benchmarking Workshop: Tsunami Currents. Benchmark #5. Available online: http://coastal.usc.edu/currents_workshop/problems/prob5.html (accessed on 2 August 2016).
  4. Onat, Y.; Yalciner, A.C. Initial stage of database development for tsunami warning system along Turkish coasts. Ocean Eng. 201374, 141–154. [Google Scholar] [CrossRef]
  5. Kian, R.; Yalciner, A.C.; Aytore, B.; Zaytsev, A. Wave Amplification and Resonance in Enclosed Basins; A Case Study in Haydarpasa Port of Istanbul. In Proceedings of the 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement, St. Petersburg, VA, USA, 2–6 March 2015; Volume 11, pp. 1–7.
  6. Patel, V.M.; Dholakia, M.B.; Singh, A.P. Emergency preparedness in the case of Makran tsunami: A case study on tsunami risk visualization for the western parts of Gujarat, India. Geomat. Nat. Hazards Risk 20167, 826–842. [Google Scholar] [CrossRef]
  7. Yalciner, A.C.; Pelinovsky, E.; Zaytsev, A.; Kurkin, A.; Ozer, C.; Karakus, H.; Ozyurt, G. Modeling and visualization of tsunamis: Mediterranean examples. In Tsunami and Nonlinear Waves, 1st ed.; Kundu, A., Ed.; Springer: Berlin, Germany, 2007; pp. 273–283. [Google Scholar]
  8. Synolakis, C.E.; Bernard, E.N.; Titov, V.; Kanoglu, U.; Gonzalez, F. Validation and verification of tsunami numerical models. PAGEOPH 2008165, 2197–2228. [Google Scholar] [CrossRef]
  9. Yalciner, A.C.; Zaytsev, A.; Kanoglu, U.; Velioglu, D.; Dogan, G.G.; Kian, R.; Sharghivand, N.; Aytore, B. NTHMP Mapping and Modeling Benchmarking Workshop: Tsunami Currents. Available online: http://coastal.usc.edu/currents_workshop/presentations/Yalciner.pdf (accessed on 2 August 2016).
  10. Ozer, C.; Yalciner, A.C. Sensitivity study of hydrodynamic parameters during numerical simulations of tsunami inundation. PAGEOPH 2011168, 2083–2095. [Google Scholar]
  11. Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A. Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts. PAGEOPH 2014172, 931–952. [Google Scholar] [CrossRef]
  12. Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A.; Suppasri, A.; Imamura, F. Investigation of hydrodynamic parameters and the effects of breakwaters during the 2011 Great East Japan Tsunami in Kamaishi Bay. PAGEOPH 2015172, 3473–3491. [Google Scholar] [CrossRef]
  13. Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Performance Comparison of Numerical Codes for Tsunami Inundation. In Proceedings of the 2015 American Geophysical Union Fall Meeting, San Francisco, CA, USA, 14–18 December 2015.
  14. Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems. In Proceedings of the 2016 European Geosciences Union, Vienna, Austria, 17–22 April 2016.
  15. Dilmen, D.I.; Kemec, S.; Yalciner, A.C.; Düzgün, S.; Zaytsev, A. Development of a tsunami inundation map in detecting tsunami risk in Gulf of Fethiye, Turkey. PAGEOPH 2015172. [Google Scholar] [CrossRef]
  16. Heidarzadeh, M.; Krastel, S.; Yalciner, A.C. The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In Submarine Mass Movements and Their Consequences, 6th ed.; Sebastian, K., Jan-Hinrich, B., David, V., Michael, S., Christian, B., Roger, U., Jason, C., Katrin, H., Michael, S., Carl, B.H., Eds.; Springer: Bern, Switzerland, 2013; Volume 37, pp. 483–495. [Google Scholar]
  17. Yalciner, A.C.; Gülkan, P.; Dilmen, D. I.; Aytore, B.; Ayca, A.; Insel, I.; Zaytsev, A. Evaluation of tsunami scenarios for western Peloponnese, Greece. Boll. Geofis. Teor. Appl. 201455, 485–500. [Google Scholar]
  18. Zahibo, N.; Pelinovsky, E.; Kurkin, A.; Kozelkov, A. Estimation of far-field tsunami potential for the Caribbean Coast based on numerical simulation. Sci. Tsunami Hazards 200321, 202–222. [Google Scholar]
  19. Swigler, D.T. Laboratory Study Investigating the Three-dimensıonal Turbulence and Kinematic Properties Associated with a Breaking Solitary Wave. Master’s Thesis, Texas A&M University, College Station, TX, USA, August 2009. [Google Scholar]
  20. National Tsunami Hazard Mitigation Program. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Available online: http://nws.weather.gov/nthmp/documents/nthmpWorkshopProcMerged.pdf (accessed on 21 July 2016).
Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

Numerical modelling of a two-degree-of-freedom Wave Energy Converter

Energy Presentations | 에너지 프레젠테이션

Energy Presentations | 에너지 프레젠테이션

 지난 사용자 컨퍼런스에서 에너지 산업을위한 FLOW-3D의 응용에 초점을 맞춘 사용자 프레젠테이션을 다운로드하십시오  .

2019 년

Numerical modelling of a two-degree-of-freedom Wave Energy Converter: Creation, validation and utilization of the model

2 자유도 파동 에너지 변환기의 수치 모델링 : 모델의 생성, 검증 및 활용

Eliseo Marchesi, Politecnico di Milano / Studio Frosio srl
Marco Negri 및 Stefano Malavasi, Politecnico di Milano
Filippo Palo, XC Engineering Srl

Numerical modelling of a two-degree-of-freedom Wave Energy Converter
Numerical modelling of a two-degree-of-freedom Wave Energy Converter

이 연구의 목적은 FLOW-3D를 통한 수치 모델링입니다., Politecnico di Milano에서 실험실 규모 테스트를 거친 특정 Wave Energy Converter (WEC) : 두 개의 자유도 진동 체 시스템 인 EDS (Energy Double System), 급증하는 패들. 두 본체는 서로 연결되어 있으며 각각은 지상에 반응하는 PTO (Power Take-Off)에 연결됩니다. 수치 모델은주기적인 파동으로 사용 가능한 실험 테스트에 대해 검증되었습니다. 첫 번째 시뮬레이션은 실험실 테스트의주기적인 파동을 재현하는 것을 목표로했습니다. 그런 다음 실험 시스템에 해당하는 EDS의 수치 모델을 생성하고 이전에 모델링 한주기 파를 적용했습니다. 수치 방법의 품질이 확인되면 EDS 시스템의 새로운 구성에 대한 시뮬레이션이 수행되었습니다. 첫 번째 시뮬레이션 시리즈에서는이 매개 변수가 실험 모델에서 최적화되지 않았기 때문에이를 최적화하기 위해 패들 PTO의 댐핑이 변경되었습니다. 그 후, EDS 동작은 이전에 시뮬레이션 된 주기적 파동과 에너지 적으로 동일한 임의 파동에서 조사되었습니다.

다운로드

2015 년

Numerical simulation of extreme wave loading on an axisymmetric point absorber wave energy converter in a survival sea state

생존 해상 상태에서 축 대칭 점 흡수 파 에너지 변환기에 대한 극한 파 하중의 수치 시뮬레이션

Peter Arnold, Minerva Dynamics Limited

생존 해상 상태에서 파력 에너지 변환기 (WEC)가 경험할 수있는 힘과 모멘트의 초기 평가는 개념 설계 단계에서 특히 중요합니다. 현재까지 WEC의 생존 가능성을 평가하는 데 사용되는 주요 방법은 모델 규모 탱크 테스트이지만 일반적으로 10m에서 15m 범위의 상당한 파도 높이를 갖는 생존 파도의 크기로 인해 탱크 테스트 프로그램은 소규모를 사용해야합니다. 관련 계측 및 물리적 확장 문제가있는 스케일 프로토 타입 또는 관련 비용이 더 큰 대형 프로토 타입에 의존합니다. 보다 최근에 CFD는 더 작은 계산 비용으로 인해 불규칙한 파동 스펙트럼과는 반대로, 단독 집중 또는“New Waves”를 사용하여 정적 및 부동 구조에 대한 비선형 파동 부하를 평가하는 데 사용되었습니다. 그러나 이러한 초기 연구는 WEC 설계 엔지니어가 결과 부하의 통계적 분포를 필요로하기 때문에 WEC 생존에 필요한 조건 만 제공하지만 충분하지는 않습니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다.

다운로드

Wave propagation and reflection at an inclined plane – simulations and experiments

경사면에서의 파동 전파 및 반사 – 시뮬레이션 및 실험

Boris Huber, 비엔나 기술 대학교

20m 길이의 수로에서 물리적 모델 테스트를 수행하여 수로 끝의 경사면에서 파동 전파 및 반사를 관찰했습니다. 웨이브 생성은 익스텐더 휠에 의해 앞뒤로 움직이는 바닥에 장착 된 패들로 이루어졌습니다. 파도의 전파는 수위 측정에 의해 여러 지점에서 기록되었습니다. 실험은 다양한 파동으로 실행 된 다음 FLOW-3D 로 시뮬레이션되었습니다  . 또한 CFD 시뮬레이션에서 적절한 경계 조건을 얻기 위해 돌과 천공 시트로 구성된 파동 흡수 경계를 사용한 실험을 수행하고 다른 경계 조건에서 시뮬레이션을 실행했습니다.

다운로드

2013 년

Flap type wave power device in near shore conditions

해안 근처에서 플랩 형 파력 장치

Ibis Group, Inc의 Stephen Saunders

FLOW-3D  v10.1을 솔루션 코드로 사용하여 단일 이동 플랩 파 전력 캡처 장치의 CFD 분석을 수행했습니다  . 이 작업의 목적은 프로토 타입을 제작하고 배치하기 전에 의도 한 작업 환경에서 플랩이 겪는 힘을 예측하는 것입니다. FLOW-3D  는 이동하는 공기 / 물 인터페이스의 역학을 캡처하는 데 필요한 강력한 VOF 모델 때문에 경쟁 업체보다이 프로젝트에 선택되었습니다. 또한  FLOW-3D움직이는 고체 물체를 표현하는 FAVOR ™ 방법은 움직이는 플랩을 시뮬레이션하는 데 중요합니다. 플랩 형상의 성능을 시뮬레이션하고 다가오는 파도가 플랩 표면에 수직 인 해안 근처 조건에서 평가되었습니다. 테스트 된 모델은 플랩 끝 주변의 흐름 특성을 평가하기 위해 3D로 구성됩니다. 현재까지 두 개의 바다 상태가 테스트되었습니다. 이들은 플랩에 도달하는 즉시 깨지는 깨지지 않는 팽창 및 파도입니다. 예상대로 깨지지 않는 팽창은 중립의 양쪽에서 동일한 플랩 편향과 거의 대칭 인 부드러운 플랩 동작을 유도합니다. 파동 사례를 깨는 결과는 비대칭 동작과 하중으로 훨씬 더 극적입니다.

다운로드

Ocean waves resonance analysis of an oscillating water column energy converter

진동 수주 에너지 변환기의 해양 파도 공명 분석

José Manuel Grases ; 센데 키아

SDK Marine은 진동하는 수주 챔버 내의 물에 잠긴 수력 터빈을 기반으로 파도에서 전기 에너지를 수집하는 새로운 방법을 개발하고 있습니다. FLOW-3D  는 챔버 내부와 외부의 흐름 동작을 이해하는 데 사용되었습니다. 이 프로젝트의 주요 목표는 내부 수위를 측정하고이를 외부 파 여기와 비교하여 장치의 응답을 얻는 것이 었습니다. 또한 장치의 수력을 계산하기 위해 서로 다른 수력 터빈의 거동을 시뮬레이션하기 위해 서로 다른 다공성 멤브레인을 구현했습니다.

다운로드

Simulation of Joule heating-based Core Drying

This article was contributed by Eric Riedel 1,2

1Otto-von-Guericke-University Magdeburg, Institute of Manufacturing Technology and Quality Management, Germany

2Soplain GmbH, Germany

현대의 주조 생산에는 샌드 코어를 사용해야 합니다. 환경 인식의 확대는 물론 규제 강화로 인해 코어가 열로 건조되고 치유되는 무기, 무배출 바인더 시스템 개발이 뒷받침되고 있습니다. 핫박스 공정이라고 하는 것에서는 코어 박스에서 열이 발생하여 샌드바인더 혼합물로 전달됩니다. 그러나 핫박스 공정은 크게 두 가지 기술적 단점을 보입니다.

첫 번째 단점은 약 1 W/(m·K)의 석영 모래의 열전도율이 매우 낮다는 것입니다. 외부 열 전달로 인해 공정에 시간이 많이 소요되고 쉘 형성과 그에 따른 품질 문제가 발생할 수 있습니다. 이 때문에 최대 523.15K 이상의 매우 높은 코어 박스 온도가 적용되어 열 전달을 가속합니다. 열상자 공정의 두 번째 단점은 코어 건조 자체를 실시간으로 직접 측정하고 디지털화할 수 없다는 점입니다. 대신 코어 박스에서와 같은 주변 파라미터를 기록해야만 수동적으로 측정할 수 있습니다.

ACS 프로세스

특허받은 새로운 ACS(Advanced Core Solution) 프로세스는 시간과 에너지 효율이 높은 코어 건조 및 양생을 목표로 합니다. ACS 프로세스는 모든 무기 바인더 시스템에 공통적인 특성을 사용합니다.

물 기반이기 때문에 전기적으로 전도성이 있습니다. 주요 요인은 전기 전도성 코어 박스 재료의 개발로, 모래-바인더 혼합물에 대한 전도도를 조정할 수 있습니다. 전압이 인가되면 그림 1에서와 같이 코어 박스와 모래-바인더 혼합물을 통해 전류가 균일하게 흐릅니다. 좀 더 정확히 말하면, 전류가 모래 알갱이 사이에 있는 전기 전도성 바인더 브리지를 통해 흐릅니다. 

고유의 전기 저항으로 인해 모래 중심부는 셸 형성 없이 균일하게 가열됩니다. Joule heating이라 불리는 그 이면의 과학적 원리는 Joule 의 제1법칙에 근거하고 있습니다. 직렬 공정에서 전기 전도성 코어 박스는 Joule heating을 통해 가열되어 건조 공정이 추가로 가속화됩니다. 이는 ACS 공정의 경우 코어 박스 내부의 복잡한 가열 장치가 더 이상 필요하지 않으므로 코어 박스 구조가 단순화되기 때문에 더욱 중요한 장점입니다.

이 새로운 프로세스를 통해 처음으로 열이 필요한 곳, 즉 코어 내에서 직접 생성됩니다. 필요한 열은 균질하게 분포된 바인더를 통해 생성되어 인접 모래로 전달되기 때문에, 석영 모래의 낮은 열전도율은 더 이상 제한 공정 인자가 아닙니다. 또한 최초로 건조별 전기 파라미터를 기록함으로써 건조 프로세스 자체를 포괄적으로 실시간 모니터링할 수 있습니다. FLOW-3D를 사용하여 ACS 프로세스를 시뮬레이션할 수 있으며, 프로세스 편익의 정량화를 포함한 산업적 적용에 대한 중요한 기준을 충족합니다.

그림 1: 전류 흐름의 기본 비교: a) 미포함, b) 코어 박스의 전기 전도도를 모래-바인더 혼합물에 대한 조정

모델 설명

모델링은 Starobin 등의 작업을 기반으로 합니다. [1], 그러나 FLOW-3D의 전기-기계 모델로 확장합니다. 전기 전위(즉, 냄비 = 1)를 활성화하면 전기-열 효과, 즉 줄 가열(에테르모 = 1)을 고려해야 합니다. 

모델 세부 정보는 [2]에서 확인할 수 있습니다. 구성 요소의 전기적 특성을 통해 코어 박스는 전기 전도도(초)와 유전 전위(오디엘)를 가진 동적 전위(오이포템 = 1)를 할당받으며, 전체 모래-바인더 혼합물의 전기 전도도를 설명하기 위해 모래 코어에도 동일하게 적용됩니다. 

전극에는 한 전극에 대해 고정 전위(외전 = 0), 전기 전도도, 음전위(외전)가 할당되고 다른 전극에 대해서는 양의 전위(외전)가 할당됩니다. 전기 전도도에 대한 온도에 의존하는 정의는 아직 가능하지 않기 때문에, 우리는 재시동 시뮬레이션과 능동 시뮬레이션 제어로 작업했습니다. 

이렇게 하면 각 온도 범위의 평균 전기 전도도, 즉 293.15 ~ 303.15 K, 303.15 ~ 313.15 K 등을 고려할 수 있다. 다음의 조사는 1유체 시뮬레이션에 초점을 맞춘 조사, 즉 purging 은 고려하지 않았습니다.

예제

첫 번째 단계에서는 상업적으로 이용 가능한 무기 모래-바인더 혼합물이 가열 및 온도에 의존하는 전기 전도성을 조사하기 위해 시뮬레이션 모델의 실험 조사 및 유효성 검사를 위해 사용되었습니다. 

373.15 K에 도달하는 데 필요한 시간뿐만 아니라 모래 코어에 입력되는 전력 및 에너지를 측정하였다. 실험 분석과 결과를 바탕으로 기초적인 시뮬레이션 모델을 만들었습니다. 재량권을 이유로, 기초 결과 중 일부는 질적으로만 제시된다. 결과는 그림 2에 제시되어 있으며, 측정값과 시뮬레이션 사이의 높은 수준을 보여줍니다.

Comparison of experimental and simulation results
그림 2: 실험 결과와 시뮬레이션 결과의 비교.
 측정 지점은 293.15 K: a) 온도 상승 전력 입력- 측정값으로부터의 평균 편차: 0,95 %, b) 에너지 입력 – 측정값으로부터의 평균 편차: 4.8 %에서 시작하여 10 단계로 지정된 목표 온도의 도달도를 나타냅니다.

검증된 결과를 바탕으로 단순하지만 부피가 큰 기하학을 이용해 ACS 프로세스와 시뮬레이션을 보여주는데, 고전적인 핫박스 프로세스에 비해 진보된 ACS 개발의 기초와 높은 잠재력을 잘 보여줍니다. 

기하학적 정렬은 그림 3에서 확인할 수 있습니다. (1) 고전적인 핫박스 프로세스, (2) 콜드 툴을 사용하는 ACS 콜드 스타트 프로세스(293.15 K), (3) 줄 효과로 인한 공구 난방에 대한 ACS 시리즈 프로세스 등 세 가지 경우를 시뮬레이션했습니다. 모든 3차원 모델은 1mm 크기의 셀로 분쇄되었습니다. 표 1은 계산된 시나리오의 가장 중요한 세부 사항을 요약합니다.

Geometric alignment of simulation setup
그림 3: 전도성 코어 가열 및 건조를 위한 시뮬레이션 설정의 기하학적 정렬
Overview of calculated core drying cases
표 1: 계산된 코어 건조 사례 개요.
 값은 실제 실험에서 파생됩니다.

결과 및 토론

그림 4는 고전적인 핫박스 공정을 위한 온도와 수분 발달을 보여주며, 외부 열 전달 및 그에 상응하는 수분 감소를 명확히 보여주고 있습니다. 

시뮬레이션은 시뮬레이션의 마지막에 모래 코어 센터에 수분이 남아 있는 상태에서 120초 동안 수행되었습니다. 실제로 사이클 타임 대상은 코어 센터에 쉘 형성과 잔류 수분이 있는 건조 프로세스의 조기 종료를 강요합니다. 단, 그림 5에 나타낸 ACS 콜드 스타트 시뮬레이션(코어 슈팅 머신을 가동했을 때의 첫 번째 샷에 대응)에서는 새로운 프로세스의 기본 원리인 코어의 균일한 heating이 내부 아웃 수분 수송으로 이어집니다.

 게다가, 모래 코어는 코어 박스보다 더 빨리 가열됩니다. 직렬 공정에서 코어 박스는 Joule heating을 통해 373.15 K 이상의 온도에 도달하여 고온 박스와 ACS 공정이 혼합되어 건조 공정이 더욱 가속화됩니다. 

ACS 영상 시리즈 시뮬레이션의 결과는 그림 6에 요약되어 있습니다. 핫박스 공정에서 120초가 지나도 모래심이 완전히 낫지 않지만, ACS 공정에서는 72초나 45초 후에 코어가 완전히 건조될 수 있습니다. 코어 박스 온도가 상당히 낮음에도 불구하고, 새로운 프로세스는 코어 건조에서 상당한 가속도와 새로운 접근방식의 큰 잠재력을 보여줍니다. 

한 가지 주요 이점은 관련 에너지 요건과 그에 상응하는 CO2 배출량을 포함하여 사이클 타임의 대폭적인 감소입니다. 모래심에 유입된 에너지는 시뮬레이션을 이용해 미리 예측은 물론 실제 공정 중에도 측정할 수 있어 공정 설계와 투명성 측면에서 또 다른 큰 장점입니다. 

또한, 시뮬레이션은 시험 표본의 기하학적 독립적 동질 난방을 명확히 보여주는데, 이는 습기가 코어 중심에 갇히지 않고 셸 형성을 방지함을 의미합니다. 전체적으로, 새로운 공정은 공정의 효율성과 무기적으로 결합된 모래 코어의 품질에서도 상당한 증가를 가능하게 합니다. 세 가지 사례의 프로세스 도표는 모두 그림 7에 요약되어 있습니다.

요약 및 전망

시연된 모델링은 새로운 코어 건조 프로세스를 정확하게 시뮬레이션하는 FLOW-3D의 기능과 기존의 핫 박스 프로세스와 비교하여 보다 효율적인 코어 건조 및 양생에 대한 새로운 프로세스의 가능성을 보여줍니다. 새로운 시뮬레이션 설정이 아직 개발 단계에 있고 더 많은 실제 사례 실험이 필요한 경우에도 건조 동작에 대한 뛰어난 통찰력을 얻을 수 있으며, 지금까지의 실험 측정과 매우 잘 일치합니다.

현재 시뮬레이션 내에서 모래-바인더 혼합물의 전기 전도성은 석영모래를 통해 생성되며, 실제로는 전기 전도성이 아니라 실제 측정된 모래-바인더 혼합물의 전기 전도성에 해당된다. 이렇게 하면 전체 모래-바인더 혼합물의 전기 전도성이 시뮬레이션에서 설명되며 실험 결과에 적합한 것으로 보입니다. 좀 더 정밀한 시뮬레이션을 위해, 실제 전도성 곡선을 고려하기 위해 고체 코어의 온도에 의존하는 전기 전도성(예: 모래-바인더 혼합물)을 절약할 수 있는 가능성이 도움이 될 것입니다. 추가 단계는 2유체 시뮬레이션 모델에 집중됩니다. 초기 실험은 좋은 결과로 기본적인 타당성을 보여줍니다.

아직 취해야 할 조치에도 불구하고, FLOW-3D로 ACS 공정을 시뮬레이션할 수 있는 능력은 줄 가열 기반 코어 건조 공정을 전체적으로 수립하는 데 중요한 이정표를 세우고 무기 모래 코어 제조에 이 공정의 이점을 보여준다고 할 수 있습니다.

References

  • Starobin, C.W. Hirt, H. Lang, M. Todte, Core Drying Simulation and Validation, AFS Proceedings, Schaumburg, IL USA, 2011
  • FLOW-3D from Flow Science, Inc., Santa Fe, NM, USA
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. Lock
Advanced Analysis, Worley Pty Limited
L7, 116 Miller Street, North Sydney, NSW 2060 Australia
Tel: +61 2 8923 6817 e-mail: david.ho@worley.com.au

Abstract

엔지니어링 설계에서 유한 요소, 유한 차분 및 전산 유체 역학 분석 소프트웨어와 같은 수치 도구의 일상적인 사용이 최근 몇 년 동안 증가했습니다. 소프트웨어 및 하드웨어 기술의 발전은보다 비선형적이고 복잡한 3 차원 분석이 수행되고 있음을 의미합니다.

그러나 본질적으로 “블랙 박스”인 이러한 강력한 소프트웨어는 “컴퓨팅”기술을 보유하고 있지만 광범위한 엔지니어링 경험이 필요하지 않은 분석가의 손에 “컴퓨터 보조 재해”로 이어질 수 있습니다. 품질 보증 절차의 엄격한 구현은 수치 모델이나 분석 기법이 정확한지 확인할 필요가 없을 수 있습니다.

이 백서에서는 복잡성이 증가하는 세 가지 실제 토목 공학 응용 프로그램에서 수치 분석 결과를 검증하는 방법을 설명합니다. 여기에는 유한 요소법을 이용한 수조 탱크의 구조 해석, 전산 유체 역학법을 이용한 수력 구조물 위의 홍수 조사, 유한 ​​차분법을 이용한 안벽 시공 시뮬레이션 등이 있습니다. 입력 데이터의 불확실성 수준과 각 사례에 대한 계산 결과의 신뢰성에 대해 논의합니다. 분석 과정에서 몇 가지 흥미로운 결과가 발견되었습니다.

첫 번째 사례 연구는 시공의 질이 구조물의 성능에 상당한 영향을 미친다는 것을 보여주었습니다. 그러나 설계자는 설계 단계에서 이러한 상황을 수량화하고 분석하지 못할 수도 있습니다. 필요할 경우 향후 역분석은 물론 설계 검증의 기준점이 될 수 있도록 공사 종료 시 모니터링의 중요성이 필수적입니다. 유한 요소 분석은 복잡한 문제를 분석할 수 있는 강력한 수치 도구이지만, 분석가들은 문제의 행동이 단순하고 잘 이해되는 것처럼 보일 수 있는 상황에서 예상치 못한 결과를 만날 수 있도록 준비해야 합니다.

두 번째 사례 연구에서는 중요한 배수로 구조에 전산 유체 역학 분석이 처음으로 적용 되었기 때문에 엄격한 검증 프로세스가 강조됩니다. 그것은 2D ogee 방수로 프로파일로 시작하여 문제의 방수로의 3D 모델을 분석하기 위해 진행되는 방식으로 수행되었습니다.
계산된 결과를 각 단계에서 이론 및 물리적 테스트 데이터와 비교했습니다. 유체 흐름 문제의 비선형적 특성에도 불구하고, 분석은 확신을 가지고 실제 설계 목적에 적합한 결과를 제공할 수 있었습니다.

최종 사례 연구에서는 안벽의 거동이 시공 이력과 매립 방식에 영향을 받은 것으로 나타났습니다. 벽의 움직임은 매우 가변적인 토양 속성에도 불구하고 질적으로도 단순한 비선형 토양 모델을 사용하여 정확하게 예측되었습니다. 지속적인 모니터링 기록이 없기 때문에 검증은 어려웠습니다. 계산된 결과를 검증하는 열쇠는 수치 소프트웨어 도구를 사용하지 않는 독립적인 계산을 찾는 것입니다. 대부분의 경우 이러한 솔루션을 사용할 수 있습니다. 그러나 다른 경우에는 실험실 또는 현장 관찰에만 의존할 수 있습니다.

Introduction

오늘날 수치 해석은 대부분의 엔지니어링 설계에서 필수적인 부분을 형성합니다. 따라서 결과 검증의 필요성은 분석 기술 / 방법론을 신뢰할 수 있고 설계자가 계산 된 결과에 대한 확신을 가질 수 있도록 설계 프로세스 전반에 걸쳐 매우 중요합니다.

일반적인 관행은 고전 이론, 실험 데이터, 게시 된 데이터, 유사한 구조의 성능 및 다른 사람이 수행 한 수치 계산에 대해 결과를 검증하는 것입니다. 때때로 소프트웨어 개발자가 제공 한 벤치 마크 또는 검증 예제가 이러한 목적으로 사용될 수 있지만 전체 범위의 문제를 포괄 할만큼 포괄적 인 경우는 거의 없습니다.

수치 해석을 시작하기 전에 분석가는 입력 데이터의 신뢰성, 소프트웨어 도구가 문제의 문제를 해결할 수 있는지 여부 및 결과를 검증하는 방법을 결정해야합니다. 검증 프로세스가 많은 실무자들에 의해 품질 보증 절차의 일부로 채택되었지만 비용이 많이 드는 실패가 여전히 발생했습니다 [1].

Validation

결과 검증의 필요성은 수치 분석의 사용 (남용)에서 일부 나쁜 업계 관행을 관찰함으로써 강화 될 수 있습니다. 수치 계산을 수행하기 위해 고용 된 일부 엔지니어 / 분석가는 계산 뒤에있는 기본 이론을 완전히 이해하지 못하거나 숨겨진 함정을 처리 할 수있는 실제 엔지니어링 경험이 충분하지 않을 수 있습니다.

일부 소프트웨어가 “CAD와 유사”해지고 많은 사람들이 작동하기 쉽다고 주장하기 때문에 엔지니어링 회사가 대학원 엔지니어 대신 초보를 고용하여 수치 모델링 및 분석을 수행하는 경향이 점차 증가하고 있습니다.

사용자는 복잡한 지오메트리 모델을 생성하고, 적절한 요소와 메시를 만들고, 각 하중 케이스에 대한 경계 조건 (접촉, 하중 및 고정)을 적용하고, 속성을 할당하고, 제출에 필요한 모든 플래그 / 스위치 / 버튼을 설정하는 데 상당한 노력을 기울일 것입니다.

분석이 실행됩니다. 자체 검사를위한 일부 품질 보증 절차는 전처리 단계에서 따를 수 있지만 계산이 완료되고 결과가 후 처리 될 때까지 많은 사용자는 출력이 어느 정도 정확하다고 쉽게 믿을 것입니다. 지오메트리 생성은 수치 모델링 프로세스의 일부일뿐입니다. 가장 어려운 문제 중 하나는 전체 설계 프로세스에서 불확실성을 다루는 것입니다. 재료 속성 및 로딩 순서와 같은 입력과 관련된 불확실성이 있습니다.

예를 들어 모델이 선형 또는 비선형 방식으로 동작하는지 여부와 같이 솔루션 유형의 적절성과 관련된 불확실성이 있습니다. 마지막으로 결과 해석과 관련된 불확실성이 있습니다. 수치 분석에서 결과를 검증하고 문제를 발견하는 데있어 분석가를위한 좋은 방법에 대한 간단한 지침은 없습니다. 그러나 다음 방법을 통해 점차적으로 달성 할 수 있습니다.

• 수치 적 방법 과정에 대한 좋은 이해 – 이것은 학부 및 / 또는 대학원 수준의 공식 교육을 통해 얻을 수 있으며 지속적인 전문성 개발의 일환으로 자습을 통해 더욱 향상 될 수 있습니다.
• 특정 유형의 문제에 대한 기본 이론과 해결책의 범위를 잘 이해합니다. 이 역시 위와 같은 교육을 통해 이루어질 수 있습니다.
• 실제 문제를 해결하는 데 공학적 판단을 사용하고 수치 분석을 수행 한 경험이 있습니다. 이는 숙련 된 엔지니어가 분석가를 적절하게 감독하는 환경에서 작업함으로써 얻을 수 있습니다.

품질 보증 시스템의 구현이 실행 가능한 솔루션으로 이어지는 엔지니어링 판단을 대체하는 것은 아니라는 점에 유의해야합니다. 복잡한 대규모 모델을 분석하기 전에 시뮬레이션 기술과 문제의 근본적인 동작을 완전히 이해하기 위해 간단한 테스트 모델을 사용하여 수치 “실험”을 수행해야하는 경우가 매우 많습니다.

경험에 따르면 때때로 테스트 모델 자체가 분석가가 최종 설계 솔루션에 도달 할 수있는 충분한 정보를 제공 할 수 있습니다. 해당 대형 복합 모델의 분석은 설계 기대치를 확인하는 것입니다. 다음 사례 연구는 결과 검증이 수행 된 방법과 신뢰 수준 및 불확실성이 해결된 방법을 보여줍니다.

Applications

일반적인 토목 공학 프로젝트에서 수치 분석은 구조 역학, 기하학 및 유체 역학의 세 가지 기본 분야 중 하나 또는 조합을 포함 할 수 있습니다. 문제의 성격은 토양-구조 상호 작용, 유체-구조 상호 작용 또는 토양-유체 상호 작용 중 하나로 분류 될 수 있습니다.

어떤 경우에는 세 가지 모두를 포함 할 수 있습니다. 잠재적 인 복잡성을 고려하여, 정확도를 잃지 않고 실제 목적을 위해 중요한 동작을 캡처하지 않고 문제를 단순화하기 위해 몇 가지 가정과 이상화가 이루어져야합니다. 이러한 문제를 해결할 수있는 범용 및 특수 수치 분석 소프트웨어가 있습니다. 두 가지 유형의 소프트웨어가 사례 연구에 사용되었습니다.

Case 1 – Deflection of a steel water tank

직경 약 90m의 대형 원형 강철 물 탱크는 처음 채울 때 큰 벽면이 휘어지면서 탱크의 장기적인 구조적 무결성에 대한 우려를 불러 일으켰습니다.

물의 높이는 전체 저장 용량에서 약 10m였습니다. 지붕 구조는 탱크 내부에있는 기둥으로 거의 전적으로지지되었습니다. 스트레이크(strakes)는 벽의 바닥 1/3이 더 두꺼운 고급 강판으로 구성되었습니다. 1 차 윈드 거더는 탱크 상단 주위에 용접되었고 2 차 윈드 거더는베이스 위 2/3에 위치했습니다. 하단 스트레이 크는 환형베이스 플레이트에 필렛 용접되었습니다. 내부 기둥의 기초를 제외한 전체 바닥은 용접 된 강판으로 덮여있었습니다.

이 탱크는 유능한 중간층 사암과 미사암 기반암 위에 압축된 채움물 위에 세워졌습니다. 일련의 축 대칭 유한 요소 분석 (FEA)을 수행하여 관찰된 처짐을 예측할 수 있는지 여부를 결정하고 매일 물을 채우고 비울 때 피로 파괴가 발생할 가능성으로 인해 벽 바닥의 응력 상태를 계산했습니다.

내부 기둥과 지붕 빔을 포함하는 탱크의 12 분의 1 섹터에 대한 3 차원 모델을 처음에 분석하여 벽이 얼마나 많은 지붕 자중을지지하고 축 대칭 가정의 타당성을 조사했는지 조사했습니다. 이 분석의 결과는 지붕 구조의 강성 기여도가 중요하지 않아 후속 축 대칭 모델에 포함되지 않았 음을 보여주었습니다.

그러나 지붕 자체 무게의 작은 부분이 벽에 적용됩니다. 축 대칭 모델은 모든 강철 섹션, 필렛 및 맞대기 용접 및 기초로 구성되었습니다 (그림 1). 그것들은 몇 개의 3 노드 삼각형 축 대칭 요소가있는 4 노드 비 호환 모드 사변형으로 이산화되었습니다.

용접 재료를 통해서만 하중 전달이 허용되도록 용접이 모델링되었습니다. 용접 연결부에 미세한 메시를 사용하여 응력 상태를 정확하게 포착했습니다. 롤러 지지대는 모델의 측면 및 하단 경계에 적용되었습니다. 다음과 같은 하중이 적용되었습니다 :

철골 구조물의 자중, 지붕 자중, 벽의 정수압, 수위에 따른 바닥의 균일 한 압력. 한 모델은 용접 또는베이스의 강판이 플라스틱 힌지를 형성하기 위해 항복되었다고 가정했습니다. 이 경우 벽 바닥에서 핀 연결이 모델링되었습니다.

Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base
그림2 Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base

벽 처짐은 그림 2에 나와 있습니다. 측정 범위와 계산 된 결과는 비교 목적으로 표시됩니다. 계산 된 벽 처짐을 검증하기 위해 두 벽 두께에 대한 Timoshenko 및 Woinowsky-Krieger [2]에 기반한 고전 이론도 그림에 표시되었습니다. 계산 된 편향은 이론적 계산에 의해 제한됨을 관찰 할 수 있습니다.

벽 두께의 변화로 인한 전이가 분석에서 포착되었습니다. 이것은 유한 요소 모델에 대한 확신을 제공했습니다. 윈드 거더와 구속 된베이스의 영향도 볼 수 있습니다. 윈드 거더 설치로 인해 초기 변형이 발생하여 공사가 끝날 때 벽 상단이 안쪽으로 당겨질 수 있습니다. 굽힘 동작이 발생한베이스 근처를 제외하고는 후프 동작이 벽 동작을 지배했습니다.

계산된 최대 처짐이 측정된 순서와 동일하더라도 최대 돌출이 발생한 높이는 예측되지 않았습니다. 실제로 조사 데이터는 몇 가지 가능한 시나리오를 제안했습니다.베이스에 플라스틱 힌지 형성 (그러나이 영역에서 계산 된 응력은 항복 강도를 초과하지 않았습니다). 지반 재료의 국부적 인 베어링 고장 (다시 현장에서 균열과 같은 명백한 지시 신호가 보이지 않음); 또는 탱크 건설이 끝날 때 내장 된 기하학적 결함이있었습니다. 사전 변형 된 탱크에서 역 분석을 수행하여 측정 된 처짐이 정수압 하에서 “회복”되었습니다. 그러나 계산된 응력은 수율을 훨씬 초과했습니다. 불행히도 탱크는 완성 후 첫 번째 충전 전에 즉시 조사되지 않았습니다.

