Effects of ramp slope and discharge on hydraulic performance of submerged hump weirs

Effects of ramp slope and discharge on hydraulic performance of submerged hump weirs

Arash Ahmadi a, Amir H. Azimi b

Abstract

험프 웨어는 수위 제어 및 배출 측정을 위한 기존의 수력 구조물 중 하나입니다. 상류 및 하류 경사로의 경사는 자유 및 침수 흐름 조건 모두에서 험프 웨어의 성능에 영향을 미치는 설계 매개변수입니다.

침수된 험프보의 유출 특성 및 수위 변화에 대한 램프 경사 및 유출의 영향을 조사하기 위해 일련의 수치 시뮬레이션이 수행되었습니다. 1V:1H에서 1V:5H까지의 5개 램프 경사를 다양한 업스트림 방전에서 테스트했습니다.

수치모델의 검증을 위해 수치결과를 실험실 데이터와 비교하였다. 수면수위 예측과 유출계수의 시뮬레이션 불일치는 각각 전체 범위의 ±10%와 ±5% 이내였습니다.

모듈 한계 및 방전 감소 계수의 변화에 대한 램프 경사의 영향을 연구했습니다. 험프보의 경사로 경사가 증가함에 따라 상대적으로 높은 침수율에서 모듈러 한계가 발생함을 알 수 있었다.

침수 시작은 방류 수위를 작은 증분으로 조심스럽게 증가시켜 모델링되었으며 그 결과는 모듈 한계의 고전적인 정의와 비교되었습니다. 램프 경사와 방전이 증가함에 따라 모듈러 한계가 증가하는 것으로 밝혀졌지만, 모듈러 한계의 고전적인 정의는 모듈러 한계가 방전과 무관하다는 것을 나타냅니다.

Hump weir 하류의 속도와 와류장은 램프 경사에 의해 제어되는 와류 구조 형성을 나타냅니다. 에너지 손실은 수치 출력으로부터 계산되었으며 정규화된 에너지 손실은 침수에 따라 선형적으로 감소하는 것으로 나타났습니다.

Hump weirs are amongst conventional hydraulic structures for water level control and discharge measurement. The slope in the upstream and downstream ramps is a design parameter that affects the performance of Hump weirs in both free and submerged flow conditions. A series of numerical simulations was performed to investigate the effects of ramp slope and discharge on discharge characteristics and water level variations of submerged Hump weirs. Five ramp slopes ranging from 1V:1H to 1V:5H were tested at different upstream discharges. The numerical results were compared with the laboratory data for verifications of the numerical model. The simulation discrepancies in prediction of water surface level and discharge coefficient were within ±10 % and ±5 % of the full range, respectively. The effects of ramp slope on variations of modular limit and discharge reduction factor were studied. It was found that the modular limit occurred at relatively higher submergence ratios as the ramp slope in Hump weirs increased. The onset of submergence was modeled by carefully increasing tailwater level with small increments and the results were compared with the classic definition of modular limit. It was found that the modular limit increases with increasing the ramp slope and discharge while the classic definition of modular limit indicated that the modular limit is independent of the discharge. The velocity and vortex fields in the downstream of Hump weirs indicated the formation vortex structure, which is controlled by the ramp slope. The energy losses were calculated from the numerical outputs, and it was found that the normalized energy losses decreased linearly with submergence.

Introduction

Weirs have been utilized predominantly for discharge measurement, flow diversion, and water level control in open channels, irrigation canal, and natural streams due to their simplicity of operation and accuracy. Several research studies have been conducted to determine the head-discharge relationship in weirs as one of the most common hydraulic structures for flow measurement (Rajaratnam and Muralidhar, 1969 [[1], [2], [3]]; Vatankhah, 2010, [[4], [5], [6]]; b [[7], [8], [9]]; Azimi and Seyed Hakim, 2019; Salehi et al., 2019; Salehi and Azimi, 2019, [10]. Weirs in general are classified into two major categories named as sharp-crested weirs and weirs of finite-crest length (Rajaratnam and Muralidhar, 1969; [11]. Sharp-crested weirs are typically used for flow measurement in small irrigation canals and laboratory flumes. In contrast, weirs of finite crest length are more suitable for water level control and flow diversion in rivers and natural streams [7,[12], [13], [14]].

The head-discharge relationship in sharp-crested weirs is developed by employing energy equation between two sections in the upstream and downstream of the weir and integration of the velocity profile at the crest of the weir as:

where Qf is the free flow discharge, B is the channel width, g is the acceleration due to gravity, ho is the water head in free-flow condition, and Cd is the discharge coefficient. Rehbock [15] proposed a linear correlation between discharge coefficient and the ratio of water head, ho, and the weir height, P as Cd = 0.605 + 0.08 (ho/P).

