Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling

Laser Powder Bed에서 Laser Drilling에 의한 Keyhole 형성 Ti6Al4V 생체 의학 합금의 융합: 메조스코픽 전산유체역학 시뮬레이션 대 경험적 검증을 사용한 수학적 모델링

Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation

Asif Ur Rehman 1,2,3,*
,† , Muhammad Arif Mahmood 4,*
,† , Fatih Pitir 1
, Metin Uymaz Salamci 2,3
,
Andrei C. Popescu 4 and Ion N. Mihailescu 4

Abstract

LPBF(Laser Powder Bed fusion) 공정에서 작동 조건은 열 분포를 기반으로 레이저 유도 키홀 영역을 결정하는 데 필수적입니다. 얕은 구멍과 깊은 구멍으로 분류되는 이러한 영역은 LPBF 프로세스에서 확률과 결함 형성 강도를 제어합니다.

LPBF 프로세스의 핵심 구멍을 연구하고 제어하기 위해 수학적 및 CFD(전산 유체 역학) 모델이 제공됩니다. CFD의 경우 이산 요소 모델링 기법을 사용한 유체 체적 방법이 사용되었으며, 분말 베드 보이드 및 표면에 의한 레이저 빔 흡수를 포함하여 수학적 모델이 개발되었습니다.

동적 용융 풀 거동을 자세히 살펴봅니다. 실험적, CFD 시뮬레이션 및 분석적 컴퓨팅 결과 간에 정량적 비교가 수행되어 좋은 일치를 얻습니다.

LPBF에서 레이저 조사 영역 주변의 온도는 높은 내열성과 분말 입자 사이의 공기로 인해 분말층 주변에 비해 급격히 상승하여 레이저 횡방향 열파의 이동이 느려집니다. LPBF에서 키홀은 에너지 밀도에 의해 제어되는 얕고 깊은 키홀 모드로 분류될 수 있습니다. 에너지 밀도를 높이면 얕은 키홀 구멍 모드가 깊은 키홀 구멍 모드로 바뀝니다.

깊은 키홀 구멍의 에너지 밀도는 다중 반사와 키홀 구멍 내의 2차 반사 빔의 집중으로 인해 더 높아져 재료가 빠르게 기화됩니다.

깊은 키홀 구멍 모드에서는 온도 분포가 높기 때문에 액체 재료가 기화 온도에 가까우므로 얕은 키홀 구멍보다 구멍이 형성될 확률이 훨씬 높습니다. 온도가 급격히 상승하면 재료 밀도가 급격히 떨어지므로 비열과 융해 잠열로 인해 유체 부피가 증가합니다.

그 대가로 표면 장력을 낮추고 용융 풀 균일성에 영향을 미칩니다.

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.

Keywords: laser powder bed fusion; computational fluid dynamics; analytical modelling; shallow
and deep keyhole modes; experimental correlation

Figure 1. Powder bed schematic with voids.
Figure 1. Powder bed schematic with voids.
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width