Figure 2 Wall deflection of water tank
Figure 2 Wall deflection of water tank

탱크의 원래 디자인과 건설이 2000 년대 초에 수행되었다는 점은 흥미 롭습니다. 설계 계산에 관련 표준 [3]을 사용했습니다. 이 표준은 탱크 벽이 후프 동작만으로 작용한다고 가정하고이 구조의 경우가 아닌베이스의 제약 조건을 무시합니다. 벽 처짐의 크기는 기초 강성을 고려한 Rish [4]가 개발 한 고전 이론 [2] 또는 FEA와 같은 수치 분석에 의해 결정될 수 있습니다. 고급 강철을 사용하면 설계자는 강도에는 적합하지만 서비스 가능성에는 필요하지 않은 더 얇은 섹션을 선택해야합니다. 굽힘 강성은 큐브 두께에 의해 결정됩니다. 수중 부하에서 후속 벽 변형 프로파일은 제작 품질에 영향을받습니다. 이것은 설계 단계에서 추정하기 어려웠을 것입니다.

사례 2 – 배수로 배출

호주의 많은 댐 구조는 제한된 수 문학적 정보로 1950 년대와 60 년대에 설계 및 건설되었습니다. 이러한 기존 방수로 구조는 수정 된 가능한 최대 홍수 수준에 대처하기 위해 크기가 작습니다. 증가 된 홍수 조건 하에서 방수로 꼭대기에 대한 음압 생성과 같은 잠재적 인 문제가 발생할 수 있습니다. 이는 방수로 및 게이트 구조에 불안정성 또는 캐비테이션 손상을 유발할 수 있습니다. 역사적으로 스케일링 된 물리적 모델은 이러한 동작을 연구하기 위해 수력 학 실험실에서 구성되었지만 비용이 많이 들고 시간이 많이 걸리며 스케일링 효과와 관련된 많은 어려움이 있습니다. 오늘날 고성능 컴퓨터와보다 효율적인 전산 유체 역학 (CFD) 코드를 사용하여 수리적 구조의 동작을 합리적인 시간과 비용으로 수치 적으로 조사 할 수 있습니다. 이 분석 기법은 대도시 지역에 주요 상수원을 제공하는 가장 큰 콘크리트 중력 댐에 호주에서 처음으로 적용 되었기 때문에 검증을 수행 할 필요가있었습니다. 이것은 그림 3과 같이 조사 프로세스에 통합되었습니다. 순서도는 간단한 2D에서 상세한 3D 방수로 모델로 어떻게 발전했는지 보여줍니다.

Figure 3 Flowchart showing the validation process
Figure 3 Flowchart showing the validation process

미 육군 공병대 [5]에서 발표 한 광범위한 데이터가 있기 때문에 검증을 위해 ogee 방수로 프로필 (그림 4 참조)이 선택되었습니다. 계산 된 결과는 조사의 각 단계에서 검토되었습니다. 게시 된 데이터에서 크게 벗어나면 프로젝트가 중단됩니다. 이것은 프로젝트가 시작되기 전에 고객과 상호 합의되었습니다.

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

이러한 종류의 분석의 초기 어려움 중 하나는 개방 채널 중력 흐름 문제에서 자유 표면의 정확한 계산이었습니다. 자유 표면을 추적하는 데 적응 형 메싱 및 반복 방법을 사용하는 것은 일부 유한 체적 CFD 코드에서 사용되었지만 성공은 제한적이었습니다. 본 연구에 사용 된 코드는 SOLA-VOF 방법으로 Navier-Stokes 방정식을 해결합니다. 유체 운동의 과도 동작을 해결하기 위해 유한 차분 방법이 사용되었습니다. 유체의 부피 (VOF) 함수는 자유 표면 운동을 계산하는 데 사용됩니다 [6].

분석에 대한 자세한 내용은 [7]에 설명되어 있습니다. 계산 된 파고 압력 분포, 자유 표면 프로파일 및 정상 상태에서의 배출 속도는 검증 목적으로 사용되었습니다. 다른 상류 수두 (H) 아래의 배수로 꼭대기를 따라 압력 분포가 그림 5에 나와 있습니다. 일부 압력 진동은 코드가 일반 메시와 곡선 배수로 장애물 사이의 인터페이스에서 계산을 처리하는 방식에 기인 할 수 있습니다. 훨씬 더 미세한 메쉬는 이러한 불규칙성을 부드럽게 만들었습니다. 압력 분포에 대한 교각의 영향은 3D 모델에서 올바르게 예측되었습니다 (그림 6).

계산된 자유 표면 프로파일 (그림 7)도 게시 된 데이터와 잘 일치했습니다. Savage와 Johnson [8]은 분석 기법에 대한 신뢰도를 높이는 동일한 CFD 코드를 사용하여 유사한 유효성 검사를 수행했습니다. 문제의 배수로에 대한 후속 분석은 스케일링 된 물리적 모델 테스트에서 얻은 결과와 비교할 때 상당히 좋은 결과를 제공했습니다.

Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 7 Upper nappe profile next to pier
Figure 7 Upper nappe profile next to pier

분석에서 배수로의 기하학적 구조와 물 속성이 잘 정의되었습니다. 물은 비압축성이며 고정 된 온도에서 일정한 특성을 가지고 있다고 가정했습니다. 실제로 좋은 품질의 콘크리트 표면 마감을 얻을 수 있기 때문에 배수로 경계는 매끄럽다 고 가정했습니다. 불확실성은 메쉬 밀도와 적절한 난류 모델의 선택이라는 두 가지 소스에서 비롯됩니다. 메쉬 크기는 메모리 양과 컴퓨터의 클럭 속도에 의해 제한됩니다.

높은 레이놀즈 수의 난류 흐름은 소용돌이와 소용돌이의 형성을 포착 할 수있는 매우 미세한 메시로 계산할 수 있지만 현재 메시 밀도는 검증 및 설계 목적에 필요한 변수를 예측하기에 충분히 미세했습니다. 조사 결과는 큰 와류, k-ε 및 RNG 모델과 같은 난류 모델의 선택에 의해 크게 영향을받지 않는 것으로 나타났습니다. 분명히 벽 거칠기와 난류 모델의 도입은 방전율을 감소시킬 것입니다. 그러나 다시 분석 결과는 사용 된 메시에 거의 영향을 미치지 않음을 보여줍니다. 향후 분석은 다른 메쉬 밀도로 인한 이산화 오류를 조사 할 것입니다.

사례 3 – 안벽 건설
주요 컨테이너 항구 시설은 설계 단계에서 최소한의 수치 분석을 수행하여 약 25 년 전에 건설되었습니다. 당시에는 이러한 분석 도구를 사용하는 것이 비용 효율적이지 않은 것으로 간주되었습니다. 다수의 컨테이너 크레인이 측면을 따라 이어지는 2km 길이의 안벽을 건설하기 위해 광범위한 준설 및 매립 작업이 수행되었습니다.

시설이 완공 된 이후 일련의 콘크리트 카운터 포트 유닛으로 구성된 안벽과 후방 크레인 빔은 크레인이 할 수 있도록 후방 빔에 대한 레벨 조정 작업이 수행 될 정도로 지속적으로 이동하고 있습니다. 정상적으로 작동합니다. 그러나 영향을받는 두 구조물의 움직임을 저지하기 위해보다 영구적 인 해결책을 모색했습니다. 토양-구조 상호 작용 및 시공 시뮬레이션을 처리 할 수있는 명시 적 유한 차이 분석을 사용하여 다양한 교정 옵션의 순위를 지정했습니다.

그라우트 기둥, 타이백 앵커 및 말뚝 지지대와 같은 다양한 제안 된 개선을 분석하기 전에, 토양 및 구조적 특성과 시공 과정의 선택이 적절하도록 계산 모델을 관찰에 대해 보정해야한다고 결정했습니다. 지질 및 지질 공학 정보는 현장 및 실험실 테스트 데이터를 포함하는 현장 조사 보고서에서 평가되었습니다. 시설의 범위를 고려할 때 현장에서 만나는 특정 토양 유형에 대해 상당한 분산 테스트 데이터가 예상됩니다. 수력 모래 충전재에 대한 표준 침투 테스트 (SPT) 블로우 횟수 (N) 및 콘 침투 테스트 (CPT) 저항 (qc)에 대한 몇 가지 일반적인 기록이 그림 8과 9에 나와 있습니다.

Figure 8 SPT ‘N’ profiles
Figure 8 SPT ‘N’ profiles
Figure 9 CPT profiles
Figure 9 CPT profiles

이 결과로부터 평균 해수면 위와 아래에있는 모래 채우기의 강도와 강성의 대비를 관찰 할 수 있습니다. 이 현상은 배치 방법에 기인한다고 제안되었다 [9]. 또한 기초 수준에서 진동 압축 된 모래의 특성에도 변동이있었습니다. 분석을 위해 선택된 토양 특성은 테스트 데이터, 인근 사이트의 경험 및 유사한 토양 조건에 대한 발표 된 데이터를 기반으로합니다. 그것들은 표 1에 요약되어 있습니다. 일반적으로 시설의 건설 순서는 다음과 같습니다.

  1. Removal of pockets of soft marine clay by dredging
  2. Dredging of sand to the required level
  3. Vibro-compaction of the sand on which the counterfort units were to be founded
  4. Placement of gravel for the quay wall foundation.
  5. Placement of concrete counterfort units weighing 360 tonne each
  6. Placement of hydraulic sand fill behind the units
  7. Surcharging the fill just behind the capping beam
  8. Construct capping beam and place more sand fill to the finished level
  9. Additional surcharge prior to the operation of container cranes.

Table 1 Soil properties used in the construction
simulation of the quay wall

Table 1 Soil properties used in the construction simulation of the quay wal
Table 1 Soil properties used in the construction simulation of the quay wal

2D 평면 변형 모델의 수치 시뮬레이션에서 구성 순서 (그림 10)와 하중은 다음 단계에 따라 단순화 / 이상적입니다.

  1. The starting condition of the seabed consisted of the vibrocompacted sand, gravel bed, native sand, clay and fissured clay at depth. The “in-situ” stresses were also switched on in this step.
  2. Placement of counterfort unit (using equivalent linear elastic beam elements) with a vertical force applied through the centre of gravity of the unit to represent the buoyant self-weight.
  3. Sequentially placing hydraulic sand fill behind the unit to the level prior to surcharging.
  4. Apply an equivalent trapezoidal pressure to represent the surcharge.
  5. Placement of capping beam and the sand fill to the required level.
  6. Apply additional surcharge.
  7. Application of repeated loads from the crane seaward and landward legs.
Figure 10 Construction sequence
Figure 10 Construction sequence

분석에서는 침수 된 물질과 평균 해수면 위에있는 물질을 나타 내기 위해 적절한 밀도를 사용했습니다. 안벽의 장기적인 움직임이 중요했기 때문에 배수 된 토양 매개 변수가 사용되었습니다. 토양은 분석에서 Mohr-Coulomb 실패 기준을 따르는 것으로 가정되었습니다. 단순한 탄성-완전 소성 응력-변형 거동이 가정되었습니다. 일련의 강체 다이어그램으로 표현 된 안벽 이동의 역사는 그림 11에 나와 있습니다. 벽의 상단과 바닥에서 계산 된 수직 및 수평 이동은 그림 12와 13에 표시됩니다. 수치는 모니터링 된 데이터와 해당 상한 및 하한 (해당 상자에 표시됨)입니다. 측정에서 산란의 양에도 불구하고 벽 건설에 대해 계산 된 움직임은 합리적으로 잘 비교되었습니다. 조사 데이터와 예측을 일치시키기 위해 분석에서 토양 속성을 변경하려는 시도가 없었습니다. 반복되는 크레인 하중의 래칫 효과를 관찰 할 수 있습니다. 불행히도 반복적 인 크레인 하중 하에서 벽 이동에 대한 기준이 없었기 때문에 이러한 예상 이동을 비교할 수 없었습니다. 문제의 복잡성과 고도로 가변적 인 토양 특성을 고려할 때 계산 된 결과는 매우 고무적입니다.

Figure 11 Wall deformations
Figure 11 Wall deformations

토양에서 플라스틱 구역의 발달도 분석에서 계산되었습니다. 벽의 발가락 아래의 토양이 여러 번 과도하게 압박을받는 것으로 밝혀졌습니다. 접촉 압력은 경사 하중으로 인한 베어링 고장에 대한 안전 지표 (FOS)를 결정하는 데 사용되었습니다. 지지력은 계산 방법에 의해 크게 영향을 받았다고보고되었습니다 [10]. 원래의 기초 디자인은 덴마크 코드 [11]를 기반으로했기 때문에이 경우 일관성을 위해 사용되었습니다. 편심의 함수로서 FOS의 발전과 수평 대 수직 추력 (H / V)의 비율이 각각 그림 14와 15에 나와 있습니다.

Figure 12 Wall top movements
Figure 12 Wall top movements
Figure 13 Wall base movements
Figure 13 Wall base movements
Figure 14 ‘FOS’ vs. eccentricity
Figure 14 ‘FOS’ vs. eccentricity
Figure 15 ‘FOS’ vs. H/V ratio
Figure 15 ‘FOS’ vs. H/V ratio

그림은 벽이 추가 요금과 반복적 인 적재 단계 동안 국부적 인 베어링 고장에 가까웠음을 보여줍니다. 크레인 하중 하에서 FOS의 명백한 증가는 벽에 대한 수직 하중이 증가하는 반면 유지된 토양의 수평 압력이 다소 일정하게 유지됨에 따라 편심이 감소했기 때문입니다.

끝 맺는 말
세 가지 매우 다른 실제 응용 프로그램의 유효성 검사 프로세스가 설명되었습니다. 각 사례의 주요 특징과 결과는 표 2에 요약되어 있습니다. 재료 및 하중 불확도 및 예상 결과가 강조 표시됩니다. 건설 품질은 구조의 성능에 상당한 영향을 미치는 것으로 나타났습니다.

이는 분석가가 프로젝트의 설계 단계에서 정량화하고 정확하게 분석하지 못할 수도 있습니다. 구조가 완료된 직후 모니터링의 중요성을 간과해서는 안됩니다. 이것은 미래의 역 분석을위한 유용한 자료가 될 것입니다. 수치 도구가 이러한 복잡한 문제를 분석 할 수 있다는 사실에도 불구하고 분석가는 어떤 매개 변수가 중요하거나 중요하지 않은지 식별 할 준비가되어 있어야합니다.

익숙하지 않은 문제를 분석 할 때 유효성 검사 프로세스를 점진적으로 수행해야합니다. 아마도 검증 방법을 찾는 핵심은 수치 분석 도구를 사용하지 않고 솔루션에 도달 할 수있는 다른 방법이 있는지 묻는 것입니다. 많은 경우 이러한 솔루션은 광범위한 문헌 검색 후에 존재합니다. 그러나 다른 경우에는 실험실 테스트와 현장 관찰이 유일한 대안이 될 것입니다.

자세한 내용은 원문을 참고하시기 바랍니다.

References
[1] Puri, S.P.S. (1998) “Avoiding Engineering Failures Caused by Computer-Related Errors”, J. Comp. in Civil Engineering, ASCE, 12(4), 170-172.
[2] Timoshenko, S.P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, 2nd edition, McGraw-Hill Kogakusha. p.580.
[3] BS2654 (1989) Manufacturing of vertical steel welded non-refrigerated storage tanks with butt-welded shells for the petroleum industry.
[4] Rish, R.F. (1977) “Design of Cylindrical Tanks on Elastic Foundations”, Civil Engineering Transactions, The Institution of Engineers, Australia, 192-195.
[5] US Army Corps of Engineers (1990) Hydraulic Design of Spillways, Engineer Manual No. 1110-2-1603.
[6] Hirt, C.W. and Nichols, B.D. (1981) “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, J. Comp. Phys. 39, 201- 225.
[7] Ho, D.K.H., Boyes, K.M and Donohoo, S.M. (2001) “Investigation of Spillway Behaviour under Increased Maximum Flood by Computational Fluid Dynamics Technique”, Proc. Conf. 14th Australasian Fluid Mechanics, Adelaide, December, 577-580.
[8] Savage, B.M. and Johnson, M.C. (2001) “Flow over Ogee Spillway: Physical and Numerical Model Case Study”, J. Hydraulic Engineering, ASCE, 127(8), 640-649.
[9] Lee, K.M., Shen, C.K., Leung, D.H.K. and Mitchell, J.K. (1999) “Effects of placement method on geotechnical behaviour of hydraulic fill sands” J. Geotech. and Geoenviron. Engineering, ASCE, 125(10), 832-846.
[10] Sieffert, J.G. and Bay-Gress, Ch. (2000) “Comparison of European bearing capacity calculation methods for shallow foundations”, Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 143, April, 65-74.
[11] DS 415 (1984) Code of Practice for Foundation Engineering. Table 2 Summary of findings for the three case studies

Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션

슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 공정을 더 잘 이해하기 위해 상당한 노력을 기울이고 있습니다. 예를 들어 Chen1과 같이 잘 정의 된 한계 이상으로 코팅 속도를 높이면 코팅 비드가 완전히 파손될 수 있음이 입증되었습니다.

이 논문에서는 유체 표면의 임의, 3 차원 및 시간에 따른 변형을 설명 할 수있는 계산 방법에서 얻은 슬라이드 코팅 흐름의 시뮬레이션 결과를 제시합니다. 상용 프로그램에서 사용할 수있는이 방법은 VOF (Volume-of-Fluid) 기술 3,4로 유체를 추적하는 고정 그리드를 사용합니다. 표면 장력, 벽 접착력, 유체 운동량 및 점성 응력은 분석에서 완전히 설명됩니다.

기본 방법은 딥 코팅 데이터와의 비교를 통해 설명됩니다 5. 그런 다음 접촉 선과 동적 접촉각이 우리의 방법에서 암시 적으로 처리되는 방법에 대한 논의를 제시합니다. VOF 기술을 사용하기 때문에 유체를 포함하는 각 제어 볼륨에 작용하는 힘의 합계 만 필요합니다. 그러면 접촉 선의 위치와 동적 접촉각이 계산 된 힘 균형에서 자동으로 발생합니다. 우리의 기술은 코팅 흐름에서 시작 및 비드 분해 현상의 예와 함께 설명됩니다.

그림에서 볼 수 있듯이 신속한 공정의 경우 당사의 접근 방식은 기존 분석 방법으로는 달성하기 어려운 코팅 공정 설계 및 최적화 시뮬레이션을위한 효율성과 견고성을 제공합니다.

Introduction

모든 코팅 공정에는 일정한 조건을 달성하기 전에 코팅 재료가 큰 변형을 겪는 일종의 시작 기간이 포함됩니다. 시작 프로세스의 우수한 특성화는 낭비를 줄이고 프로세스가 원하는 한계 내에서 작동하는지 확인하는 데 종종 중요합니다.

다양한 섭동에 대한 코팅 흐름의 과도 ​​응답에 대한 유사한 이해가 또한 바람직하여 코팅 비드의 파손 및 코팅의 불균일성을 피할 수 있습니다. 코팅 흐름의 역학은 일반적으로 비선형이고 다양한 경쟁 물리적 프로세스의 결합 된 상호 작용을 포함하기 때문에 이론적 조사를 수행하기 위해 특수한 계산 도구에 의존해야합니다.

이 작업을 위해 선택한 모델링 도구의 장점은 고정 그리드를 통해 임의의 유체 변형을 추적 할 수있는 강력한 수치 기법 인 VOF (Volume-of-Fluid) 방법을 사용한다는 것입니다. 코팅 흐름 분석에 중요한 프로그램의 다른 기능과 함께 이것이 수행되는 방식은 다음 섹션에서 설명합니다.

Overview of Numerical Method

여기에 사용 된 수치 프로그램 FLOW-3D®는 1960 년대 중반 Los Alamos National Laboratory에서 개발 된 Marker-and-Cell (MAC) 방법 6에서 유래되었습니다. 원래 MAC 방법에 대한 많은 개선이 수년에 걸쳐 이루어졌습니다.

본 출원에서 가장 흥미로운 것은 유체 영역을 찾기 위해 연속적인 유체 부피 함수에 의해 개별 마커 입자를 대체하는 것입니다. VOF 방법에서는 관심있는 계산 영역을 포함하는 사각형 제어 볼륨의 고정 그리드가 구성됩니다. 각 제어 볼륨에 대해 숫자 F는 액체가 차지하는 볼륨의 비율을 표시하기 위해 유지됩니다.

F 함수를 사용하는 것 외에도 VOF 방법은 날카로운 액체-가스 인터페이스를 유지하는 방식으로 직사각형 셀의 고정 그리드를 통해 F 함수를 전진시키기 위해 특수 수치 기법을 사용합니다. 마지막으로 VOF 방법은 경계면에서 적절한 법선 및 접선 응력 조건을 충족하기 위해 신중하게 구현 된 자유 표면 경계 조건 세트를 사용합니다. 접근 방식의 또 다른 특징은 복잡한 기하학적 영역을 정의하는 방식입니다.

장애물은 제어 볼륨의 일부를 차단할 수 있도록하여 고정 그리드에 포함됩니다. 각 제어 볼륨에서 흐름을 위해 열린 분수 영역 및 볼륨은 지오메트리 표현으로 저장됩니다. FAVOR 방법 7이라고하는이 방법은 형상을 질량, 운동량 및 에너지에 대한 이산화 된 방정식에 자동으로 통합합니다. VOF 및 FAVOR 방법을 사용하면 코팅 문제에 대한 지오메트리 및 초기 유체 구성을 정의하는 데 필요한 복잡한 그리드 생성 프로세스가 없기 때문에 시간과 노력이 절약됩니다.

다음 섹션에서는 플랫 시트에 코팅을 담그는 응용 프로그램과 함께 기본적인 수치 방법의 유용성을 설명합니다.

Dip Coating – A Validation Test

Lee와 Tallmadge는 액체 수조에서 수직으로 인출 된 평판에 딥 코팅하는 과정에 대해 광범위한 조사를 수행했습니다.

이 프로세스는 다양한 상업용 응용 프로그램에서 널리 사용됩니다. 그들의 연구는 2 차원 흐름 (즉, 가장자리 효과 없음)에 초점을 맞추고 실험 데이터에 맞는 경험적 매개 변수를 포함하는 분석 표면 프로파일로 구성되었습니다. 0.085에서 23.9 사이의 모세관 수에 대한 실험 데이터가 수집되었으며, 레이놀즈 수는 0.044에서 12.7 사이입니다. 필름 두께에 대한 실험 데이터는 약 10 % 이하로 추정되는 오류를 가졌습니다.

이 실험에 대한 계산 모델은 코팅 할 시트의 수직 (접선) 속도와 동일한 수직 (접선) 속도가 주어진 직사각형 욕조로 구성되어 매우 간단합니다. 처음에 코팅액은 수평면을 가지며 시트는 충동 적으로 시작됩니다 (그림 1c 참조). 다양한 모세관 수 사례가 시뮬레이션되었으며 모든 경우에 예측 된 필름 두께는 실험 오차 범위 내에있었습니다. 예를 들어 모세관 번호 1.17에 해당하는 경우를 고려하십시오. 시트를 3.31cm / s에서 수조 (밀도 0.885gm / cc, 표면 장력 32.7dynes / cm 및 점도 1159.4cp를 갖는 점성 윤활유)에서 꺼냈다. 우리는 2.5cm의 욕조 너비와 2.0cm의 깊이 (35 x 25 그리드 셀)를 사용했습니다.

필름 흐름을 캡처하기 위해 욕조 위의 2.0cm 영역이 모델에 포함되었습니다 (수직으로 추가 25 개 셀 필요). 수조의 오른쪽은 유체 높이가 일정하게 유지되고 압력이 수압이고 흐름이 계산 영역으로 들어갈 수있는 열린 경계 였지만 휴식에서 시작해야했습니다. 이른바 “정체”경계 조건은 움직이는 시트의 오른쪽으로 충분히 멀리 떨어져있는 경우 수평 무한 욕조에 대한 좋은 근사치입니다. 모델링이 필요한 수조의 폭을 설정하기 위해 여러 가지 계산이 수행되었으며, 필름 두께가이 폭에 크게 민감하지 않다는 것이 밝혀졌으며 그 결과는 실험에서도 발견되었습니다.

그림 1a는 초기 조건, 그림 1b는 계산 된 과도 상태의 스냅 샷, 그림 1c는 최종 정상 상태 결과를 보여줍니다. 처음에 시트에 의해 그려지는 액체 팁의 모양은 정적 접촉각 (즉, 시트와 액체 사이의 접착력)에 따라 달라지며 임의로 10 도로 취해졌습니다. 액체가 끌어 올려짐에 따라, 배출되는 액체 필름을 대체하기 위해 시트쪽으로 흐름이 시작되어야한다는 신호로서 함몰 파가 나머지 수조에 대한 신호로 오른쪽으로 이동합니다. 약 5.0 초만에 정상 상태에 도달합니다. 필름 두께는 0.145cm로 계산되었으며, 이는 0.142cm의 측정 값과 매우 일치합니다.

Rivulet Formation in Slide Coating
Rivulet Formation in Slide Coating

자세한 내용은 본문을 참고하시기 바랍니다.

The realm of operations of FLOW-3D

ADDITIVE MANUFACTURING SIMULATIONS

Capabilities of FLOW-3D

FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.

또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다.
적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.

유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.

FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다.
구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.

The realm of operations of FLOW-3D
The realm of operations of FLOW-3D

FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다.
FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.

예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다.
FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.

FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다.
또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.

Sequence of a multi-layer L-PBF simulation setup in FLOW-3D

Ease of Use

FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다.
사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다.
사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.

Available Literature

실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.

Laser Welding

  1. L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014.
    A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
  2. Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E.
    Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017.
    General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
  3. Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015.
    Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.

Additive Manufacturing

  1. Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018
    This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
  2. Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015
    A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
  3. Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016
    A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.

 

 

FLOW-3D CAST Bibliography

FLOW-3D CAST bibliography

아래는 FSI의 금속 주조 참고 문헌에 수록된 기술 논문 모음입니다. 이 모든 논문에는 FLOW-3D CAST 해석 결과가 수록되어 있습니다. FLOW-3D CAST를 사용하여 금속 주조 산업의 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our Metal Casting Bibliography. All of these papers feature FLOW-3D CAST results. Learn more about how FLOW-3D CAST can be used to successfully simulate applications for the Metal Casting Industry.

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019. 

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019. 

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi.org/10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi.org/10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi.org/10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi.org/10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi.org/10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi.org/10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi.org/10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi.org/10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi.org/10.1016/j.jmatprotec.2018.11.016

92-18   Fast, Flexible… More Versatile, Foundry Management Technology, March, 2018. 

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi.org/10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi.org/10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi.org/10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi.org/10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. doi.org/10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi.org/10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi.org/10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi.org/10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, 2015.

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, doi.org/10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), doi.org/10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, doi.org/10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi.org/10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi.org/10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, doi.org/10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi.org/10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, doi.org/10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, doi.org/10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, doi.org/10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, doi.org/10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order FormEurope Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. Jolly, Casting Simulation – How Well Do Reality and Virtual Casting Match – A State of the Art Review, Intl. J. Cast Metals Research, 2002, 14, pp. 303-313

10-03 Gebelin., J-C and Jolly, M.R., Modeling of the Investment Casting Process, Journal of  Materials Processing Tech., Vol. 135/2-3, pp. 291 – 300

9-03 Cox, M, Harding, R.A. and Campbell, J., Optimised Running System Design for Bottom Filled Aluminium Alloy 2L99 Investment Castings, J. Mat. Sci. Tech., May 2003, Vol. 19, pp. 613-625

8-03 Von Alexander Schrey and Regina Reek, Numerische Simulation der Kernherstellung, (Numerical Simulation of Core Blowing), Giesserei, June 2003, pp. 64-68 (in German)

7-03 J. Zuidema Jr., L Katgerman, Cyclone separation of particles in aluminum DC Casting, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 607-614

6-03 Jean-Christophe Gebelin and Mark Jolly, Numerical Modeling of Metal Flow Through Filters, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 431-438

5-03 N.W. Lai, W.D. Griffiths and J. Campbell, Modelling of the Potential for Oxide Film Entrainment in Light Metal Alloy Castings, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 415-422

21-02 Boris Lukezic, Case History: Process Modeling Solves Die Design Problems, Modern Casting, February 2003, P 59

20-02 C.W. Hirt and M.R. Barkhudarov, Predicting Defects in Lost Foam Castings, Modern Casting, December 2002, pp 31-33

19-02 Mark Jolly, Mike Cox, Ric Harding, Bill Griffiths and John Campbell, Quiescent Filling Applied to Investment Castings, Modern Casting, December 2002 pp. 36-38

18-02 Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Foundry Management and Technology, October 2002, pp 13-15

17-02 G Messmer, Simulation of a Thixoforging Process of Aluminum Alloys with FLOW-3D, Institute for Metal Forming Technology, University of Stuttgart

16-02 Barkhudarov, Michael, Computer Simulation of Lost Foam Process, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 319-324

15-02 Barkhudarov, Michael, Computer Simulation of Inclusion Tracking, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 341-346

14-02 Barkhudarov, Michael, Advanced Simulation of the Flow and Heat Transfer of an Alternator Housing, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 219-228

8-02 Sayavur I. Bakhtiyarov, and Ruel A. Overfelt, Experimental and Numerical Study of Bonded Sand-Air Two-Phase Flow in PUA Process, Auburn University, 2002 American Foundry Society, AFS Transactions 02-091, Kansas City, MO

7-02 A Habibollah Zadeh, and J Campbell, Metal Flow Through a Filter System, University of Birmingham, 2002 American Foundry Society, AFS Transactions 02-020, Kansas City, MO

6-02 Phil Ward, and Helen Atkinson, Final Report for EPSRC Project: Modeling of Thixotropic Flow of Metal Alloys into a Die, GR/M17334/01, March 2002, University of Sheffield

5-02 S. I. Bakhtiyarov and R. A. Overfelt, Numerical and Experimental Study of Aluminum Casting in Vacuum-sealed Step Molding, Auburn University, 2002 American Foundry Society, AFS Transactions 02-050, Kansas City, MO

4-02 J. C. Gebelin and M. R. Jolly, Modelling Filters in Light Alloy Casting Processes, University of Birmingham, 2002 American Foundry Society AFS Transactions 02-079, Kansas City, MO

3-02 Mark Jolly, Mike Cox, Jean-Christophe Gebelin, Sam Jones, and Alex Cendrowicz, Fundamentals of Investment Casting (FOCAST), Modelling the Investment Casting Process, Some preliminary results from the UK Research Programme, IRC in Materials, University of Birmingham, UK, AFS2001

49-01   Hua Bai and Brian G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B, Vol. 32, No. 6, pp. 1143-1159, 2001. doi.org/10.1007/s11663-001-0102-y

45-01 Jan Zuidema; Laurens Katgerman; Ivo J. Opstelten;Jan M. Rabenberg, Secondary Cooling in DC Casting: Modelling and Experimental Results, TMS 2001, New Orleans, Louisianna, February 11-15, 2001

43-01 James Andrew Yurko, Fluid Flow Behavior of Semi-Solid Aluminum at High Shear Rates,Ph.D. thesis; Massachusetts Institute of Technology, June 2001. Abstract only; full thesis available at http://dspace.mit.edu/handle/1721.1/8451 (for a fee).

33-01 Juang, S.H., CAE Application on Design of Die Casting Dies, 2001 Conference on CAE Technology and Application, Hsin-Chu, Taiwan, November 2001, (article in Chinese with English-language abstract)

32-01 Juang, S.H. and C. M. Wang, Effect of Feeding Geometry on Flow Characteristics of Magnesium Die Casting by Numerical Analysis, The Preceedings of 6th FADMA Conference, Taipei, Taiwan, July 2001, Chinese language with English abstract

26-01 C. W. Hirt., Predicting Defects in Lost Foam Castings, December 13, 2001

21-01 P. Scarber Jr., Using Liquid Free Surface Areas as a Predictor of Reoxidation Tendency in Metal Alloy Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

20-01 P. Scarber Jr., J. Griffin, and C. E. Bates, The Effect of Gating and Pouring Practice on Reoxidation of Steel Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

19-01 L. Wang, T. Nguyen, M. Murray, Simulation of Flow Pattern and Temperature Profile in the Shot Sleeve of a High Pressure Die Casting Process, CSIRO Manufacturing Science and Technology, Melbourne, Victoria, Australia, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, To1-014

18-01 Rajiv Shivpuri, Venkatesh Sankararaman, Kaustubh Kulkarni, An Approach at Optimizing the Ingate Design for Reducing Filling and Shrinkage Defects, The Ohio State University, Columbus, OH, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, TO1-052

5-01 Michael Barkhudarov, Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Diecasting World, March 2001, pp. 5-6

2-01 J. Grindling, Customized CFD Codes to Simulate Casting of Thermosets in Full 3D, Electrical Manufacturing and Coil Winding 2000 Conference, October 31-November 2, 20

20-00 Richard Schuhmann, John Carrig, Thang Nguyen, Arne Dahle, Comparison of Water Analogue Modelling and Numerical Simulation Using Real-Time X-Ray Flow Data in Gravity Die Casting, Australian Die Casting Association Die Casting 2000 Conference, September 3-6, 2000, Melbourne, Victoria, Australia

15-00 M. Sirvio, Vainola, J. Vartianinen, M. Vuorinen, J. Orkas, and S. Devenyi, Fluid Flow Analysis for Designing Gating of Aluminum Castings, Proc. NADCA Conf., Rosemont, IL, Nov 6-8, 1999

14-00 X. Yang, M. Jolly, and J. Campbell, Reduction of Surface Turbulence during Filling of Sand Castings Using a Vortex-flow Runner, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

13-00 H. S. H. Lo and J. Campbell, The Modeling of Ceramic Foam Filters, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

12-00 M. R. Jolly, H. S. H. Lo, M. Turan and J. Campbell, Use of Simulation Tools in the Practical Development of a Method for Manufacture of Cast Iron Camshafts,” Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August, 2000

14-99 J Koke, and M Modigell, Time-Dependent Rheological Properties of Semi-solid Metal Alloys, Institute of Chemical Engineering, Aachen University of Technology, Mechanics of Time-Dependent Materials 3: 15-30, 1999

12-99 Grun, Gerd-Ulrich, Schneider, Wolfgang, Ray, Steven, Marthinusen, Jan-Olaf, Recent Improvements in Ceramic Foam Filter Design by Coupled Heat and Fluid Flow Modeling, Proc TMS Annual Meeting, 1999, pp. 1041-1047

10-99 Bongcheol Park and Jerald R. Brevick, Computer Flow Modeling of Cavity Pre-fill Effects in High Pressure Die Casting, NADCA Proceedings, Cleveland T99-011, November, 1999

8-99 Brad Guthrie, Simulation Reduces Aluminum Die Casting Cost by Reducing Volume, Die Casting Engineer Magazine, September/October 1999, pp. 78-81

7-99 Fred L. Church, Virtual Reality Predicts Cast Metal Flow, Modern Metals, September, 1999, pp. 67F-J

19-98 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Numerical Modeling of Fluid Flow Phenomena in the Launder-integrated Tool Within Casting Unit Development, Proc TMS Annual Meeting, 1998, pp. 1175-1182

18-98 X. Yang & J. Campbell, Liquid Metal Flow in a Pouring Basin, Int. J. Cast Metals Res, 1998, 10, pp. 239-253

15-98 R. Van Tol, Mould Filling of Horizontal Thin-Wall Castings, Delft University Press, The Netherlands, 1998

14-98 J. Daughtery and K. A. Williams, Thermal Modeling of Mold Material Candidates for Copper Pressure Die Casting of the Induction Motor Rotor Structure, Proc. Int’l Workshop on Permanent Mold Casting of Copper-Based Alloys, Ottawa, Ontario, Canada, Oct. 15-16, 1998

10-98 C. W. Hirt, and M.R. Barkhudarov, Lost Foam Casting Simulation with Defect Prediction, Flow Science Inc, presented at Modeling of Casting, Welding and Advanced Solidification Processes VIII Conference, June 7-12, 1998, Catamaran Hotel, San Diego, California

9-98 M. R. Barkhudarov and C. W. Hirt, Tracking Defects, Flow Science Inc, presented at the 1st International Aluminum Casting Technology Symposium, 12-14 October 1998, Rosemont, IL

5-98 J. Righi, Computer Simulation Helps Eliminate Porosity, Die Casting Management Magazine, pp. 36-38, January 1998

3-98 P. Kapranos, M. R. Barkhudarov, D. H. Kirkwood, Modeling of Structural Breakdown during Rapid Compression of Semi-Solid Alloy Slugs, Dept. Engineering Materials, The University of Sheffield, Sheffield S1 3JD, U.K. and Flow Science Inc, USA, Presented at the 5th International Conference Semi-Solid Processing of Alloys and Composites, Colorado School of Mines, Golden, CO, 23-25 June 1998

1-98 U. Jerichow, T. Altan, and P. R. Sahm, Semi Solid Metal Forming of Aluminum Alloys-The Effect of Process Variables Upon Material Flow, Cavity Fill and Mechanical Properties, The Ohio State University, Columbus, OH, published in Die Casting Engineer, p. 26, Jan/Feb 1998

8-97 Michael Barkhudarov, High Pressure Die Casting Simulation Using FLOW-3D, Die Casting Engineer, 1997

15-97 M. R. Barkhudarov, Advanced Simulation of the Flow and Heat Transfer Process in Simultaneous Engineering, Flow Science report, presented at the Casting 1997 – International ADI and Simulation Conference, Helsinki, Finland, May 28-30, 1997

14-97 M. Ranganathan and R. Shivpuri, Reducing Scrap and Increasing Die Life in Low Pressure Die Casting through Flow Simulation and Accelerated Testing, Dept. Welding and Systems Engineering, Ohio State University, Columbus, OH, presented at 19th International Die Casting Congress & Exposition, November 3-6, 1997

13-97 J. Koke, Modellierung und Simulation der Fließeigenschaften teilerstarrter Metallegierungen, Livt Information, Institut für Verfahrenstechnik, RWTH Aachen, October 1997

10-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics – Part 2 Fiber Orientation, Body-in-White Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 6, June 1997

9-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics. Part 1 – Injection Pressures and Flow, Manufacturing Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 3, March 1997

8-97 H. Grazzini and D. Nesa, Thermophysical Properties, Casting Simulation and Experiments for a Stainless Steel, AT Systemes (Renault) report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

7-97 R. Van Tol, L. Katgerman and H. E. A. Van den Akker, Horizontal Mould Filling of a Thin Wall Aluminum Casting, Laboratory of Materials report, Delft University, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

6-97 M. R. Barkhudarov, Is Fluid Flow Important for Predicting Solidification, Flow Science report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

22-96 Grun, Gerd-Ulrich & Schneider, Wolfgang, 3-D Modeling of the Start-up Phase of DC Casting of Sheet Ingots, Proc TMS Annual Meeting, 1996, pp. 971-981

9-96 M. R. Barkhudarov and C. W. Hirt, Thixotropic Flow Effects under Conditions of Strong Shear, Flow Science report FSI96-00-2, to be presented at the “Materials Week ’96” TMS Conference, Cincinnati, OH, 7-10 October 1996

4-96 C. W. Hirt, A Computational Model for the Lost Foam Process, Flow Science final report, February 1996 (FSI-96-57-R2)

3-96 M. R. Barkhudarov, C. L. Bronisz, C. W. Hirt, Three-Dimensional Thixotropic Flow Model, Flow Science report, FSI-96-00-1, published in the proceedings of (pp. 110- 114) and presented at the 4th International Conference on Semi-Solid Processing of Alloys and Composites, The University of Sheffield, 19-21 June 1996

1-96 M. R. Barkhudarov, J. Beech, K. Chang, and S. B. Chin, Numerical Simulation of Metal/Mould Interfacial Heat Transfer in Casting, Dept. Mech. & Process Engineering, Dept. Engineering Materials, University of Sheffield and Flow Science Inc, 9th Int. Symposium on Transport Phenomena in Thermal-Fluid Engineering, June 25-28, 1996, Singapore

11-95 Barkhudarov, M. R., Hirt, C.W., Casting Simulation Mold Filling and Solidification-Benchmark Calculations Using FLOW-3D, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pp 935-946

10-95 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Optimal Design of a Distribution Pan for Level Pour Casting, Proc TMS Annual Meeting, 1995, pp. 1061-1070

9-95 E. Masuda, I. Itoh, K. Haraguchi, Application of Mold Filling Simulation to Die Casting Processes, Honda Engineering Co., Ltd., Tochigi, Japan, presented at the Modelling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals & Materials Society, 1995

6-95 K. Venkatesan, Experimental and Numerical Investigation of the Effect of Process Parameters on the Erosive Wear of Die Casting Dies, presented for Ph.D. degree at Ohio State University, 1995

5-95 J. Righi, A. F. LaCamera, S. A. Jones, W. G. Truckner, T. N. Rouns, Integration of Experience and Simulation Based Understanding in the Die Design Process, Alcoa Technical Center, Alcoa Center, PA 15069, presented by the North American Die Casting Association, 1995

2-95 K. Venkatesan and R. Shivpuri, Numerical Simulation and Comparison with Water Modeling Studies of the Inertia Dominated Cavity Filling in Die Casting, NUMIFORM, 1995

1-95 K. Venkatesan and R. Shivpuri, Numerical Investigation of the Effect of Gate Velocity and Gate Size on the Quality of Die Casting Parts, NAMRC, 1995.