Upstream and/or downstream ramp(s) can be added to sharp-crested weirs to enhance the structural stability of the weir. A sharp-crested weir with upstream and/or downstream ramp(s) are known as triangular weirs in the literature. Triangular weirs with both upstream and downstream ramps are also known as Hump weirs and are first introduced in the experimental study of Bazin [16]. The ramps are constructed upstream and downstream of sharp-crested weirs to enhance the weir’s structural integrity and improve the hydraulic performance of the weir. In free-flow condition, the discharge coefficient of Hump weirs increases with increasing downstream ramp slope but decreases as upstream ramp slope increases (Azimi et al., 2013).

The hydraulic performance of weirs is evaluated in both free and submerged flow conditions. In free flow condition, water freely flows over weirs since the downstream water level is lower than that of the crest level of the weir. Channel blockage or flood in the downstream of weirs can raise the tailwater level, t. As tailwater passes the crest elevation in sharp-crested weirs, the upstream flow decelerates due to the excess pressure force in the downstream and the upstream water level increases. The onset of water level raise due to tailwater raise is called the modular limit. Once the tailwater level passes the modular limit, the weir is submerged. In sharp-crested weirs, the submerged flow regime may occur even before the tailwater reaches the crest elevation [8,14], whereas, in weirs of finite crest length, the upstream water level remains unchanged even if the tailwater raises above the crest elevation and it normally causes submergence once the tailwater level passes the critical depth at the crest of the weir [7,17]. The degree of submergence can be estimated by careful observation of the water surface profile. Observations of water surface at different submergence levels indicated two distinct flow patterns in submerged sharp-crested weirs that was initially classified as impinging jet and surface flow regimes [14]. [8] analyzed the variations of water surface profiles over submerged sharp-crested weirs with different submergence ratios and defined four distinct regimes of impinging jet, surface jump, surface wave, and surface jet.

[18] characterized the onset of submergence by defining the modular limit as a stage when the free flow head increases by +1 mm due to tailwater rise. The definition of modular limit is somewhat arbitrary, and it is difficult to identify for large discharges because the upstream water surface begins to fluctuate. This definition did not consider the effects of channel and weir geometries. The experimental data in triangular weirs and weirs finite-crest length with upstream and downstream ramp(s) revealed that the modular limit varied with the ratio of the free-flow head to the total streamwise length of the weir [17]. Weirs of finite crest length with upstream and downstream ramps are known as embankment weirs in literature [1,19,20] and Azimi et al., 2013) [19]. conducted two series of laboratory experiments to study the hydraulics of submerged embankment weirs with the upstream and downstream ramps of 1V:1H and 1V:2H. Empirical correlations were proposed to directly estimate the flow discharge in submerged embankment weirs for t/h > 0.7 where h is the water head in submerged flow condition. He found that the free flow discharge is a function of upstream water head, but the submerged discharge is a function of submergence level, t/h [21]. studied the hydraulics of four embankment weirs with different weir heights ranging from 0.09 m to 0.36 m. It was found that submerged embankments with a higher ho/P, where P is the height of the weir, have a smaller discharge reduction due to submergence. Effects of crest length in embankment weirs with both upstream and downstream ramps of 1V:2H was studied in both free and submerged flow conditions [1]. It was found that the modular limit in submerged embankment weirs decreased linearly with the relative crest length, Ho/(Ho + L), where Ho is the total head and L is the crest length.

In submerged flow condition, the performance of weirs is quantified by the discharge reduction factor, ψ, which is a ratio of the submerged discharge, Qs, to the corresponding free-flow discharge, Qf, based on the upstream head, h [12]. In submerged-flow conditions, flow discharge can be estimated as:��=���

[1] proposed a formula to predict ψ that could be used for embankment weirs with different crest lengths ranging from 0 to 0.3 m as:�=(1−��)�where n is an exponent varying from 4 to 7 and Yt is the normalized submergence defined as:��=�ℎ−[0.85−(0.5��+�)]1−[0.85−(0.5��+�)]where H is the total upstream head in submerged-flow conditions [7]. proposed a simpler formula to predict ψ for weirs of finite-crest length as:�=[1−(�ℎ)�]�where m and n are exponents varying for different types of weirs. Hakim and Azimi (2017) employed regression analysis to propose values of n = 0.25 and m = 0.28 (ho/L)−2.425 for triangular weirs.

The discharge capacity of weirs decreases in submerged flow condition and the onset of submergence occurs at the modular limit. Therefore, the determination of modular limit in weirs with different geometries is critical to understanding the sensitivity of a particular weir model with tailwater level variations. The available definition of modular limit as when head water raises by +1 mm due to tailwater rise does not consider the effects of channel and weir geometries. Therefore, a new and more accurate definition of modular limit is proposed in this study to consider the effect of other geometry and approaching flow parameters. The second objective of this study is to evaluate the effects of upstream and downstream ramps and ramps slopes on the hydraulic performance of submerged Hump weirs. The flow patterns, velocity distributions, and energy dissipation rates were extracted from validated numerical data to better understand the discharge reduction mechanism in Hump weirs in both free and submerged flow conditions.