References

  1. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and
    mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]
  2. Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter
    investigation through multiphysics simulation and experimental validation. J. Alloys Compd. 2022, 890, 161873. [CrossRef]
  3. Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243.
    [CrossRef]
  4. Mohsin Raza, M.; Lo, Y.L. Experimental investigation into microstructure, mechanical properties, and cracking mechanism of
    IN713LC processed by laser powder bed fusion. Mater. Sci. Eng. A 2021, 819, 141527. [CrossRef]
  5. Dezfoli, A.R.A.; Lo, Y.L.; Raza, M.M. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated
    Finite Element and Cellular Automaton Approach. Materials 2021, 14, 5202. [CrossRef]
  6. Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of selective laser sintering materials for different applications. Rapid
    Prototyp. J. 2015, 21, 630–648. [CrossRef]
  7. Liu, F.H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol-Gel Sci. Technol.
    2012, 64, 704–710. [CrossRef]
  8. Ur Rehman, A.; Sglavo, V.M. 3D printing of geopolymer-based concrete for building applications. Rapid Prototyp. J. 2020, 26,
    1783–1788. [CrossRef]
  9. Ur Rehman, A.; Sglavo, V.M. 3D printing of Portland cement-containing bodies. Rapid Prototyp. J. 2021. ahead of print. [CrossRef]
  10. Popovich, A.; Sufiiarov, V. Metal Powder Additive Manufacturing. In New Trends in 3D Printing; InTech: Rijeka, Croatia, 2016.
  11. Jia, T.; Zhang, Y.; Chen, J.K.; He, Y.L. Dynamic simulation of granular packing of fine cohesive particles with different size
    distributions. Powder Technol. 2012, 218, 76–85. [CrossRef]
  12. Ansari, P.; Ur Rehman, A.; Pitir, F.; Veziroglu, S.; Mishra, Y.K.; Aktas, O.C.; Salamci, M.U. Selective Laser Melting of 316L
    Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals 2021,
    11, 1076. [CrossRef]
  13. Ur Rehman, A.; Tingting, L.; Liao, W. 4D Printing; Printing Ceramics from Metals with Selective Oxidation. Patent No.
    W0/2019/052128, 21 March 2019.
  14. Ullah, A.; Wu, H.; Ur Rehman, A.; Zhu, Y.; Liu, T.; Zhang, K. Influence of laser parameters and Ti content on the surface
    morphology of L-PBF fabricated Titania. Rapid Prototyp. J. 2021, 27, 71–80. [CrossRef]
  15. Ur Rehman, A. Additive Manufacturing of Ceramic Materials and Combinations with New Laser Strategies. Master’s Thesis,
    Nanjing University of Science and Technology, Nanjing, China, 2017.
  16. Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [CrossRef]
  17. Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016,
    61, 361–377. [CrossRef]
  18. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive
    manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128.
    [CrossRef]
  19. Everton, S.K.; Hirsch, M.; Stavroulakis, P.I.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology
    for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [CrossRef]
  20. Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A
    review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [CrossRef] [PubMed]
  21. Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy
    powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
  22. Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.I.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry
    and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations.
    Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [CrossRef]
  23. Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-jet powder flow
    and laser–powder interaction in laser melting deposition: Modelling versus experimental correlations. Metals 2020, 10, 1113.
    [CrossRef]
  24. King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of
    metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [CrossRef]
  1. Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion
    additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [CrossRef]
  2. Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
  3. Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the
    evolution of porosity during selective laser melting. Scr. Mater. 2015, 105, 14–17. [CrossRef]
  4. Yan, W.; Ge, W.; Qian, Y.; Lin, S.; Zhou, B.; Liu, W.K.; Lin, F.; Wagner, G.J. Multi-physics modeling of single/multiple-track defect
    mechanisms in electron beam selective melting. Acta Mater. 2017, 134, 324–333. [CrossRef]
  5. Qian, Y.; Yan, W.; Lin, F. Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp. J.
    2018, 24, 1586–1598. [CrossRef]
  6. Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal
    fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126,
    251–263. [CrossRef]
  7. King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of
    keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925.
    [CrossRef]
  8. Panwisawas, C.; Sovani, Y.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C.; Choquet, I. Modelling of thermal fluid dynamics for fusion
    welding. J. Mater. Process. Technol. 2018, 252, 176–182. [CrossRef]
  9. Martin, A.A.; Calta, N.P.; Hammons, J.A.; Khairallah, S.A.; Nielsen, M.H.; Shuttlesworth, R.M.; Sinclair, N.; Matthews, M.J.;
    Jeffries, J.R.; Willey, T.M.; et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ
    X-ray imaging. Mater. Today Adv. 2019, 1, 100002. [CrossRef]
  10. Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology
    in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [CrossRef] [PubMed]
  11. Tang, C.; Tan, J.L.; Wong, C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser
    melting. Int. J. Heat Mass Transf. 2018, 126, 957–968. [CrossRef]
  12. Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S. Thermal Modeling of Temperature Distribution in Metal
    Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J.
    Manuf. Mater. Process. 2018, 2, 63. [CrossRef]
  13. Oane, M.; Sporea, D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys.
    Technol. 2001, 42, 31–40. [CrossRef]
  14. Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper
    discharge. Appl. Math. Model. 2002, 26, 89–111. [CrossRef]
  15. Parteli, E.J.R.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288,
    96–102. [CrossRef]
  16. Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass
    Transf. 2019, 141, 1036–1048. [CrossRef]
  17. Tian, Y.; Yang, L.; Zhao, D.; Huang, Y.; Pan, J. Numerical analysis of powder bed generation and single track forming for selective
    laser melting of SS316L stainless steel. J. Manuf. Process. 2020, 58, 964–974. [CrossRef]
  18. Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by
    laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [CrossRef]
  19. Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48.
    [CrossRef]
  20. Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A Comprehensive Comparison of the Analytical and Numerical
    Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion.
    Engineering 2017, 3, 685–694. [CrossRef]
  21. Rosenthal, D. Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 1941, 20, 220–234.
  22. Chen, Q.; Zhao, Y.Y.; Strayer, S.; Zhao, Y.Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the Effect
    of Preheating Temperature on Melt Pool Morphology Variation in Inconel 718 Laser Powder Bed Fusion via Simulation and
    Experiment. Available online: https://www.sciencedirect.com/science/article/pii/S2214860420310149#bb8 (accessed on 30
    April 2021).
  23. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and
    1000 ◦C: Operando Study. Materials 2021, 14, 6683. [CrossRef] [PubMed]
  24. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed
    Fusion of SS316L. Materials 2021, 14, 6264. [CrossRef] [PubMed]
  25. Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B.; Christiansen, D.; Beuth, J.; Lewandowski, J.J. Melt Pool Characterization
    for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. In Proceedings of the International Solid Freeform Fabrication
    Symposium, Austin, TX, USA, 10–12 August 2014; 2014; pp. 256–267.
  26. Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature
    distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 2012, 61, 967–974. [CrossRef]
  27. Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Hojjatzadeh, S.M.H.; Escano, L.I.; Parab, N.D.; Fezzaa, K.; Sun, T.; Chen, L. In-situ full-field
  28. mapping of melt flow dynamics in laser metal additive manufacturing. Addit. Manuf. 2020, 31, 100939. [CrossRef]
  29. Messler, J.R.W. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy; John Wiley & Sons: New York, NY, USA, 2008;
  30. ISBN 9783527617494.
  31. Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.M.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of
  32. complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [CrossRef]
  33. Ur Rehman, A.; Mahmood, M.A.; Pitir, F.; Salamci, M.U.; Popescu, A.C.; Mihailescu, I.N. Mesoscopic Computational Fluid
  34. Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A
  35. Novel Study. Metals 2021, 11, 1569. [CrossRef]
  36. Paul, A.; Debroy, T. Free surface flow and heat transfer in conduction mode laser welding. Metall. Trans. B 1988, 19, 851–858.
  37. [CrossRef]
  38. Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing
  39. internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [CrossRef]
  40. Abderrazak, K.; Bannour, S.; Mhiri, H.; Lepalec, G.; Autric, M. Numerical and experimental study of molten pool formation
  41. during continuous laser welding of AZ91 magnesium alloy. Comput. Mater. Sci. 2009, 44, 858–866. [CrossRef]
  42. Bayat, M.; Thanki, A.; Mohanty, S.; Witvrouw, A.; Yang, S.; Thorborg, J.; Tiedje, N.S.; Hattel, J.H. Keyhole-induced porosities in
  43. Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Addit. Manuf. 2019,
  44. 30, 100835. [CrossRef]