15-94 D. Liang, Y. Bayraktar, S. A. Moir, M. Barkhudarov, and H. Jones, Primary Silicon Segregation During Isothermal Holding of Hypereutectic AI-18.3%Si Alloy in the Freezing Range, Dept. of Engr. Materials, U. of Sheffield, Metals and Materials, February 1994

13-94 Deniece Korzekwa and Paul Dunn, A Combined Experimental and Modeling Approach to Uranium Casting, Materials Division, Los Alamos National Laboratory, presented at the Symposium on Liquid Metal Processing and Casting, El Dorado Hotel, Santa Fe, New Mexico, 1994

12-94 R. van Tol, H. E. A. van den Akker and L. Katgerman, CFD Study of the Mould Filling of a Horizontal Thin Wall Aluminum Casting, Delft University of Technology, Delft, The Netherlands, HTD-Vol. 284/AMD-Vol. 182, Transport Phenomena in Solidification, ASME 1994

11-94 M. R. Barkhudarov and K. A. Williams, Simulation of ‘Surface Turbulence’ Fluid Phenomena During the Mold Filling Phase of Gravity Castings, Flow Science Technical Note #41, November 1994 (FSI-94-TN41)

10-94 M. R. Barkhudarov and S. B. Chin, Stability of a Numerical Algorithm for Gas Bubble Modelling, University of Sheffield, Sheffield, U.K., International Journal for Numerical Methods in Fluids, Vol. 19, 415-437 (1994)

16-93 K. Venkatesan and R. Shivpuri, Numerical Simulation of Die Cavity Filling in Die Castings and an Evaluation of Process Parameters on Die Wear, Dept. of Industrial Systems Engineering, Presented by: N.A. Die Casting Association, Cleveland, Ohio, October 18-21, 1993

15-93 K. Venkatesen and R. Shivpuri, Numerical Modeling of Filling and Solidification for Improved Quality of Die Casting: A Literature Survey (Chapters II and III), Engineering Research Center for Net Shape Manufacturing, Report C-93-07, August 1993, Ohio State University

1-93 P-E Persson, Computer Simulation of the Solidification of a Hub Carrier for the Volvo 800 Series, AB Volvo Technological Development, Metals Laboratory, Technical Report No. LM 500014E, Jan. 1993

13-92 D. R. Korzekwa, M. A. K. Lewis, Experimentation and Simulation of Gravity Fed Lead Castings, in proceedings of a TMS Symposium on Concurrent Engineering Approach to Materials Processing, S. N. Dwivedi, A. J. Paul and F. R. Dax, eds., TMS-AIME Warrendale, p. 155 (1992)

12-92 M. A. K. Lewis, Near-Net-Shaiconpe Casting Simulation and Experimentation, MST 1992 Review, Los Alamos National Laboratory

2-92 M. R. Barkhudarov, H. You, J. Beech, S. B. Chin, D. H. Kirkwood, Validation and Development of FLOW-3D for Casting, School of Materials, University of Sheffield, Sheffield, UK, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

1-92 D. R. Korzekwa and L. A. Jacobson, Los Alamos National Laboratory and C.W. Hirt, Flow Science Inc, Modeling Planar Flow Casting with FLOW-3D, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

12-91 R. Shivpuri, M. Kuthirakulathu, and M. Mittal, Nonisothermal 3-D Finite Difference Simulation of Cavity Filling during the Die Casting Process, Dept. Industrial and Systems Engineering, Ohio State University, presented at the 1991 Winter Annual ASME Meeting, Atlanta, GA, Dec. 1-6, 1991

3-91 C. W. Hirt, FLOW-3D Study of the Importance of Fluid Momentum in Mold Filling, presented at the 18th Annual Automotive Materials Symposium, Michigan State University, Lansing, MI, May 1-2, 1991 (FSI-91-00-2)

11-90 N. Saluja, O.J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Melts, accepted in J. Appl. Physics, 1990

10-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Molds in Continuous Castings, presented at the 6th Iron and Steel Congress of the Iron and Steel Institute of Japan, Nagoya, Japan, October 1990

9-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow in Phenomena in the Electromagnetic Stirring of Continuous Casting Systems, Part I. The Behavior of a Cylindrically Shaped, Laboratory Scale Installation, accepted for publication in Steel Research, 1990

8-89 C. W. Hirt, Gravity-Fed Casting, Flow Science Technical Note #20, July 1989 (FSI-89-TN20)

6-89 E. W. M. Hansen and F. Syvertsen, Numerical Simulation of Flow Behaviour in Moldfilling for Casting Analysis, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. STS20 A89001, June 1989

1-88 C. W. Hirt and R. P. Harper, Modeling Tests for Casting Processes, Flow Science report, Jan. 1988 (FSI-88-38-01)

2-87 C. W. Hirt, Addition of a Solidification/Melting Model to FLOW-3D, Flow Science report, April 1987 (FSI-87-33-1)

Sediment Transport Model

Sediment Transport Model

Sediment Transport Model

FLOW-3D의 침전물 이송 모델을 사용하여 세굴 및 침전물을 평가할 수 있으며, 여기서 3차원 유량 구성 요소가 세굴 프로세스를 주도하고 있습니다. Flow-3D의 유체역학 모델은 유체물리학을 설명하는 정전기적이지 않은 레이놀즈-평균화된 Navier-Stokes 방정식을 완벽하게 해결합니다. 유체역학적 솔버는 침전물 운반 모듈과 완전히 결합되어 있어 침전물 운반 및 비접착 토양의 부유식 침식, 인포테인먼트 및 침식을 시뮬레이션합니다(Wei et al., 2014). 베드로드, 인포테인먼트 및 정착 프로세스에 사용되는 모든 경험적 관계는 완전히 사용자 정의 가능하며, 최대 10개의 침전물 종(곡물 크기, 질량 밀도, 임계 전단 응력 등 서로 다른 특성을 가진)을 정의할 수 있습니다. FLOW-3D는 짧은 경과 시간 척도에 대한 국부적 스쿠어를 시뮬레이션하는 데 이상적입니다.

FLOW-3D‘s Sediment Transport model can be used to evaluate scour and deposition, where three-dimensional flow components are driving the scouring process. FLOW-3D’s hydrodynamic model solves the full unsteady non-hydrostatic Reynolds-averaged Navier-Stokes equations that describe the flow physics. The hydrodynamic solver is fully coupled with a sediment transport module that simulates bedload and suspended sediment transport, entrainment and erosion for non-cohesive soils (Wei et al., 2014). All empirical relationships used in bedload, entrainment and settling processes are fully customizable, and up to 10 different sediment species (with different properties such as grain size, mass density and critical shear stress) can be defined. FLOW-3D is ideal for simulating local scour over short episodic time scales.

Modeling Capabilities
– Unsteady 3D mobile bed modeling
– Bedload and suspended sediment transport
– Non-cohesive sediment
– 10 individual grain size fractions
– Suspended sediment settling and entrainment
– Critical angle of repose
Applications
– River and coastal morphodynamics
– Bridge pier and abutment scour
– Local scour at hydraulic structures
– Sedimentation basins
– Reservoir flushing

Sediment Transport Model

Sentral Transport 모델은 8.0 버전(Brethour, 2009년)에서 처음 도입되었으며, 11.1 버전(Wei et al., 2014년), 가장 최근에는 12.0 버전(Flow Science, 2019년)에서 광범위한 개정을 거쳤습니다. 숫자 모델에서 시뮬레이션된 물리적 프로세스의 개략도가 아래에 나와 있습니다.

The Sediment Transport model was first introduced in version 8.0 (Brethour, 2009), and has gone through extensive revisions in version 11.1 (Wei et al., 2014), and most recently in version 12.0 (Flow Science, 2019). A schematic of the physical processes simulated in the numerical model is illustrated below.

The different processes modeled by the Sediment Transport Model.

수치 모델에서 침전물은 포장된 Bed로서 일시 중단된 상태로 존재할 수 있습니다. 포장된 Bed는 PRIPT™ 기법을 사용하여 복잡한 솔리드 경계(Hirt 및 Sicilian, 1985)에 표현된 지울 수 없는 솔리드 객체입니다. 이것은 유체역학 용해기의 고체 물체를 나타내는 데 사용되는 방법과 동일합니다. 포장된 Bed의 형태학적 변화는 침전물 질량의 보존에 의해 좌우됩니다.

In the numerical model, sediment can exist as packed bed and in a suspended state. A packed bed is an erodible solid object that is represented using the FAVOR™ technique for complex solid boundaries (Hirt and Sicilian, 1985). This is the same method used to represent solid objects in the hydrodynamic solver. The morphological change in the packed bed is governed by the conservation of sediment mass.

형태학적 변경은 모형에 숫자로 표시되는 여러 가지 물리적 프로세스에 의해 제어됩니다. 이러한 프로세스에는 베드로드 운송, 인포테인먼트 및 증착이 포함됩니다. 베드로드 이송은 침전물이 서스펜션에 전달되지 않고 채널을 따라 횡방향으로 이동하는 물리적 과정입니다. 인포테인먼트란 난류 에디가 패킹 베드 상단의 곡물을 제거하고 일시 중단된 상태로 전환하는 과정입니다. 포장이란 곡물이 현수막에서 안착되어 포장된 침대에 퇴적하는 과정입니다. 수치 모델에서 이것은 일시 중단된 상태에서 포장된 베드 상태로의 전환입니다.

The morphological changes are governed by several different physical processes that are represented numerically in the model. These processes include bedload transport, entrainment and deposition. Bedload transport is the physical process of sediment moving laterally along the channel without being carried into suspension. Entrainment is the process by which turbulent eddies remove the grains from the top of the packed bed and transition to the suspended state. Packing is the process of grains settling out of suspension and depositing onto the packed bed. In the numerical model, this is the transition from the suspended to the packed bed state.

인포테인먼트 및 패킹의 상대적 비율은 포장된 베드와 부유 상태 사이의 침전물 질량 교환을 제어합니다. 이 모델은 Meyer-Peter Müler(1948), Nielsen(1992) 또는 Van Rijn(1984)의 방정식을 사용하여 베드 인터페이스가 포함된 각 메시 셀에서 베드로드 전송을 계산합니다. 메쉬 셀에서 이웃의 각 메쉬 셀로 이동하는 곡물의 양을 결정하기 위해 하위 메쉬 방법이 사용됩니다. 인포테인먼트에서 곡물의 리프팅 속도는 Winterwerp 등(1992)의 방정식을 사용하여 계산됩니다. 안착 속도는 Soulsby(1997년)를 사용하여 계산됩니다. 베드 인터페이스가 포함된 메시 셀에서 인터페이스의 위치, 방향 및 면적을 계산하여 베드 전단 응력, 무차원 전단 응력, 베드로드 전송 속도 및 인포테인먼트 속도를 결정합니다. 3D 난류 흐름의 베드 전단 응력은 표준 벽 함수를 사용하여 중간 곡물 크기에 비례하는 베드 표면 거칠기를 고려하여 평가됩니다.

The relative rates of entrainment and packing control the exchange of sediment mass between the packed bed and suspended states. The model calculates bedload transport in each mesh cell containing the bed interface using the equation of Meyer-Peter Müller (1948), Nielsen (1992) or Van Rijn (1984). A sub-mesh method is employed to determine the amount of grains moving from the mesh cell into each mesh cell in its neighbor. The lifting velocity of grains in entrainment is calculated using the equation of Winterwerp et al. (1992). The settling velocity is calculated using Soulsby (1997). In the mesh cells containing the bed interface, location, orientation and area of the interface are calculated to determine the bed shear stress, dimensionless shear stress, bedload transport rates and entrainment rates. Bed shear stress in 3D turbulent flows is evaluated using the standard wall function with consideration of bed surface roughness that is proportional to the median grain size.

부유된 침전물은 유체의 스칼라 질량 농도로 표시됩니다. 농도는 주어진 셀에서 균일한 것으로 가정되며 유체 셀 밀도 및 점도와 결합됩니다. 각 종에 대해, 부유 침전물 농도는 수송 방정식을 풀어서 계산됩니다.

The suspended sediment is represented as a scalar mass concentration in the fluid. The concentration is assumed to be uniform in a given cell and is coupled with the fluid cell density and viscosity. For each species, the suspended sediment concentration is calculated by solving a transport equation.

Validations

다음 5가지 검증 사례는 실험 데이터와 FLOW-3D의 침전물 이송 모델의 시뮬레이션 결과를 비교합니다.

마오(1986년)
Mao는 수중 수평 파이프라인 아래 침대의 무서운 프로파일을 얻기 위해 실험 작업을 수행했습니다. 아래 그림은 FLOW-3D를 사용하여 얻은 결과와 실험 결과를 비교합니다.

그림 A는 파이프라인 아래의 최대 scour깊이를 시간 경과에 따라 비교하는 반면, 그림 B ~ F는 스터디의 scour프로필(빨간색 점으로 표시됨)과 FLOW-3D 프로필을 오버레이합니다.
Chatterjee et al. (1994)

수평 제트 침수로 인해 국부적인 스쿠어 프로파일을 얻기 위한 실험 작업이 수행되었습니다. 아래 그림은 scour구멍 깊이와 둔부 높이에 대한 실험 대 FLOW-3D의 숫자 결과를 시간의 함수로 비교합니다. 이 애니메이션은 scour구멍과 둔부 높이가 최대 1시간 내에 안정된 상태에 도달한다는 것을 보여줍니다.

Gladstone et al. (1998)

In these experiments the propagation and deposition patterns of particle-laden flows were studied. The plot below compares experimental versus FLOW-3D simulation results from three different setups, labeled case A (100% 0.025mm size particles), case D (50% 0.069mm and 50% 0.025mm size particles), and case G (100% 0.069mm size particles).

Faruque et al. (2006)

이 논문에서, 저자들은 실험을 통해 3차원 벽면 제트기를 물에 잠기게 함으로써 국부적인 악취를 연구했습니다. 아래 표는 세 가지 서로 다른 테일워터 비율에 대한 scour 구멍의 3D 형태학적 변화에 대한 실험과 FLOW-3D 수치 결과를 비교합니다.

Equilibrium bed elevation changes predicted by the numerical model for a cylindrical pier. (A) Isometric view of scour and deposition adjacent to the pier. (B) Comparison between numerical results (top) and physical model measurements (bottom).
Equilibrium bed elevation changes predicted by the numerical model for the diamond pier. (A) Isometric view of scour and deposition adjacent to the pier. (B) Comparison between numerical results (top) and physical model measurements (bottom).

In this paper, the authors studied local scour by submerged three-dimensional wall jets via experiments. The table below compares the experimental versus FLOW-3D numerical results for 3D morphological changes in the scour hole for three different tailwater ratios.

References

Brethour, J.M., Hirt, C.W., 2009, Drift Model for Two-Component Flows,  FSI-14-TN-83, Flow Science, Inc.

Chatterjee, S.S., Ghosh, S.N., and Chatterjee M., 1994, Local scour due to submerged horizontal jet, Journal of Hydraulic Engineering, 120(8), pp. 973-992.

Faruque, M.A.A., Sarathi, P., and Balachandar R., 2006, Clear Water Local Scour by Submerged Three-Dimensional Wall Jets : Effect of Tailwater Depth, Journal of Hydraulic Engineering, 132(6), pp. 575-580.

Flow Science, 2019, FLOW-3D Version 12.0 User Manual, Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com

Fox, B. and Feurich, R., 2019, CFD Analysis of Local Scour at Bridge PiersFederal Interagency Sedimentation and Hydrologic Modeling Conference (SEDHYD), Reno, NV.

Gladstone, C., Phillips, J.C., and Sparks R.S.J., 1998, Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition, Sedimentology 45, pp. 833-843.

Hirt, C.W. and Sicilian, J.M., 1985, A porosity technique for the definition of obstacles in rectangular cell meshes, 4th International Conference on Numerical Ship Hydrodynamics, Washington, D.C.

Khosronejad, A., Kang, S., & Sotiropoulos, F., 2012. Experimental and computational investigation of local scour around bridge piers, Advances in Water Resources, 37, pp. 73-85.

Mao, Y., 1986. The interaction between a pipeline and an erodible bed, PhD thesis, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, Lyngby, Denmark.

Meyer-Peter, E. and Müller, R., 1948, Formulas for bed-load transport, Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research. pp. 39–64.

Nielsen, P., 1992, Coastal bottom boundary layers and sediment transport (Vol. 4). World scientific.

Soulsby, R., 1997, Dynamics of Marine Sands, Thomas Telford Publications, London.

Van Rijn, L. C., 1984, Sediment Transport, Part I: Bed load transport, Journal of Hydraulic Engineering 110(10), pp. 1431-1456.

Wei, G., Brethour, J.M., Grüenzner M., and Burnham, J., 2014, The Sediment Scour Model in FLOW-3D, Technical Note FSI-14-TN-99, Flow Science, Inc.

Winterwerp, J.C., Bakker, W.T., Mastbergen, D.R. and Van Rossum, H., 1992, Hyperconcentrated sand-water mixture flows over erodible bed, Journal of Hydraulic Engineering, 118(11), pp. 1508–1525.

A Low Pressure Die Casting Validation at Versevo/Versevo에서의 저압 다이캐스팅 검증

작성자 : ross.white@flow3d.com

저압 다이캐스팅(Low Pressure Die Casting)의 정의

  • 저압(0 – 15psi)의 공기를 사용하여 금속을 튜브에 주조물로 밀어 넣는 공정
  • 높은 금속 강도(충진 제어를 통한 야금 품질 제어)
  • 높은 수율(Runner시스템이나 Riser가 없는 마킹이 적음)
  • 복잡한 모양 제조 가능

위 사진은 LPDC 부품을 만드는데 사용된 Kurtz 기계입니다.
다이는 탱크에 주입관이 부착된 두 플레이트 사이에 위치합니다.

For this casting there are three stages of pressure:

ㆍ 1st Stage

– Pre-fill pressure which is the first height shown

ㆍ 2nd Stage

– Pressure required to fill the casting

ㆍ 3rd Stage

– Pressurization (intensification) above fill pressure to prevent shrinkage

수치 해석

  • LPDC(저압 다이캐스팅) 시뮬레이션 시 고려해야 할 파라미터는 응고 항력계수, 열전달 계수 및 정확한 충진 압력입니다.
  • 충진 튜브가 없는 시뮬레이션의 경우 해석시간이 절약되고 정확도도 크게 떨어지지 않습니다.

LPDC(저압 다이캐스팅) 시뮬레이션 해석 조건

  • Metal : Al356 (초기 온도 : 섭씨723도)
  • Filler tube : Ceramic(초기 온도 : 섭씨 700도)
  • Die : H-13(초기 온도 : 섭씨 400도)

해석 결과

Hydrostatic head pressure 을 사용하여 채우는데 필요한 압력을 결정함으로써, 제품 개발에 성공하여 “시뮬레이션의 뛰어난 유효성 확인!”

Validation of a 3D Dam Breaking Problem

3D 댐 붕괴 문제 검증

이 기사는영국에서 Peter Arnold, Minerva Dynamics, The Guildhall, High Street Bath에 의해 기고되었다.

자유 표면 흐름 시뮬레이션을 위한 FLOW-3D 성능을 평가하기 위해, 장애물 구성이 포함된 3D댐을 검증 사례 중 하나로 선정했습니다. 이 문제는 문서화되어 있으며 ERCOFTAC데이터베이스에서 다운로드할 수 있도록 생성된 모든 실험 데이터를 사용하여 쉽게 설정할 수 있습니다[1]. 장애물은 선박 갑판의 녹색 물에 노출된 컨테이너를 대표하는 것으로 선택됩니다. 실험은 0.55 m의 물을 고정하는 슬라이딩 도어를 가진 대형 탱크 그림 1로 구성됩니다. 도어는 중량 감소에 의해 수직으로 위쪽으로 열리고 물이 방출되어 장애물을 침해한 후 탱크 벽으로부터 3회 반사됩니다. 자유 표면 고도는 탱크 중심선을 따라 4개 위치에서 측정되며 8개의 압력 센서가 장애물의 선행 수직 및 수평 표면에 내장되어 있습니다(그림2). FLOW-3D를 사용한 CFD시뮬레이션은 연속적으로 미세한 메쉬를 사용하여 6초간 실시간으로 수행되었으며 다른 주문 번호 체계와 난류 모델을 사용했습니다.

Figure 1. Snapshot of SPH simulation and experiment at 0.56 secs

시뮬레이션 방법론

시뮬레이션은 3.22mx1mx1.5m 크기의 도메인에 대해 설정되었습니다. 즉, 탱크 지붕에 대한 수직 분사를 허용하기 위해 z방향에서 0.5m 더 큰 도메인이 설정되었습니다. 기본 메쉬는 x-방향의 간격 161개, y-방향 50개, z-방향의 경우 75개가 균일하게 수용되는 육각 셀을 가지고 있었습니다. 장애물 및 센서 위치를 방해하므로 총 약 603,750개의 셀이 사용됩니다. 장애물은 그 영역에 들어갔고 모든 벽은 미끄러짐이 없는 것으로 간주되었습니다. 물의 초기 위치와 점도를 규정한 후, 층류 시간에 의존하는 시뮬레이션을 실시간으로 총 6초 동안 점진적으로 미세화하였습니다. 기본 60cm 셀 메시에서 시작하는 메쉬. 단순히 각 방향의 셀의 수를 2개의 큐브 루트에 의해 증가시킴으로써 각 점진적 메쉬에 대해 총 셀 카운트를 2배 증가시키는 것이었습니다. 이렇게 총 네개의 메쉬가 생겼습니다. 그런 다음 네개의 위치에서 자유 표면 고도의 시간 이력과 여덟개의 압력 센서로부터의 압력을 실험 데이터에 대해 도표로 작성했습니다. CPU와 시뮬레이션의 경과 시간또한 기록되었습니다.

Figure 2. Locations of water height and pressure measurements

기본 메쉬만 사용하여, 추진력 유도에 사용된 수치 구별 계획의 효과를 조사하였습니다. 디폴트가 1st order, 2nd order monotonicity preserving 그리고 3rd order schem이 모두 사용되었으며 결과를 비교했습니다. 또한 single 과 double precision의 효과를 비교하였습니다.

난류 변동은 주로 직접 시뮬레이션을 통해 모델링되었지만 FLOW-3D에서 사용할 수있는 두 가지 난류 모델, 즉 RNG (Renormalization Group) 모델과 LES (Large Eddy Simulations) 모델의 결과도 비교했습니다. 모든 모델은 가장 거칠고 기본 메쉬에서만 실행되었습니다. 메쉬 해상도에 대한 과도한 요구로 인해 탱크 벽에서 가장 가까운 노드의 거리에 대한 일반적인 난기류 모델 관련 제약 조건을 충족시키지 못했습니다.

또한 흐름이 크게 혼란스럽고 장애물이 날카로울 때 흐름 분리 효과의 예측은 점진적인 구분에 의해서가 아닌 기하학적 변화에 의해서 주도될 것입니다. 질서 정연한 경계 층의 변형 따라서, 우리는 경계 층의 분해능이 주 흐름 특성을 예측하는 관점에서 도메인 내부의 흐름을 해결하는 것보다 덜 관련된다고 가정했습니다.

자유 표면 결과

그림 3과 4는 장애물의 상류 위치 H2와 하류 위치 H1에서 시간에 대해 플롯 된 실험 및 계산 된 자유 표면 고도를 보여줍니다. 크기와 타이밍에 약간의 차이가 있지만 주요 기능이 잘 표현되어 있는지 확인하는 것이 좋습니다. 그러나 실험 데이터에는 오류 막대가 제공되지 않으며 혼란스럽고 분리 된 유동장에서 프로브를 사용하여 자유 표면 고도를 측정하는 것은 자유 표면 고도가 문제가 될 수 있다고 말해야합니다. 단일 한 시간 함수가 될 수 없습니다. 이것은 아마도 약 1 초의 초기 가파른 상승 단계에서 H1 높이의 불일치를 설명합니다. 나머지 H1 레코드는 실험과 잘 일치합니다. H2 플롯은 특히 초기 물 상승 단계에서 더 나은 일치를 보여주고 궁극적으로 물의 최대 높이를 잘 예측합니다.

모든 그림에는 실험 뒤에 있는 시뮬레이션의 시간 지연 특징이 있습니다. 차이의 원인은 불분명하지만 시뮬레이션을 통해 점진적으로 도입되는 것으로 보입니다.

압력 센서 결과

그림 5는 시간에 대해 플롯 된 바닥에서 가장 가까운 전면 압력 센서 P1을 보여 주며, 일반적으로 실험과 시뮬레이션 간의 양호한 일치를 나타냅니다. 이 센서는 압력 피크의 도달 거리와 크기를 가장 정확하게 추정합니다. 장애물과 왼쪽 벽에서 물이 튀어 나오면서 신호가 안정되면서 약 2초간 도달할 때까지 압력 신호에 상당한 변동이 있습니다. 그리고 시뮬레이션 값은 실험 값과 잘 일치합니다.

그림 6은 상부 수평 얼굴 압력 센서 P7을 보여 줍니다. 1초에서 2초 사이에 압력 변동이 크므로 시뮬레이션과 실험 데이터가 안정되고 합의가 개선됩니다.

메쉬 수리, 수치 구성 순서 및 난류 모델

메쉬 정밀도의 효과 측면에서 볼 때, 수치 솔루션이 고유한 솔루션으로 수렴되고 있다는 증거는 거의 없는 것으로 보입니다. 난류 모델을 사용하는 대신 직접 시뮬레이션을 통해 유동장의 난류를 모델링 하려고 시도해 왔기 때문에 이는 놀라운 일이 아닐 수 있습니다. 이 접근 방식을 사용하면 메쉬가 미세하게 정제되고 초기 조건에서 섭동에 더 민감해 지기 때문에 흐름 필드에서 보다 상세한 정보를 파악할 수 있을 것으로 예상됩니다. 또한 약간 다른 초기 조건을 가진 많은 시뮬레이션의 평균이 메시 정교함으로 평균화된 솔루션으로 수렴될 것으로 예상합니다. 그러나, 실험에 대한 합의의 수준에 있어서는 35배나 더 오래 걸리는 가장 적은 비용과 가장 비싼 해결책 사이에는 차이가 거의 없습니다. 공학적 관점에서 볼 때, 가장 불리한 메쉬 솔루션은 기본 값이 충분히 정확하고 경과된 시뮬레이션이 단지 15분 이상인 것을 고려할 때 매우 좋은 가치를 나타냅니다.

가속도계 숫자 체계 순서의 효과와 단일 또는 이중 정밀도 산술 실행의 효과는 다음과 같이 요약됩니다. 2차 주문과 3차 주문 계획은 매우 유사한 결과를 보여 주는데, 두가지 모두 실험 곡선을 따르는 것이 더 다양한 1차 주문 계획보다 더 가깝습니다. 또한 상위 순서 방식은 보다 정교한 메쉬의 첫번째 순서 방식보다 코어저 기본 메쉬의 실험 곡선을 따르는 것으로 보입니다. 이중 정밀도 곡선은 단일 정밀도 1차 주문 곡선에서 약간 벗어납니다. 높은 순서도와 이중 정밀도 산술을 사용하는 데 드는 상대적으로 적은 비용을 감안할 때 안정성이 훼손되지 않는다면 향후 계산에서 그렇게 하는 것이 합리적일 것입니다.

난류 변동을 모델링 하는 데 사용되는 방법에 대해서는 각 모델의 실험 시간 이력을 보다 정확하게 예측할 수 있는 능력 면에서 확실한 승자가 없습니다. LES모델의 CPU시간을 더 전통적인 RNG제제와 비교할 때 거의 두 배만큼 층류 모델로써 경제적입니다.

결론

FLOW-3D는 매우 까다로운 자유 표면 유동 문제를 시뮬레이션하는 데 사용되었으며 실험 데이터와 정 성적, 양적 계약을 맺었습니다. 주요 불일치는 종종 고유하지 않은 매개 변수의 자유 표면 높이를 측정하는 데 문제가 있기 때문에 쉽게 발생할 수 있습니다. 흐름이 충돌하는 장애물 표면의 압력 예측은 일반적으로 실험 측정과 잘 일치하며, 주 편차는 실험 측정에서 상당한 양의 변동이있는 곳에서 다시 나타납니다. 실험 측정의 반복성은 문헌에서 논의되지 않았지만 적어도 CFD 시뮬레이션의 차이만큼 클 수있다. 또한 4 개의 프로세서를 통한 공유 메모리 구성에서 약 15 분 내에 난류 모델없이 1 차 차분을 사용하여 비교적 거친 메시에서 솔루션을 적절하게 얻을 수 있음을 확인했습니다. 난류 모델이 필요하지 않다는 것은 결과 흐름을 지배하는 난류 구조가이 수준의 메쉬 미세 조정에서 해석 될 수 있음을 시사합니다.

Download a full-length validation study of this work: FLOW-3D Dam Breaking Validation

References

  1. SPH European Research Interest Community SIG, R. Issa and D. Violeau, Test-Case 2 3D dam breaking, http://wimanchester.ac.uk/spheric/index.php/Test2
  2. M.T Kleefsman, Fekken, A.E P Veldman, B. Iwanowski, and B. Buchner, A volume of fluid based simulation method for wave impact problems,J Comp Phs, 206: 363-393, 2005.

정밀주조품의 수축 결함 예측

정밀 주조품의 수축 결함 예측

정밀 주조 공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품(왁스)패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.

정밀 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했습니다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였습니다.

오늘날 정밀 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.

정밀 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.

  • 왁스 패턴 생성 후, 패턴 클러스터 또는 ‘트리’를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
  • 나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
  • 용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
  • 마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.

Figure 1. Solid model of the casting geometry

정밀 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 정밀 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.

이 연구의 주요 목적은 정밀 주조 공정에서 주요 요소인 복사 열 전달과 정밀 주조 공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 정밀 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.

Shell mold

Figure 2. Shell mold

Methodology

현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.

  • complement 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
  • “complement”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
  • 솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
  • 솔리드 특성 GUI의 구성 요소 특성에서 “Thermal penetration depth”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
  • 이제 전처리기를 실행하십시오.
  • Analyze 탭>3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “thermally active component volume”을 선택하고 “Render”을 선택하십시오.
  • Display에 이제 형상의 셸 부분 만 표시됩니다.
  • 개체 목록 (창의 왼쪽 하단)에서 “component 1″을 선택하고 “component 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.
Two mesh blocks

Figure 3. The view of the two mesh blocks for the creation of a void with discretization

쉘 몰드 용 STL 파일을 만든 후에, 이 파일을 component 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘heat transfer type 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. heat transfer type 1은 방사선을 포함한 종합 열 전달 계수가 됩니다.
쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.

MATERIAL PROPERTY VALUE UNIT
Fluid –AluminiumA356 alloy Density  2437 kg/m³
Thermal conductivity 116.8 W/(m K)
Specific heat 1074 J/(kg K)
Latent heat 433.22 kJ/m³
Liquidus temperature 608 0C
Solidus temperature 552.4 0C
Zircon Mold Thermal conductivity 1.09 W/(m K)
Specific heat* Density 1.63E+06 J/( m³ 

Initial and boundary conditions used are show in Table 2.

Mold temperature 430°C
Melt pouring temperature 680°C
Filling time 7 s
Interface heat transfer coefficient 850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect) 30 -100 W/m2K

Table 2. Initial and boundary conditions used for the simulation

Sprue basin에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.

Results & Discussion

Validation with reported experimental results

Experimental and numerical comparison

충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다.
온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. probe points C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.

Fill sequence & solidification pattern for two different sprue locations

2 개의 상이한 탕구 위치에서 용탕 충전 순서는 5a 및 5b에 나와 있습니다. 최종 탕구가 더 많은 splashing을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.

Fill sequence at different time intervals when the sprue is located at one end
Figure 5a. Fill sequence at different time intervals when the sprue is located at one end

 

Fill sequence at different time intervals when the sprue is located in the middle
Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle

2D temperature profile after 50% solidification when the sprue is located at one end
Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end
2D temperature profile after 50% solidification when the sprue is located in the middle
Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle
Effect of shell thickness

정밀 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.

Effect of shell heat transfer coefficient

쉘 열 전달 계수는 열이 쉘 몰드의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.

Temperature profile 1
Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values
Temperature profile 2
Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values
Temperature profile at location C1
Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient
Temperature profile at location S11
Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Conclusions

정밀 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.

  • FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
  • 쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
  • 쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.

References

Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.

Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting ProcessTransactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.

Sturgeon Navigate Fish Ladder

Sturgeon Navigate Fish Ladder

 

This material was provided by Jean-François Mercier, ing., Manager, hydraulics and hydrology at AECOM Tecsult inc.

AECOM Tecsult inc.은 FLOW-3D를 이용하여 물리적 모델링을 사용하지 않고 철갑상어가 Fish ladder를 탐색할 수 있는 물고기 사다리 설계를 개선했습니다. 실험은 현장구현의 제한과 비용때문에 배제되었고 FLOW-3D의 수치 모델링 결과로 정확한 정보를 제공하는 것이 중요했습니다.

Fish ladder는 James Bay, Quebec, Canada의 이스트 메인 강에 2005~2006년사이에 지어졌습니다. 2006년과 2007년에 실시된 후속 연구는, 다른 종의 물고기들이 이 사다리를 오를 수 있었던 반면, 철갑상어는 실패한 경우를 보여주었습니다. 기존의 Fish ladder에서 두 가지의 문제가 발견되었습니다. AECOM Tecsult inc에서의 물고기의 낮은 어획과 물의 빠른 속도가 문제가 되었습니다. 엔지니어들은 이러한 문제에 대한 해결책을 찾기 위해 FLOW-3D로 수치 모델링 연구를 수행하기로 결정했습니다.

 

Redesigning the fish ladder                          

AECOMTecsultinc. 엔지니어들은 물고기 사다리에 대한 최적의 설계 변경을 결정하기 위해 세가지 모델을 실행했습니다.