Section snippets

Governing equations

Numerical simulation has been employed as an efficient and effective method to analyze free surface flow problems and in particular investigating on the hydraulics of flow over weirs [22]. The weir models were developed in numerical domain and the water pressure and velocity field were simulated by employing the FLOW-3D solver (Flow Science, Inc., Santa Fe, USA). The numerical results were validated with the laboratory measurements and the effects of ramps slopes on the performance of Hump

Verification of numerical model

The experimental observations of Bazin [16,17] were used for model validation in free and submerged flow conditions, respectively. The weir height in the study of Bazin was P = 0.5 m and two ramp slopes of 1V:1H and 1V:2H were tested. The bed and sides of the channel were made of glass, and the roughness distribution of the bed and walls were uniform. The Hump weir models in the study of Seyed Hakim and Azimi (2017) had a weir height of 0.076 m and ramp slopes of 1V:2H in both upstream and

Conclusions

A series of numerical simulations was performed to study the hydraulics and velocity pattern downstream of a Hump weir with symmetrical ramp slopes. Effects of ramp slope and discharge on formation of modular limit and in submerged flow condition were tested by conducting a series of numerical simulations on Hump weirs with ramp slopes varying from 1V:1H to 1V:5H. A comparison between numerical results and experimental data indicated that the proposed numerical model is accurate with a mean

Author contributions

Arash Ahmadi: Software, Validation, Visualization, Writing – original draft. Amir Azimi: Conceptualization, Funding acquisition, Investigation, Project administration, Supervision, Writing – review & editing

Uncited References

[30]; [31]; [32]; [33].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References (33)

  • H.M. Fritz et al.Hydraulics of embankment weirsJ. Hydraul. Eng.(1998)
  • P.K. Swamee et al.Viscosity and surface tension effects on rectangular weirsThe ISH Journal of Hydraulic Engineering(2001)
  • R. BaddourHead-discharge equation for the sharp-crested polynomial weirJ. Irrigat. Drain. Eng.(2008)
  • A.R. VatankhahHead-discharge equation for sharp-crested weir with piecewise-linear sidesJ. Irrigat. Drain. Eng.(2012)
  • A.H. Azimi et al.A note on sharp-crested weirs and weirs of finite crest lengthCan. J. Civ. Eng.(2012)
  • A.H. Azimi et al.Discharge characteristics of weirs of finite crest length with upstream and downstream rampsJ. Irrigat. Drain. Eng.(2013)
  • A.H. Azimi et al.Submerged flows over rectangular weirs of finite crest lengthJ. Irrigat. Drain. Eng.(2014)
  • A.H. Azimi et al.Water surface characteristics of submerged rectangular sharp-crested weirsJ. Hydraul. Eng.(2016)
  • M. Bijankhan et al.Experimental study and numerical simulation of inclined rectangular weirsJ. Irrigat. Drain. Eng.(2018)
  • A.H. AzimiAn Introduction to Hydraulic Structure” in Water Engineering Modeling and Mathematic Tools(2021)
Fig. 9 From: An Investigation on Hydraulic Aspects of Rectangular Labyrinth Pool and Weir Fishway Using FLOW-3D

An Investigation on Hydraulic Aspects of Rectangular Labyrinth Pool and Weir Fishway Using FLOW-3D

Abstract

웨어의 두 가지 서로 다른 배열(즉, 직선형 웨어와 직사각형 미로 웨어)을 사용하여 웨어 모양, 웨어 간격, 웨어의 오리피스 존재, 흐름 영역에 대한 바닥 경사와 같은 기하학적 매개변수의 영향을 평가했습니다.

유량과 수심의 관계, 수심 평균 속도의 변화와 분포, 난류 특성, 어도에서의 에너지 소산. 흐름 조건에 미치는 영향을 조사하기 위해 FLOW-3D® 소프트웨어를 사용하여 전산 유체 역학 시뮬레이션을 수행했습니다.

수치 모델은 계산된 표면 프로파일과 속도를 문헌의 실험적으로 측정된 값과 비교하여 검증되었습니다. 수치 모델과 실험 데이터의 결과, 급락유동의 표면 프로파일과 표준화된 속도 프로파일에 대한 평균 제곱근 오차와 평균 절대 백분율 오차가 각각 0.014m와 3.11%로 나타나 수치 모델의 능력을 확인했습니다.

수영장과 둑의 흐름 특성을 예측합니다. 각 모델에 대해 L/B = 1.83(L: 웨어 거리, B: 수로 폭) 값에서 급락 흐름이 발생할 수 있고 L/B = 0.61에서 스트리밍 흐름이 발생할 수 있습니다. 직사각형 미로보 모델은 기존 모델보다 무차원 방류량(Q+)이 더 큽니다.

수중 흐름의 기존 보와 직사각형 미로 보의 경우 Q는 각각 1.56과 1.47h에 비례합니다(h: 보 위 수심). 기존 웨어의 풀 내 평균 깊이 속도는 직사각형 미로 웨어의 평균 깊이 속도보다 높습니다.