[FLOW-3D 물리모델]Condensation, Evaporation at Free Surfaces / 자유표면에서의 응축, 기화

Condensation/Evaporation at Free Surfaces자유표면에서의 응축/기화

1. Vaporization at Free Surfaces 자유표면에서의 기화

자유표면에서 발생하는 기화효과는 공간에서 정의된 일정 포화상태의 견지에서 모델링 될 수 있다. 이 모델을 활성화하기 위해 Physics>Bubble and phase change models>Constant pressure bubble with vaporization 를 선택한다. Fluids>Properties>Phase Change 에서의 Saturation Temperature 는 공간내의 기포의 포화상태를 정의한다. 기화 잠열은 Fluids>Phase change>Latent Heat of Vapor 에서 지정된다.

유체 에너지 방정식(열전달)은 이 모델(Physics>Heat Transfer)과 함께 해석되어야 한다. Fluids> Properties>Phase Change 에있는 Accommodation coefficient 에 양의 값을 정의한다. 자유 표면상의 액체의 온도가 포화 온도보다 높다면 액체는 다음과 같은 율로 증발할 것이다.

  • α 는 기화율을 조절하는 Accommodation coefficient이다. 이 값은 일반적으로 0.01에서0.1사이이며 1.0을 넘지 말아야 한다.
  • Hv 는 기화 잠열이다.
  • Asur 는 상변화를 위한 유효표면적이다.
  • kf 는 액체의 열전도도이다.
  • Tl 는 표면상 액체 온도이며
  • Tv1는일정한 기포 포화 온도이다
  • h 는 Prandtl 수로 정의된 표면에 있는 액체의 열전도에 대한 특정 길이이다.

여기서

  • xmin 는 (임의의 방향으로)계산 격자의 최소 셀 크기
  • Cv 는 일정 체적시의 기포 비열이며
  • µ1는 유체 #1의 점도이다.