  • 유인을 극대화할 수 있는 강과 물고기 통로 사이의 흐름 분포를 평가하는 지역모델. 산란기 동안의 정상적인 조건에서 물고기 통로는 22m3/s의 유량흐름이 나타난다.
  • 슬롯 및 디플렉터의 개조를 위한 로컬 모델
  • 전체 길이에 걸쳐 수위 균형 유지를 위한 통로모델

Fish ladder specifications (before renovation)

Flow in fish passage before design optimization work

  • Length = 150 m
  • 17 basins
  • Drop = 3 m
  • Peak velocities of 2.6 m/s

Figure 1 – 45% of flow in fish passage shows velocities that are too high for the sturgeon to navigate

Figure 2 – 10% of flow in fish passage shows below the 1.8 m/s criteria required for sturgeon to navigate

Figure 3 – Tests were made with different additions of blocks (pink) and deflector plates (black) to find an optimum configuration

 

Validation of the numeric model

CFD모델을 실행한 후 엔지니어는 실험 데이터에 대해 숫자 결과를 검증했습니다. Flow-3D결과는 표면 높이를 비교하는 수문 기록과 비교되었습니다. 124개 중 80%가 유속이 일치했습니다.  동일한 위치 점에서 일치하지 않는 곳은 난류 영역이었습니다.

Velocity comparisons of measured data and FLOW-3D at specific locations

 

Meeting the criteria — modifications to flow rates

엔지니어들은 물고기가 곧장 바다로 가지 않도록 흐름을 15~20%로 줄이기 위해 Fish ladder를 개조하기로 결정했습니다. 그림 2는 그림과 비교하여 물고기 통로의 10% 유량으로 현저한 속도 감소를 보여 줍니다. 물고기 통로에 흐름의 45%를 가진 1. 그림 3은 흐름 속도를 늦추기 위한 블록 및 디플렉터를 보여 줍니다. 설정된 기준의 최대 속도는 1.8m/s 였습니다. 전체 흐름 조건은 그림 1과 2에서와 같이 모델로 잘 표현됩니다.

 

Conclusion

AECOM Tecsult inc 엔지니어들은 그들의 숫자 모델의 정확성을 검증할 수 있었고 FLOW-3D로부터 얻은 정보를 사용하였고 물고기 통로를 재설계하여 테스트와 관련된 높은 비용을 피할 수 있었습니다. 2008년 여름에 있었던 후속 연구에 따르면 철갑 상어가 높은 유량에도 불구하고 성공적으로 물고기 통로를 통과하고 있다는 것을 보여 주었습니다.

 

 

Wave Forces on Coastal Bridges

Wave Forces on Coastal Bridges

This article was contributed by Jun Jin, Assistant Professor in the Maritime Systems Engineering Department at Texas A&M University at Galveston.

 

최근 몇 년 동안 허리케인은 멕시코만 연안의 4개 주에서 여러 해안 고속도로 교량에 구조적 피해를 입혔습니다. 허리케인 피해를 방지하기 위해 연안 교량에 가해지는 파도 하중의 크기는 합리적인 정확성을 가지고 결정되어야 합니다. 일반적으로 구조에 대한 파도 하중의 계산은 구조 상호작용의 여러 특성으로 인해 복잡해집니다. 이 본문은 이러한 복잡한 문제들 중 해결할 수 있는 몇 가지를 보여줍니다.

Validation of Stokes Nonlinear Wave Solution in FLOW-3D

FLOW-3D는 해안 교량의 파도 하중을 계산하고 구조물 고도 및 녹색갑판 위의 물 하중에 대한 영향을 조사하기 위해 사용되었습니다.  FLOW-3D에서 StokesWave의 정확도를 평가하기 위해 계산 도메인의 세개 지점을 선택했습니다(그림 1). 시뮬레이션을 하는 동안, 각 입자 소스는 초당 10개의 입자를 방출했습니다. 입자 궤적은 그림 1에 표시되어 있습니다. 한 지점의 입자 속도를 이론적 결과와 비교했습니다(그림 2a 및 2b). FLOW-3D에 의해 계산된 입자의 역학은 Stokes비선형 파동이론과 잘 일치한다고 결론내렸습니다.

Figure 1. Particle trajectories and pressure variation during a wave simulation

Figure 2a. Comparison of computed particle velocities of a point with theoretical results

Figure 2b. Comparison of computed particle velocities of a point with theoretical results

 

Wave Loads vs. Superstructure Elevations

다리 갑판을 다른 높이로 설정하고 2m파형 높이와 6초 주기의 파형으로 시뮬레이션을 수행했습니다. 그림 3은 파형력이 최대치에 있을 때의 파동 단면과 압력 등고선을 보여 줍니다.

Figure 3. Wave profile and pressure contours at different moments (Pressure unit: Pa).

Flow Field under Bridge Deck

시뮬레이션은 다른 파도 높이로 실행되었습니다. 그림 4에서 볼 수 있듯이 교량 바닥판 밑의 유동장은 복잡합니다. 대들보와 상부 구조물에 의해 형성된 개방된 공간내에서, 물의 흐름은 경계를 따라 원형패턴으로 있었습니다. 또한 유동의 복잡성은 웨이브 높이가 증가함에 따라 증가하는 것으로 관찰되었다.

Observations

시뮬레이션 결과에서 다음과 같은 결론을 도출할 수 있습니다.

  1. 상부 구조물의 높이가 증가함에 따라 교량 상부 구조물의 수직 방향 파동력이 감소하는 반면, 수평 방향 파형력은 교량의 상부 구조물의 상부 표면이 웨이브 높이의 아래에 있을 때 큰 영향을 미치지 않습니다.
  2. 교량 상층부의 물 하중은 파고와 함께 증가합니다. 파손이 거의 발생하는 경우 최대 물 하중이 최대 수직 파력의 50 %를 초과했습니다. 그러나 그린 워터 하중과 상향 파력 사이의 위상차로 인해 수직 파력의 최대 값은 물의 부하에 의해 현저히 감소하지는 않았습니다.
  3. 교량 상부 구조물 주위의 유동장은 평행한 대들보에 의해 차단됩니다. 그러므로 웨이브 힘에 대한 순전히 기반한 방법은 웨이브 힘을 계산하는데 사용할 수 없습니다.

Figure 4. Vectors of water particle velocity at the moment of maximum wave force (Velocity unit: m/s)

Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>

 

 

Wave Forces on Coastal Bridges

Wave Forces on Coastal Bridges

This article was contributed by Jun Jin, Assistant Professor in the Maritime Systems Engineering Department at Texas A&M University at Galveston.

 

최근 몇 년 동안 허리케인은 멕시코만 연안의 4 개 주에서 여러 해안 고속도로 교량에 구조적 피해를 입혔습니다. 허리케인 피해를 방지하기 위해 연안 교량에 가해지는 파도 하중의 크기는 합리적인 정확성을 가지고 결정되어야 합니다. 일반적으로 구조에 대한 파도 하중의 계산은 구조 상호작용의 여러 특성으로 인해 복잡해집니다. 이 본문은 이러한 복잡한 문제들 중 해결할 수 있는 몇 가지를 보여줍니다.

Validation of Stokes Nonlinear Wave Solution in FLOW-3D

FLOW-3D는 해안 교량의 파도 하중을 계산하고 구조물 고도 및 녹색갑판 위의 물 하중에 대한 영향을 조사하기 위해 사용되었습니다.  FLOW-3D에서 StokesWave의 정확도를 평가하기 위해 계산 도메인의 세개 지점을 선택했습니다(그림 1). 시뮬레이션을 하는 동안, 각 입자 소스는 초당 10개의 입자를 방출했습니다. 입자 궤적은 그림 1에 표시되어 있습니다. 한 지점의 입자 속도를 이론적 결과와 비교했습니다(그림 2a 및 2b). FLOW-3D에 의해 계산된 입자의 역학은 Stokes비선형 파동이론과 잘 일치한다고 결론내렸습니다.

Figure 1. Particle trajectories and pressure variation during a wave simulation

Figure 2a. Comparison of computed particle velocities of a point with theoretical results

Figure 2b. Comparison of computed particle velocities of a point with theoretical results

 

Wave Loads vs. Superstructure Elevations

다리 갑판을 다른 높이로 설정하고 2m파형 높이와 6초 주기의 파형으로 시뮬레이션을 수행했습니다. 그림 3은 파형력이 최대치에 있을 때의 파동 단면과 압력 등고선을 보여 줍니다.

Figure 3. Wave profile and pressure contours at different moments (Pressure unit: Pa).

Flow Field under Bridge Deck

시뮬레이션은 다른 파도 높이로 실행되었습니다. 그림 4에서 볼 수 있듯이 교량 바닥판 밑의 유동장은 복잡합니다. 대들보와 상부 구조물에 의해 형성된 개방된 공간내에서, 물의 흐름은 경계를 따라 원형패턴으로 있었습니다. 또한 유동의 복잡성은 웨이브 높이가 증가함에 따라 증가하는 것으로 관찰되었다.

Observations

시뮬레이션 결과에서 다음과 같은 결론을 도출할 수 있습니다.

  1. 상부 구조물의 높이가 증가함에 따라 교량 상부 구조물의 수직 방향 파동력이 감소하는 반면, 수평 방향 파형력은 교량의 상부 구조물의 상부 표면이 웨이브 높이의 아래에 있을 때 큰 영향을 미치지 않습니다.
  2. 교량 상층부의 물 하중은 파고와 함께 증가합니다. 파손이 거의 발생하는 경우 최대 물 하중이 최대 수직 파력의 50 %를 초과했습니다. 그러나 그린 워터 하중과 상향 파력 사이의 위상차로 인해 수직 파력의 최대 값은 물의 부하에 의해 현저히 감소하지는 않았습니다.
  3. 교량 상부 구조물 주위의 유동장은 평행한 대들보에 의해 차단됩니다. 그러므로 웨이브 힘에 대한 순전히 기반한 방법은 웨이브 힘을 계산하는데 사용할 수 없습니다.

Figure 4. Vectors of water particle velocity at the moment of maximum wave force (Velocity unit: m/s)

Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>

 

 

Prediction of Shrinkage Defects During Investment Casting Process

Indianapolis Storm-Water System

하수도 시스템은 액션영화의 도피 루트로 사용되지 않는 한 흥미롭지 않을 것입니다. 폭우로 인해 이산화탄소 수치가 올라갈 때까지 여러분은 그것에 대해 생각조차 하지 않을 것입니다. 불행하게도, 770개 이상의 오래 된 미국 도시들 아래에 있는 하수구 시스템은 심한 폭풍으로 오염 문제를 일으킵니다. 이러한 구형 설계는 하수 및 폭풍 유실을 위한 비용 효율적인 단일 스타일 파이프를 사용했으며 연결된 파이프로 강 및 호수에 하수를 내보냅니다(CSO).

1994년 미국 환경보호청(EPA)은 주로 북동부 및 그레이트 레이크 지역의 관련 지방 자치 단체들에게 CSO관련 문제를 줄이거나 제거하도록 하는 정책을 발표했습니다. (2000년 “Clean Water Act”의 일부로 법률화된 정책). 인디애나 폴리스(Indianapolis)는 가벼운 비 폭풍으로 인해 하수 오물의 백업 및 범람이 발생할 수 있는 도시 중 하나였으므로, 주요 건설 조건에서 2025년까지 문제를 해결하는 것이 필요하였습니다.

인디애나 폴리스는 국제 디자인 회사인 AECOM에 Citizens Energy Group이 건설하고 있는 3개의 깊은 암석 저장 터널 중 첫 번째를 설계할 것을 요청했습니다. 총 25마일인 이 시스템은 대규모 지하 펌프장과 기존의 하수구에서 CSO를 수직으로 떨어뜨리는 연결 구조물을 포함합니다. 첫 번째 터널의 경우, 강우가 가라 앉은 후에 3 개의 커다란 강하 구조물이 CSO를 저장 터널로 전환하여 후속 처리를 수행했습니다.

프로젝트를 해결하기 위해 AECOM은 여러 가능한 낙하 구조물 설계의 동작을 시뮬레이션하기 위해 FLOW-3D를 선택하여, 구축 및 평가 예산이 책정 된 물리적 모델에 대한 재 작업의 필요성을 최소화했습니다. 테스트 결과는 예측 값과 일치하였으므로 재설계가 필요하지 않았습니다. 또한, 이제 AECOM은 유압 설계작업의 첫 번째 단계를 일반적으로 CFD시뮬레이션을 사용합니다.

Large Scale Project on a Tight Delivery Schedule

촉박한 납품 일정에 따른 대규모 프로젝트

20세기에 건설된 하수 처리장은 주거용, 상업용, 환경유출물의 유출로 무엇을 해야 할 것인지에 대한 새로운 인식을 가져다 주었습니다. CSO 방전은 정상적으로 운영되는 동안 처리시설로 직접 이동되며 모든 과정이 양호하게 운영됩니다. 불행하게도, 대규모 폭풍이 발생하는 동안, 발전소들의 초과 용량문제를 피하기 위해 인근 수역으로 과도한 유량을 방출합니다. 이들 배출은 기름과 살충제, 야생동물 배설물에 이르기까지 다양한 오염 물질을 포함합니다.
고무적인 성공의 신호로, 1990 년대에 착공된 새로운 CSO 분리, 저장 및 처리 시설로 오염의 영향에 대해 67 %의 개선을 이루었지만, 여전히 많은 연구가 이루어져야 합니다. 인디애나 폴리스의 경우, 인디애나 폴리스시 공공사업부가 CSO 장기 통제계획을 준비한 2008년에 그러한 노력이 시작되었습니다. 정상적인 처리 공장에서 처리 할 수 있을 때까지 오버플로우가 발생하는 “저장 및 운송”접근법의 핵심은 인디애나 폴리스 터널 저장 시스템 또는 인디애나라고 합니다.

이 시스템의 첫번째 단계는 딥 록 터널 커넥터(DRTC)라고 불리는 1억 8천만달러 가치의 프로젝트입니다. DRTC는 길이 7마일의 18피트 직경의 지하 터널로, 기존의 인디애나 폴리스의 3개의 서버 대 계층 유출 연결의 흐름 경로를 다시 만들 것입니다(그림 1). 목표는 과잉 강우 유출을 기존 하수구와 새 터널 사이의 낙하 구조를 통해 이들 대피소에서 거대한 터널로 안전하게 재배치하고, 폭풍 후 처리를 위해 처리장으로 펌핑 될 수있을 때까지 유지합니다.

Fig. 1. City of Indianapolis Deep Rock Tunnel Connector (DRTC), a “storage and transport” concept being built to handle combined sewage overflow (CSO) during heavy storms. Three vertical drop structures will capture this flow and divert it downwards to 18-foot-diameter storage tunnels running more than 250 feet underground; the tunnels store the CSO until sewage treatment plant capacity becomes available. (Image courtesy Citizens Energy Group)

평균적으로 지표면 아래 250피트 깊이에서, DRTC는 건설과 궁극적인 운영 동안 위의 주변 지역에 대한 혼란을 최소화하도록 설계되었습니다. 그러나 이 프로젝트의 규모와 복잡성은 AECOM의 과제에 긴급성을 더했습니다. 세 장소 각각에 대한 가능한 낙하 구조 설계와 평가, 구조물 설계의 60%를 7개월 이내에 마무리 지었습니다.

이러한 구조물의 목적은 표준 도시 하수 시스템에서 깊은 저장 터널로 하수 흐름을 전달하는 동시에, 효율적 손실( 느린 속도 또는 백업)과 장기적인 도심을 방지하는 것입니다. 각 섹션의 크기와 모양이 유입 흐름의 볼륨 및 속도와 세심하게 일치하지 않을 경우 발생할 수 있는 구조적 손상입니다.
AECOM의 수석 기술 전문가인 라이언 에디슨 컨설턴트는 계약의 스케줄링 요구 사항이 유효성 검사를 위해서는, 단 하나의 모델에만 물리적 건물과 테스트 활동을 제한할 것이라는 것을 알게되었습니다. 다른 주요 건설 프로젝트에 15년간 FLOW-3D 시뮬레이션 소프트웨어를 사용해 왔기 때문에, 난류, 과전압 및 에너지 낭비를 예측하는 능력은 충분하지 않고 디자인 프로젝트에 적합하다고 자신했습니다. 또한 여러 검증(what-if) 시나리오를 실행하기 위한 소프트웨어 옵션을 통해 설계 세부 사항을 다시 실행해야 하는 위험을 최소화할 수 있었습니다. 변경 사항이 적용될 경우 상당한 이점은 여러개의 병렬 시공 트랙이 있는 프로젝트에 있습니다.
시간 제약에도 불구하고, 에디슨은 특히 이 도전에 만족했습니다. 왜냐하면 “CFD로 드롭 구조 설계를 만들고 물리학에서 이것들은 너무 큰 구조이기 때문입니다.”라고 그는 말합니다. 그것들은 CFD는 실제로 사용되지 않는데 보통 물리적 모델이나 손으로 계산하는 것으로 이루어집니다.

DRTC 프로젝트를 위해서, 그는 먼저 시뮬레이션된 작동 조건에 대해서 컴퓨터 설계를 테스트할 것입니다. 에디슨은 3차원의 일시적이고 격동적인 흐름 조건을 모델링 할 수 있는 소프트웨어 패키지인 FLOW-3D를 사용했습니다. 각 설계에 대한 계산 메쉬를 변경하지 않고도 여러 설계 지오 메트리를 모델링 할 수 있는 기능이였습니다.
시뮬레이션 데이터로 무장한 에디슨은 그 결과를 아이오와 대학교 II. 시설에서 시험한 1:10 크기의 물리적 모델의 작동 데이터와 비교하였습니다. (후자는 원래 아이오와 유압 연구소라고 불렸지만, 지금은 그룹의 다양한 범위를 반영하여 IIHR-Hydroscience & Engineering으로 알려져 있습니다.)

Zeroing in on the Drop-Structure Challenge

드롭 구조 과제에서 영점 조정

가장 제한적인 DRTC 사이트의 지오 메트리는 CSO 008로 지정된 레귤레이터에서 발생합니다. 기존 CSO 레귤레이터(기울기 약 75피트 아래)를 새 18피트 직경의 수집 터널과 연결하려면, 이 위치에서 150피트 이상의 수직 방향 주행이 필요합니다. 각 낙하 구조에 7백만달러 이상이 소요되는 경우, 프로젝트 관리자들은 물리적 모델이 구축된 후 비용과 시간이 많이 소요되는 재설계가 필요한 가능성을 낮추려고 애썼습니다.

역사적으로 낙하 구조는 이전 프로젝트를 적용하여 설계된 후 축소 모델로 구축되었으며, 테스트만으로도 6개월 이상이 소요될 수 있습니다. 가속화된 이 프로젝트에서, 2009년 가을에 시작한 AECOM의 초기 과제는 두가지 표준 개념 중에서 하나를 선택하는 것이었습니다. 포장-파운드 스타일과 접선 vortex버전, 둘 다 시속 35마일의 폭풍이 몰아치는 물 속에서 속도를 늦추고 통제하기 위해서 직접 계산 및 FLOW-3D에서 결정한 일반 구조 직경 및 구성 요소 크기를 사용한 초기 CFD분석으로, AECOM은 시공 가능성 및 비용 고려 사항을 평가하는 데 사용했습니다.
CSO 008의 현장 요구 사항과 비용 효율성을 고려할 때, 시 당국과 AECOM은 접선 소용돌이 낙하 구조를 선택했습니다. 이 설계의 핵심 요소는 흐름을 먼저 환상적인 제트로 유도한 다음, vortex 유도 나선형 흐름을 생성하는 테이퍼(확대) 접근 채널에 의해 공급되는 수직 튜브(드롭 샤프트)입니다. 이 통제 된 하강은 속도가 느려지고 하루 3 억 갤런 (mgd) 이상에 이르는 흐름을 안전하게 처리합니다. 스토리지 터널의 파괴적인 난류를 방지하는 것이 핵심 목표이므로 드롭 샤프트 흐름의 사전 차단이 설계의 핵심입니다.

구조 자체는 6 개의 주요 부분으로 구성됩니다. 1) 접근 채널 (기존의 하수 터널에서 나온 것), 2) 수평 흐름을 넓히고 수직 드롭 샤프트로 수평 흐름을 전달하는 직사각형 전이 테이퍼 채널, 3) 드롭 샤프트 자체 4) 탈 기실 (유량을 수평 방향으로 방향을 바꾸고 공기 유입을 감소시키는), 5) 수직 공기 배출구를 통해 낙하에서 유입 된 공기를 제거하고 적하 유체의 공기 코어가 열려 있고 6) 탈기 챔버와 저장 터널 챔버를 연결하는 파이프 (adit) (그림 2).

Fig. 2. CAD diagram of proposed Indianapolis DRTC combined sewage overflow (CSO) vertical drop structure, showing approach channel, taper channel and vortex dropshaft. Using FLOW-3D CFD analysis software, AECOM simulated the flow behavior, gaining confidence in the system performance prior to physical model testing. (Image courtesy AECOM)
Prediction of Shrinkage Defects During Investment Casting Process

This article was contributed by Dr. S. Savithri, Senior Principal Scientist at CSIR-NIIST

 

인베스트먼트 주조공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.

인베스트먼트 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였다.

오늘날 투자 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.

인베스트먼트 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.

  • 왁스 패턴 생성 후, 패턴 클러스터를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
  • 나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
  • 용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
  • 마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.

Figure 1. Solid model of the casting geometry

인베스트먼트 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 투자 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.

이 연구의 주요 목적은 투자 주조 공정에서 주요 요소인 복사 열 전달과 인베스트먼트 주조공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 인베스트먼트 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.

Figure 2. Shell mold

 

Methodology

현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.

  • 구성 요소 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
  • “보완”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
  • 솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
  • 솔리드 특성 GUI의 구성 요소 특성에서 “열 침투 깊이”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
  • 이제 전처리기를 실행하십시오.
  • 분석 탭> 3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “열 활성화 구성 요소 볼륨”을 선택하고 “렌더링”을 선택하십시오.
  • Display에 이제 형상의 셸 부분 만 표시됩니다.
  • 개체 목록 (창의 왼쪽 하단)에서 “구성 요소 1″을 선택하고 “구성 요소 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.

Figure 3. The view of the two mesh blocks for the creation of a void with discretization

쉘 몰드 용 STL 파일을 만든 후 파일을 구성 요소 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 우리는 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘열 전달 유형 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. 열 전달 유형 1은 방사선을 포함한 종합 열 전달 계수가 됩니다.

쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.

MATERIAL PROPERTY  VALUE UNIT
Fluid –AluminiumA356

alloy

Density   2437 kg/m³
Thermal conductivity 116.8 W/(mK)
Specific heat  1074 J/(kgK)
Latent heat  433.22 kJ/m³
Liquidus temperature 608 °C
Solidus temperature 552.4 °C
Zircon Mold Thermal conductivity 1.09 W/(mK)
Specific heat* Density 1.63E+06 J/( m³K)

Initial and boundary conditions used are show in Table 2.      

 

Mold temperature  430°C
Melt pouring temperature  680°C
Filling time  7 s
Interface heat transfer coefficient  850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect) 30 -100 W/m2K

Table 2. Initial and boundary conditions used for the simulation

 

탕구저에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.

 

Results & Discussion

Validation with reported experimental results

충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다.

온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. 프로브 포인트 C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.

 

Fill sequence & solidification pattern for two different sprue locations

두 가지 다른 스프 루 위치의 채우기 순서 및 응고 패턴

2 개의 상이한 탕구 위치에 주물충전 순서는5a 및5b에 나와 있습니다. 최종 탕구가 더 많은 스플라인을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.

Figure 5a. Fill sequence at different time intervals when the sprue is located at one end

Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle

Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end

Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle

Effect of shell thickness

인베스트먼트 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.

Effect of shell heat transfer coefficient

셸 열 전달 계수는 열이 셸 금형의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.

Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values

 

F

Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values

Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Conclusions

인베스트먼트 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.

  • FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
  • 쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
  • 쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.

References

Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.

Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting ProcessTransactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.

 
Design and CFD Analysis

설계 및 CFD분석

일반적인 소용돌이 설계는 널리 받아들여지고 있지만, 각 낙하 구조는 최적의 접선 흐름 특성을 보장하기 위해 인디애나 폴리스의 위상에 맞는 적절한 크기를 가져야 했습니다. 특히, 가능한 설계에 대한 AECOM의 계획은 세가지 목표를 가지고 있었습니다. 결합된 접근법과 테이퍼 채널을 짧은 길이로 제한하는 현장, 고유의 제약이 있었는지를 결정합니다. 허용 가능하지만 접근 방식에서 과도한 난류 조건이 발생하지 않았습니다. 테이퍼 채널에 안정적인 흐름 조건이 존재하는지 확인하고 다양한 흐름 조건에서 흐름 안정성을 평가했고, 논리적 기준점은 밀워키 인라인 스토리지 프로젝트라고 불리는 잘 알려지고 문서화된 시스템이었습니다.

Edison은 DRTC 프로젝트 규모에 맞춰 H-4로 지정된 Milwaukee 드롭 구조 설계를 기반으로 초기 설계를 기반으로했습니다.
166 피트의 기본 낙하 길이를 포함하고 체적 유량, 벽, 대칭 및 기타 초기 매개 변수를 지정하는 FLOW-3D 분석을 설정합니다.
그는 우리가 CFD를 통해 발견한 것은 밀워키에서 이 디자인을 사용하면 우리의 어플리케이션에 잘 맞지 않는다는 것이라고 말합니다. FLOW-3D는 이것을 보여 주고 있었기 때문에 CFD를 사용하여 변형을 시도하고 우리의 수정된 디자인을 고안했습니다.
더 넓은 접근 경로, 더 넓은 테이퍼 및/또는 더 깊은 테이퍼 깊이를 사용한 수정은 에디슨은 FLOW-3D에서 각 변동 사항을 설정하는 것이 매우 빠르다고 말합니다. (그림 3,4,5). 개선의 진전은 고무적이었습니다. 시뮬레이션 결과의 높은 수준은 심지어 절삭(침식)을 개선하기 위해 드롭 축의 바닥에 의문스러운 플레이트가 수직 흐름이 수평으로 전환되는 난류 분리 및 감소가되도록 기능을 추가하도록 설득했습니다.

Figs. 3, 4 and 5. Tangential drop structure flow simulated with FLOW-3D. Structure dimensions were optimized through multiple design iterations. (Image courtesy AECOM)

9번째 설계 변동에 대한 FLOW-3D 출력 동작인 V9는 접근 섹션을 확장했으며, 모든 흐름 볼륨 레벨에서 300mg/d까지 양호한 흐름 안정성을 보였으며 유압식 점프는 없었습니다. 그리고 양호한 Froude numners(유체 움직임에 미치는 중력의 영향을 나타내기 위해 사용되는 치수 없는 수량), 2010년 2월부터 AECOM이 물리적 시험과 검증을 위해 선택하였습니다(그림 6). 그 계획은 아이오와 연구소의 시험 결과에 기초하여 CFD와 최적화를 추가하는 것이였습니다.

Fig. 6. Scale model (1:10) of vertical drop structure, tested at University of Iowa IIHR Hydroscience & Engineering facility. (Image courtesy AECOM)

에디슨은 V9에서 결정된 치수 매개 변수에 대해 그 디자인을 아이오와 주에 가져가서 CFD를 이용해 만들었는데 완벽하게 작동했습니다. (II.)직원들은 실제로 무언가를 설치한 것은 이번이 처음이며, 변경하라고 말할 만한 것이 아무것도 없다고 말했습니다. 측정된 데이터는 드롭 샤프트 연결 구조 내의 수면 높이, Adit내 공기 침투의 정량, 벤트 샤프트 위로 공기 흐름을 포함했습니다. 흐름이 증가함에 따라 와류량이 증가함에 따라 축 벽에 부착되어 탈산소까지 원활하게 회전하는 모습이 포착되었습니다(그림 7).

에디슨은 후속 실험을 위해 여러번 시험장을 돌아다녔습니다. 물리적 모델이 처음부터 올바르게 작동했기 때문에 시험 프로그램을 확장할 시간이 있었습니다. “재미 있는 것은 환기구를 움직이는 것과 같이 우리가 궁금했던 것들을 탐구해서 지적으로 그것을 가지고 놀 시간이 있었다는 것입니다.” 에디슨은 예정보다 앞서 있었기 때문에 잔여 프로젝트 시간을 이용해 탈염소와 adit 내의 유압 장치를 조사할 수 있었습니다.

Fig. 7. Operation of scale-model vertical drop structure, showing test run of 300 million gallons per day (mgd). Flow vortex development shows good rotation and attachment to the shaft wall all the way down to the de-aeration chamber. No design modifications were necessary to the simulated design. (Image courtesy AECOM)

Final Results

AECOM은 2010년 7월 DRTC에 대한 전반적인 작업을 마쳤습니다. 2013년 3월부터 18구경 터널을 굴착하기 시작했고, CSO드롭 구조 3개(CFD로 설계된 나머지 2개의 구조물만 있음)는 모두 현재 공사 중입니다.

에디슨의 의견으로는, 토목 공학은 전체적으로 CFD를 채택하는 데 느린 편이었습니다. 이를 입증하기 위해 그는 인천 국제 공항을 처음 방문한 당시 접선 소용돌이 모형의 소위 “묘지”에서 본것을 기술했습니다. 그러나 그는 이들을 다시 처리해야 했다고 말했습니다.  그는 유압 설계를 위한 시뮬레이션 사용으로 판매되는 것을 권장하고 있습니다.

에디슨은 DRTC노력을 요약하면서 “정말 재미 있었습니다. 물리적 모델링이 필요한 위치에 대해 더 자세히 알아보았고, 그렇다면 어떤 경우에는 순수한 RAID기반 설계를 수행할 수 있습니다. 많은 DRTC작업들이 그것의 증거입니다. 물리적 모델은 실제로 필요하지 않았지만 검증을 통해 위험을 줄일 수 있었습니다. 프로젝트에서 이 두가지를 모두 수행할 수 있었다는 것은 믿을 수 없는 일입니다.”라고 말했습니다.

This article first appeared in WaterWorld Magazine.

Additive Manufacturing & Welding Bibliography

Additive Manufacturing & Welding Bibliography

다음은 적층 제조 및 용접 참고 문헌의 기술 문서 모음입니다. 이 모든 논문에는 FLOW-3D AM 결과가 나와 있습니다. FLOW-3D AM을 사용하여 적층 제조, 레이저 용접 및 기타 용접 기술에서 발견되는 프로세스를 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

2021년 5월 update

34-21   Haokun Sun, Xin Chu, Cheng Luo, Haoxiu Chen, Zhiying Liu, Yansong Zhang, Yu Zou, Selective laser melting for joining dissimilar materials: Investigations ofiInterfacial characteristics and in situ alloying, Metallurgical and Materials Transactions A, 52; pp. 1540-1550, 2021. doi.org/10.1007/s11661-021-06178-9

32-21   Shanshan Zhang, Subin Shrestha, Kevin Chou, On mesoscopic surface formation in metal laser powder-bed fusion process, Supplimental Proceedings, TMS 150th Annual Meeting & Exhibition (Virtual), pp. 149-161, 2021. doi.org/10.1007/978-3-030-65261-6_14

22-21   Patiparn Ninpetch, Pruet Kowitwarangkul, Sitthipong Mahathanabodee, Prasert Chalermkarnnon, Phadungsak Rattanadecho, Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process, Case Studies in Thermal Engineering, 24; 100860, 2021. doi.org/10.1016/j.csite.2021.100860

19-21   M.B. Abrami, C. Ransenigo, M. Tocci, A. Pola, M. Obeidi, D. Brabazon, Numerical simulation of laser powder bed fusion processes, La Metallurgia Italiana, February; pp. 81-89, 2021.

16-21   Wenjun Ge, Jerry Y.H. Fuh, Suck Joo Na, Numerical modelling of keyhole formation in selective laser melting of Ti6Al4V, Journal of Manufacturing Processes, 62; pp. 646-654, 2021. doi.org/10.1016/j.jmapro.2021.01.005

11-21   Mohamad Bayat, Venkata K. Nadimpalli, David B. Pedersen, Jesper H. Hattel, A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys, International Journal of Heat and Mass Transfer, 166; 120766, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120766

10-21   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Thermal properties of powder beds in energy absorption and heat transfer during additive manufacturing with electron beam, Powder Technology, 381; pp. 44-54, 2021. doi.org/10.1016/j.powtec.2020.11.082

9-21   Subin Shrestha, Kevin Chou, A study of transient and steady-state regions from single-track deposition in laser powder bed fusion, Journal of Manufacturing Processes, 61; pp. 226-235, 2021. doi.org/10.1016/j.jmapro.2020.11.023

6-21   Qian Chen, Yunhao Zhao, Seth Strayer, Yufan Zhao, Kenta Aoyagi, Yuichiro Koizumi, Akihiko Chiba, Wei Xiong, Albert C. To, Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment, Additive Manufacturing, 37; 101642, 2021. doi.org/10.1016/j.addma.2020.101642

04-21   Won-Ik Cho, Peer Woizeschke, Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding, International Journal of Heat and Mass Transfer, 164; 120623, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120623

121-20   Yufan Zhao, Yujie Cui, Haruko Numata, Huakang Bian, Kimio Wako, Kenta Yamanaka, Kenta Aoyagi, Akihiko Chiba, Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process, Scientific Reports, 10; 18446, 2020. doi.org/10.1038/s41598-020-75503-w

116-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Modelling of 3D concrete printing based on computational fluid dynamics, Cement and Concrete Research, 138; 106256, 2020. doi.org/10.1016/j.cemconres.2020.106256

112-20   Peng Liu, Lijin Huan, Yu Gan, Yuyu Lei, Effect of plate thickness on weld pool dynamics and keyhole-induced porosity formation in laser welding of Al alloy, The International Journal of Advanced Manufacturing Technology, 111; pp. 735-747, 2020. doi.org/10.1007/s00170-020-05818-5

108-20   Fan Chen, Wentao Yan, High-fidelity modelling of thermal stress for additive manufacturing by linking thermal-fluid and mechanical models, Materials & Design, 196; 109185, 2020. doi.org/10.1016/j.matdes.2020.109185

104-20   Yunfu Tian, Lijun Yang, Dejin Zhao, Yiming Huang, Jiajing Pan, Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel, Journal of Manufacturing Processes, 58; pp. 964-974, 2020. doi.org/10.1016/j.jmapro.2020.09.002

100-20   Raphaël Comminal, Sina Jafarzadeh, Marcin Serdeczny, Jon Spangenberg, Estimations of interlayer contacts in extrusion additive manufacturing using a CFD model, International Conference on Additive Manufacturing in Products and Applications (AMPA), Zurich, Switzerland, September 1-3: Industrializing Additive Manufacturing, pp. 241-250, 2020. doi.org/10.1007/978-3-030-54334-1_17

97-20   Paree Allu, CFD simulation for metal Additive Manufacturing: Applications in laser- and sinter-based processes, Metal AM, 6.4; pp. 151-158, 2020.

95-20   Yufan Zhao, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting, Additive Manufacturing, 36; 101559, 2020. doi.org/10.1016/j.addma.2020.101559

94-20   Yan Zeng, David Himmler, Peter Randelzhofer, Carolin Körner, Processing of in situ Al3Ti/Al composites by advanced high shear technology: influence of mixing speed, The International Journal of Advanced Manufacturing Technology, 110; pp. 1589-1599, 2020. doi.org/10.1007/s00170-020-05956-w

93-20   H. Hamed Zargari, K. Ito, M. Kumar, A. Sharma, Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements, International Journal of Heat and Mass Transfer, 161; 120310, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.120310

90-20   Guangxi Zhao, Jun Du, Zhengying Wei, Siyuan Xu, Ruwei Geng, Numerical analysis of aluminum alloy fused coating process, Journal of the Brazilian Society of Mechanical Science and Engineering, 42; 483, 2020. doi.org/10.1007/s40430-020-02569-y

85-20   Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, Investigation of metal mixing in laser keyhold welding of dissimilar metals, Materials & Design, 195; 109056, 2020. doi.org/10.1016/j.matdes.2020.109056

82-20   Pan Lu, Zhang Cheng-Lin, Wang Liang, Liu Tong, Liu Jiang-lin, Molten pool structure, temperature and velocity flow in selective laser melting AlCu5MnCdVA alloy, Materials Research Express, 7; 086516, 2020. doi.org/10.1088/2053-1591/abadcf

80-20   Yujie Cui, Yufan Zhao, Haruko Numata, Huakang Bian, Kimio Wako, Kento Yamanaka, Kenta Aoyagi, Chen Zhang, Akihiko Chiba, Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder, Powder Technology, 376; pp. 363-372, 2020. doi.org/10.1016/j.powtec.2020.08.027

78-20   F.Q. Liu, L. Wei, S.Q. Shi, H.L. Wei, On the varieties of build features during multi-layer laser directed energy deposition, Additive Manufacturing, 36; 101491, 2020. doi.org/10.1016/j.addma.2020.101491

75-20   Nannan Chen, Zixuan Wan, Hui-Ping Wang, Jingjing Li, Joshua Solomon, Blair E. Carlson, Effect of Al single bond Si coating on laser spot welding of press hardened steel and process improvement with annular stirring, Materials & Design, 195; 108986, 2020. doi.org/10.1016/j.matdes.2020.108986

72-20   Yujie Cui, Kenta Aoyagi, Yufan Zhao, Kenta Yamanaka, Yuichiro Hayasaka, Yuichiro Koizumi, Tadashi Fujieda, Akihiko Chiba, Manufacturing of a nanosized TiB strengthened Ti-based alloy via electron beam powder bed fusion, Additive Manufacturing, 36; 101472, 2020. doi.org/10.1016/j.addma.2020.101472

64-20   Dong-Rong Liu, Shuhao Wang, Wentao Yan, Grain structure evolution in transition-mode melting in direct energy deposition, Materials & Design, 194; 108919, 2020. doi.org/10.1016/j.matdes.2020.108919

61-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Influence of processing parameters on the layer geometry in 3D concrete printing: Experiments and modelling, 2nd RILEM International Conference on Concrete and Digital Fabrication, RILEM Bookseries, 28; pp. 852-862, 2020. doi.org/10.1007/978-3-030-49916-7_83

60-20   Marcin P. Serdeczny, Raphaël Comminal, Md. Tusher Mollah, David B. Pedersen, Jon Spangenberg, Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing, Additive Manufacturing, 36; 101454, 2020. doi.org/10.1016/j.addma.2020.101454

58-20   H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Mechanistic models for additive manufacturing of metallic components, Progress in Materials Science, preprint, 2020. doi.org/10.1016/j.pmatsci.2020.100703

55-20   Masoud Mohammadpour, Experimental study and numerical simulation of heat transfer and fluid flow in laser welded and brazed joints, Thesis, Southern Methodist University, Dallas, TX, US; Available in Mechanical Engineering Research Theses and Dissertations, 24, 2020.