그러나 주어진 방류량, 바닥 경사 및 웨어 간격에 대해 난류 운동 에너지(TKE) 및 난류 강도(TI) 값은 기존 웨어에 비해 직사각형 미로 웨어에서 더 높습니다. 기존의 웨어는 직사각형 미로 웨어보다 에너지 소산이 더 낮습니다.

더 낮은 TKE 및 TI 값은 미로 웨어 상단, 웨어 하류 벽 모서리, 웨어 측벽과 채널 벽 사이에서 관찰되었습니다. 보와 바닥 경사면 사이의 거리가 증가함에 따라 평균 깊이 속도, 난류 운동 에너지의 평균값 및 난류 강도가 증가하고 수영장의 체적 에너지 소산이 감소했습니다.

둑에 개구부가 있으면 평균 깊이 속도와 TI 값이 증가하고 풀 내에서 가장 높은 TKE 범위가 감소하여 두 모델 모두에서 물고기를 위한 휴식 공간이 더 넓어지고(TKE가 낮아짐) 에너지 소산율이 감소했습니다.

Two different arrangements of the weir (i.e., straight weir and rectangular labyrinth weir) were used to evaluate the effects of geometric parameters such as weir shape, weir spacing, presence of an orifice at the weir, and bed slope on the flow regime and the relationship between discharge and depth, variation and distribution of depth-averaged velocity, turbulence characteristics, and energy dissipation at the fishway. Computational fluid dynamics simulations were performed using FLOW-3D® software to examine the effects on flow conditions. The numerical model was validated by comparing the calculated surface profiles and velocities with experimentally measured values from the literature. The results of the numerical model and experimental data showed that the root-mean-square error and mean absolute percentage error for the surface profiles and normalized velocity profiles of plunging flows were 0.014 m and 3.11%, respectively, confirming the ability of the numerical model to predict the flow characteristics of the pool and weir. A plunging flow can occur at values of L/B = 1.83 (L: distance of the weir, B: width of the channel) and streaming flow at L/B = 0.61 for each model. The rectangular labyrinth weir model has larger dimensionless discharge values (Q+) than the conventional model. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q is proportional to 1.56 and 1.47h, respectively (h: the water depth above the weir). The average depth velocity in the pool of a conventional weir is higher than that of a rectangular labyrinth weir. However, for a given discharge, bed slope, and weir spacing, the turbulent kinetic energy (TKE) and turbulence intensity (TI) values are higher for a rectangular labyrinth weir compared to conventional weir. The conventional weir has lower energy dissipation than the rectangular labyrinth weir. Lower TKE and TI values were observed at the top of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall. As the distance between the weirs and the bottom slope increased, the average depth velocity, the average value of turbulent kinetic energy and the turbulence intensity increased, and the volumetric energy dissipation in the pool decreased. The presence of an opening in the weir increased the average depth velocity and TI values and decreased the range of highest TKE within the pool, resulted in larger resting areas for fish (lower TKE), and decreased the energy dissipation rates in both models.

1 Introduction

Artificial barriers such as detour dams, weirs, and culverts in lakes and rivers prevent fish from migrating and completing the upstream and downstream movement cycle. This chain is related to the life stage of the fish, its location, and the type of migration. Several riverine fish species instinctively migrate upstream for spawning and other needs. Conversely, downstream migration is a characteristic of early life stages [1]. A fish ladder is a waterway that allows one or more fish species to cross a specific obstacle. These structures are constructed near detour dams and other transverse structures that have prevented such migration by allowing fish to overcome obstacles [2]. The flow pattern in fish ladders influences safe and comfortable passage for ascending fish. The flow’s strong turbulence can reduce the fish’s speed, injure them, and delay or prevent them from exiting the fish ladder. In adult fish, spawning migrations are usually complex, and delays are critical to reproductive success [3].

Various fish ladders/fishways include vertical slots, denil, rock ramps, and pool weirs [1]. The choice of fish ladder usually depends on many factors, including water elevation, space available for construction, and fish species. Pool and weir structures are among the most important fish ladders that help fish overcome obstacles in streams or rivers and swim upstream [1]. Because they are easy to construct and maintain, this type of fish ladder has received considerable attention from researchers and practitioners. Such a fish ladder consists of a sloping-floor channel with series of pools directly separated by a series of weirs [4]. These fish ladders, with or without underwater openings, are generally well-suited for slopes of 10% or less [12]. Within these pools, flow velocities are low and provide resting areas for fish after they enter the fish ladder. After resting in the pools, fish overcome these weirs by blasting or jumping over them [2]. There may also be an opening in the flooded portion of the weir through which the fish can swim instead of jumping over the weir. Design parameters such as the length of the pool, the height of the weir, the slope of the bottom, and the water discharge are the most important factors in determining the hydraulic structure of this type of fish ladder [3]. The flow over the weir depends on the flow depth at a given slope S0 and the pool length, either “plunging” or “streaming.” In plunging flow, the water column h over each weir creates a water jet that releases energy through turbulent mixing and diffusion mechanisms [5]. The dimensionless discharges for plunging (Q+) and streaming (Q*) flows are shown in Fig. 1, where Q is the total discharge, B is the width of the channel, w is the weir height, S0 is the slope of the bottom, h is the water depth above the weir, d is the flow depth, and g is the acceleration due to gravity. The maximum velocity occurs near the top of the weir for plunging flow. At the water’s surface, it drops to about half [6].