각 표면 셀에서 기화하는 질량 유량은 후처리를 위해 저장되고 Analyze 에서 가시화될 수 있다.

기화는 자유 표면을 포함하는 셀들에서만 발생될 수 있다. 기포 포화온도는 일정 또는 변동압력을 갖는 모든 공간에 대해 일정하며 같다.

2. One Fluid with Thermal Bubbles 열기포를 갖는 하나의 유체

액체-증기 상변화에 의한 질량 전달은 열기포와 주위 액체 사이에 발생할 수 있다. 기포는 유체 #1 이 증기로 차 있다고 가정하고(즉, 기체 성분은 하나다.) 기포는 일정 압력, 온도, 그리고 밀도를 갖는다. 많은 기포 방울들이 있을 수 있고, 각 기포에서의 증기는 체적 변화와 열 및 질량 전달 때문에 고유한 시간에 따라 변하는 상을 갖는다. 유체 분율이0인 지정 압력의 격자 경계와 접하는 기포는 그 경계에서 정의된 기화 상태를 가질 것이다. 기화/응축모델은 Physics>Bubble and phase change models>Thermal bubbles with phase change 에서 활성화된다.

증기의 상태방정식은 이상 기체 방정식이며 절대 압력 P P = (γ − 1) · ρvapCvT 로부터 계산되는데 여기서

  • γ 는 1.285 ≤ γ ≤ 1.667값을 갖는 비열의 비율
  • T 는 절대온도
  • Cv 는 일정 체적에서의 증기의 비열
  • Cp 는 일정 압력에서의 증기의 비열
  • ρvap 는 기포 내의 증기 밀도

기포는 절대 단위로 이들의 초기 압력과 온도를 지정함으로써 초기화된다. 증기는 또한 Cavitation and Bubble Formation (Nucleation)에서 기술된 바와 같이 공동 또는 비등 과정을 통해 유체 내에서 생성될 수 있다. 증기 물성과 포화 곡선은 Fluids>Properties>Phase change 하위 메뉴에서 정의된다. 증기 압력은 사용자가 정의한 포화 곡선을 이용하여 그 지역의 유체 온도의 함수로써 계산된다. 디폴트 포화 곡선은 압력 P 와 온도 T 간의 Clausius-Clapeyron 관련식이다.

여기서

  • PV 1 TV 1(위의 물성치 목록에서 Saturation Pressure Saturation Temperature라고 쓰여있는) 는 포화곡선상의 한 점에서의 압력과 온도이다.
  • TEXPExponent for T-P Curve 로써 입력된다; 이의 값은 일반적으로
  • γ 는 증기의 비열 Gamma
  • Cv 는 일정 체적시의 기체 비열
  • Hv 는 기체의 잠열

형상 요소와 기포 내 증기간의 열전달은 Meshing & Geometry>Geometry>Component>Surface properties 의 component-void간의 열전달 계수에 의해 지정된다. 액체와 기포 내 증기와의 열전달도 마찬가지로 유체-void간의 열전달 계수에 의해 지정되어야 한다. 새로 생성된 증기기포는 heat transfer void type 1로 지정되는 것에 주목한다. Physics>Heat transfer>Fluid to solid heat transfer 가 증기 기포와 고체 요소간의 열전달을 가능하게 하기 위해 활성화되어야 한다.

상 변화는 계산 셀 내의 평균 유체 물성(밀도, 열에너지 그리고 액체분율)에 의존한다. 특히 액체와 증기의 온도는 한 요소에서 같으며, 표면의 얇은 유체막에서의 온도가 아니다. 이런 의미에서 상변화 모델은 현상학적이고 상변화율을 조절하기 위해 accommodation coefficient 의 조정이 필요하다. 1보다 큰 값은 사용되지 않아야 하는데, 이는 이 모델의 수렴이 힘들게 될 수도 있기 때문이다. 사실 일반적으로 사용되는 값들은 0.01과 0.1사이이다.

3. Two-fluid Model 두가지 유체 모델

이 모델은 증기 영역에서 모든 역학이 계산되는 것을 제외하고는 응축/기화 모델 (One Fluid with Thermal Bubbles)과 유사하다. 이 경우 압축 two-fluid 모델(비압축성 유체와 압축성 증기)은 경계면에서 발생하는 액체-증기 상변화가 가능하다. 순수 액체 지역에서의 핵 생성 또는 순수 증기 지역에서의 응축이 또한 가능하다. 유체 #1은 유체의 액상을 그리고 압축성 유체 #2(가스)는 증기를 기술한다. 표준 압축성 유동 모델에서와 같이 증기의 상태 방정식은 이상 기체 방정식, P = RF2 · ρ · T 이며 여기서.