48-20   Masoud Mohammadpour, Baixuan Yang, Hui-Ping Wang, John Forrest, Michael Poss, Blair Carlson, Radovan Kovacevica, Influence of laser beam inclination angle on galvanized steel laser braze quality, Optics and Laser Technology, 129; 106303, 2020. doi.org/10.1016/j.optlastec.2020.106303

34-20   Binqi Liu, Gang Fang, Liping Lei, Wei Liu, A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM), Applied Mathematical Modeling, 79; pp. 506-520, 2020. doi.org/10.1016/j.apm.2019.10.049

27-20   Xuesong Gao, Guilherme Abreu Farira, Wei Zhang and Kevin Wheeler, Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing, Computational Materials Science, 179, art. no. 109648, 2020. doi.org/10.1016/j.commatsci.2020.109648

26-20   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka and Akihiko Chiba, Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing, Journal of Materials Science & Technology, 50, pp. 162-170, 2020. doi.org/10.1016/j.jmst.2019.11.040

21-20   Won-Ik Cho and Peer Woizeschke, Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal, International Journal of Heat and Mass Transfer, 152, art. no. 119528, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.119528

06-20  Wei Xing, Di Ouyang, Zhen Chen and Lin Liu, Effect of energy density on defect evolution in 3D printed Zr-based metallic glasses by selective laser melting, Science China Physics, Mechanics & Astronomy, 63, art. no. 226111, 2020. doi.org/10.1007/s11433-019-1485-8

04-20   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-20   Dongsheng Wu, Shinichi Tashiro, Ziang Wu, Kazufumi Nomura, Xueming Hua, and Manabu Tanaka, Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation, International Journal of Heat and Mass Transfer, 147, art. no. 118921, 2020. doi.org/10.1016/j.ijheatmasstransfer.2019.118921

01-20   Xiang Huang, Siying Lin, Zhenxiang Bu, Xiaolong Lin, Weijin Yi, Zhihong Lin, Peiqin Xie, and Lingyun Wang, Research on nozzle and needle combination for high frequency piezostack-driven dispenser, International Journal of Adhesion and Adhesives, 96, 2020. doi.org/10.1016/j.ijadhadh.2019.102453

88-19   Bo Cheng and Charles Tuffile, Numerical study of porosity formation with implementation of laser multiple reflection in selective laser melting, Proceedings Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing, ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, Pennsylvania, USA, June 10-14, 2019. doi.org/10.1115/MSEC2019-2891

87-19   Shuhao Wang, Lida Zhu, Jerry Ying His Fuh, Haiquan Zhang, and Wentao Yan, Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition, Optics and Lasers in Engineering, 127:105950, 2019. doi.org/10.1016/j.optlaseng.2019.105950

78-19   Bo Cheng, Lukas Loeber, Hannes Willeck, Udo Hartel, and Charles Tuffile, Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion, Journal of Materials Engineering and Performance, 28:11, 6565-6578, 2019. doi.org/10.1007/s11665-019-04435-y

77-19   David Souders, Pareekshith Allu, Anurag Chandorkar, and Ruendy Castillo, Application of computational fluid dynamics in developing process parameters for additive manufacturing, Additive Manufacturing Journal, 9th International Conference on 3D Printing and Additive Manufacturing Technologies (AM 2019), Bangalore, India, September 7-9, 2019.

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

73-19   Baohua Chang, Zhang Yuan, Hao Cheng, Haigang Li, Dong Du 1, and Jiguo Shan, A study on the influences of welding position on the keyhole and molten pool behavior in laser welding of a titanium alloy, Metals, 9:1082, 2019. doi.org/10.3390/met9101082

57-19     Shengjie Deng, Hui-Ping Wang, Fenggui Lu, Joshua Solomon, and Blair E. Carlson, Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels, International Journal of Heat and Mass Transfer, Vol. 140, pp. 269-280, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.06.009

53-19     Mohamad Bayat, Aditi Thanki, Sankhya Mohanty, Ann Witvrouw, Shoufeng Yang, Jesper Thorborg, Niels Skat Tieldje, and Jesper Henri Hattel, Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Additive Manufacturing, Vol. 30, 2019. doi.org/10.1016/j.addma.2019.100835

51-19     P. Ninpetch, P. Kowitwarangkul, S. Mahathanabodee, R. Tongsri, and P. Ratanadecho, Thermal and melting track simulations of laser powder bed fusion (L-PBF), International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012030

46-19     Hongze Wang and Yu Zou, Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.118473

45-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, and Akihiko Chiba, Manipulating local heat accumulation towards controlled quality and microstructure of a Co-Cr-Mo alloy in powder bed fusion with electron beam, Materials Letters, Vol. 254, pp. 269-272, 2019. doi.org/10.1016/j.matlet.2019.07.078

44-19     Guoxiang Xu, Lin Li, Houxiao Wang, Pengfei Li, Qinghu Guo, Qingxian Hu, and Baoshuai Du, Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position, Optics & Laser Technology, Vol. 119, 2019. doi.org/10.1016/j.optlastec.2019.105667

38-19     Subin Shrestha and Y. Kevin Chou, A numerical study on the keyhole formation during laser powder bed fusion process, Journal of Manufacturing Science and Engineering, Vol. 141, No. 10, 2019. doi.org/10.1115/1.4044100

34-19     Dae-Won Cho, Jin-Hyeong Park, and Hyeong-Soon Moon, A study on molten pool behavior in the one pulse one drop GMAW process using computational fluid dynamics, International Journal of Heat and Mass Transfer, Vol. 139, pp. 848-859, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.038

30-19     Mohamad Bayat, Sankhya Mohanty, and Jesper Henri Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF, International Journal of Heat and Mass Transfer, Vol. 139, pp. 95-114, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

29-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka, and Akihiko Chiba, Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy, Materialia, Vol. 6, 2019. doi.org/10.1016/j.mtla.2019.100346

28-19     Pareekshith Allu, Computational fluid dynamics modeling in additive manufacturing processes, The Minerals, Metals & Materials Society (TMS) 148th Annual Meeting & Exhibition, San Antonio, Texas, USA, March 10-14, 2019.

24-19     Simulation Software: Use, Advantages & Limitations, The Additive Manufacturing and Welding Magazine, Vol. 2, No. 2, 2019

22-19     Hunchul Jeong, Kyungbae Park, Sungjin Baek, and Jungho Cho, Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis, International Journal of Heat and Mass Transfer, Vol. 138, pp. 729-737, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.04.089

07-19   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Numerical analysis of arc driving forces and temperature distribution in pulsed TIG welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, No. 60, 2019. doi.org/10.1007/s40430-018-1563-0

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

03-19   Dongsheng Wu, Anh Van Nguyen, Shinichi Tashiro, Xueming Hua and Manabu Tanaka, Elucidation of the weld pool convection and keyhole formation mechanism in the keyhold plasma arc welding, International Journal of Heat and Mass Transfer, Vol. 131, pp. 920-931, 2019. doi.org/10.1016/j.ijheatmasstransfer.2018.11.108

97-18   Wentao Yan, Ya Qian, Wenjun Ge, Stephen Lin, Wing Kam Liu, Feng Lin, Gregory J. Wagner, Meso-scale modeling of multiple-layer fabrication process in Selective Electron Beam Melting: Inter-layer/track voids formation, Materials & Design, 2018. doi.org/10.1016/j.matdes.2017.12.031

84-18   Bo Cheng, Xiaobai Li, Charles Tuffile, Alexander Ilin, Hannes Willeck and Udo Hartel, Multi-physics modeling of single track scanning in selective laser melting: Powder compaction effect, Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, pp. 1887-1902, 2018.

81-18 Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka and Akihiko Chiba, Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Additive Manufacturing, Vol. 26, pp. 202-214, 2019. doi.org/10.1016/j.addma.2018.12.002

77-18   Jun Du and Zhengying Wei, Numerical investigation of thermocapillary-induced deposited shape in fused-coating additive manufacturing process of aluminum alloy, Journal of Physics Communications, Vol. 2, No. 11, 2018. doi.org/10.1088/2399-6528/aaedc7

76-18   Yu Xiang, Shuzhe Zhang, Zhengying We, Junfeng Li, Pei Wei, Zhen Chen, Lixiang Yang and Lihao Jiang, Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V, Applied Physics A, 124:685, 2018. doi.org/10.1007/s00339-018-2056-9

74-18   Paree Allu, CFD simulations for laser welding of Al Alloys, Proceedings, Die Casting Congress & Exposition, Indianapolis, IN, October 15-17, 2018.

72-18   Hunchul Jeong, Kyungbae Park, Sungjin Baek, Dong-Yoon Kim, Moon-Jin Kang and Jungho Cho, Three-dimensional numerical analysis of weld pool in GMAW with fillet joint, International Journal of Precision Engineering and Manufacturing, Vol. 19, No. 8, pp. 1171-1177, 2018. doi.org/10.1007/s12541-018-0138-4

60-18   R.W. Geng, J. Du, Z.Y. Wei and G.X. Zhao, An adaptive-domain-growth method for phase field simulation of dendrite growth in arc preheated fused-coating additive manufacturing, IOP Conference Series: Journal of Physics: Conference Series 1063, 012077, 2018. doi.org/10.1088/1742-6596/1063/1/012077 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012077/pdf and in shared drive)

59-18   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Coupling analysis of molten pool during fused coating process with arc preheating, IOP Conference Series: Journal of Physics: Conference Series 1063, 012076, 2018. doi.org/10.1088/1742-6596/1063/1/012076 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012076/pdf and in shared drive)

58-18   Siyuan Xu, Zhengying Wei, Jun Du, Guangxi Zhao and Wei Liu, Numerical simulation and analysis of metal fused coating forming, IOP Conference Series: Journal of Physics: Conference Series 1063, 012075, 2018. doi.org/10.1088/1742-6596/1063/1/012075

55-18   Jason Cheon, Jin-Young Yoon, Cheolhee Kim and Suck-Joo Na, A study on transient flow characteristic in friction stir welding with realtime interface tracking by direct surface calculation, Journal of Materials Processing Tech., vol. 255, pp. 621-634, 2018.

54-18   V. Sukhotskiy, P. Vishnoi, I. H. Karampelas, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic drop-on-demand liquid metal additive manufacturing: System overview and modeling, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 155, 2018. doi.org/10.11159/ffhmt18.155

52-18   Michael Hilbinger, Claudia Stadelmann, Matthias List and Robert F. Singer, Temconex® – Kontinuierliche Pulverextrusion: Verbessertes Verständnis mit Hilfe der numerischen Simulation, Hochleistungsmetalle und Prozesse für den Leichtbau der Zukunft, Tagungsband 10. Ranshofener Leichtmetalltage, 13-14 Juni 2018, Linz, pp. 175-186, 2018.

38-18   Zhen Chen, Yu Xiang, Zhengying Wei, Pei Wei, Bingheng Lu, Lijuan Zhang and Jun Du, Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification, Applied Physics A, vol. 124, pp. 313, 2018. doi.org/10.1007/s00339-018-1737-8

19-18   Chenxiao Zhu, Jason Cheon, Xinhua Tang, Suck-Joo Na, and Haichao Cui, Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy, International Journal of Heat and Mass Transfer, vol. 126:A, pp.1206-1221, 2018. doi.org/10.1016/j.ijheatmasstransfer.2018.05.132

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

09-18   The Furlani Research Group, Magnetohydrodynamic Liquid Metal 3D Printing, Department of Chemical and Biological Engineering, © University at Buffalo, May 2018.

08-18   Benjamin Himmel, Dominik Rumschöttel and Wolfram Volk, Thermal process simulation of droplet based metal printing with aluminium, Production Engineering, March 2018 © German Academic Society for Production Engineering (WGP) 2018.

07-18   Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba and Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Tech. 254 (2018) 72–78.

60-17   Pei Wei, Zhengying Wei, Zhen Chen, Yuyang He and Jun Du, Thermal behavior in single track during selective laser melting of AlSi10Mg powder, Applied Physics A: Materials Science & Processing, 123:604, 2017. doi.org/10.1007/z00339-017-1194-9

51-17   Koichi Ishizaka, Keijiro Saitoh, Eisaku Ito, Masanori Yuri, and Junichiro Masada, Key Technologies for 1700°C Class Ultra High Temperature Gas Turbine, Mitsubishi Heavy Industries Technical Review, vol. 54, no. 3, 2017.

49-17   Yu-Che Wu, Weng-Sing Hwang, Cheng-Hung San, Chih-Hsiang Chang and Huey-Jiuan Lin, Parametric study of surface morphology for selective laser melting on Ti6Al4V powder bed with numerical and experimental methods, International Journal of Material Forming, © Springer-Verlag France SAS, part of Springer Nature 2017. doi.org/10.1007/s12289-017-1391-2.

37-17   V. Sukhotskiy, I. H. Karampelas, G. Garg, A. Verma, M. Tong, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic Drop-on-Demand Liquid Metal 3D Printing, Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

15-17   I.H. Karampelas, S. Vader, Z. Vader, V. Sukhotskiy, A. Verma, G. Garg, M. Tong and E.P. Furlani, Drop-on-Demand 3D Metal Printing, Informatics, Electronics and Microsystems TechConnect Briefs 2017, Vol. 4

14-17   Jason Cheon and Suck-Joo Na, Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis, International Journal of Mechanical Sciences 131–132 (2017) 37–51.

91-16   Y. S. Lee and D. F. Farson, Surface tension-powered build dimension control in laser additive manufacturing process, Int J Adv Manuf Technol (2016) 85:1035–1044, doi.org/10.1007/s00170-015-7974-5.

84-16   Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer 108 (2017) 244–256, Available online December 2016.

68-16   Dongsheng Wu, Xueming Hua, Dingjian Ye and Fang Li, Understanding of humping formation and suppression mechanisms using the numerical simulation, International Journal of Heat and Mass Transfer, Volume 104, January 2017, Pages 634–643, Published online 2016.

39-16   Chien-Hsun Wang, Ho-Lin Tsai, Yu-Che Wu and Weng-Sing Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, IOP Publishing, J. Micromech. Microeng. 26 (2016) 095012 (14pp), doi: 10.1088/0960-1317/26/9/095012, July 8, 2016

29-16   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Advances in Magnetohydrodynamic Liquid Metal Jet Printing, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

26-16   Y.S. Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, S2214-8604(16)30087-2, doi.org/10.1016/j.addma.2016.05.003, ADDMA 86.

123-15   Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser welding repair for single crystal blades, Proceedings of International Gas Turbine Congress, pp. 1354-1358, 2015.

116-15   Yousub Lee, Simulation of Laser Additive Manufacturing and its Applications, Ph.D. Thesis: Graduate Program in Welding Engineering, The Ohio State University, 2015, Copyright by Yousub Lee 2015

103-15   Ligang Wu, Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, CFD Simulations of GMA Welding of Horizontal Fillet Joints based on Coordinate Rotation of Arc Models, Journal of Materials Processing Technology, Available online December 29, 2015

96-15   Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, Thermal metallurgical analysis of GMA welded AH36 steel using CFD – FEM framework, Materials & Design, Volume 91, February 5 2016, Pages 230-241, published online November 2015

86-15   Yousub Lee and Dave F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing, J. Laser Appl. 28, 012006 (2016). doi: 10.2351/1.4935711, published online 2015.

63-15   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Magnetohydrodynamic Liquid Metal Jet Printing, TechConnect World Innovation Conference & Expo, Washington, D.C., June 14-17, 2015

46-15   Adwaith Gupta, 3D Printing Multi-Material, Single Printhead Simulation, Advanced Qualification of Additive Manufacturing Materials Workshop, July 20 – 21, 2015, Santa Fe, NM

25-15   Dae-Won Cho and Suck-Joo Na, Molten pool behaviors for second pass V-groove GMAW, International Journal of Heat and Mass Transfer 88 (2015) 945–956.

21-15   Jungho Cho, Dave F. Farson, Kendall J. Hollis and John O. Milewski, Numerical analysis of weld pool oscillation in laser welding, Journal of Mechanical Science and Technology 29 (4) (2015) 1715~1722, www.springerlink.com/content/1738-494x, doi.org/10.1007/s12206-015-0344-2.

82-14  Yousub Lee, Mark Nordin, Sudarsanam Suresh Babu, and Dave F. Farson, Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, Metallurgical and Materials Transactions B, August 2014, Volume 45, Issue 4, pp 1520-1529

59-14   Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Influence of Fluid Convection on Weld Pool Formation in Laser Cladding, Welding Research/ August 2014, VOL. 93

18-14  L.J. Zhang, J.X. Zhang, A. Gumenyuk, M. Rethmeier, and S.J. Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2014.03.016.

36-13  Dae-Won Cho,Woo-Hyun Song, Min-Hyun Cho, and Suck-Joo Na, Analysis of Submerged Arc Welding Process by Three-Dimensional Computational Fluid Dynamics Simulations, Journal of Materials Processing Technology, 2013. doi.org/10.1016/j.jmatprotec.2013.06.017

12-13 D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, A study on V-groove GMAW for various welding positions, Journal of Materials Processing Technology, April 2013, doi.org/10.1016/j.jmatprotec.2013.02.015.

01-13  Dae-Won Cho & Suck-Joo Na & Min-Hyun Cho & Jong-Sub Lee, Simulations of weld pool dynamics in V-groove GTA and GMA welding, Weld World, doi.org/10.1007/s40194-012-0017-z, © International Institute of Welding 2013.

63-12  D.W. Cho, S.H. Lee, S.J. Na, Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding, Journal of Materials Processing Technology, doi.org/10.1016/j.jmatprotec.2012.09.024, September 2012.

77-10  Lim, Y. C.; Yu, X.; Cho, J. H.; et al., Effect of magnetic stirring on grain structure refinement Part 1-Autogenous nickel alloy welds, Science and Technology of Welding and Joining, Volume: 15 Issue: 7, Pages: 583-589, doi.org/10.1179/136217110X12720264008277, October 2010

18-10 K Saida, H Ohnishi, K Nishimoto, Fluxless laser brazing of aluminium alloy to galvanized steel using a tandem beam–dissimilar laser brazing of aluminium alloy and steels, Welding International, 2010

58-09  Cho, Jung-Ho; Farson, Dave F.; Milewski, John O.; et al., Weld pool flows during initial stages of keyhole formation in laser welding, Journal of Physics D-Applied Physics, Volume: 42 Issue: 17 Article Number: 175502 ; doi.org/10.1088/0022-3727/42/17/175502, September 2009

57-09  Lim, Y. C.; Farson, D. F.; Cho, M. H.; et al., Stationary GMAW-P weld metal deposit spreading, Science and Technology of Welding and Joining, Volume: 14 Issue: 7 ;Pages: 626-635, doi.org/10.1179/136217109X441173, October 2009

1-09 J.-H. Cho and S.-J. Na, Three-Dimensional Analysis of Molten Pool in GMA-Laser Hybrid Welding, Welding Journal, February 2009, Vol. 88

52-07   Huey-Jiuan Lin and Wei-Kuo Chang, Design of a sheet forming apparatus for overflow fusion process by numerical simulation, Journal of Non-Crystalline Solids 353 (2007) 2817–2825.

50-07  Cho, Min Hyun; Farson, Dave F., Understanding bead hump formation in gas metal arc welding using a numerical simulation, Metallurgical and Mateials Transactions B-Process Metallurgy and Materials Processing Science, Volume: 38, Issue: 2, Pages: 305-319, doi.org/10.1007/s11663-007-9034-5, April 2007

49-07  Cho, M. H.; Farson, D. F., Simulation study of a hybrid process for the prevention of weld bead hump formation, Welding Journal Volume: 86, Issue: 9, Pages: 253S-262S, September 2007

48-07  Cho, M. H.; Farson, D. F.; Lim, Y. C.; et al., Hybrid laser/arc welding process for controlling bead profile, Science and Technology of Welding and Joining, Volume: 12 Issue: 8, Pages: 677-688, doi.org/10.1179/174329307X236878, November 2007

47-07   Min Hyun Cho, Dave F. Farson, Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation, Metallurgical and Materials Transactions B, Volume 38, Issue 2, pp 305-319, April 2007

36-06  Cho, M. H.; Lim, Y. C.; Farson, D. F., Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape, Welding Journal, Volume: 85 Issue: 12, Pages: 271S-283S, December 2006

Sturgeon Navigate Fish Ladder

Sturgeon Navigate Fish Ladder

 

This material was provided by Jean-François Mercier, ing., Manager, hydraulics and hydrology at AECOM Tecsult inc.

AECOM Tecsult inc.은 FLOW-3D를 이용하여 물리적 모델링을 사용하지 않고 철갑상어가 Fish ladder를 탐색할 수 있는 물고기 사다리 설계를 개선했습니다. 실험은 현장구현의 제한과 비용때문에 배제되었고 FLOW-3D의 수치 모델링 결과로 정확한 정보를 제공하는 것이 중요했습니다.

Fish ladder는 James Bay, Quebec, Canada의 이스트 메인 강에 2005~2006년사이에 지어졌습니다. 2006년과 2007년에 실시된 후속 연구는, 다른 종의 물고기들이 이 사다리를 오를 수 있었던 반면, 철갑상어는 실패한 경우를 보여주었습니다. 기존의 Fish ladder에서 두 가지의 문제가 발견되었습니다. AECOM Tecsult inc에서의 물고기의 낮은 어획과 물의 빠른 속도가 문제가 되었습니다. 엔지니어들은 이러한 문제에 대한 해결책을 찾기 위해 FLOW-3D로 수치 모델링 연구를 수행하기로 결정했습니다.

 

Redesigning the fish ladder                          

AECOMTecsultinc. 엔지니어들은 물고기 사다리에 대한 최적의 설계 변경을 결정하기 위해 세가지 모델을 실행했습니다.

  • 유인을 극대화할 수 있는 강과 물고기 통로 사이의 흐름 분포를 평가하는 지역모델. 산란기 동안의 정상적인 조건에서 물고기 통로는 22m3/s의 유량흐름이 나타난다.
  • 슬롯 및 디플렉터의 개조를 위한 로컬 모델
  • 전체 길이에 걸쳐 수위 균형 유지를 위한 통로모델

Fish ladder specifications (before renovation)

Flow in fish passage before design optimization work

  • Length = 150 m
  • 17 basins
  • Drop = 3 m
  • Peak velocities of 2.6 m/s

Figure 1 – 45% of flow in fish passage shows velocities that are too high for the sturgeon to navigate

Figure 2 – 10% of flow in fish passage shows below the 1.8 m/s criteria required for sturgeon to navigate

Figure 3 – Tests were made with different additions of blocks (pink) and deflector plates (black) to find an optimum configuration

 

Validation of the numeric model

CFD모델을 실행한 후 엔지니어는 실험 데이터에 대해 숫자 결과를 검증했습니다. Flow-3D결과는 표면 높이를 비교하는 수문 기록과 비교되었습니다. 124개 중 80%가 유속이 일치했습니다.  동일한 위치 점에서 일치하지 않는 곳은 난류 영역이었습니다.

Velocity comparisons of measured data and FLOW-3D at specific locations

 

Meeting the criteria — modifications to flow rates

엔지니어들은 물고기가 곧장 바다로 가지 않도록 흐름을 15~20%로 줄이기 위해 Fish ladder를 개조하기로 결정했습니다. 그림 2는 그림과 비교하여 물고기 통로의 10% 유량으로 현저한 속도 감소를 보여 줍니다. 물고기 통로에 흐름의 45%를 가진 1. 그림 3은 흐름 속도를 늦추기 위한 블록 및 디플렉터를 보여 줍니다. 설정된 기준의 최대 속도는 1.8m/s 였습니다. 전체 흐름 조건은 그림 1과 2에서와 같이 모델로 잘 표현됩니다.

 

Conclusion

AECOM Tecsult inc 엔지니어들은 그들의 숫자 모델의 정확성을 검증할 수 있었고 FLOW-3D로부터 얻은 정보를 사용하였고 물고기 통로를 재설계하여 테스트와 관련된 높은 비용을 피할 수 있었습니다. 2008년 여름에 있었던 후속 연구에 따르면 철갑 상어가 높은 유량에도 불구하고 성공적으로 물고기 통로를 통과하고 있다는 것을 보여 주었습니다.

 

 

Sand Core Making / 모래 코어 제작

Sand Core Making / 모래 코어 제작

This article on sand core making was contributed by Dr. Matthias Todte and Frieder Semler, Flow Science Deutschland GmbH.

주조 품질에 대한 수요가 증가하고 고성능 구성 요소에 대한 박막형 구조로의 추세로 인해 품질에 대한 요구가 강화되었으며 동시에 모래 코어의 기하학적 복잡성도 증가했습니다. 시뮬레이션은 코어 박스의 설계를 최적화하는 데 도움이 되며, 저온 및 고온 코어 박스를 위한 유기 및 무기 바인더 시스템의 촬영, 가스 처리 및 경화를 위한 강력한 공정 조건을 확립합니다.

기체 주입, 건조 및 템퍼링의 기본 프로세스에 대한 논의는 실험적 검증을 거쳐야 합니다. 그런 다음 주물 결함을 방지하기 위해 코어 사격 공정 시뮬레이션이 필수적이었는지를 보여 줍니다. 마지막으로 코어 박스의 마모와 수명을 예측하는 수치모델을 개발한 연구 프로젝트를 소개합니다.

Water jacket core

Simulation of sand core making processes

Shooting

Shooting Simulation에서 모래로 채워진 타격 헤드가 공기를 통해 가압되고, 이로 인해 공기/모래/실린더/바인더 혼합물로 구성된 “유체”가 생성됩니다. 이 유체는 분사 노즐을 통해 코어 박스로 흐르고 배출 노즐을 통해 상자 밖으로 공기가 배출됩니다. Shooting Simulation의 목적은 코어 박스에 있는 모래의 밀도분포를 높히고 균일하게 하는 것입니다.

촬영 과정에서 모래로 채워진 블로 헤드가 공기를 통해 가압되어 공기/모래/바인더 혼합물로 구성된 “유체”가 생성됩니다. 이 유체는 블로우 헤드에서 분사 노즐을 통해 코어 박스로 흘러 나와 공기를 환기 노즐을 통해 박스 밖으로 밀어냅니다. Shooting 의 목표는 가능한 한 높고 균일하게 코어 박스에 있는 모래의 밀도 분포를 달성하는 것입니다. 변경할 수 있는 프로세스 매개 변수는 분사 압력과 발사 및 배기 노즐의 수와 위치입니다. 시간과 비용을 절약하기 위해 코어의 품질을 저하시키지 않고 가능한 한 노즐을 적게 사용하는 것이 바람직합니다.

Sand density distribution

Sand density distribution after the shooting

시뮬레이션을 사용하여 다양한 사격 및 환기 노즐 구성과 그 구성이 결과 모래 밀도 분포에 미치는 영향을 분석할 수 있습니다. 엔지니어는 속도와 전단 응력을 예측하여 코어 상자의 마모 및 이에 따른 수명에 대한 결론을 도출할 수 있습니다.

Gassing

유기 바인더 시스템에서는 모래가 유기 수지로 코팅됩니다. 이 수지의 경화는 보통 아민이라는 기체에 의해 이루어지는데, 이것은 일반적으로 분사에 사용된 노즐을 통해 주입됩니다. 이 가스는 코어가 모든 부분에서 경화되도록 하기위해 모든부분에 도달할 만큼 길어야 한다. 반면에, 유독 가스를 줄이기 위해서는 가스 배출이 필요이상으로 길어서는 안됩니다.

유기 바인더 시스템에서는 모래가 유기 레진으로 코팅되어 있습니다. 이 레진의 경화는 보통 아민 가스 작용제에 의해 이루어지는데, 아민은 주로 인젝션에 사용되는 노즐을 통해 분사됩니다. 이 가스 주입은 가스가 코어의 모든 부분에 도달할 수 있도록 충분히 길어야 합니다. 코어가 모든 곳에서 경화되도록 하기 위해서입니다. 반면, 가스 배출은 독성 가스를 절약하기 위해 필요 이상으로 길지 않아야 합니다.

Amine concentration core

Amine concentration in a core

시뮬레이션은 시간 경과에 따른 코어의 아민 농도 분포를 예측하며, 이는 코어의 경도와 동일하다. 이를 통해 엔지니어들은 가스 생성 공정에 대한 합리적인 시간 규모를 결정할 수 있습니다.

Drying

주조물의 수가 증가하는 경우, 독성이 있는 유기적 시스템 대신 무기, 수성-기반 바인더 시스템이 사용됩니다. 배기 가스 배출이 없는 코어 생산 공정의 이점 외에도 이 시스템은 주조 공정 중 코어 가스 생산량을 줄여 주조 품질을 향상시킵니다.

모래 코어의 경화를 위해서는 일반적으로 뜨거운 공기가 주입되어 이루어지는 코어에서 물을 제거해야 합니다. 이러한 바인더 시스템의 경우, 코어의 잔류 수분은 경도에 대한 측정 값입니다. 시뮬레이션은 코어를 통과하는 공기의 흐름뿐만 아니라 물이나 증기의 증발과 응축, 뜨거운 공기와 함께 증기의 이동을 모델링 해야 합니다.

아래 이미지는 예측된 잔류 수분과 실제 코어의 강도(또는 손상)의 상관 관계를 보여 줍니다.

Correlation of predicted residual moisture and the damage of a real core

Tempering of core boxes                                                                    

핫 박스 및 크로닝과 같은 특정 코어 제조 공정에서는 가열된 코어 박스에 있는 바인더의 열 반응을 통해 코어의 경화가 이루어집니다. 상자의 가열은 가열 채널과 전기 가열 요소를 사용하여 수행됩니다. 좋은 코어 품질을 위해서는 코어 상자의 균일한 온도 분포가 바람직합니다. 시뮬레이션은 특정 가열 소자 구성에 대한 온도 분포를 시간 경과에 따른 예측하고 발열의 균일성과 원하는 온도에 도달하는 데 필요한 시간을 표시합니다.

Heated core box

Temperature distribution in a heated core box

Validation of the core blowing model

Experiments and simulations for a water jacket core

핵심 shooting 실험은 TU 뮌헨의 파운드리 연구소에서 실시되었습니다. shooting  시간과 압력, 흡입구와 환기구의 수 등의 공정 매개 변수들이 다양하였으며 이들 매개 변수들이 분석된 코어 품질에 미치는 영향이 다양하였다. 실제 코어에서 발생한 결점은 시뮬레이션에서 모래 밀도가 낮은 영역과 상관 관계가 있습니다(아래 그림 참조).

Core blowing validation

Core defects compared to simulated density distribution

Application of the core blowing model : 리어 액슬 하우징의 주조 품질 개선

품질 보증에서 리어 액슬 하우징의 주물 결함을 감지했습니다(아래 그림 참조). 그 결함들은 중심부의 표면 결함의 결과인 것처럼 보였다. 이 가설을 뒷받침하고 코어 표면 품질을 개선하기 위한 조치를 권고하기 위해 시뮬레이션이 수행되었다. 마지막으로, 코어 박스 환기구의 다른 구성(숫자 및 위치)을 통해 주조 품질을 개선할 수 있었습니다.

Casting defects of a rear axle housing

Casting defects of a rear axle housing

Validation surface defects

Correlation of surface defects and simulated density distribution

Research project: Prediction of the lifetime of core boxes

코어 박스는 대부분 폴리우레탄 수지 코팅의 알루미늄으로 제작된다. 사격 과정에서 모래에 의한 코어 박스 표면의 침식은 코어 박스의 수명을 제한하는 요인이다. 프로젝트 목표는 표면 처리가 수명에 미치는 영향을 이해하고 단일 시뮬레이션에서 다수의 샷에 의해 발생하는 침식을 예측할 수 있는 연산 모델을 개발하는 침식 프로세스를 분석하는 것이었다.

일반적인 코어 상자(아래 참조)는 다른 모양의 삽입물로 제작되었습니다.

Core box with different inserts

Core box with different inserts

수치 모델은 코어 박스 벽의 압력과 전단력의 공간적, 시간적 통합에 기초하여 부식에 대한 양을 도출한다. 모형에 의해 예측된 침식은 실험 값과 일치했습니다(아래 그림 참조).

Measured and simulated erosion

Comparison of measured and simulated erosion

Core Making

Core Making

FLOW-3D CAST의 모델링 기능을 사용하면 주조 엔지니어가 코어 주입과 건조와 같은 코어 제작 프로세스를 쉽게 시뮬레이션 할 수 있습니다.

Core Shooting

샌드 코어는 모래-공기 혼합물을 주형으로 분사하여 생성됩니다. 주조 엔지니어의 목표는 모래 내의 공기 불순물 유입을 방지하는 것 인데, 이때 사용자는 안정적으로 FLOW-3D CAST의 모델링 기능을 통해 모래가 주입되는 노즐의 개수와 위치 및 공기가 빠져나가는 벤트 노즐의 개수와 위치를 변경하여 최적의 노즐 구성을 얻을 수 있습니다.

Core Drying

코어 건조 모델은 모래가 코어 금형으로 주입된 후 남아 있는 습기의 건조 과정을 계산합니다. 일반적으로 건조는 금형에 있는 동안 코어를 통해 뜨거운 공기를 불어넣음으로써 이루어집니다. 코어의 저온 부분에서 가열, 수분 증발 및 일시적인 습기 응결을 시뮬레이션하여 건조 과정을 최적화할 수 있습니다. 이를 통해 완전한 건조를 보장하는 동시에 공기의 가열 및 배출과 관련된 에너지 비용을 최소화할 수 있습니다.

Core Drying Validation

A comparison made by BMW between simulation and experiment of the drying of an inorganic core.

 

Validations

Validations

금속 주조 설계 과정에서 FLOW-3D CAST의 사용은 회사의 비용 절감 방안을 제시하여 수익성을 개선할 수 있습니다. FLOW-3D CAST 는 엔지니어와 설계자에게 경험과 전문지식을 향상시킬 수 있는 강력한 도구가 될 수 있습니다. 보통 수익성은 비용 절감과 비용 회피에서 찾을 수 있습니다. 지금, 품질과 생산성 문제는 제품개발 단계에서 다양한 시뮬레이션 통해 짧은 공정시간, 낮은 비용으로 해결 할 수 있는 방안을 찾을 수 있습니다. 새로운 개발도구인 FLOW-3D CAST의 효율성은 생산이 시작되기 전에 문제를 해결할 수 있는 방안을 제시하여 생산성을 크게 개선할 수 있습니다.

Ladle Pour

샷 슬리브 공정을 최적화하는 것은 고품질 부품을 확보하는 데 필수적입니다. FLOW-3D CAST의 시뮬레이션 결과와 실제 사례의 비교를 통해, 시뮬레이션을 사용하여 엔지니어가 값 비싼 툴링을 제작하기 전에 설계를 개선하는 방법을 강조합니다. FLOW-3D CAST는 프로세스 전반에 걸쳐 유체의 움직임을 정확하게 포착할 수 있으므로, 엔지니어가 실제 레들 주입 공정에서 신속하게 파악할 수 있습니다. 시뮬레이션은 Nemak Poland Sp. z o.o로부터 제공받았습니다.

Gravity Casting

열전대 데이터를 기반으로 한 실제 충진 재구성과 비교 한 중력 주조 시뮬레이션. Courtesy of XC Engineering and Peugeot PSA.

Foundry: Simulating a Flow Fill Pattern


사형 주조 충진중의 X- 레이 검증

X -레이 결과와 FLOW-3D CAST 시뮬레이션 결과를 나란히 비교합니다. A356 알루미늄 합금으로 사형 주조의 3 차원 충진 색상은 금속의 압력을 나타냅니다. 시뮬레이션 결과는 수직 대칭 평면에 표시됩니다. Modeling of Casting, Welding, and Advanced Solidification Processes VII, London, 1995.

HPDC: Flow Pattern


Short sleeve validation – 시뮬레이션 결과와 주조 부품, Littler Diecast Corporation의 예

Modeling Air Entrapment


디젤 엔진 용 오일 필터 하우징의 X-ray vs. FLOW-3D CAST 검증.

디젤 엔진 용 오일 필터 하우징의 X- 레이 검증, 380 다이캐스팅 합금. 결과는 혼입 된 공기의 비율로 표시됩니다. X- 레이의 상세한 영역은 최대 다공도 농도를 나타냅니다.

HPDC Filling


FLOW-3D 결과를 실제 부품과 비교하는 HPDC 캐스팅 검증

Short Shot Simulation


실제 주조 부품의 유효성 검사. 스냅 샷과 FLOW-3D CAST 시뮬레이션 결과. 왼쪽에서 오른쪽으로 : 변속기 하우징, 오일 팬 및 자동차 부품.

HPDC Air Entrapment Defects


Antrametal에 의한 주조 시뮬레이션 대 실험 결과의 성공적인 비교.