figure 1
Fig. 1

Extensive experimental studies have been conducted to investigate flow patterns for various physical geometries (i.e., bed slope, pool length, and weir height) [2]. Guiny et al. [7] modified the standard design by adding vertical slots, orifices, and weirs in fishways. The efficiency of the orifices and vertical slots was related to the velocities at their entrances. In the laboratory experiments of Yagci [8], the three-dimensional (3D) mean flow and turbulence structure of a pool weir fishway combined with an orifice and a slot is investigated. It is shown that the energy dissipation per unit volume and the discharge have a linear relationship.

Considering the beneficial characteristics reported in the limited studies of researchers on the labyrinth weir in the pool-weir-type fishway, and knowing that the characteristics of flow in pool-weir-type fishways are highly dependent on the geometry of the weir, an alternative design of the rectangular labyrinth weir instead of the straight weirs in the pool-weir-type fishway is investigated in this study [79]. Kim [10] conducted experiments to compare the hydraulic characteristics of three different weir types in a pool-weir-type fishway. The results show that a straight, rectangular weir with a notch is preferable to a zigzag or trapezoidal weir. Studies on natural fish passes show that pass ability can be improved by lengthening the weir’s crest [7]. Zhong et al. [11] investigated the semi-rigid weir’s hydraulic performance in the fishway’s flow field with a pool weir. The results showed that this type of fishway performed better with a lower invert slope and a smaller radius ratio but with a larger pool spacing.

Considering that an alternative method to study the flow characteristics in a fishway with a pool weir is based on numerical methods and modeling from computational fluid dynamics (CFD), which can easily change the geometry of the fishway for different flow fields, this study uses the powerful package CFD and the software FLOW-3D to evaluate the proposed weir design and compare it with the conventional one to extend the application of the fishway. The main objective of this study was to evaluate the hydraulic performance of the rectangular labyrinth pool and the weir with submerged openings in different hydraulic configurations. The primary objective of creating a new weir configuration for suitable flow patterns is evaluated based on the swimming capabilities of different fish species. Specifically, the following questions will be answered: (a) How do the various hydraulic and geometric parameters relate to the effects of water velocity and turbulence, expressed as turbulent kinetic energy (TKE) and turbulence intensity (TI) within the fishway, i.e., are conventional weirs more affected by hydraulics than rectangular labyrinth weirs? (b) Which weir configurations have the greatest effect on fish performance in the fishway? (c) In the presence of an orifice plate, does the performance of each weir configuration differ with different weir spacing, bed gradients, and flow regimes from that without an orifice plate?

2 Materials and Methods

2.1 Physical Model Configuration

This paper focuses on Ead et al. [6]’s laboratory experiments as a reference, testing ten pool weirs (Fig. 2). The experimental flume was 6 m long, 0.56 m wide, and 0.6 m high, with a bottom slope of 10%. Field measurements were made at steady flow with a maximum flow rate of 0.165 m3/s. Discharge was measured with magnetic flow meters in the inlets and water level with point meters (see Ead et al. [6]. for more details). Table 1 summarizes the experimental conditions considered for model calibration in this study.

figure 2
Fig. 2

Table 1 Experimental conditions considered for calibration

Full size table

2.2 Numerical Models

Computational fluid dynamics (CFD) simulations were performed using FLOW-3D® v11.2 to validate a series of experimental liner pool weirs by Ead et al. [6] and to investigate the effects of the rectangular labyrinth pool weir with an orifice. The dimensions of the channel and data collection areas in the numerical models are the same as those of the laboratory model. Two types of pool weirs were considered: conventional and labyrinth. The proposed rectangular labyrinth pool weirs have a symmetrical cross section and are sized to fit within the experimental channel. The conventional pool weir model had a pool length of l = 0.685 and 0.342 m, a weir height of w = 0.141 m, a weir width of B = 0.56 m, and a channel slope of S0 = 5 and 10%. The rectangular labyrinth weirs have the same front width as the offset, i.e., a = b = c = 0.186 m. A square underwater opening with a width of 0.05 m and a depth of 0.05 m was created in the middle of the weir. The weir configuration considered in the present study is shown in Fig. 3.