  • RF2 는 증기의 기체상수
  • P 는 압력
  • ρ 는 기체 밀도
  • T 는 증기의 온도

two-fluid 상변화 모델은 Physics >Bubble and phase change models> Two-fluid phase change 에서 초기화되며, Fluids>Properties>Phase change 에서 양의 accommodation coefficient 를 필요로 한다. 상변화율은 직접적으로 accommodation coefficient 에 비례한다. 이 값은 절대적인 제한은 아니지만 일반적으로 0.01에서0.1사이이며 1.0을 넘지 말아야 한다. 증기 물성은 압축성 유체2의 물성으로 정의되며 증기 잠열과 포화곡선은 Fluids>Properties>Phase change 에서 정의된다. 포화 압력과 포화 온도로 정의되며 쌍으로 나타나는 압력-온도는 포화 곡선상의 한 점이어야 한다. T-P 곡선상의 지수는 온도-압력 포화관계의 지수이다. 디폴트 포화곡선은 압력 P 와 온도 T 간의 Clausius-Clapeyron 관련식이다.

여기서

  • PV 1 TV 1(위의 물성 목록에서 Saturation Pressure Saturation Temperature라고 쓰여있는)는 포화 곡선상의 한 점에서의 압력과 온도
  • TEXPExponent for T-P Curve 로써 입력된다; 이 값은 일반적으로 TV EXP = (γ − 1) CLHVCV 2 1
  •  Gamma 는 증기의 비열의 비율
  • CV 2 는 일정 체적시의 기체 비열
  • CLHV 1는 증기 잠열(단위질량당 에너지)

상변화는 유한 체적 내의 평균 유체 물성(밀도, 열에너지 그리고 액체분율)에 의존한다. 특히 액체와 증기의 온도는 한 요소에서 같다. 액체와 증기 경계면에서의 질량 전달율은 국부적 액체의 포화압력과 증기압사이의 차이에 의하여 계산된다.

Mass transfer rate

여기서

  • Pvap 는 증기압
  • Psat(T) 는 위에서 정의된 바와 같이 지역온도에서의 포화압력이다. 사용자가 필요에 따라 변경할 수 있는 subroutine PSAT.F에서 계산된다.
  • RSIZEAccommodation coefficient 이고 일반적으로 0.01과 0.1사이의 값이다.

액체와 증기경계에서 유체 질량의 단위면적당 상변화율이 계산되고, 후처리를 위해 Phase change mass flux 라고 불리는 공간변수로써 저장된다.
양의 값은 증발을 뜻한다:
음의 값은 응축.

액체 체적에서의 상변화는 Superheat temperature 를 지정함으로써 포화온도를 지나서까지 지연될 수 있다. 지역 포화온도보다 큰 Superheat temperature 의 값 때문에 증기 기포가 발생하기 전에 이 온도까지 유체 체적이 가열되는 것이 가능하다. 과열은 선택에따라 0이 아닌 벽의 거칠기를 사용함으로써 고체 벽 가까이에서 발생하지 않도록 할 수 있다.

4. Two Fluids with Non-condensable Gas / 비 응축가스를 갖는 Two Fluids

 

보통, 응축/기화 모델(two-fluid 모델)은 유체 #2가 완전히 액체의 증기상으로 이루어진다고 가정한다. 가스가 증기와 비응축가스(즉, 공기중의 수증기)의 혼합물로 구성되어 있는 경우에 Physics>Bubble and phase change>Two-fluid phase change>Noncondensable gas model 를 선택한다. two-fluid vapor 모델의 추가는 증기와 비응축가스의 기체상수들의 밀도 가중 평균 혼합물의 기체상수의 계산을 포함한다:

여기서

  • ρvap 는 계산된 거시적 증기밀도
  • ρnc 는 계산된 거시적 비응축 기체 밀도
  • RF2는 증기의 기체상수
  • RF 는 평균기체상수

그러므로, 압력은 P = RFρT 로 계산된다. 증기의 포화압력은 상변화(Two-fluid Model), 를 갖는 표준 Two-fluid 모델에서와 같은 방법으로 계산되지만, 질량 유량은 전체 가스압력을 사용하는 것과는 달리 증기의 부분압력을 이용하여 계산된다.