Antmetetal의 고객 검증은 FLOW-3D CAST의 Air Entrapment 모델을 사용하여 실험 결과와 시뮬레이션을 비교 한 결과를 보여줍니다. 세탁기 용 전동 모터의 앞 커버의 HPDC입니다. 공기 관련 결함은 이미지의 색상에 정 성적으로 표시됩니다. FLOW-3D CAST 내의 다른 수치 기능에 의해 포착 된 물리적 공기 포켓 또한 명확하게 표현됩니다.

Core Drying


시뮬레이션과 무기 코어의 건조 실험 사이의 BMW에 의한 비교.

Predicting Die Erosion


캐비테이션으로 인한 다이 침식 영역은 FLOW-3D CAST 결과를 실제 사례와 비교하여 올바르게 배치되었습니다.

Predicting Lost Foam Filling


Lost foam L850 블록 벌크 헤드 슬라이스에 대한 실시간 X-ray 및 FLOW-3D CAST 유동 시뮬레이션 결과의 비교. 시뮬레이션은 GM Powertrain의 예입니다.

Porosity Defects


Porosity due to entrained air

Predicting Shrinkage Porosity


A380 diesel engine block casting

 

조선/해양 분야

Coastal & Maritime

FLOW-3D 는 선박설계, 슬로싱 동역학, 파도에 미치는 영향 및 환기를 포함하여 해안 및 해양 관련 분야에 사용할 수 있는 이상적인 소프트웨어입니다.

자유 표면 유체 역학, 파동 생성, 움직이는 물체, 계선 및 용접 공정과 관련한 FLOW-3D 의 기능은 해양 및 해양 산업에서 CFD 공정을 모델링하는 데 매우 적합한 도구입니다. 해안 응용 분야의 경우  FLOW-3D  해안 응용 분야의 경우 FLOW-3D  는 해안 구조물에 대한 심한 폭풍 및 쓰나미 파동의 세부 사항을 정확하게 예측하고 돌발 홍수 및 중요 구조물 홍수 및 피해 분석에 사용됩니다. 기능은 다음과 같습니다.

  • 자유 표면 – 파동 유체 역학 및 오버 토핑 : 규칙 및 불규칙파 및 파동 스펙트럼 (Pierson Moskowitz, JONSWAP)
  • Seakeeping – slamming, planing, porpoising 및 선체 선체 변위 : 완전히 결합된 선박 및 수중 차량 유체 역학
  • 선체 – Resistance, stability and dynamics: surging, heaving, pitching and rolling motion (response amplitude operators or RAOs)
  • 슬로싱 – LNG / 밸러스트 탱크
  • 해양 공학 – 파동 에너지 변환기
 

해안 응용 분야의 경우, FLOW-3D 는 강력한 폭풍과 쓰나미 현상에 의한 해안 구조물이 받는 영향에 대한 세부 사항 예측, 돌발 홍수에 의한 중요한 시설물에 대한 정확한 피해 분석 등을 위해 사용됩니다.

Mooring Lines, Springs and Ropes

FLOW-3D (계류선 및 스프링 등)의 특수 물체를 다른 움직이는 물체에 부착하면 엔지니어가 선박 런칭, 부유 장애물 역학, 부표, 파도에너지 변환기 등을 정확하게 포착할 수 있습니다.

Welding

FLOW-3D 용접 모듈이 추가되면서 조선업계의 용접분야에서는 다공성 등 용접 결함을 최소화할 수 있어 선체의 품질을 크게 높이는 동시에 생산 시간을 최적화할 수 있습니다.

Coastal & Maritime Case Studies

FLOW-3D 사용자들은 연약한 해안선 보호, 구조물에 대한 파장 시뮬레이션, 선체 설계 최적화, 선박 내 환기 연구 등 해안 및 해양 애플리케이션에 FLOW-3D를 사용합니다.

우리는 보트가 세계 항해를 하면서 마주칠 것 같은 다양한 조건에서 항해를 할 수 있는지를 볼 수 있었습니다. 그리고 속도뿐만 아니라 연료 효율과 안전도 고려하도록 설계를 수정할 수 있었습니다.
– Pete Bethune, skipper of Earthrace

Lateral wave impact in waterWave resultsEarthrace vessel
Validation of Sloshing Simulations in Narrow Tanks / Aerial Landslide Generated Wave Simulations / Earthrace: Speed, Fuel Efficiency and Safety
Wave impact vertical displacementEmerged breakwater accropodeStokes theory horizontal velocity
Wave Impact on Offshore StructuresInteraction Between Waves and BreakwatersWave Forces on Coastal Bridges

기타

Bibliography

Models


관련 기술자료

Interaction between oblique waves and arc-shaped breakwater

Interaction between oblique waves and arc-shaped breakwater: Wave action on the breakwater and wave transformation behind it

XinyuHanaShengDongaYizhiWangbaCollege of Engineering, Ocean University of China, Qingdao, 266100, ChinabShandong Harbour Engineering Group Co., Ltd., Rizhao, 276826, China Highlights Interaction ...
더 보기
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea

Jae-Seol Shim†, Jinah Kim†, Dong-Chul Kim‡, Kiyoung Heo†, Kideok Do†, Sun-Jung Park ‡† Coastal Disaster Research Center,Korea Institute of Ocean ...
더 보기
Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.

ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현

최흥배․엄호식†․박종집․강태욱*, *** ㈜지오시스템리서치 선임, ** ㈜지오시스템리서치 책임, **** 부경대학교 박사 Reproduction of Flood Inundation in Marine City, Busan During the ...
더 보기
A photo of HeMOSU-1.

FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D J Korean Soc Coast Ocean Eng. 2015;27(6):373-381Publication date (electronic) ...
더 보기
Figure 6. Scour depth (in negative value) at different views around pier

Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software

Flow-3D 소프트웨어를 이용한 원형 교각 주변 지역 scour의 3 차원 수치 시뮬레이션 To cite this article: Halah Kais Jalal and ...
더 보기
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics 연구자 : Yu-Ren Chen지도교수 : Dr John R C HsuJune 2012 ...
더 보기
유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수) FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 ...
더 보기
Picture of scoured bed surface

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF FLOW AND SEDIMENT TRANSPORT AROUND A SERIES OF SPUR DIKES

유동 시뮬레이션의 실험적 연구와 일련의 SPUR DIKES 주변의 침전물 수송 byANU ACHARYACopyright © Anu Acharya 2011A Dissertation Submitted to the ...
더 보기
Sketch of a subaerial landslide-induced tsunami wave

NUMERICAL SIMULATION OF THREE-DIMENSIONAL TSUNAMI GENERATION BY SUBAERIAL LANDSLIDES

SUBAERIAL LANDSLIDES에 의한 3 차원 쓰나미 생성의 수치 시뮬레이션 A Thesis by GYEONG-BO KIMSubmitted to the Office of Graduate Studies ...
더 보기
Figure 5. 3D view of scour under square tide conditions (every 300 s).

조수 흐름이 있는 복잡한 교각에서 scour CFD 시뮬레이션

CFD simulation of local scour in complex piers under tidal flow J. A. Vasquez1,2, and B. W. Walsh1,31 Northwest Hydraulic ...
더 보기

표면 장력 / Surface Tension

표면 장력 / Surface Tension

FLOW-3D에 추가 된 최초의 물리 모델 중 하나는 표면 장력이었습니다.

이 모델은 잉크젯, 무중력 환경에서의 액체 연료 거동 및 다양한 MEMS (마이크로 전자 기계 시스템) 장치와 같이 다양한 종류의 응용 분야에서 수년 동안 널리 사용되어 왔습니다. 이 후에 모델의 개선 및 확장에 대한 많은 사용자 요청이 처리되었습니다.
표면 장력에 대해 보다 나은 성능개선을 위해 FLOW-3D 버전 11에 대한 새로운 모델이 개발되었습니다. 이 모델은 계산된 모든 표면 장력의 정확성과 임의 형상의 솔리드 표면을 잡아 당기는 접착력의 정확성을 향상시킵니다. 또한 이 새로운 모델은 다공성 물질의 모세관 압력과 비 균일한 표면 장력으로 인한 접선 표면 장력을 가지고 있습니다.

새로운 모델의 예는 무중력에 포함된 원형 벽을 적시는 단순한 문제입니다.

그림 1은 실린더와 접촉각이 0 도인 물로 채워진 0.25m 직경의 실린더 75 %의 경우를 보여줍니다. 버블은 10 초 전에 벽에서 깨끗하게 분리되어 탱크를 가로 질러 움직입니다. 비 구형은 기포 표면에서 모세관 파가 전파되기 때문입니다.

그림 1. 0.0, 2.5, 5.0 및 10.0 초에 무중력에서 접촉 각이 0 인 실린더 표면의 유체 (적색) 습윤 표면.

다른 예가 그림5에 도시되어 있습니다. 2에서 서로 다른 밀도의 2 개의 초기 구형 방울이 (플롯의 색으로 표시됨) 단단한 벽을 향해 아래로 이동합니다. 플롯의 시간은 0.0, 0.01, 0.02 및 0.03 초입니다. 방울은 직경이 0.0017m, 밀도가 다르지만 표면 장력 계수는 1.872 뉴턴 / m입니다.

그림 2. 접시쪽으로 움직이는 구형의 물방울. 새로운 표면 장력 모델로 시뮬레이션. 색상은 밀도를 나타냅니다.

표면 장력 모델에 대해 자세히 알아보십시오.

Download the Flow Science Report on Surface Tension

Download Surface Tension Validation – Simple Test Problems

FSR_01-12_Air-Entrainment-Report [공기 혼입 모델 분석]

Overview
In free-surface flows the turbulence in the liquid may be sufficient to disturb the surface to the point of entraining air into the flow. This process is important, for example, in water treatment where air is needed to sustain microorganisms for water purification and in rivers and streams for sustaining a healthy fish population. Air entrainment is typically engineered into spillways downstream of hydropower plants to reduce the possibility of cavitation damage at the base of the spillway. Situations where air entrainment is undesirable are in the sprue and runner systems used by metal casters, and in the filling of liquid containers used for consumer products.
The importance of being able to predict the amount and distribution of entrained air at a free liquid surface has led to the development of a unique model in FLOW-3D®. The model has two options. One option, to be used when the volume fraction of entrained air is relatively low, uses a passive scalar variable to record and transport the air volume fraction. This model is passive in that it does not alter the dynamics of the flow.
The second air-entrainment model option is based on a variable density formulation. This model includes the “bulking” of fluid volume by the addition of air and the buoyancy effects associated with entrained air. This dynamically coupled model cannot, however, be used in conjunction with heat transport and natural (thermal) convection.
In addition, when using the variable density formulation, the model can include a relative drifting of air in water, the possible escape of air if it rises to the surface of the water and the removal or addition of air to trapped bubble regions represented as adiabatic bubbles.
The same basic entrainment process is used in both options. It is based on a competition between the stabilizing forces of gravity and surface tension and the destabilizing effects of surface turbulence.
Because turbulence is the main cause of entrainment, a turbulence-transport model must be used in connection with the air-entrainment model. It is recommended that the RNG version of the more traditional k-epsilon turbulence model be employed. All the validation tests reported in this Technical Note were performed using the RNG model.

 

[다운로드]

FSR_01-12_Air-Entrainment-Report

The Sedimentation Scour Model [침전 세굴(쇄굴) 모델]

1. Introduction
The three-dimensional sediment scour model for non-cohesive soils was first introduced to FLOW-3D in Version 8.0 to simulate sediment erosion and deposition (Brethour, 2003). It was coupled with the three-dimensional fluid dynamics and considered entrainment, drifting and settling of sediment grains. In Version 9.4 the model was improved by introducing bedload transport and multiple sediment species (Brethour and Burnham, 2010). Although applications were successfully simulated, a major limitation of the model was the approximate treatment of the interface between the packed and suspended sediments. The packed bed was represented by scalars rather than FAVORTM (Fractional Area Volume Obstacle Representation, the standard treatment for solid components in FLOW-3D). As a result, limited information about the packed bed interface was available. That made accurate calculation of bed shear stress, a critical factor determining the model accuracy, challenging.

In this work, the 3D sediment scour model is mostly redeveloped and rewritten. The model is still fully coupled with fluid flow, allows multiple non-cohesive species and considers entrainment, deposition, bedload transport and suspended load transport. The fundamental difference from the old model is that the packed bed is described by the FAVORTM technique. At each time step, area and volume fractions describing the packed sediments are calculated throughout the domain. In the mesh cells at the bed interface, the location, orientation and area of the interface are calculated and used to determine the bed shear stress, the critical Shields parameter, the erosion rate and the bedload transport rate. Bed shear stress is evaluated using the standard wall function with consideration of bed surface roughness that is related to the median grain size d50. A sub-mesh method is developed and implemented to calculate bedload transport. Computation of erosion considers entrainment and deposition simultaneously in addition to bedload transport.

Furthermore, a shallow-water sediment scour model is developed in this work by adapting the new 3D model. It is coupled with the 2D shallow water flows to calculate depth-averaged properties for both suspended and packed sediments. Its main differences from the 3D model are 1) the settling velocity of grains is calculated using an existing equation instead of the drift-flux approach in the 3D model, and 2) turbulent bed shear stress is calculated using a well-accepted quadratic law rather than the log wall function. The drag coefficient for the bed shear stress is either user-given or locally evaluated using the water depth and the bed surface roughness that is proportional to d50 of the bed material. The following sections present the sediment theory used in the model and application and validation cases.

Modeling Turbulent Entrainment of Air at a Free Surface

Overview
In free-surface flows the turbulence in the liquid may be sufficient to disturb the surface to the point of entraining air into the flow. This process is important, for example, in water treatment where air is needed to sustain microorganisms for water purification and in rivers and streams for sustaining a healthy fish population. Air entrainment is typically engineered into spillways downstream of hydropower plants to reduce the possibility of cavitation damage at the base of the spillway. Other situations where air entrainment is undesirable are in the sprue and runner systems used by metal casters, and in the filling of liquid containers used for consumer products.
The importance of being able to predict the amount and distribution of entrained air at a free liquid surface has led to the development of a unique model that can be easily inserted into FLOW-3D® as a user customization. The model has two options. One option, to be used when the volume fraction of entrained air is relatively low, uses a scalar variable to record the air volume fraction. This model is passive in that it does not alter the dynamics of the flow.
A second air-entrainment model, option two, is based on a variable density formulation. This model includes the “bulking” of fluid volume by the addition of air and the buoyancy effects associated with entrained air. However, this dynamically coupled model cannot be used in connection with heat transport and natural (thermal) convection.
In both model options the same basic entrainment process is used that is based on a competition between the stabilizing forces of gravity and surface tension and the destabilizing effects of surface turbulence. The model is described in the next section. Because turbulence is the main cause of entrainment, a turbulence-transport model must be used in connection with the air-entrainment model (i.e., ifvis=3 or 4). It is recommended that the RNG version of the more traditional k-epsilon turbulence model be employed. All the validation tests reported in this Technical Note were performed using the RNG turbulence model.

Surface Tension Validation Tests

Modeling surface tension phenomena is computationally difficult because it requires the evaluation of second derivatives.
This is particulary true in the FLOW-3D program where the capability to represent highly complicated and multiple free surfaces difficulties are further compounded in three-dimensional calculations because one is often forced, for reasons of economy, to use marginal numerical resolution.

A Surface Tension Model Update [표면장력 모델 업데이트]

PURPOSE AND BACKGROUND
The modeling of surface tension forces is computationally difficult because it requires the evaluation of surface curvatures, i.e., second derivatives of the surface location. This is
particularly true in FLOW-3D® since it uses a regular rectangular grid that does not conform to surface shapes. Although this simple grid structure makes it more difficult to evaluate surface
slopes and curvatures, it is this feature that also gives the strength needed to simulate coalescence and breakup of fluid blobs.
Evaluation of surface slope and curvature in FLOW-3D® is done by determining which coordinate direction is closest to the outward normal vector to the surface. Then fluid in a 3 by 3
by 3 set of grid cells surrounding a given cell is summed up in the cell columns parallel to the normal. This, in effect, gives a discrete representation of the surface height in nine (3×3)
columns, which can be used to compute slopes and curvatures.
In most cases this procedure works quite well, but when normal directions in the grid are near 45° the surface may be too steep for this procedure to work accurately. A consequence of this
loss of accuracy is the introduction of spurious pressures or perturbations that sometimes generate undesirable capillary waves (i.e., kinetic energy noise). Occasionally, these
perturbations can even destroy a computation.
A summary of the original surface tension model was given in Technical Note TN6, “Surface Tension Validation Tests,” (1987). Since that Note there have been a number of major improvements:

1. Wall adhesion sensitive to slope of wall,
2. Static contact angle as an obstacle property,
3. Two-fluid interfacial surface tension,
4. Thermocapillary (i.e., tangential) surface forces (see TN47).

In this Technical Note we document another improvement that has been made. In particular, we have improved the accuracy of the column summation technique for the computation of surface
curvatures. As the following examples will show, this improvement is quite dramatic in many cases where the earlier model experienced substantial difficulties.

Microfluidics Bibliography

Microfluidics Bibliography

다음은 Microfluidics Bibliography의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 특징으로  합니다. 미세 유체 공정 및 장치 를 성공적으로 시뮬레이션하기 위해 FLOW-3D 를 사용 하는 방법에 대해 자세히 알아보십시오  .

2021년 5월 Update

Below is a collection of technical papers in our Microfluidics Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate microfluidic processes and devices.

14-21   Jian-Chiun Liou, Chih-Wei Peng, Philippe Basset, Zhen-Xi Chen, DNA printing integrated multiplexer driver microelectronic mechanical system head (IDMH) and microfluidic flow estimation, Micromachines, 12.1; 25, 2021. doi.org/10.3390/mi12010025

08-20   Li Yong-Qiang, Dong Jun-Yan and Rui Wei, Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity, Microgravity Science and Technology, 2020. doi.org/10.1007/s12217-019-09773-z

89-19   Tim Dreckmann, Julien Boeuf, Imke-Sonja Ludwig, Jorg Lumkemann, and Jorg Huwyler, Low volume aseptic filling: impact of pump systems on shear stress, European Journal of Pharmeceutics and Biopharmeceutics, in press, 2019. doi:10.1016/j.ejpb.2019.12.006

88-19   V. Amiri Roodan, J. Gomez-Pastora, C. Gonzalez-Fernandez, I.H. Karampelas, E. Bringas, E.P. Furlani, and I. Ortiz, CFD analysis of the generation and manipulation of ferrofluid droplets, TechConnect Briefs, pp. 182-185, 2019. TechConnect World Innovation Conference & Expo, Boston, Massachussetts, USA, June 17-19, 2019.

55-19     Julio Aleman, Sunil K. George, Samuel Herberg, Mahesh Devarasetty, Christopher D. Porada, Aleksander Skardal, and Graça Almeida‐Porada, Deconstructed microfluidic bone marrow on‐a‐chip to study normal and malignant hemopoietic cell–niche interactions, Small, 2019. doi: 10.1002/smll.201902971

37-19     Feng Lin Ng, Miniaturized 3D fibrous scaffold on stereolithography-printed microfluidic perfusion culture, Doctoral Thesis, Nanyang Technological University, Singapore, 2019.

32-19     Jenifer Gómez-Pastora, Ioannis H. Karampelas, Eugenio Bringas, Edward P. Furlani, and Inmaculada Ortiz, Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions, Nature: Scientific Reports, Vol. 9, No. 7265, 2019. doi: 10.1038/s41598-019-43827-x

01-19  Jelena Dinic and Vivek Sharma, Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method, Physics of Fluids, Vol. 31, 2019. doi: 10.1063/1.5061715

75-18   Tobias Ladner, Sebastian Odenwald, Kevin Kerls, Gerald Zieres, Adeline Boillon and Julien Bœuf, CFD supported investigation of shear induced by bottom-mounted magnetic stirrer in monoclonal antibody formulation, Pharmaceutical Research, Vol. 35, 2018. doi: 10.1007/s11095-018-2492-4

53-18   Venoos Amiri Roodan, Jenifer Gómez-Pastora, Aditi Verma, Eugenio Bringas, Inmaculada Ortiz and Edward P. Furlani, Computational analysis of magnetic droplet generation and manipulation in microfluidic devices, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 154, 2018.  doi: 10.11159/ffhmt18.154

35-18   Jenifer Gómez-Pastora, Cristina González Fernández, Marcos Fallanza, Eugenio Bringas and Inmaculada Ortiz, Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies, Chemical Engineering Journal, vol. 344, pp. 487-497, 2018. doi: 10.1016/j.cej.2018.03.110

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

15-18   J. Gómez-Pastora, I.H. Karampelas, A.Q. Alorabi, M.D. Tarn, E. Bringas, A. Iles, V.N. Paunov, N. Pamme, E.P. Furlani, I. Ortiz, CFD analysis and experimental validation of magnetic droplet generation and deflection across multilaminar flow streams, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 182-185, 2018.

14-18   J. Gómez-Pastora, C. González-Fernández, I.H. Karampelas, E. Bringas, E.P. Furlani, and I. Ortiz, Design of Magnetic Blood Cleansing Microdevices through Experimentally Validated CFD Modeling, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 170-173, 2018.

10-18   A. Gupta, I.H. Karampelas, J. Kitting, Numerical modeling of the formation of dynamically configurable L2 lens in a microchannel, Biotech, Biomaterials and Biomedical TechConnect Briefs, Vol. 3, pp. 186 – 189, 2018.

17-17   I.H. Karampelas, J. Gómez-Pastora, M.J. Cowan, E. Bringas, I. Ortiz and E.P. Furlani, Numerical Analysis of Acoustophoretic Discrete Particle Focusing in Microchannels, Biotech, Biomaterials and Biomedical TechConnect Briefs 2017, Vol. 3

16-17   J. Gómez-Pastora, I.H. Karampelas, E. Bringas, E.P. Furlani and I. Ortiz, CFD analysis of particle magnetophoresis in multiphase continuous-flow bioseparators, Biotech, Biomaterials and Biomedical TechConnect Briefs 2017, Vol. 3

15-17   I.H. Karampelas, S. Vader, Z. Vader, V. Sukhotskiy, A. Verma, G. Garg, M. Tong and E.P. Furlani, Drop-on-Demand 3D Metal Printing, Informatics, Electronics and Microsystems TechConnect Briefs 2017, Vol. 4

102-16   J. Brindha, RA.G. Privita Edwina, P.K. Rajesh and P.Rani, “Influence of rheological properties of protein bio-inks on printability: A simulation and validation study,” Materials Today: Proceedings, vol. 3, no.10, pp. 3285-3295, 2016. doi: 10.1016/j.matpr.2016.10.010

99-16   Ioannis H. Karampelas, Kai Liu, Fatema Alali, and Edward P. Furlani, Plasmonic Nanoframes for Photothermal Energy Conversion, J. Phys. Chem. C, 2016, 120 (13), pp 7256–7264

98-16   Jelena Dinic and Vivek Sharma, Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluidshttp://meetings.aps.org/link/BAPS.2016.MAR.B53.12, APS March Meeting 2016, Volume 61, Number 2, March 14–18, 2016, Baltimore, Maryland

67-16  Vahid Bazargan and Boris Stoeber, Effect of substrate conductivity on the evaporation of small sessile droplets, PHYSICAL REVIEW E 94, 033103 (2016), doi: 10.1103/PhysRevE.94.033103

57-16   Ioannis Karampelas, Computational analysis of pulsed-laser plasmon-enhanced photothermal energy conversion and nanobubble generation in the nanoscale, PhD Dissertation: Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, July 2016

44-16   Takeshi Sawada et al., Prognostic impact of circulating tumor cell detected using a novel fluidic cell microarray chip system in patients with breast cancer, EBioMedicine, Available online 27 July 2016, doi: 10.1016/j.ebiom.2016.07.027.

39-16   Chien-Hsun Wang, Ho-Lin Tsai, Yu-Che Wu and Weng-Sing Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, IOP Publishing, J. Micromech. Microeng. 26 (2016) 095012 (14pp), doi: 10.1088/0960-1317/26/9/095012, July 8, 2016

30-16   Ioannis H. Karampelas, Kai Liu and Edward P. Furlani, Plasmonic Nanocages as Photothermal Transducers for Nanobubble Cancer Therapy, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

29-16   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Advances in Magnetohydrodynamic Liquid Metal Jet Printing, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

02-16  Stephen D. Hoath (Editor), Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets, ISBN: 978-3-527-33785-9, 472 pages, February 2016 (see chapters 2 and 3 for FLOW-3D results)

125-15   J. Berthier, K.A. Brakke, E.P. Furlani, I.H. Karampelas, V. Poher, D. Gosselin, M. Cubinzolles and P. Pouteau, Whole blood spontaneous capillary flow in narrow V-groove microchannels, Sensors and Actuators B: Chemical, 206, pp. 258-267, 2015.

86-15   Yousub Lee and Dave F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing, J. Laser Appl. 28, 012006 (2016). doi: 10.2351/1.4935711, published online 2015.

77-15   Ho-Lin Tsai, Weng-Sing Hwang, Jhih-Kai Wang, Wen-Chih Peng and Shin-Hau Chen, Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids, Materials 2015, 8(10), 7006-7016. doi: 10.3390/ma8105355

63-15   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Magnetohydrodynamic Liquid Metal Jet Printing, TechConnect World Innovation Conference & Expo, Washington, D.C., June 14-17, 2015

46-15   Adwaith Gupta, 3D Printing Multi-Material, Single Printhead Simulation, Advanced Qualification of Additive Manufacturing Materials Workshop, July 20 – 21, 2015, Santa Fe, NM

28-15   Yongqiang Li, Mingzhu Hu, Ling Liu, Yin-Yin Su, Li Duan, and Qi Kang, Study of Capillary Driven Flow in an Interior Corner of Rounded Wall Under MicrogravityMicrogravity Science and Technology, June 2015

20-15   Pamela J. Waterman, Diversity in Medical Simulation Applications, Desktop Engineering, May 2015, pp 22-26,

16-15   Saurabh Singh, Ann Junghans, Erik Watkins, Yash Kapoor, Ryan Toomey, and Jaroslaw Majewski, Effects of Fluid Shear Stress on Polyelectrolyte Multilayers by Neutron Scattering Studies, © 2015 American Chemical Society, DOI: 10.1021/acs.langmuir.5b00037, Langmuir 2015, 31, 2870−2878, February 17, 2015

11-15   Cheng-Han Wu and Weng-Sing Hwang, The effect of process condition of the ink-jet printing process on the molten metallic droplet formation through the analysis of fluid propagation direction, Canadian Journal of Physics, 2015. doi: 10.1139/cjp-2014-0259

03-15 Hanchul Cho, Sivasubramanian Somu, Jin Young Lee, Hobin Jeong and Ahmed Busnaina, High-Rate Nanoscale Offset Printing Process Using Directed Assembly and Transfer of Nanomaterials, Adv. Materials, doi: 10.1002/adma.201404769, February 2015

122-14  Albert Chi, Sebastian Curi, Kevin Clayton, David Luciano, Kameron Klauber, Alfredo Alexander-Katz, Sebastián D’hers and Noel M Elman, Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics, Research Gate, doi: 10.1007/s13346-014-0198-7, July 2014

113-14 Cihan Yilmaz, Arif E. Cetin, Georgia Goutzamanidis, Jun Huang, Sivasubramanian Somu, Hatice Altug, Dongguang Wei and Ahmed Busnaina, Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed Assembly of Nanoparticles, 10.1021/nn500084g, © 2014 American Chemical Society, April 2014

110-14 Koushik Ponnuru, Jincheng Wu, Preeti Ashok, Emmanuel S. Tzanakakis and Edward P. Furlani, Analysis of Stem Cell Culture Performance in a Microcarrier Bioreactor System, Nanotech, Washington, D.C., June 15-18, 2014

109-14   Ioannis H. Karampelas, Young Hwa Kim and Edward P. Furlani, Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures, Nanotech, Washington, D.C., June 15-18, 2014

108-14   Chenxu Liu, Xiaozheng Xue and Edward P. Furlani, Numerical Analysis of Fully-Coupled Particle-Fluid Transport and Free-Flow Magnetophoretic Sorting in Microfluidic Systems, Nanotech, Washington, D.C., June 15-18, 2014

95-14   Cheng-Han Wu, Weng-Sing Hwang, The effect of the echo-time of a bipolar pulse waveform on molten metallic droplet formation by squeeze mode piezoelectric inkjet printing, Accepted November 2014, Microelectronics Reliability (2014) , © 2014 Elsevier Ltd. All rights reserved.

85-14   Sudhir Srivastava, Lattice Boltzmann method for contact line dynamics, ISBN: 978-90-386-3608-5, Copyright © 2014 S. Srivastava

61-14   Chenxu Liu, A Computational Model for Predicting Fully-Coupled Particle-Fluid Dynamics and Self-Assembly for Magnetic Particle Applications, Master’s Thesis: State University of New York at Buffalo, 2014, 75 pages; 1561583, http://gradworks.umi.com/15/61/1561583.html

41-14 Albert Chi, Sebastian Curi, Kevin Clayton, David Luciano, Kameron Klauber, Alfredo Alexander-Katz, Sebastian D’hers, and Noel M. Elman, Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics, Drug Deliv. and Transl. Res., DOI 10.1007/s13346-014-0198-7, # Controlled Release Society 2014. Available for purchase online at SpringerLink.

21-14  Suk-Hee Park, Ung Hyun Koh, Mina Kim, Dong-Yol Yang, Kahp-Yang Suh and Jennifer Hyunjong Shin, Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding, Biofabrication 6 (2014) 024107 (10pp), doi:10.1088/1758-5082/6/2/024107, IOP Publishing, 2014. Available for purchase online at IOP.

17-14   Vahid Bazargan, Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles, Ph.D. Thesis: Department of Mechanical Engineering, The University of British Columbia, March 2014, © Vahid Bazargan, 2014

73-13  Oliver G. Harlen, J. Rafael Castrejón-Pita, and Arturo Castrejon-Pita, Asymmetric Detachment from Angled Nozzles Plates in Drop-on Demand Inkjet Printing, NIP & Digital Fabrication Conference, 2013 International Conference on Digital Printing Technologies. Pages 253-549, pp. 277-280(4)

63-13  Fatema Alali, Ioannis H. Karampelas, Young Hwa Kim, and Edward P. Furlani, Photonic and Thermofluidic Analysis of Colloidal Plasmonic Nanorings and Nanotori for Pulsed-Laser Photothermal ApplicationsJ. Phys. Chem. C, Article ASAP, DOI: 10.1021/jp406986y, Copyright © 2013 American Chemical Society, September 2013.

25-13  Sudhir Srivastava, Theo Driessen, Roger Jeurissen, Herma Wijshoff, and Federico Toschi, Lattice Boltzmann Method to Study the Contraction of a Viscous Ligament, International Journal of Modern Physics © World Scientific Publishing Company, May 2013.

11-13  Li-Chieh Hsu, Yong-Jhih Chen, Jia-Huang Liou, Numerical Investigation in the Factors on the Pool Boiling, Applied Mechanics and Materials Vol. 311 (2013) pp 456-461, © (2013) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.311.456. Available for purchase online at Scientific.Net.

10-13 Pamela J. Waterman, CFD: Shaping the Medical World, Desktop Engineering, April 2013. Full article available online at Desktop Engineering.

90-12 Charles R. Ortloff and Martin Vogel, Spray Cooling Heat Transfer- Test and CFD Analysis, Electronics Cooling, June 2012. Available online at Electronics Cooling.

79-12    Daniel Parsaoran Siregar, Numerical simulation of evaporation and absorption of inkjet printed droplets, Ph.D. Thesis: Technische Universiteit Eindhoven, September 18, 2012, Copyright 2012 by D.P. Siregar, ISBN: 978-90-386-3190-5.

71-12   Jong-hyeon Chang, Kyu-Dong Jung, Eunsung Lee, Minseog Choi, Seungwan Lee, and Woonbae Kim, Varifocal liquid lens based on microelectrofluidic technology, Optics Letters, Vol. 37, Issue 21, pp. 4377-4379 (2012) http://dx.doi.org/10.1364/OL.37.004377

70-12   Jong-hyeon Chang, Kyu-Dong Jung, Eunsung Lee, Minseog Choi, and Seunwan Lee, Microelectrofluidic Iris for Variable ApertureProc. SPIE 8252, MOEMS and Miniaturized Systems XI, 82520O (February 9, 2012); doi:10.1117/12.906587

69-12   Jong-hyeon Chang, Eunsung Lee, Kyu-Dong Jung, Seungwan Lee, Minseog Choi, and  Woonbae Kim, Microelectrofluidic Lens for Variable CurvatureProc. SPIE 8486, Current Developments in Lens Design and Optical Engineering XIII, 84860X (October 11, 2012); doi:10.1117/12.925852.

61-12  Biddut Bhattacharjee, Study of Droplet Splitting in an Electrowetting Based Digital Microfluidic System, Thesis: Doctor of Philosophy in the College of Graduate Studies (Applied Sciences), The University of British Columbia, September 2012, © Biddut Bhattacharjee.

55-12 Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301. Available for purchase online at SciVerse.

54-12   Edward P. Furlani, Anthony Nunez, Gianmarco Vizzeri, Modeling Fluid Structure-Interactions for Biomechanical Analysis of the Human Eye, Nanotech Conference & Expo, June 18-21, 2012, Santa Clara, CA.

53-12   Xinyun Wu, Richard D. Oleschuk and Natalie M. Cann, Characterization of microstructured fibre emitters in pursuit of improved nano electrospray ionization performance, The Royal Society of Chemistry 2012, http://pubs.rsc.org, DOI: 10.1039/c2an35249d, May 2012

25-12    Edward P. Furlani, Ioannis H. Karampelas and Qian Xie, Analysis of Pulsed Laser Plasmon-assisted Photothermal Heating and Bubble Generation at the Nanoscale, Lab on a Chip, 10.1039/C2LC40495H, Received 01 May 2012, Accepted 07 Jun 2012. First published on the web 13 Jun 2012.

22-12  R.A. Sultanov, D. Guster, Numerical Modeling and Simulations of Pulsatile Human Blood Flow in Different 3D-Geometries, Book chapter #21 in Fluid Dynamics, Computational Modeling and Applications (2012), ISBN: 978-953-51-0052-2, p. 475 [18 pages]. Available online at INTECH.

21-12  Guo-Wei Huang, Tzu-Yi Hung, and Chin-Tai Chen, Design, Simulation, and Verification of Fluidic Light-Guide Chips with Various Geometries of Micro Polymer Channels, NEMS 2012, Kyoto, Japan, March 5-8, 2012. Available for purchase online at IEEE.

103-11   Suk-Hee Park, Development of Three-Dimensional Scaffolds containing Electrospun Nanofibers and their Applications to Tissue Regeneration, Ph.D. Thesis: School of Mechanical, Aersospace and Systems Engineering, Division of Mechanical Engineering, KAIST, 2011.

81-11   Xinyun Wu, Modeling and Characterization of Microfabricated Emitters-In Pursuit of Improved ESI-MS Performance, thesis: Department of Chemistry, Queen’s University, December 2011, Copyright © Xinyun Wu, 2011

79-11  Cong Lu, A Cell Preparation Stage for Automatic Cell Injection, thesis: Graduate Department of Mechanical and Industrial Engineering, University of Toronto, Copyright © Cong Lu, 2011

77-11 Ge Bai, W. Thomas Leach, Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development, International Journal of Pharmaceutics, Available online 8 December 2011, ISSN 0378-5173, 10.1016/j.ijpharm.2011.11.044. Available online at SciVerse.

72-11  M.R. Barkhudarov, C.W. Hirt, D. Milano, and G. Wei, Comments on a Comparison of CFD Software for Microfluidic Applications, Flow Science Technical Note #93, FSI-11-TN93, December 2011

45-11  Chang-Wei Kang, Jiak Kwang Tan, Lunsheng Pan, Cheng Yee Low and Ahmed Jaffar, Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying, Applied Surface Science, In Press, Corrected Proof, Available online 20 July 2011, ISSN 0169-4332, DOI: 10.1016/j.apsusc.2011.06.081. Available to purchase online at SciVers

33-11  Edward P. Furlani, Mark T. Swihart, Natalia Litchinitser, Christopher N. Delametter and Melissa Carter, Modeling Nanoscale Plasmon-assisted Bubble Nucleation and Applications, Nanotech Conference and Expo 2011, Boston, MA, June 13-16, 2011

32-11  Lu, Cong and Mills, James K., Three cell separation design for realizing automatic cell injection, Complex Medical Engineering (CME), 2011 IEEE/ICME, pp: 599 – 603, Harbin, China, 10.1109/ICCME.2011.5876811, June 2011. Available online at IEEEXplore.

25-11 Issam M. Bahadur, James K. Mills, Fluidic vacuum-based biological cell holding device with piezoelectrically induced vibration, Complex Medical Engineering (CME), 2011 IEEE/ICME International Conference on, 22-25 May 2011, pp: 85 – 90, Harbin, China. Available online at: IEEE Xplore.

14-11  Edward P. Furlani, Roshni Biswas, Alexander N. Cartwright and Natalia M. Litchinitser, Antiresonant guiding optofluidic biosensor, doi:10.1016/j.optcom.2011.04.014, Optics Communication, April 2011

05-11 Hyeju Eom and Keun Park, Integrated numerical analysis to evaluate replication characteristics of micro channels in a locally heated mold by selective induction, International Journal of Precision Engineering and Manufacturing, Volume 12, Number 1, 53-60, DOI: 10.1007/s12541-011-0007-x, 2011. Available online at: SpringerLink.