figure 3
Fig. 3

2.3 Governing Equations

FLOW-3D® software solves the Navier–Stokes–Reynolds equations for three-dimensional analysis of incompressible flows using the fluid-volume method on a gridded domain. FLOW -3D® uses an advanced free surface flow tracking algorithm (TruVOF) developed by Hirt and Nichols [12], where fluid configurations are defined in terms of a VOF function F (xyzt). In this case, F (fluid fraction) represents the volume fraction occupied by the fluid: F = 1 in cells filled with fluid and F = 0 in cells without fluid (empty areas) [413]. The free surface area is at an intermediate value of F. (Typically, F = 0.5, but the user can specify a different intermediate value.) The equations in Cartesian coordinates (xyz) applicable to the model are as follows:

�f∂�∂�+∂(���x)∂�+∂(���y)∂�+∂(���z)∂�=�SOR

(1)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�x+�x

(2)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�y+�y

(3)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�z+�z

(4)

where (uvw) are the velocity components, (AxAyAz) are the flow area components, (Gx, Gy, Gz) are the mass accelerations, and (fxfyfz) are the viscous accelerations in the directions (xyz), ρ is the fluid density, RSOR is the spring term, Vf is the volume fraction associated with the flow, and P is the pressure. The kε turbulence model (RNG) was used in this study to solve the turbulence of the flow field. This model is a modified version of the standard kε model that improves performance. The model is a two-equation model; the first equation (Eq. 5) expresses the turbulence’s energy, called turbulent kinetic energy (k) [14]. The second equation (Eq. 6) is the turbulent dissipation rate (ε), which determines the rate of dissipation of kinetic energy [15]. These equations are expressed as follows Dasineh et al. [4]:

∂(��)∂�+∂(����)∂��=∂∂��[������∂�∂��]+��−�ε

(5)

∂(�ε)∂�+∂(�ε��)∂��=∂∂��[�ε�eff∂ε∂��]+�1εε��k−�2ε�ε2�

(6)

In these equations, k is the turbulent kinetic energy, ε is the turbulent energy consumption rate, Gk is the generation of turbulent kinetic energy by the average velocity gradient, with empirical constants αε = αk = 1.39, C1ε = 1.42, and C2ε = 1.68, eff is the effective viscosity, μeff = μ + μt [15]. Here, μ is the hydrodynamic density coefficient, and μt is the turbulent density of the fluid.

2.4 Meshing and the Boundary Conditions in the Model Setup

The numerical area is divided into three mesh blocks in the X-direction. The meshes are divided into different sizes, a containing mesh block for the entire spatial domain and a nested block with refined cells for the domain of interest. Three different sizes were selected for each of the grid blocks. By comparing the accuracy of their results based on the experimental data, the reasonable mesh for the solution domain was finally selected. The convergence index method (GCI) evaluated the mesh sensitivity analysis. Based on this method, many researchers, such as Ahmadi et al. [16] and Ahmadi et al. [15], have studied the independence of numerical results from mesh size. Three different mesh sizes with a refinement ratio (r) of 1.33 were used to perform the convergence index method. The refinement ratio is the ratio between the larger and smaller mesh sizes (r = Gcoarse/Gfine). According to the recommendation of Celik et al. [17], the recommended number for the refinement ratio is 1.3, which gives acceptable results. Table 2 shows the characteristics of the three mesh sizes selected for mesh sensitivity analysis.Table 2 Characteristics of the meshes tested in the convergence analysis

Full size table

The results of u1 = umax (u1 = velocity component along the x1 axis and umax = maximum velocity of u1 in a section perpendicular to the invert of the fishway) at Q = 0.035 m3/s, × 1/l = 0.66, and Y1/b = 0 in the pool of conventional weir No. 4, obtained from the output results of the software, were used to evaluate the accuracy of the calculation range. As shown in Fig. 4x1 = the distance from a given weir in the x-direction, Y1 = the water depth measured in the y-direction, Y0 = the vertical distance in the Cartesian coordinate system, h = the water column at the crest, b = the distance between the two points of maximum velocity umax and zero velocity, and l = the pool length.

figure 4
Fig. 4

The apparent index of convergence (p) in the GCI method is calculated as follows:

�=ln⁡(�3−�2)(�2−�1)/ln⁡(�)

(7)

f1f2, and f3 are the hydraulic parameters obtained from the numerical simulation (f1 corresponds to the small mesh), and r is the refinement ratio. The following equation defines the convergence index of the fine mesh:

GCIfine=1.25|ε|��−1

(8)

Here, ε = (f2 − f1)/f1 is the relative error, and f2 and f3 are the values of hydraulic parameters considered for medium and small grids, respectively. GCI12 and GCI23 dimensionless indices can be calculated as:

GCI12=1.25|�2−�1�1|��−1

(9)