Mass transfer rate

여기서

  • Pvap 는 가스성 유체의 증기의 부분압력
  • Psat(T) 는 사용자가 필요에 따라 변경할 수 있는 subroutine PSAT.F에서 정의되는 Clausius-Clapeyron 방정식으로부터 계산되는 국부 온도에서의 포화압력이다.
  • RSIZEAccommodation coefficient 이고 일반적으로 0.01과 0.1사이의 값이다.

Accommodation coefficient 가 1.0의 값을 가진다면 모델은 한 시간단계에서 평형에 도달하기에 충분한 상변화를 예측하려고 시도할 것이다. 이 속도는 너무 급속해 실제 물리적조건과 비교될 수가 없다. 액체와 가스의 경계면의 경계층 내의 역학은 규모가 너무 작아 이 모델에 포함할 수 없으므로 FLOW-3D 가 정확히 이 계수 없이 상변화율을 예측하는 것은 불가능하다. .

이 모델을 이용하기 위해 Physics>Bubble and phase change models>Non-condensable gas model 의 체크상자를 선택한다. Gas constant Specific heat of the non-condensable gas 를 위한 값을 입력한다. 가스가 영역 경계에서 들어오는 곳에 각 mesh block 경계 조건 입력창에 있는 Non-condensable gas fraction 의 비응축가스의 체적율(0 과 1사이)을 지정한다. 비응축가스를 포함하는 초기 유체지역을 정의하기 위해 Meshing & Geometry>Initial>Global 를 지정한다. 이 양은 또한 각각의 초기유체 영역과 특정 지점에서 지정될 수 있다.

5. Vaporization Residue / 증발 잔류량

MAIN VARIABLES: SCALAR: IRESID, RMXSC
XPUT: IPHCHG

액체용제가 기화할 때 이에 포함되어 있는 용질은 더 농축된다. 마찬가지로 스칼라 농도변수로 모델링 된 용질도 유체문제의 자유표면에서 증발로 인해 자동적으로 농축될 것이다. 표면요소에 액체가 반보다 적게 있을 경우 농축변화가 표면요소의 두께의 반에 해당하는 지역으로 퍼져나가는 크기로 스칼라의 농축이 바로 주위의 표면요소에서도 또한 발생할 것이다.

 증발이 충분히 발생하고 용질의 농도가 커지면 표면에서 발생할 수도 있고 용질이 완전히 증발하면 표면상에 이의 잔류가 생성될 수 있다. 잔류형성은 Physics Bubbles and phase change 에서 활성화되는 Constant pressure bubbles with vaporization, 및 Thermal bubbles with phase change 모델과 함께 시뮬레이션 되어야 한다. 잔류모델은 IRESID = 1로 지정하고 용질 스칼라 ns, RMXSC(ns)를 최대 packing 밀도를 정의함으로써 활성화된다. 일단 용질이 최대 packing 밀도까지 농축되면 더 이상의 농축은 고정(움직이지 않는)된 잔류를 초래한다. 하나 이상의 스칼라 용질이 존재하면 잔류는 모든 용질 전체 잔류를 기록한다.

Note: 용질농도는 Physics Scalars 로부터 FLOW-3D‘s Scalars 모델을 이용하여 입력된다.

Initiating Homogeneous Bubbles in Pure Liquid

Initiating Homogeneous Bubbles in Pure Liquid

  1. Barkhudarov and C.W. Hirt

Flow Science, Inc.

The combined Temperature-Dependent-Cavitation and Homogenous Bubble models work together as a way to simulate the formation and growth of vapor bubbles by locally heating a liquid. The Homogeneous Bubble model is only activated when a bubble has a size that encompasses at least one complete grid cell, i.e., can be resolved as a “bubble” or void region.

The Cavitation model contains a mechanism for the initiation of bubbles, which works in the follow way. At the end of each time cycle of a transient computation every grid cell containing liquid is tested to see if its pressure is less than the saturation pressure corresponding to the temperature in the cell. The saturation pressure is computed from the pressure-temperature saturation relation specified by the user (e.g., usually a Clapeyron relation). If the cell pressure is less than its saturation pressure it is assumed that boiling can begin. The essential assumption is that there exist sufficient impurities or nucleation sites for this to happen. A very simple model nucleation has been incorporated into FLOW-3D®.

Once a cell has been identified for possible boiling it is given a time delay before vaporization begins. For vaporization to occur it is necessary to have at least 1% void fraction in the cell. This small void can be thought of as the nucleation process. The time delay is input as variable CAVRT (denoted as Ccav in the following).