70-10  I.N. Volnov, V.S. Nagornyi, Modeling Processes for Generation of Streams of Monodispersed Fluid Droplets in Electro-inkjet Applications, Science and Technology News, St. Petersburg State Polytechnic University, 4, pp 294-300, 2010. In Russian.

62-10  F. Mobadersani, M. Eskandarzade, S. Azizi and S. Abbasnezhad, Effect of Ambient Pressure on Bubble Growth in Micro-Channel and Its Pumping Effect, ESDA2010-24436, pp. 577-584, doi:10.1115/ESDA2010-24436, ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (ESDA2010), Istanbul, Turkey, July 12–14, 2010. Available online at the ASME Digital Library.

58-10 Tsung-Yi Ho, Jun Zeng, and Chakrabarty, K, Digital microfluidic biochips: A vision for functional diversity and more than moore, Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference on, DOI: 10.1109/ICCAD.2010.5654199, © IEEE, November 2010. Available online at IEEE Explore.

51-10  Regina Bleul, Marion Ritzi-Lehnert, Julian Höth, Nico Scharpfenecker, Ines Frese, Dominik Düchs, Sabine Brunklaus, Thomas E. Hansen-Hagge, Franz-Josef Meyer-Almes, Klaus S. Drese, Compact, cost-efficient microfluidics-based stopped-flow device, Anal Bioanal Chem, DOI 10.1007/s00216-010-4446-5, Available online at Springer, November 2010

22-10    Krishendu Chakrabarty, Richard B. Fair and Jun Zeng, Design Tools for Digital Microfluidic Biochips Toward Functional Diversification and More than Moore, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 29, No. 7, July 2010

14-10 E. P. Furlani and M. S. Hanchak, Nonlinear analysis of the deformation and breakup of viscous microjets using the method of lines, International Journal for Numerical Methods in Fluids (2010), © 2010 John Wiley & Sons, Ltd., Published online in Wiley InterScience. DOI: 10.1002/fld.2205

55-09 R.A. Sultanov, and D. Guster, Computer simulations of  pulsatile human blood flow through 3D models of the human aortic arch, vessels of simple geometry and a bifurcated artery, Proceedings of the 31st Annual International Conference of the IEEE EMBS (Engineering in Medicine and Biology Society), Minneapolis, September 2-6, 2009, p.p. 4704-4710.

30-09 Anurag Chandorkar and Shayan Palit, Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method, Sensors & Transducers journal, ISSN 1726-5479 © 2009 by IFSA, Vol.7, Special Issue “MEMS: From Micro Devices to Wireless Systems,” October 2009, pp. 136-149.

13-09 E.P. Furlani, M.C. Carter, Analysis of an Electrostatically Actuated MEMS Drop Ejector, Presented at Nanotech Conference & Expo 2009, Houston, Texas, USA, May 3-7, 2009

12-09 A. Chandorkar, S. Palit, Simulation of Droplet-Based Microfluidics Devices Using a Volume-of-Fluid Approach, Presented at Nanotech Conference & Expo 2009, Houston, Texas, USA, May 3-7, 2009

3-09 Christopher N. Delametter, FLOW-3D Speeds MEMS Inkjet Development, Desktop Engineering, January 2009

42-08  Tien-Li Chang, Jung-Chang Wang, Chun-Chi Chen, Ya-Wei Lee, Ta-Hsin Chou, A non-fluorine mold release agent for Ni stamp in nanoimprint process, Microelectronic Engineering 85 (2008) 1608–1612

26-08 Pamela J. Waterman, First-Pass CFD Analyses – Part 2, Desktop Engineering, November 2008

09-08 M. Ren and H. Wijshoff, Thermal effect on the penetration of an ink droplet onto a porous medium, Proc. Eurotherm2008 MNH, 1 (2008)

04-08 Delametter, Christopher N., MEMS development in less than half the time, Small Times, Online Edition, May 2008

02-08 Renat A. Sultanov, Dennis Guster, Brent Engelbrekt and Richard Blankenbecler, 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch – Investigation of Non-Newtonian Characteristics of Human Blood, The Journal of Computational Physics, arXiv:0802.2362v1 [physics.comp-ph], February 2008

01-08 Herman Wijshoff, thesis: University of Twente, Structure- and fluid dynamics in piezo inkjet printheads, ISBN 978-90-365-2582-4, Venlo, The Netherlands January 2008.

30-07 A. K. Sen, J. Darabi, and D. R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications, Microfluidics and Nanofluidics, Volume 3, Number 3, June 2007, pp. 283-298(16)

28-07 Dan Soltman and Vivek Subramanian, Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect, Langmuir; 2008; ASAP Web Release Date: 16-Jan-2008; (Research Article) DOI: 10.1021/la7026847

23-07 A K Sen and J Darabi, Droplet ejection performance of a monolithic thermal inkjet print head, Journal of Micromechanical and Microengineering,vol.17, pp.1420-1427 (2007) doi:10.1088/0960-1317/17/8/002; Abstract only.

18-07 Herman Wisjhoff, Better Printheads Via Simulation, Desktop Engineering, October 2007, Vol. 13, Issue 2

17-07 Jos de Jong, Ph.D. Thesis: University of Twente, Air entrapment in piezo inkjet printing, ISBN 978-90-365-2483-4, April 2007

15-07 Krishnendu Chakrabarty and Jun Zeng, (Ed.), Design Automation Methods and Tools for Microfluidics-Based Biochips, Springer, September 2006.

14-07 Fei Su and Jun Zeng, Computer-aided design and test for digital microfluidics, IEEE Design & Test of Computers, 24(1), 2007, 60-70.

13-07 Jun Zeng, Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(2), 2006, 224-233.

12-07 Krishnendu Chakrabarty and Jun Zeng, (2005), Automated top-down design for microfluidic biochips, ACM Journal on Emerging Technologies in Computing Systems, 1(3), 2005, 186–223.

01-07 Wijshoff, Herman, Drop formation mechanisms in piezo-acoustic inkjet, NSTI-Nanotech 2007, ISBN 1420061844 Vol. 3, 2007)

23-06 John J. Uebbing, Stephan Hengstler, Dale Schroeder, Shalini Venkatesh, and Rick Haven, Heat and Fluid Flow in an Optical Switch Bubble, Journal of Microelectromechanical Systems, Vol. 15, No. 6, December 2006

21-06 Wijshoff, Herman, Manipulating Drop Formation in Piezo Acoustic Inkjet, Proc. IS&T’s NIP22, 79 (2006)

20-06 J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, M. Versluis, G. de Bruin, A. Prosperetti and D. Lohse, Air entrapment in piezo-driven inkjet printheads, J. Acoust. Soc. Am. 120(3), 1257 (2006)

11-06 A. K. Sen, J. Darabi, D. R. Knapp and J. Liu, Modeling and Characterization of a Carbon Fiber Emitter for Electrospray Ionization, 1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA, 2 Department of Pharmacology, Medical University of South Carolina, Charleston, SC

5-06 E. P. Furlani, B. G. Price, G. Hawkins, and A. G. Lopez, Thermally Induced Marangoni Instability of Liquid Microjets with Application to Continuous Inkjet Printing, Proceedings of NSTI Nanotech Conference 2006, Vol. 2, pp 534-537.

28-05 O B Fawehinmi, P H Gaskell, P K Jimack, N Kapur, and H M Thompson, A combined experimental and computational fluid dynamics analysis of the dynamics of drop formation, May 2005. DOI: 10.1243/095440605X31788

5-05 E. P. Furlani, Thermal Modulation and Instability of Newtonian Liquid Microjets, presented at Nanotech 2005, Anaheim, CA, May 8-12, 2005.

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying, Flow Science Technical Note #70, FSI-05-TN70

19-04 G. F. Yao, Modeling of Electroosmosis Without Resolving Physics Inside a Electric Double Layer, Flow Science Technical Note (FSI-04-TN69)

12-04 Jun Zeng and Tom Korsmeyer, Principles of Droplet Electrohydrodynamics for Lab-on-a-Chip, Lab. Chip. Journal, 2004, 4(4), 265-277

9-04 Constantine N. Anagnostopoulos, James M. Chwalek, Christopher N. Delametter, Gilbert A. Hawkins, David L. Jeanmaire, John A. Lebens, Ali Lopez, and David P. Trauernicht, Micro-Jet Nozzle Array for Precise Droplet Metering and Steering Having Increased Droplet Deflection, Proceedings of the 12th International Conference on Solid State Sensors, Actuators and Microsystems, sponsored by IEEE, Boston, June 8-12, 2003, pp. 368-71

8-04 Christopher N. Delametter, David P. Trauernicht, James M. Chwalek, Novel Microfluidic Jet Deflection – Significant Modeling Challenge with Great Application Potential, Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems sponsored by NSTI, San Juan, Puerto Rico, April 21-25, 2002, pp. 44-47

6-04 D. Vadillo*, G. Desie**, A Soucemarianadin*, Spreading Behavior of Single and Multiple Drops, *Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), and **AGFA-Gevaert Group N.V., XXI ICTAM, 15-21 August 2004, Warsaw, Poland

2-04 Herman Wijshoff, Free Surface Flow and Acousto-Elastic Interaction in Piezo Inkjet, Nanotech 2004, sponsored by the Nano Science & Technology Institute, Boston, MA, March 2004

30-03 D Souders, I Khan and GF Yao, Alessandro Incognito, and Matteo Corrado, A Numerical Model for Simulation of Combined Electroosmotic and Pressure Driven Flow in Microdevices, 7th International Symposium on Fluid Control, Measurement and Visualization

27-03 Jun Zeng, Daniel Sobek and Tom Korsmeyer, Electro-Hydrodynamic Modeling of Electrospray Ionization – CAD for a µFluidic Device-Mass Spectrometer Interface, Agilent Technologies Inc, paper presented at Transducers 2003, June 03 Boston (note: Reference #10 is to FLOW-3D)

17-03 John Uebbing, Switching Fiber-optic Circuits with Microscopic Bubbles, Sensors Magazine, May 2003, Vol 20, No 5, p 36-42

16-03 CFD Speeds Development of MEMS-based Printing Technology, MicroNano Magazine, June 2003, Vol 8, No 6, p 16

3-03 Simulation Speeds Design of Microfluidic Medical Devices, R&D Magazine, March 2003, pp 18-19

1-03 Simulations Help Microscopic Bubbles Switch Fiber-Optic Circuits, Agilent Technologies, Fiberoptic Product News, January 2003, pp 22-23

27-02 Feng, James Q., A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices, Journal of Imaging Science and Technology®, Volume 46, Number 5, September/October 2002

1-02 Feixia Pan, Joel Kubby, and Jingkuang Chen, Numerical Simulation of Fluid Structure Interaction in a MEMS Diaphragm Drop Ejector, Xerox Wilson Research Center, Institute of Physics Publishing, Journal of Micromechanics and Microengineering, 12 (2002), PII: SO960-1317(02)27439-2, pp. 70-76

48-01   Rainer Gruber, Radial Mass Transfer Enhancement in Bubble-Train Flow, PhD thesis in Engineering Sciences, Rheinisch- Westf alischen Technische Hochschule Aachen, December 2001.

34-01 Furlani, E.P., Delametter, C.N., Chwalek, J.M., and Trauernicht, D., Surface Tension Induced Instability of Viscous Liquid Jets, Fourth International Conference on Modeling and Simulation of Microsystems, April 2001

12-01 C. N. Delametter, Eastman Kodak Company, Micro Resolution, Mechanical Engineering, Col 123/No 7, July 2001, pp 70-72

11-01 C. N. Delametter, Eastman Kodak Company, Surface Tension Induced Instability of Viscous Liquid Jets, Technical Proceeding of the Fourth International Conference on Modeling and Simulation of Microsystems, April 2001

9-01 Aman Khan, Unipath Limited Research and Development, Effects of Reynolds Number on Surface Rolling in Small Drops, PVP-Col 431, Emerging Technologies for Fluids, Structures and Fluids, Structures and Fluid Structure Interaction — 2001

2-00 Narayan V. Deshpande, Significance of Inertance and Resistance in Fluidics of Thermal Ink-Jet Transducers, Journal of Imaging Science and Technology, Volume 40, Number 5, Sept./Oct. 1996, pp.457-461

4-98 D. Deitz, Connecting the Dots with CFD, Mechanical Engineering Magazine, pp. 90-91, March 1998

14-94 M. P. O’Hare, N. V. Deshpande, and D. J. Drake, Drop Generation Processes in TIJ Printheads, Xerox Corporation, Adv. Imaging Business Unit, IS&T’s Tenth International Congress on Advances in Non-Impact Printing, Tech. 1994

14-92 Asai, A.,Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer, Journal of Fluids Engineering Vol. 114 December 1992:638-641

Aerospace Bibliography

아래는 항공 우주 분야에 대한 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 항공 우주 산업을 위한 응용 프로그램을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

Aerospace Bibliography

2021년 5월 Update

Below is a collection of technical papers in our Aerospace Bibliography. All of these papers feature FLOW-3D results. Learn more about how  FLOW-3D can be used to successfully simulate applications for the Aerospace Industry.

62-20   Zhang Dazhi, Meng Li, Li Yong-Qiang, Numerical simulation analysis of liquid transportation in capsule-type vane tank under microgravity, Microgravity Science and Technology, 32.3, 2020. doi.org/10.1007/s12217-020-09811-1

08-20   Li Yong-Qiang, Dong Jun-Yan and Rui Wei, Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity, Microgravity Science and Technology, 2020. doi.org/10.1007/s12217-019-09773-z

107-19   Martin Konopka, Extension of a standard flow solver for simulating phase change in cryogenic tanks, Journal of Thermophysics and Heat Transfer, 33.3, 2019. doi.org/10.2514/1.T5546

79-19   Baotang Zhuang, Yong Li, Jintao Liu, and Wei Rui, Numerical simulation of fluid transport along parallel vanes for vane type propellant tanks, Microgravity Science and Technology, pp. 1-10, 2019. doi:10.1007/s12217-019-09746-2

54-19     Robert E. Manning, Ian Ballinger, Manoj Bhatia, and Mack Dowdy, Design of the Europa Clipper propellant management device, AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, August 19-22, 2019. doi:10.2514/6.2019-3858

48-19     Lei Wang, Tian Yan, Jiaojiao Wang, Shixuan Ye, Yanzhong Li, Rui Zhuan, and Bin Wang, CFD investigation on thermodynamic characteristics in liquid hydrogen tank during successive varied-gravity conditions, Cryogenics, Vol. 103, 2019. doi:10.1016/j.cryogenics.2019.102973

01-18   Martin Konopka, Extension of a Standard Flow Solver for Simulating Phase Change in Cryogenic Tanks, 018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2018-1818), https://doi.org/10.2514/6.2018-1818

69-16   Philipp Behruzi and Francesco De Rose, Coupling sloshing, GNC and rigid body motions during ballistic flight phases, Propulsion and Energy Forum, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, July 25-27, 2016, Salt Lake City, UT.

55-16   Martin Konopka, Peter Noeding, Jörg Klatte, Philipp Behruzi, Jens Gerstmann, Anton Stark, Nicolas Darkow, Analysis of LN2 Filling, Draining, Stratification and Sloshing Experiments, 46th AIAA Fluid Dynamics Conference, Washington, D.C.

95-15   D Frank, Control of fluid mass center in the Gravity Probe B space mission Dewar, © 2015 IOP Publishing Ltd, Classical and Quantum Gravity, Volume 32, Number 22, November 17, 2015

58-15   Diana Gaulke and Michael E. Dreyer, CFD Simulation of Capillary Transport of Liquid Between Parallel Perforated Plates using FLOW-3D, Microgravity Science and Technology, August 2015

55-15   Sebastian Schmitt and Michael E. Dreyer, Free Surface Oscillations of Liquid Hydrogen in Microgravity Conditions, Cryogenics, doi:10.1016/j.cryogenics.2015.07.004, July 26, 2015

53-15   Jeffrey Moder and Kevin Breisacher, Preliminary Simulations of Ullage Dynamics in Microgravity during Jet Mixing Portion of the Tank Pressure Control Experiments, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

52-15   Philipp Behruzi, Diana Gaulke, Joerg Klatte, Nicolas Fries, Development of the MPCV ESM propellant tanks, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

51-15   Grant O. Musgrove and Shane B. Coogan, Validation and Rules-of-Thumb for Computational Predictions of Liquid Slosh Dynamics, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

23-15   Eckart Fuhrmann, Michael Dreyer, Steffen Basting, and Eberhard Bänsch, Free surface deformation and heat transfer by thermocapillary convection, Heat and Mass Transfer, June 2015, © SpringerLink

09-15   Zhicheng Zhou and Hua Huang, Constraint Surface Model for Large Amplitude Sloshing of the spacecraft with Multiple Tanks, Acta Astronautica, http://dx.doi.org/10.1016/j.actaastro.2015.02.023

43-14   C. Ludwig and M.E. Dreyer, Investigations on thermodynamic phenomena of the active-pressurization process of a cryogenic propellant tankCryogenics (2014), doi: http://dx.doi.org/10.1016/j.cryogenics.2014.05.005.

40-14   M. Berci, S. Mascetti; A. Incognito, P. H. Gaskell, and V. V. Toropov, Dynamic Response of Typical Section Using Variable-Fidelity Fluid Dynamics and Gust-Modeling Approaches—With Correction Methods, Journal of Aerospace Engineering, © ASCE, ISSN 0893-1321/04014026(20), May 2014.

22-14  M. Lazzarin, M. Biolo, A. Bettella, M. Manente, R. DaForno, and D. Pavarin, EUCLID satellite: Sloshing model development through computational fluid dynamics, Aerospace Science and Technology, JID:AESCTE AID:3040 /FLA, Available online 12 April 2014.

75-13   Carina Ludwig and Michael Dreyer, Analyses of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical Simulations, 5TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS), Munich, Germany, 1-5 July 2013

49-13 Damien Theureau, Astrium; Jean Mignot, French Space Agency (CNES); Sebastien Tanguy, Fluid Mechanics Institute of Toulouse (IMFT), Integration of low g sloshing models with spacecraft attitude control simulators, Chapter DOI: 10.2514/6.2013-4961, August 2013.

44-13  Philipp Behruzi, Jörg Klatte and Gaston Netter, Passive Phase Separation in Cryogenic Upper Stage Tanks, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14 – 17, 2013, San Jose, CA.

43-13  Philipp Behruzi, Jörg Klatte, Nicolas Fries, Andreas Schütte, Burkhard Schmitz and Horst Köhler, Cryogenic Propellant Management Sounding Rocket Experiments on TEXUS 48, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14 – 17, 2013, San Jose, CA.

113-12  M. Lazzarin, M. Biolo, A. Bettella, and R. Da Forno, EUCLID Mission: Theoretical Sloshing Model and CFD Comparison, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 30 July – 01 August 2012, Atlanta, Georgia

34-12  N. Fries , P. Behruzi, T. Arndt, M. Winter, G. Netter, U. Renner, Modelling of fluid motion in spacecraft propellant tanks – Sloshing, Space Propulsion 2012 conference, 7th-10th May 2012, Bordeaux

55-11   P. Behruzi, F. de Rose, P. Netzlaf, H. Strauch, Ballistic Phase Management for Cryogenic Upper Stages, DGLR Conference, Bremen, Germany, 2011

11-11 Philipp Behruzi, Hans Strauch, and Francesco de Rose, Coasting Phase Propellant Management for Upper Stages, 38th COSPAR Scientific Assembly, 18-15 July 2010, Bremen, Germany. PowerPoint presentation.

73-10    Amber Bakkum, Kimberly Schultz, Jonathan Braun, Kevin M Crosby, Stephanie Finnvik, Isa Fritz, Bradley Frye, Cecilia Grove, Katelyn Hartstern, Samantha Kreppel and Emily Schiavone, Investigation of Propellant Sloshing and Zero Gravity Equilibrium for the Orion Service Module Propellant Tanks, Wisconsin Space Conference, Yingst, R. A., & Wisconsin Space Grant Consortium. (2010). Dawn of a new age: 20th Annual Wisconsin Space Conference, August 19-20, 2010. Green Bay, Wis: Wisconsin Space Grant Consortium; University of Wisconsin-Green Bay.

35-10   Kevin Breisacher and Jeffrey Moder, Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales, NASA/TM—2010-216749

21-10 Berci M., Mascetti S., Incognito A., Gaskell P.H., Toropov V.V., Gust Response of a Typical Section Via CFD and Analytical Solutions, V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon, Portugal, 14-17 June 2010 (A companion PowerPoint presentation in pdf format is available upon request)

49-08   Jens Gerstmann, Michael Dreyer, et al., Dependency of the apparent contact angle on nonisothermal conditions, PHYSICS OF FLUIDS 20, 042101 (2008)

35-07 N. Fries, K. Odic and M. Dreyer, Wicking of Perfectly Wetting Liquids into a Metallic Mesh, Proceedings of the 2nd International Conference on Porous Media and its Applications in Science and Engineering, ICPM2, Kauai, Hawaii, USA, June 17-21, 2007

08-07 Gary Grayson, Alfredo Lopez, Frank Chandler, Leon Hastings, Ali Hedayat, and James Brethour, CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, © 2007 by The Boeing Company. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission. AIAA 2007-5524, 8 – 11 July 2007

34-06 Phillipp Behruzi, Mark Michaelis and Gaël Khimeche, Behavior of the Cryogenic Propellant Tanks during the First Flight of the Ariane 5 ESC-A Upper Stage, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 9-12 July 2006, Sacramento, California, © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

12-06 G. D. Grayson, A. Lopez, F. O. Chandler, L. J. Hastings, S. P. Tucker, Cryogenic Tank Modeling for the Saturn AS-203 Experiment, AIAA 2006-5258, presented at the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 9-12, 2006, Sacramento, CA.

29-02 O. Bayle, V. L’Hullier, M. Ganet, P. Delpy, J.L. Francart and D. Paris, Influence of the ATV Propellant Sloshing on the GNC Performance, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 5-8 August 2002, © 2002 by EADS Launch Vehicles

42-01 C. Figus and L. Ounougha, Correlations between Neutral Buoyancy Tests and CFD, Spacecraft Propulsion, Third International Conference held 10-13 October, 2000 at Cannes, France. European Space Agency ESASP-465, 2001, p.547

24-01 Hiroshi Nishino, Shujiro Sawai, & Katsumi Furukawa, Prediction of Sloshing Dynamics in Spinning Spherical Tanks, Mitsubishi Heavy Industry, The Institute of Space and Astronautical Science 9th Workshop on Astrodynamics and Flight Mechanics (1999)

5-96 D. J. Frank, Dynamics of Superfluid Helium in Low-Gravity: A Progress Report, Advanced Technology Center, Lockheed Martin Missiles & Space, Palo Alto, CA 94304, USA, To be published in Proceedings of 1996 NASA/JPL Microgravity Low Temperature Physics Workshop, April 1996

7-95 G. D. Grayson, Coupled Thermodynamic-Fluid-Dynamic Solution for a Liquid Hydrogen Tank, Journal of Spacecraft and Rockets, Vol. 32, No. 5, September-October 1995

5-94 G. Ross, Dynamics of Superfluid Helium in Low Gravity, dissertation submitted to Dept. Mech. Engrg. and Committee on Graduate Studies of Stanford University for Ph.D. degree, July 1994

9-93 N. H. Hughes, Numerical Stability Problem Encountered Modeling Large Liquid Mass in Micro Gravity, The Boeing Company, presented at the AAS/AIAA Astrodynamics Specialist Conference, Victoria, B.C., Canada, August 16-19, 1993

8-93 G. D. Grayson and J. Navickas, Interaction Between Fluid-Dynamic and Thermodynamic Phenomena in a Cryogenic Upper Stage, McDonnell Douglas, AIAA-93-2753, presented at the AIAA 28th Thermophysics Conference, Orlando, FL, July 6-9, 1993

7-93 G. Grayson and E. DiStefano, Propellant Acquisition for Single Stage Rocket Technology, McDonnell Douglas, AIAA-93-2283, presented at the AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Monterey, CA, June 28-30, 1993

6-93 Y. Letourneur and J. Sicilian, Propellant Reorientation Effects on the Attitude of the Main Cryotechnic Stage of Ariane V, Aerospatiale, Les Mureaux and Flow Science Inc, presented at the AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Monterey, CA, June 28-30, 1993

4-92 J. M. Sicilian, Evaluation of Space Vehicle Dynamics Including Fluid Slosh and Applied Forces, Flow Science report (FSI-92-47-01), August 1992

9-91 G. P. Sasmal, J. I. Hochstein, M. C. Wendl, Washington University and T. L. Hardy, NASA Lewis Research Center, Computational Modeling of the Pressurization Process in a NASP Vehicle Propellant Tank Experimental Simulation, (AIAA 91-2407), AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, CA, June 24-26, 1991

8-91 M. F. Fisher, G. R. Schmidt, and J. J. Martin,  Analysis of Cryogenic Propellant Behavior in Microgravity and Low Thrust Environments, NASA-Marshall Space Flight Center, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, CA, June 24-26, 1991

15-90 T. L. Hardy and T. M. Tomasik, Prediction of the Ullage Gas Thermal Stratification in a NASP Vehicle Propellant Tank Experimental Simulation Using FLOW-3D, NASA Technical Memorandum 103217, NASA-Lewis Research Center, Cleveland, OH, July 1990

6-90 J. Navickas, McDonnell Douglas Space Systems Co., Huntington Beach, CA and P.Y. Cheng, McDonnell Douglas Aircraft Co., St. Louis, MO, Effect of Propellant Sloshing on the Design of Space Vehicle Propellant Storage Systems, presented at the 26th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Orlando World Center, Orlando, FL, July 16-18, 1990

1-90 S. M. Dominick and J. R. Tegart, Fluid Dynamics and Thermodynamics of a Low Gravity Liquid Tank Filling Method, AIAA 28th Aerospace Sciences Meeting, AAIA-90-0509, Reno, NV, January 1990.

9-89 S. Lin and D. K. Warinner, FLOW-3D Analysis of Pressure Responses in an Enclosed Launching System, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

3-89 C. W. Hirt, Flow in a Solid-Propellant Rocket Chamber, Flow Science Technical Note #17, March 1989 (FSI-89-TN17)

1-89 J. Navickas, E. C. Cady, and J. L. Ditter, Suspension of Solid Particles in the Aerospace Plane’s Slush Hydrogen Tanks, McDonnell Douglas Astronautics Co. report, Huntington Beach, CA, 1988, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

11-88 J. Navickas, Prediction of a Liquid Tank Thermal Stratification by a Finite Difference Computing Method, presented to AIAA/ASEE/ASME/SAE 24th Joint Propulsion Conference, Boston, MA, 11-14 July 1988

10-88 J. Navickas, Space-Based System Disturbances Caused by On-Board Fluid Motion During System Maneuvers, presented to 1st National Fluid Dynamics Congress, Cincinnati, OH, July 24-28, 1988

9-88 J. Navickas, E. C. Cady, and T. L. Flaska, Modeling of Solid-Liquid Circulation in the National Aerospace Plane’s Slush Hydrogen Tanks, Advanced Propulsion, Advanced Technology Center, McDonnell Douglas Astronautics Co., Huntington Beach, CA, May 24, 1988

3-88 J. M. Sicilian and C. W. Hirt, Nozzle/Case Joint Analysis with CFD Analysis Using the FLOW-3D Program, in Redesigned Solid Rocket Motor Circumferential Flow Technical Interchange Meeting Final Report, NASA-TWR-17788, February 1988

11-87 C. W. Hirt, A Perspective on NASA-VOF3D vs. FLOW-3D, Flow Science report, December 1987 (FSI-87-00-3)

8-87 J. M. Sicilian, Fluid Slosh in a Rotating and Accelerating Tank, Flow Science report, Sept. 1987 (FSI-87-37-1)

5-87 J. J. Der and C.L. Stevens, Liquid Propellant Tank Ullage Bubble Deformation and Breakup in Low Gravity Reorientation, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego, Calif., June 1987 (AIAA-87-2021)

3-87 J. Navickas and J. Ditter, Effect of the Propellant Storage Tank Geometric Configuration on the Resultant Disturbing Forces and Moments during Low-Gravity Maneuvers, McDonnell Douglas Astronautics report, MDAC H2589, April 1987, presented at 1987 ASME Winter Annual Meeting

1-87 J. J. Der and C. L. Stevens, Low-Gravity Bubble Reorientation in Liquid Propellant Tanks, AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, January 12-15, 1987 (AIAA-87-0622)

7-86 J. Navickas, C. R. Cross, and D. D. Van Winkle, Propellant Tank Forces Resulting from Fluid Motion in a Low-Gravity Field, ASME Symposium in Microgravity Fluid Mechanics, Winter Annual Meeting, Anaheim, CA, December 7-12, 1986

6-86 J. Navickas and C. R. Cross, Some Typical Applications of the HYDR3D CodeFLOW-3D Experience Conference, Redondo Beach, California, November 6-7, 1986

5-86 R. E. Martin, Effects of Transient Propellant Dynamics on Deployment of Large Liquid Stages in Zero-Gravity with Application to Shuttle-Centaur, 37th Annual Astronautical Congress, Innsbruck, Austria, Oct. 3-10, 1986 (IAF-86-119), Acta Astronautical Vol. 15, No. 6/7, pp. 331-340, 1987

4-86 C. W. Hirt, FLOW-3D Test Problems for Two-Fluid Sloshing, Flow Science report, July 1986 (FSI-86-31-1)

6-85 John I. Hochstein, Computational Prediction of Propellant Motion During Separation of a Centaur G-Prime Vehicle from the Shuttle, NASA report, Washington University, St. Louis, MO, December 1985 (WU/CFDL-85/1)

4-85 T. W. Eastes, Y. M. Chang, C. W. Hirt, and J. M. Sicilian, Zero-Gravity Slosh Analysis, ASME Winter Annual Meeting, Miami, Florida, November 1985

3-84 J. M. Sicilian and C. W. Hirt, Numerical Simulation of Propellant Sloshing for Spacecraft, ASME Winter Annual Meeting, New Orleans, LA, December 9-14, 1984

General Applications Bibliography

다음은 일반 응용 분야의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. 복잡한 다중 물리와 관련된 문제를 성공적으로 시뮬레이션하기 위해 FLOW-3D를 사용 하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our General Applications Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate problems that involve complex multiphysics.

56-20   Nils Steinau, CFD modeling of ascending Strombolian gas slugs through a constricted volcanic conduit considering a non-linear rheology, Thesis, Universität Hamburg, Hamburg, Germany, 2020.

30-20   Bita Bayatsarmadi, Mike Horne, Theo Rodopoulos and Dayalan Gunasegaram, Intensifying diffusion-limited reactions by using static mixer electrodes in a novel electrochemical flow cell, Journal of The Electrochemical Society, 167.6, 2020. doi.org/10.1149/1945-7111/ab7e8f

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

35-19     Sung-Won Ha, Tae-Won Kim, Joo-Hwan Choi, and Young-Jin Park, Study for flow phenomenon in the circulation water pump chamber using the Flow-3D model, Journal of the Korea Academia-Industrial Cooperation Society, Vol. 20, No. 4, pp. 580-589, 2019. doi: 10.5762/KAIS.2019.20.4.580

27-19     Rolands Cepuritis, Elisabeth L. Skare, Evgeny Ramenskiy, Ernst Mørtsell, Sverre Smeplass, Shizhao Li, Stefan Jacobsen, and Jon Spangeberg, Analysing limitations of the FlowCyl as a one-point viscometer test for cement paste, Construction and Building Materials, Vol. 218, pp. 333-340, 2019. doi: 10.1016.j.conbuildmat.2019.05.127

26-19     Shanshan Hu, Lunliang Duan, Qianbing Wan, and Jian Wang, Evaluation of needle movement effect on root canal irrigation using a computational fluid dynamics model, BioMedical Engineering OnLine, Vol. 18, No. 52, 2019. doi: 10.1186/s12938-019-0679-5

83-18   Elisabeth Leite Skare, Stefan Jacobsen, Rolands Cepuritis, Sverre Smeplass and Jon Spangenberg, Decreasing the magnitude of shear rates in the FlowCyl, Proceedings of the 12th fib International PhD Symposium in Civil Engineering, Prague, Czech Republic, August 29-31, 2018.

71-18   Marc Bascompta, Jordi Vives, Lluís Sanmiqeul and José Juan de Felipe, CFD friction factors verification in an underground mine, Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering, August 16 – 18, 2018, Madrid, Spain, Paper No. MMME 105, 2018. doi.org/10.11159/mmme18.105

56-18   J. Spangenberg, A. Uzala, M.W. Nielsen and J.H. Hattel, A robustness analysis of the bonding process of joints in wind turbine blades, International Journal of Adhesion and Adhesives, vol. 85, pp. 281-285, 2018. doi.org/10.1016/j.ijadhadh.2018.06.009

21-18   Zhang Weikang and Gong Hongwei, Numerical Simulation Study on Characteristics of Airtight Water Film with Flow Deflectors, IOP Conference Series: Earth and Environmental Science vol. 153, no. 3, pp. 032025, 2018. doi.org/10.1088/1755-1315/153/3/032025

59-17  Han Eol Park and In Cheol Bang, Design study on mixing performance of rotational vanes in subchannel with fuel rod bundles, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2017.

58-17  Jian Zhou, Claudia Cenedese, Tim Williams and Megan Ball, On the propagation of gravity currents over and through a submerged array of circular cylinders, Journal of Fluid Mechanics, Vol. 831, pp. 394-417, 2017. doi.org/10.1017/jfm.2017.604

24-17   Zhiyuan Ge, Wojciech Nemec, Rob L. Gawthorpe, Atle Rotevatn and Ernst W.M. Hansen, Response of unconfined turbidity current to relay-ramp topography: insights from process-based numerical modelling, doi: 10.1111/bre.12255 This article is protected by copyright. All rights reserved.

06-17   Masoud Hosseinpoor, Kamal H. Khayat, Ammar Yahia, Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: coupled effect of reinforcing bars and aggregate content on flow characteristics, A. Mater Struct (2017) 50: 163. doi:10.1617/s11527-017-1032-8

94-16   Mehran Seyed Ahmadi, Markus Bussmann and Stavros A. Argyropoulos, Mass transfer correlations for dissolution of cylindrical additions in liquid metals with gas agitation, International Journal of Heat and Mass Transfer, Volume 97, June 2016, Pages 767-778

83-16   Masoud Hosseinpoor, Numerical simulation of fresh SCC flow in wall and beam elements using flow dynamics models, Ph.D. Thesis: University of Sherbrooke, September 2016.

51-16   Aditi Verma, Application of computational transport analysis – Oil spill dynamics, Master Thesis: State University of New York at Buffalo, 2016, 56 pages; 1012775

37-16   Hannah Dietterich, Einat Lev, and Jiangzhi Chen, Benchmarking computational fluid dynamics models for lava flow simulation, Geophysical Research Abstracts, Vol. 18, EGU2016-2202, 2016, EGU General Assembly 2016, © Author(s) 2016. CC Attribution 3.0 License.

 19-16   A.J. Vellinga, M.J.B. Cartigny, E.W.M. Hansen, P.J. Tallinga, M.A. Clare, E.J. Sumner and J.T. Eggenhuisen, Process-based Modelling of Turbidity Currents – From Computational Fluid-dynamics to Depositional Signature, Second Conference on Forward Modelling of Sedimentary Systems, 25 April 2016, DOI: 10.3997/2214-4609.201600374

106-15    Hidetaka Oguma, Koji Tsukimoto, Saneyuki Goya, Yoshifumi Okajima, Kouichi Ishizaka, and Eisaku Ito, Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines, Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4, December 2015

93-15   James M. Brethour, Modelling of Cavitation within Highly Transient Flows with the Volume of Fluid Method, 1st Pan-American Congress on Computational Mechanics, April 27-29, 2015

90-15   Troy Shinbrot, Matthew Rutala, Andrea Montessori, Pietro Prestininzi and Sauro Succi, Paradoxical ratcheting in cornstarch, Phys. Fluids 27, 103101 (2015); http://dx.doi.org/10.1063/1.4934709

84-15   Nicolas Roussel, Annika Gram, Massimiliano Cremonesi, Liberato Ferrara, Knut Krenzer, Viktor Mechtcherine, Sergiy Shyshko, Jan Skocec, Jon Spangenberg, Oldrich Svec, Lars Nyholm Thrane and Ksenija Vasilic, Numerical simulations of concrete flow: A benchmark comparison, Cem. Concr. Res. (2015), http://dx.doi.org/10.1016/j.cemconres.2015.09.022

02-15   David Souders, FLOW-3D Version 11 Enhances CFD Simulation, Desktop Engineering, January 2015

125-14   Herbert Obame Mve, Romuald Rullière, Rémi Goulet and Phillippe Haberschill, Numerical Analysis of Heat Transfer of a Flow Confined by Wire Screen in Lithium Bromide Absorption Process, Defect and Diffusion Forum, ISSN: 1662-9507, Vol. 348, pp 40-50, doi:10.4028/www.scientific.net/DDF.348.40, © 2014 Trans Tech Publications, Switzerland

55-14   Agni Arumugam Selvi, Effect of Linear Direction Oscillation on Grain Refinement, Master’s Thesis: The Ohio State University, Graduate Program in Mechanical Engineering, Copyright by Agni Arumugam Selvi, 2014

99-13   R. C. Givler and M. J. Martinez, Computational Model of Miniature Pulsating Heat Pipes, SANDIA REPORT, SAND2012-4750, Unlimited Release, Printed January 2013.