Then, the independence of the network is preserved. The convergence index of the network parameters obtained by Eqs. (7)–(9) for all three network variables is shown in Table 3. Since the GCI values for the smaller grid (GCI12) are lower compared to coarse grid (GCI23), it can be concluded that the independence of the grid is almost achieved. No further change in the grid size of the solution domain is required. The calculated values (GCI23/rpGCI12) are close to 1, which shows that the numerical results obtained are within the convergence range. As a result, the meshing of the solution domain consisting of a block mesh with a mesh size of 0.012 m and a block mesh within a larger block mesh with a mesh size of 0.009 m was selected as the optimal mesh (Fig. 5).Table 3 GCI calculation

Full size table

figure 5
Fig. 5

The boundary conditions applied to the area are shown in Fig. 6. The boundary condition of specific flow rate (volume flow rate-Q) was used for the inlet of the flow. For the downstream boundary, the flow output (outflow-O) condition did not affect the flow in the solution area. For the Zmax boundary, the specified pressure boundary condition was used along with the fluid fraction = 0 (P). This type of boundary condition considers free surface or atmospheric pressure conditions (Ghaderi et al. [19]). The wall boundary condition is defined for the bottom of the channel, which acts like a virtual wall without friction (W). The boundary between mesh blocks and walls were considered a symmetrical condition (S).

figure 6
Fig. 6

The convergence of the steady-state solutions was controlled during the simulations by monitoring the changes in discharge at the inlet boundary conditions. Figure 7 shows the time series plots of the discharge obtained from the Model A for the three main discharges from the numerical results. The 8 s to reach the flow equilibrium is suitable for the case of the fish ladder with pool and weir. Almost all discharge fluctuations in the models are insignificant in time, and the flow has reached relative stability. The computation time for the simulations was between 6 and 8 h using a personal computer with eight cores of a CPU (Intel Core i7-7700K @ 4.20 GHz and 16 GB RAM).

figure 7
Fig. 7

3 Results

3.1 Verification of Numerical Results

Quantitative outcomes, including free surface and normalized velocity profiles obtained using FLOW-3D software, were reviewed and compared with the results of Ead et al. [6]. The fourth pool was selected to present the results and compare the experiment and simulation. For each quantity, the percentage of mean absolute error (MAPE (%)) and root-mean-square error (RMSE) are calculated. Equations (10) and (11) show the method used to calculate the errors.

MAPE(%)100×1�∑1�|�exp−�num�exp|

(10)

RMSE(−)1�∑1�(�exp−�num)2

(11)

Here, Xexp is the value of the laboratory data, Xnum is the numerical data value, and n is the amount of data. As shown in Fig. 8, let x1 = distance from a given weir in the x-direction and Y1 = water depth in the y-direction from the bottom. The trend of the surface profiles for each of the numerical results is the same as that of the laboratory results. The surface profiles of the plunging flows drop after the flow enters and then rises to approach the next weir. The RMSE and MAPE error values for Model A are 0.014 m and 3.11%, respectively, indicating acceptable agreement between numerical and laboratory results. Figure 9 shows the velocity vectors and plunging flow from the numerical results, where x and y are horizontal and vertical to the flow direction, respectively. It can be seen that the jet in the fish ladder pool has a relatively high velocity. The two vortices, i.e., the enclosed vortex rotating clockwise behind the weir and the surface vortex rotating counterclockwise above the jet, are observed for the regime of incident flow. The point where the jet meets the fish passage bed is shown in the figure. The normalized velocity profiles upstream and downstream of the impact points are shown in Fig. 10. The figure shows that the numerical results agree well with the experimental data of Ead et al. [6].

figure 8
Fig. 8
figure 9
Fig. 9
figure 10
Fig. 10

3.2 Flow Regime and Discharge-Depth Relationship

Depending on the geometric shape of the fishway, including the distance of the weir, the slope of the bottom, the height of the weir, and the flow conditions, the flow regime in the fishway is divided into three categories: dipping, transitional, and flow regimes [4]. In the plunging flow regime, the flow enters the pool through the weir, impacts the bottom of the fishway, and forms a hydraulic jump causing two eddies [220]. In the streamwise flow regime, the surface of the flow passing over the weir is almost parallel to the bottom of the channel. The transitional regime has intermediate flow characteristics between the submerged and flow regimes. To predict the flow regime created in the fishway, Ead et al. [6] proposed two dimensionless parameters, Qt* and L/w, where Qt* is the dimensionless discharge, L is the distance between weirs, and w is the height of the weir:

��∗=���0���

(12)

Q is the total discharge, B is the width of the channel, S0 is the slope of the bed, and g is the gravity acceleration. Figure 11 shows different ranges for each flow regime based on the slope of the bed and the distance between the pools in this study. The results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22] were used for this comparison. The distance between the pools affects the changes in the regime of the fish ladder. So, if you decrease the distance between weirs, the flow regime more likely becomes. This study determined all three flow regimes in a fish ladder. When the corresponding range of Qt* is less than 0.6, the flow regime can dip at values of L/B = 1.83. If the corresponding range of Qt* is greater than 0.5, transitional flow may occur at L/B = 1.22. On the other hand, when Qt* is greater than 1, streamwise flow can occur at values of L/B = 0.61. These observations agree well with the results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22].

figure 11
Fig. 11

For plunging flows, another dimensionless discharge (Q+) versus h/w given by Ead et al. [6] was used for further evaluation:

�+=��ℎ�ℎ=23�d�

(13)

where h is the water depth above the weir, and Cd is the discharge coefficient. Figure 12a compares the numerical and experimental results of Ead et al. [6]. In this figure, Rehbock’s empirical equation is used to estimate the discharge coefficient of Ead et al. [6].