82-13    Shizhao Li, Jon Spangenberg, Jesper Hattel, A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam A Preliminary Study, 8th International Conference on Porous Metals and Metallic Foams (METFOAM 2013), Raleigh, NC, June 2013

81-13   S. Li, J. Spangenberg, J. H. Hattel, A CFD Model for Prediction of Unintended Porosities in Metal Matrix Composites A Preliminary Study, 19th International Conference on Composite Materials (ICCM 2013), Montreal, Canada, July 2013

78-13   Haitham A. Hussein, Rozi Abdullah, Sobri, Harun and Mohammed Abdulkhaleq, Numerical Model of Baffle Location Effect on Flow Pattern in Oil and Water Gravity Separator Tanks, World Applied Sciences Journal 26 (10): 1351-1356, 2013, ISSN 1818-4952, DOI: 10.5829/idosi.wasj.2013.26.10.1239, © IDOSI Publications, 2013

74-13  Laetitia Martinie, Jean-Francois Lataste, and Nicolas Roussel, Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations, Materials and Structures, DOI 10.1617/s11527-013-0205-3, November 2013. Available for purchase online at SpringerLink.

67-13 Stefan Jacobsen, Rolands Cepuritis, Ya Peng, Mette R. Geiker, and Jon Spangenberg, Visualizing and simulating flow conditions in concrete form filling using Pigments, Construction and Building Materials 49 (2013) 328–342, © 2013 Elsevier Ltd. All rights reserved. Available for purchase at ScienceDirect.

60-13 Huey-Jiuan Lin, Fu-Yuan Hsu, Chun-Yu Chiu, Chien-Kuo Liu, Ruey-Yi Lee, Simulation of Glass Molding Process for Planar Type SOFC Sealing Devices, Key Engineering Materials, 573, 131, September 2013. Available for purchase at Scientific.net.

32-13 M A Rashid, I Abustan and M O Hamzah, Numerical simulation of a 3-D flow within a storage area hexagonal modular pavement systems, 4th International Conference on Energy and Environment 2013 (ICEE 2013), IOP Conf. Series: Earth and Environmental Science 16 (2013) 012056 doi:10.1088/1755-1315/16/1/012056. Full paper available at IOP.

105-12 Jon Spangenberg, Numerisk modellering af formfyldning ved støbning i selvkompakterende beton, Ph.D. Thesis: Technical University of Denmark, ID: 0eeede98-fb07-4800-86e2-0a6baeb1e7a3, 2012.

100-12 Nurul Hasan, Validation of CFD models using FLOW-3D for a Submerged Liquid Jet, Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 10-12 December 2012.

87-12  Abustan, Ismail, Hamzah, Meor Othman and Rashid, Mohd Aminur, A 3-Dimensional Numerical Study of a Flow within a Permeable Pavement, OIDA International Journal of Sustainable Development, Vol. 04, No. 02, pp. 37-44, April 2012.

86-12 Abustan, Ismail, Hamzah, Meor Othman and Rashid, Mohd Aminur, Review of Permeable Pavement Systems in Malaysia Conditions, OIDA International Journal of Sustainable Development, Vol. 04, No. 02, pp. 27-36, April 2012.

85-12  Mohd Aminur Rashid, Ismail Abustan, Meor Othman Hamzah, Infiltration Characteristic Modeling Using FLOW-3D within a Modular Pavement, Procedia Engineering, Volume 50, 2012, Pages 658-667, ISSN 1877-7058, 10.1016/j.proeng.2012.10.072.

73-12  Mohd Aminur Rashid, Ismail Abustan, Meor Othman Hamzah, Infiltration Characteristic Modeling Using FLOW-3D within a Modular Pavement, Procedia Engineering, Volume 50, 2012, Pages 658-667, ISSN 1877-7058, 10.1016/j.proeng.2012.10.072.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

56-12  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, Flow structures around large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, DOI: 10.1615/JFlowVisImageProc.2012005088, 2012. Available for purchase online at Begell Digital Library.

49-12  M. Janocko, M.B.J. Cartigny, W. Nemec, E.W.M. Hansen, Turbidity current hydraulics and sediment deposition in erodible sinuous channels: laboratory experiments and numerical simulations, Marine and Petroleum Geology, Available online 17 September 2012. Available for purchase online at SciVerse.

32-12  Fatih Karadagli, Bruce E. Rittmann, Drew C. McAvoy, and John E. Richardson, Effect of Turbulence on the Disintegration Rate of Flushable Consumer Products, Water Environment Research, Volume 84, Number 5, May 2012

31-12    D. Valero Huerta and R. García-Bartual, Optimization of Air Conditioning Diffusers Location in Large Agricultural Warehouses Using CFD Techniques, International Conference of Agricultural Engineering (CIGR-AgEng2012) Valencia, Spain, July 8-12, 2012

16-12 Yi Fan Fu, Wei Dong, Ying Li, Yi Tan, Ming Hui Yi, Akira Kawasaki, Simulation of the Effects of the Physical Properties on Particle Formation of Pulsated Orifice Ejection Method (POEM), 2012, Advanced Materials Research, 509, 161. Available for purchase online at Scientific.Net.

92-11  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, The lower vertical structure past the Ahmed car model, International Conference on Computational Science, ICCS 2011. Available for purchase online at Begell Digital Library.

80-11  Ismail Abustan, Meor Othman Hamzah, Mohd Aminur Rashid, A 3-Dimensional Numerical Study of a Flow within a Permeable Pavement, OIDA International Conference on Sustainable Development, ISSN 1923-6670, Putrajaya, Malaysia, 5-7th December 2011

66-11   H. Kondo, T. Furukawa, Y. Hirakawa, K. Nakamura, M. Ida, K.Watanabe, T. Kanemura, E. Wakai, H. Horiike, N. Yamaoka, H. Sugiura, T. Terai, A. Suzuki, J. Yagi, S. Fukada, H. Nakamura, I. Matsushita, F. Groeschel, K. Fujishiro, P. Garin and H. Kimura, IFMIF-EVEDA lithium test loop design and fabrication technology of target assembly as a key componentNuclear Fusion Volume 51 Number 12, doi:10.1088/0029-5515/51/12/123008

49-11     N.I. Vatin, A.A. Girgidov, K.I. Strelets, Numerical modelling the three-dimensional velocity field in the cyclone, Inzhenerno-Stroitel’nyi Zhurnal, No. 4, 2011. In Russian.

41-11    Maiko Hosoda, Taichi Hirano, and Keiji Sakai, Low-Viscosity Measurement by Capillary Electromagnetically Spinning Technique, © 2011 The Japan Society of Applied Physics, Japanese Journal of Applied Physics, July 20, 2011.

18-11  Ortloff, C.R., Vogel, M., Spray cooling heat transfer — Test and CFD analysis, Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2011 27th Annual IEEE, 20-24 March 2011, pp 245 – 252, San Jose, CA, 10.1109/STHERM.2011.5767208.

82-10   Dr. John Abbott, Two problems on the flow of viscous sheets of molten glass, 26th Annual Workshop on Mathematical Problems in Industry, Rensselear Polytechnic Institute, June 14-18, 2010

57-10  Chouet, B. A., Dawson, P. B., James, M. R. and Lane, S. J., Seismic source mechanism of degassing bursts at Kilauea Volcano, Hawaii: Results from waveform inversion in the 10–50 s band, J. Geophys. Res., 115, B09311, doi:10.1029/2009JB006661, September 2010. Available online at JOURNAL OF GEOPHYSICAL RESEARCH.

55-10 Pamela Waterman, FEA and CFD: Getting Better All the Time, Desktop Engineering, December 2010.

53-10  Nicolas Fries, Capillary transport processes in porous materials – experiment and model, Cuvillier Verlag Göttingen; 2010; ISBN 978-3-86955-507-2. Available at www.cuvillier.de  and www.amazon.de.

45-10  Meiring Beyers, Thomas Harms, and Johan Stander, Mitigating snowdrift at the elevated SANAE IV research station in Antarctica CFD simulation and field application, The Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA, May 23-27, 2010.

31-10 J. Spangenberg, N. Roussel, J.H. Hattel, J. Thorborg, M.R. Geiker, H. Stang and J. Skocek, Prediction of the Impact of Flow-Induced Inhomogeneities in Self-Compacting Concrete (SCC), Ch. 25 of “Design, Production and Placement of Self-Consolidating Concrete,” RILEM Bookseries, 2010, Volume 1, Part 5, 209-215, DOI: 10.1007/978-90-481-9664-7_18. Available online at Springer Link.

28-10 Sirisha Burra, Daniel P. Nicolella, W. Loren Francis, Christopher J. Freitas, Nicholas J. Mueschke, Kristin Poole, and Jean X. Jiang, Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels, Proc Natl Acad Sci U S A. 2010 Jul 19. [Epub ahead of print], Available for purchase at PNAS.

19-10 Michael T. Tolley, Michael Kalontarov, Jonas Neubert, David Erickson and Hod Lipson, Stochastic Modular Robotic Systems A Study of Fluidic Assembly Strategies, IEEE Transactions on Robotics, Vol. 26, NO. 3, June 2010

59-17   Han Eol Park and In Cheol Bang, Design study on mixing performance of rotational vanes in subchannel with fuel rod bundles, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2017.

44-09 Micah Fuller, Fabian Bombardelli, Deb Niemeier, Particulate Matter Modeling in Near-Road Vegetation Environments, Contract AQ-04-01: Developing Effective and Quantifiable Air Quality Mitigation Measures, UC Davis, Caltrans, September 2009

28-09 D. C. Lo, Dong-Taur Su and Jan-Ming Chen (2009), Application of Computational Fluid Dynamics Simulations to the Analysis of Bank Effects in Restricted Waters, Journal of Navigation, 62, pp 477-491, doi:10.1017/S037346330900527X; Purchase the article online (clicking on this link will take you to the Cambridge Journals website).

24-09 Richard C. Givler and Mario J. Martinez, Modeling of Pulsating Heat Pipes, Sandia Report, SAND2009-4520, Sandia National Laboratories, August 2009.

45-08  J. Saeki, Seikei Kakou, Three-Dimensional Flow Analysis of a Thermosetting Compound in a Motor Stator, 20, 750-754 (2008) [in Japanese] (Zipped file contains paper and appendices)

38-08 Yoshifumi Kuriyama, Ken’ichi Yano and Masafumi Hamaguchi, Trajectory Planning for Meal Assist Robot Considering Spilling Avoidance, 17th IEEE International Conference on Control Applications, Part of 2008 1EEE Multi-conference on Systems and Control, San Antonio, Texas, September 3-5, 2008

29-08 Ernst W.M. Hansen, Wojciech Nemec and Snorre Heimsund, Numerical CFD simulations — a new tool for the modelling of turbidity currents and sand dispersal in deep-water basins, Production Geoscience 2008 in Stavanger, Norway, © 2008

17-08 James, M. R., Lane, S. J. & Corder, S. B., Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas, In Lane S. J., Gilbert J. S. (eds) Fluid Motion in Volcanic Conduits: A Source of Seismic and Acoustic Signals. Geol. Soc., London, Spec. Pub., 307, 147-167, doi: 10.1144/SP307.9. 2008

16-08 Stefano Malavasi, Nicola Trabucchi, Numerical Investigation of the Flow Around a Rectangular Cylinder Near a Solid Wall, BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications, Milano, Italy, July 2008

41-07 Nicolas Roussel, Mette R. Geiker, Frederic Dufour, Lars N. Thrane and Peter Szabo, Computational modeling of concrete flow General Overview, Cement and Concrete Research 37 (2007) 1298-1307, © 2007 Elsevier Ltd.

40-07 Nemec, W., Heimsund, S., Xu, J. & Hansen, E.W.M., Numerical CFD simulation of turbidity currents, British Sedimentological Research Group (BSRG) Annual Meeting, Birmingham, 17-18 December 2007

39-07 Heimsund, S, Xu, J. & Nemec, W., Numerical Simulation of Recent Turbidity Currents in the Monterey Canyon System, Offshore California, American Geophysical Union Fall Meeting, 10-14 December 2007

32-07 James, M. R., Lane, S. J. & Corder, S. B., Modeling the near-surface expansion of gas slugs in basaltic magmaEos Trans. A.G.U., 88(52), Fall Meet. Suppl.. Abs. V12B-03. 2007

31-07 James, M. R., Lane, S. J. and Corder, S. B., Degassing low-viscosity magma: Quantifying the transition between passive bubble-burst and explosive activityE.G.U. Geophys. Res. Abstr., 905336, SRef-ID: 1607-7962/gra/EGU2007-A-05336. 2007

35-06  S. Green and C. Manepally, Software Validation Report for FLOW-3D Version 9.0, Center for Nuclear Waste Regulatory Analyses, August 2006

33-06 N. Roussel, Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results, © RILEM 2006, Materials and Structures (2006) 39:501-509, Purchase online at Springer Link.

32-06 Heimsund, S., Möller, N. and Guargena, C., FLOW-3D simulation of the Ormen Lange field, mid-Norway, In: Hoyanagi, K., Takano, O. and Kano, K. (Ed.), Abstracts, International Association of Sedimentologists 17th International Sedimentological Congress, Fukuoka, Vol. B, p. 107, 2006

10-06 Gengsheng Wei, An Implicit Method to Solve Problems of Rigid Body Motion Coupled with Fluid Flow, Flow Science Technical Note #76, FSI-05-TN76.

8-06 Gengsheng Wei, Three-Dimensional Collision Modeling for Rigid Bodies and its Coupling with Fluid Flow Computation, Flow Science Technical Note #75, FSI-06-TN75.

34-05  Young Bae Kim, Kyung Do Kim, Sang Eui Hong, Jong Goo Kim, Man Ho Park, and Ju Hyun Kim, and Jae Keun Kweon, 3D Simulation of PU Foaming Flow in a Refrigerator Cabinet, Appliance Magazine.com, January 2005.

33-05 N. Roussel, Fifty-cent rheo-meter for yield stress measurements From slump to spreading flow, @2005 by The Society of Rheolgoy, Inc., J. Rheol. 49(3), 705-718 May/June (2005)

32-05 Heimsund, S., Möller, N., Guargena, C. and Thompson, L., Field-scale modeling of turbidity currents by FLOW-3D simulations, In: Workshop Abstracts, Modeling of Turbidity Currents and Related Gravity Currents, University of California, Santa Barbara, 2 p., (2005)

15-05 Gengsheng Wei, A Fixed-Mesh Method for General Moving Objects, Flow Science Technical Note #73, FSI-05-TN73

14-05 James M. Brethour, Incremental Thermoelastic Stress Model, Flow Science Technical Note #72, FSI-05-TN72

9-05 Gengsheng Wei, A Fixed-Mesh Method for General Moving Objects in Fluid Flow, Modern Physics Letters B, Vol. 19, Nos. 28-29 (2005) 1719-1722

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying Flow Science Technical Note #70, FSI-05-TN70

35-04  J. Saeki, T. Kono and T. Teramae, Seikei Kakou, Formulation of Mathematical Models for Estimating Residual Stress and Strain Components Correlated with 3-D Flow of Thermosetting Compounds, 16, 5, 309-316 (2004) [in Japanese]. (Zipped file contains paper and appendices)

31-04 Heimsund, S., Möller, N., Guargena, C. and Thompson, L., The control of seafloor topography on turbidite sand dispersal in the Ormen Lange field: a large-scale application of FLOW-3D simulations, In: Martinsen, O.J. (Ed.), Abstracts and Proceedings of the Geological Society of Norway (NGF), Deep Water Sedimentary Systems of Arctic and North Atlantic Margins, Stavanger, 3, p. 25, (2004)

26-04 Beyers, J.H.M., Harms, T.M. and Sundsbø, P.A., 2004, Numerical simulation of three dimensional, transient snow drifting around a cube, Journal of wind engineering and industrial aerodynamics, vol. 92, pp. 725-747, ISSN 0167-6105

25-04 Beyers, J.H.M, Harms, T.M. and Sundsbø, P.A., 2004, Numerical simulation of snow drifting around an elevated obstacle, Proceedings of the 5th conference on snow engineering, Davos, Switzerland, pp.185-191

17-04 Michael Barkhudarov, Multi-Block Gridding Technique for FLOW-3D (Revised), Flow Science Technical Note #59-R2, FSI-00-TN59-R2

36-03 Heimsund, S., Hansen, E.W.M. and Nemec, W., Numerical CFD simulation of turbidity currents and comparison with laboratory data, In: Hodgetts, D., Hodgson, D. and Smith, R. (Ed.), Slope Modelling Workshop Abstracts, Experimental, Reservoir and Forward Modelling of Turbidity Currents and Deep-Water Sedimentary Systems, Liverpool Univ., p. 13., (2003b)

35-03 Heimsund, S., Hansen, E.W.M. and Nemec, W. Computational 3-D fluid-dynamics model for sediment transport, erosion and deposition by turbidity currents, In: Nakrem, H.A. (Ed.), Abstracts and Proceedings of the Geological Society of Norway (NGF), Den 18. Vinterkonferansen, Oslo, 1, p. 39., (2003a)

33-03 Beyers, J.H.M., Sundsbø, P.A. and Harms, T.M., 2003, Numerical simulation and verification of drifting snow around a cube, Proceedings of the 11th international conference on wind engineering, Texas Tech University, Lubbock, Texas, USA, pp. 1886-1893

27-03 Jun Zeng, Daniel Sobek and Tom Korsmeyer, Electro-Hydrodynamic Modeling of Electrospray Ionization CAD for a µFluidic Device-Mass Spectrometer Interface, Agilent Technologies Inc, paper presented at Transducers 2003, June 03 Boston (note: Reference #10 is to FLOW-3D)

25-03 J. M Brethour, Moving Boundaries an Eularian Approach, Moving Boundaries VII, Computational Modelling of Free and Moving Boundary Problems, A. A. Mammoli & C.A. Brebbia, WIT Press

19-03 James Brethour, Incremental Elastic Stress Model, Flow Science Technical Note (FSI-03-TN64)

18-03 Michael Barkhudarov, Semi-Lagrangian VOF Advection Method for FLOW-3D, Flow Science Technical Note (FSI-03-TN63)

11-02 Junichi Saeki and Tsutomu Kono, Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling, Polymer Processing Society 18th Annual Meeting, June 2002, Guimares, Portugal.

46-01 Yasunori Iwai, Takumi Hayashi, Toshihiko Yamanishi, Kazuhiro Kobayashi and Masataka Nishi, Simulation of Tritium Behavior after Intended Tritium Release in Ventilated Room, Journal of Nuclear Science and Technology, Vol. 38, No. 1, p. 63-75, January 2001

23-01 Borre Bang, Dag Lukkassen, Application of Homogenization Theory Related to Stokes Flow in Porous Media, Applications of Mathematics, Narvik, Norway, No 4, pp. 309-319.

15-01 Ernst Hansen, SINTEF Energy Research, Trondheim, Norway, Computer Simulation Helps Increase Flow Rate in Three-Phase Separator, Drilling Marketplace, Vol 55, No 10, May 15, 2001, pp.14

10-01 Ernst Hansen, SINTEF Energy Research, Phenomeological Modeling and Simulation of Fluid Flow and Separation Behaviour in Offshore Gravity Separators, PVP-Col 431, Emerging Technologies for Fluids, Structures and Fluids, Structures and Fluid Structure Interaction — 2001, ASME 2001, pp. 23-29

7-01 C. Bohm, D. A. Weiss, and C. Tropea, Multi-droplet Impact onto Solid Walls Droplet-droplet Interaction and Collision of Kinemeatic Discontinuities, DaimlerChrysler Research and Technology, ILASS-Europe 2000, September 11-13, 2000

6-01 Ernst Hansen, Simulation Raises Separator Flow RateEngineering Talk, March 21, 2001

3-01 M. Sick, H. Keck, G. Vullioud, and E. Parkinson, New Challenges in Pelton Research

1-01 Y. Darsht, K. Kuvanov, A. Puzanov, I. Kholkin, FLOW-3D in Designing Hydraulic Systems for Heavy Machinery  (in Russian), SAPR I Grafika (CAD and Graphics), August 2000, pp. 50-55.

22-00 A. K. Temu, O. K. Sønju and E. W. M. Hansen, Criteria for Minimum Particle Deposition onto a Cylinder in Crossflow, International Symposium on Multiphase Flow and Transport Phenomena, November 2000, Tekirova, Antalya, Turkey

21-00 Claus Maier, Stefan aus der Wiesche and Eberhard P. Hofer, Impact of Microdrops on Solid Surfaces for DNA-Synthesis, Department of Measurement, Control and Microtechnology, University of Ulm, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, pp. 586-589

11-00 Thomas K. Thiis, A Comparison of Numerical Simulations and Full-scale Measurements of Snowdrifts around Buildings, Wind and Structures – ISSN: 1226-6116,Vol. 3, nr. 2 (2000), pp. 73-81

10-00 P.A. Sundsbo and B. Bang, Snow drift control in residential areas-Field measurements and numerical simulations, Fourth International Conference on Snow Engineering, pp. 377-382

9-00 Thomas K. Thiis and Christian Jaedicke, The Snowdrift Pattern Around Two Cubical Obstacles with Varying Distance—Measurement and Numerical Simulations, Snow Engineering, edited by Hjorth-Hansen, et al, Balkema, Rotterdam, 2000, pp.369-375.

8-00 Thomas K. Thiis and Christian Jaedicke, Changes in the Snowdrift Pattern Caused by a Building Extension—Investigations Through Scale Modeling and Numerical Simulations, Snow Engineering, edited by Hjorth-Hansen, et al, Balkema, Rotterdam, 2000, pp. 363-368

7-00 Bruce Letellier, Louis Restrepo, and Clinton Shaffer, Near-Field Dispersion of Fission Products in Complex Terrain Using a 3-D Turbulent Fluid-Flow Model, CCPS International Conference, San Francisco, CA, September 28-October 1, 1999

6-00 Bruce Letellier, Patrick McClure, and Louis Restrepo, Source-Term and Building-Wake Consequence Modeling for the GODIVA IV Reactor at Los Alamos National Laboratory, 1999 Safety Analysis Workshop, Portland, Oregon, June 13-18, 1999

11-99 Thomas K. Thiis and Yngvar Gjessing, Large-scale Measurements of Snowdrifts Around Flat-roofed and Single-pitch-roofed Buildings, Cold Regions Science and Technology 30, Narvik, Norway, May 17, 1999, pp. 175-181

3-99 A. A. Gubaidullin, Jr., T. N. Dinh, and B. R. Sehgal, Analysis of Natural Convection Heat Transfer and Flows in Internally Heated Stratified Liquid, accepted for publication 33rd Natl. Heat Transfer Conf. CD proceedings, Albuquerque, NM, August 15-17, 1999

20-98 Mark W. Silva, A Computational Study of Highly Viscous Impinging Jets, published by the Amarillo National Resource Center for Plutonium, ANRCP-1998-18, November 1998

17-98 P. A. Sundsbo and B. Bang, 1998, Calculation of Snowdrift Around Roadside Safety Barriers, Proc of the International Snow Science Workshop, Sept. 1998, Sunriver, Oregon, USA 279-283

11-98 P-A Sundsbo, Numerical simulations of wind deflection fins to control snow accumulation in building steps, Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998) 543-552

23-97  P.E. O’Donoghue, M.F. Kanninen, C.P. Leung, G. Demofonti, and S. Venzi, The development and validation of a dynamic propagation model for gas transmission pipelines, Intl J. Pres. Ves. & Piping 70 (1997) 11-25, P11 : S0308 – 0161 (96) 00012 – 9.

22-97  Christopher J. Matice, Simulation of High Speed Filling, Presented at High Speed Processing & Filling of Plastic Containers, SME, Chicago, Illinois, November 11, 1997.

12-97 B. Entezam and W. K. Van Moorhem, University of Utah, Salt Lake City, UT and J. Majdalani, Marquette University, Milwaukee, WI, Modeling of a Rijke-Tube Pulse Combustor Using Computational Fluid Dynamics, presented at 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Seattle, WA, July 6-9, 1997.

11-97 B. Entezam, Computational and Experimental Investigation of Unsteady Flowfield Inside the Rijke Tube, doctoral thesis submitted to University of Utah, Dept. Mechanical Engineering, Salt Lake City, UT, June 1997

2-97 K. Fujisaki, T. Ueyama, and K. Okazawa, Magnetohydrodynamic Calculation of In-Mold Electromagnetic Stirring, Nippon Steel Corp., IEEE Transactions on Magnetics, Vol. 33, No. 2, March 1997

1-97 P. A. Sundsbo, Four Layer Modelling and Numerical Simulations of Snow Drift, to be submitted to the Journal of Glaciology, 1997

23-96 Andy K Palmer, Computational Fluid Dynamic Software Comparison and Electrostatic Precipitator Modeling, Presented to the Faculty of California State University, Summer 1996

21-96 P. A. Sundsbo, Computer Simulation of Snow-Drift around Structures, Proceedings of the 4th Symposium on Building Physics in the Nordic Countries, Vol. 2, 533-539, Finland, 9-10 Sep. 1996

20-96 P. A. Sundsbo and E.W.M. Hansen, Modelling and Numerical Simulation of Snow-Drift around Snow Fences, Proceedings of the 3rd International Conference on Snow Engineering, Sendai, Japan, 26-31 May 1996

19-96 P. A. Sundsbo, Numerical Modelling and Simulation of Snow Accumulations around Porous FencesProceedings of the International Snow Science Workshop, Banff, Alberta, Canada, 6-10 Oct. 1996

18-96 T. Iverson, Editor, Applied Modelling and Simulation, Proceedings of the 38th SIMS Simulation Conference, Norwegian University of Science and Technology, Trondheim, Norway, June 11-13, 1996

17-96 C. L. Parish, Modeling Compressible Flow Through an Orifice Stack Using Numerical Methods, thesis submitted for M.S. Mech. Engineering, NM State University, Las Cruces, NM, December 1996

15-96 T. Wiik and R. K. Calay, A Study of Balcony on Flow-Field and Wind Loads for Low-Rise Buildings, Fourth Symposium on Building Physics in the Nordic Countries, Dipoli, Espoo, Finland, September 1996

14-96 T. Wiik, E.W.M. Hansen, The Assessment of Wind Loads on Roof Overhang of Low-Rise Buildings, Second International Symposium Wind Engineering, Fort Collins, CO, September 1996

13-96 T. Wiik, R. K. Calay, and A. Holdo, A Study of Effects of Eaves on Flow-Field and Wind Loads for Low-Rise Houses, Third International Colloquium on Bluff Body Aerodynamics and Applications, Blacksburg, Virginia, August 1996

11-96 Y. Miyamoto and M. Harada, A Flow Analysis accompanied by Formation of the Liquid Droplets shown with an Animation Display Technique, SEA Corporation, presented at Visualization Information Conference, Tokyo, Japan, July 17, 1996

8-96 J. Bakken, E. Naess, T. Engebretsen, and E. W. M. Hansen, Fluid Flow in Porous Media, proceedings of the 38th SIMS Simulations Conference, Norwegian Univ. of Science & Technology, Trondheim, Norway, June 11-13, 1996

7-96E. W. M. Hansen, Performance of Oil/Water Gravity Separators Imposed to Motion, proceedings of the 38th SIMS Simulations Conference, Norwegian Univ. of Science & Technology, Trondheim, Norway, June 11-13, 1996

8-95 J. J. Francis, Computational Hydrodynamic Study of Flow through a Vertical Slurry Heat Exchanger, NSF Summer Research Program, Dept. Mech. Engineering, Univ. of Nevada Las Vegas, August 9, 1995

4-94 J. L. Ditter and C. W. Hirt, A Scalable Model for Mixing Vessels, Flow Science report, FSI-94-00-1, presented at the 1994 ASME Fluids Engineering Summer Meeting, Incline Village, NV, June 1994

3-94 A. Nielsen, B. Bang, P. A. Sundsbo and T. Wiik, Computer Simulation of Windspeed, Windpressure and Snow Accumulation around Buildings (SNOW-SIM), 1st International Conference on HVAC in Cold Climate, Rovaniemi, Finland, from Narvik Institute of Technology, Narvik, Norway, March 1994

2-94 J. M. Sicilian, Addition of an Extended Bubble Model to FLOW-3D, Flow Science report, FSI-94-58-1, March 1994

1-94 T. Hong, C. Zhu, P. Cal and L-S Fan, Numerical Modeling of Basic Modes of Formation and Interactions of Bubbles in Liquids, Dept. Chem. Engineering, Ohio State University, Columbus, OH 43210, March 1994

14-93 J. L. Ditter and C. W. Hirt, A Scalable Model for Stir Tanks, Flow Science Technical Note #38, December 1993 (FSI-93-TN38)

13-93 J. Partinen, N. Saluja and J. K. Kirtley, Jr., Experimental and Computational Investigation of Rotary Electromagnetic Stirring in a Woods Metal System, Dept. of Math, Science and Engr. and Dept. of Electrical Engr. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

12-93 J. Partinen, N. Saluja and J. K. Kirtley, Jr., Modeling of Surface Deformation in an Electromagnetically Stirred Metallic Melt, Dept. of Math, Science, and Engr. and Dept. of Electrical Engr. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

10-93 C. Philippe, Summary Report on Test Calculations with FLOW-3D/CAST93, (coupled-rigid-body dynamics model), ESTEC, Noordwijk, The Netherlands, September 17, 1993

5-93 J. M. Sicilian, J. L. Ditter and C. L. Bronisz, FLOW-3D Analyses of CFD Triathlon Benchmark, Flow Science report, presented at the ASME Fluids Engineering Conference, Washington DC, June 20-24, 1993

4-93 T. Wiik, Ventilation of the Attic due to Wind Loads on Low-Rise Buildings, paper for 3rd Symposium of Building Physics in Nordic Countries, Narvik Institute of Technology, Narvik, Norway, summer 1993

3-93 E. W. M. Hansen, Modelling and Simulation of Separation Effects and Fluid Flow Behaviour in Process-Units, SIMS’93 – 35th Simulation Conference, Kongsberg, Norway, June 9-11, 1993

2-93 M. A. Briones, R. S. Brodsky and J. J. Chalmers, Computer Simulation of the Rupture of a Gas Bubble at a Gas-Liquid Interface and its Implications in Animal Cell Damage, Dept. Chemical Engineering, Ohio State University, Manuscript No. RB68, April 1993

11-92 G. Trapaga, E. F. Matthys, J. J. Valencia and J. Szekely, Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results, Metallurgical Transactions B, Vol. 23B, pp. 701-718, December 1992

10-92 J. B. Dalin, J. M. Le Guilly, P. Le Roy and E. Maas, Numerical Simulations Applied to the Production of Automotive Foundry Components, Numerical Methods in Industrial Forming Processes, Wood & Zienkiewicz (eds), Balkema, Rotterdam, 1992

5-92 C. W. Hirt, Volume-Fraction Techniques: Powerful Tools for Flow Modeling, Flow Science report (FSI-92-00-02), presented at the Computational Wind Engineering Conference, University of Tokyo, August 1992

3-92 C. L. Bronisz and C.W. Hirt, Lubricant Flow in a Rotary Lip Seal, Flow Science Technical Note #33, February 1992 (FSI-92-TN33)

16-91 A. Nielsen, SNOW-SIM – Computer Model for Simulation of Wind and Snow Loads on Buildings and Structures, Building Science, Narvik Institute of Technology, Narvik, Norway, (not dated)

15-91 E. W. M. Hansen, H. Heitmann, B. Laska, A. Ellingsen, O. Ostby, T. B. Morrow and F. T. Dodge, Fluid Flow Modelling of Gravity Separators, SINTEF, Norway and Southwest Research Institute, Texas, Elsevier Science Publishers, 1991

14-91 E. W. M. Hansen, H. Heitmann, B. Laska and M. Loes, Numerical Simulation of Fluid Flow Behaviour Inside, and Redesign of a Field Separator, SINTEF, Norway and STATOIL, Norway (not dated)

13-91 G. Trapaga and J. Szekely, Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metallurgical Transactions, Vol. 22B, pp. 901-914, December 1991

11-91 N. Saluja and J. Szekely, Velocity Fields and Free Surface Phenomena in an Inductively Stirred Mercury Pool, European Journal of Mechanics, B/Fluids, Vol. 10, No. 5, pp. 563-572, Oct. 1991

4-90 J. M. Sicilian, A Note on Implementing Specified Velocities and Momentum Sources, Flow Science report, September 1990 (FSI-90-00-5)

13-90 P. Jonsson, N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow Phenomena in the Filling of Cylindrical Molds Using Newtonian (Turbulent) and Non-Newtonian (Power Law) Fluids, submitted to Trans. of the American Foundrymen’s Soc., June 1990

12-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Computation of the Velocity Fields and the Dynamic Free Surface Generated in a Liquid Metal Column by a Rotating Magnetic Field, submitted to J. Fluid Mech., July 1990

7-90 C. L. Bronisz and C. W. Hirt, Modeling Unsaturated Flow in Porous Media: A FLOW-3D Extension, Flow Science report, July 1990 (FSI-90-48-2)

5-90 C. L. Bronisz and C. W. Hirt, Hydrodynamic Ram Simulations Using FLOW-3D, Flow Science report, May 1990 (FSI-90-49-1)

3-90 C. W. Hirt, Turbojet Plume Flow Analysis, Flow Science report, February 1990 (FSI-90-45-1)

5-89 K. S. Eckhoff and E. W. M. Hansen, Mathematical Modelling and Numerical Investigation of Separation in Two-Phase Rotating Flow, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. OR 22 1907.00.01.89, 29 April 1989

2-89 J. M. Sicilian and J. R. Tegart, Comparisons of FLOW-3D Calculations with Very Large Amplitude Slosh Data, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

2-88 J. M. Sicilian and C. W. Hirt, AFT Field Joint: CFD Analysis Using the FLOW-3D Program, in Redesigned Solid Rocket Motor Circumferential Flow Technical Interchange Meeting Final Report, NASA-TWR-17788, February 1988

14-87 C. J. Freitas, S. T. Green, and T. B. Morrow, Fluid Dynamics Associated with Ductile Pipeline Fracture, Southwest Research Institute report presented at ASME Winter Annual Meeting, Boston, MA, December 1987

13-87 J. Sicilian, The FLOW-3D Model for Thermal Conduction in Solids, Flow Science report, Dec. 1987 (FSI-87-00-4)

7-87 C.W. Hirt, Vectored Nozzle Flow with Turbulence Modeling, Flow Science report, Sept. 1987 (FSI-87-29-1)

4-87 J.M. Sicilian, C.W. Hirt, and R. P. Harper, FLOW-3D: Computational Modeling Power for Scientists and Engineers, Flow Science report, 1987 (FSI-87-00-1)

3-86 J. M. Sicilian, Natural-Convection Heat-Transfer Analysis, Flow Science Technical Note #4, June 1986 (FSI-86-00-TN4)

2-86 J. Navickas and C. R. Cross, Air Circulation Characteristics and Convective Losses in a 5-MW Molten Salt Cavity Solar Receiver, ASME 8th Annual Conference on Solar Engineering, Anaheim, California, April 13-16, 1986

5-85 C. W. Hirt and R. P. Harper, Calculations of Vent Clearing in a Chemical Process Tank, Flow Science report, December 1985 (FSI-85-28-1)

2-84 Applications of SOLA-3D/FSI to Fluid Slosh, Flow Science report, May 1984

Metal Casting Bibliography

다음은 금속 주조 참고 문헌의 기술 문서 모음입니다. 
이 모든 논문은 FLOW-3D  CAST  결과를 포함하고 있습니다. FLOW-3D  CAST 를 사용하여 금속 주조 산업의 어플리케이션을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

2021년 5월 Update

05-21   Heqian Song, Lunyong Zhang, Fuyang Cao, Xu Gu, Jianfei Sun, Oxide bifilm defects in aluminum alloy castings, Materials Letters, 285; 129089, 2021. doi.org/10.1016/j.matlet.2020.129089

127-20   Eric Riedel, Niklas Bergedieck, Stefan Scharf, CFD simulation based investigation of cavitation cynamics during high intensity ultrasonic treatment of A356, Metals, 10.11; 1529, 2020. doi.org/10.3390/met10111529

86-20       Malte Leonhard, Matthias Todte, Jörg Schäfer, Realistic simulation of the combustion of exothermic feeders, Modern Casting, August 2020; pp. 35-40, 2020. (See also 58-19)

52-20       Mingfan Qi, Yonglin Kang, Jingyuan Li, Zhumabieke Wulabieke, Yuzhao Xu, Yangde Li, Aisen Liu, Junchen Chen, Microstructures refinement and mechanical properties enhancement of aluminum and magnesium alloys by combining distributary-confluence channel process for semisolid slurry preparation with high pressure die-casting, Journal of Materials Processing Technology, 285; 116800, 2020. doi.org/10.1016/j.jmatprotec.2020.116800

46-20       Yasushi Iwata, Shuxin Dong, Yoshio Sugiyama, Jun Yaokawa, Melt permeability changes during solidification of aluminum alloys and application to feeding simulation for die castings, Materials Transactions, 61.7; pp. 1381-1386, 2020. doi.org/10.2320/matertrans.F-M2020822

45-20       Daniel Bernal, Xabier Chamorro, Iñaki Hurtado, Iñaki Madariaga, Effect of boron content and cooling rate on the microstructure and boride formation of β-solidifying γ-TiAl TNM alloy, Metals, 10.5; 698, 2020. doi.org/10.3390/met10050698

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019.

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019.

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi:10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi:10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi: 10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi: 10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi: 10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi: 10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi: 10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi: 10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi: 10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi: 10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi: 10.1016/j.jmatprotec.2018.11.016

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi: 10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi: 10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi: 10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi: 10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. /doi: 10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi: 10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi: 10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi: 10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi: 10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi:10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, http://hdl.handle.net/1822/40132, 2015

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, DOI: 10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), DOI 10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, DOI: 10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi:10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi:10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu,&n