�d=0.57+0.075ℎ�

(14)

figure 12
Fig. 12

The numerical results for the conventional weir (Model A) and the rectangular labyrinth weir (Model B) of this study agree well with the laboratory results of Ead et al. [6]. When comparing models A and B, it is also found that a rectangular labyrinth weir has larger Q + values than the conventional weir as the length of the weir crest increases for a given channel width and fixed headwater elevation. In Fig. 12b, Models A and B’s flow depth plot shows the plunging flow regime. The power trend lines drawn through the data are the best-fit lines. The data shown in Fig. 12b are for different bed slopes and weir geometries. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q can be assumed to be proportional to 1.56 and 1.47h, respectively. In the results of Ead et al. [6], Q is proportional to 1.5h. If we assume that the flow through the orifice is Qo and the total outflow is Q, the change in the ratio of Qo/Q to total outflow for models A and B can be shown in Fig. 13. For both models, the flow through the orifice decreases as the total flow increases. A logarithmic trend line was also found between the total outflow and the dimensionless ratio Qo/Q.

figure 13
Fig. 13

3.3 Depth-Averaged Velocity Distributions

To ensure that the target fish species can pass the fish ladder with maximum efficiency, the average velocity in the fish ladder should be low enough [4]. Therefore, the average velocity in depth should be as much as possible below the critical swimming velocities of the target fishes at a constant flow depth in the pool [20]. The contour plot of depth-averaged velocity was used instead of another direction, such as longitudinal velocity because fish are more sensitive to depth-averaged flow velocity than to its direction under different hydraulic conditions. Figure 14 shows the distribution of depth-averaged velocity in the pool for Models A and B in two cases with and without orifice plates. Model A’s velocity within the pool differs slightly in the spanwise direction. However, no significant variation in velocity was observed. The flow is gradually directed to the sides as it passes through the rectangular labyrinth weir. This increases the velocity at the sides of the channel. Therefore, the high-velocity zone is located at the sides. The low velocity is in the downstream apex of the weir. This area may be suitable for swimming target fish. The presence of an opening in the weir increases the flow velocity at the opening and in the pool’s center, especially in Model A. The flow velocity increase caused by the models’ opening varied from 7.7 to 12.48%. Figure 15 illustrates the effect of the inverted slope on the averaged depth velocity distribution in the pool at low and high discharge. At constant discharge, flow velocity increases with increasing bed slope. In general, high flow velocity was found in the weir toe sidewall and the weir and channel sidewalls.

figure 14
Fig. 14
figure 15
Fig. 15

On the other hand, for a constant bed slope, the high-velocity area of the pool increases due to the increase in runoff. For both bed slopes and different discharges, the most appropriate path for fish to travel from upstream to downstream is through the middle of the cross section and along the top of the rectangular labyrinth weirs. The maximum dominant velocities for Model B at S0 = 5% were 0.83 and 1.01 m/s; at S0 = 10%, they were 1.12 and 1.61 m/s at low and high flows, respectively. The low mean velocities for the same distance and S0 = 5 and 10% were 0.17 and 0.26 m/s, respectively.

Figure 16 shows the contour of the averaged depth velocity for various distances from the weir at low and high discharge. The contour plot shows a large variation in velocity within short distances from the weir. At L/B = 0.61, velocities are low upstream and downstream of the top of the weir. The high velocities occur in the side walls of the weir and the channel. At L/B = 1.22, the low-velocity zone displaces the higher velocity in most of the pool. Higher velocities were found only on the sides of the channel. As the discharge increases, the velocity zone in the pool becomes wider. At L/B = 1.83, there is an area of higher velocities only upstream of the crest and on the sides of the weir. At high discharge, the prevailing maximum velocities for L/B = 0.61, 1.22, and 1.83 were 1.46, 1.65, and 1.84 m/s, respectively. As the distance between weirs increases, the range of maximum velocity increases.

figure 16
Fig. 16

On the other hand, the low mean velocity for these distances was 0.27, 0.44, and 0.72 m/s, respectively. Thus, the low-velocity zone decreases with increasing distance between weirs. Figure 17 shows the pattern distribution of streamlines along with the velocity contour at various distances from the weir for Q = 0.05 m3/s. A stream-like flow is generally formed in the pool at a small distance between weirs (L/B = 0.61). The rotation cell under the jet forms clockwise between the two weirs. At the distances between the spillways (L/B = 1.22), the transition regime of the flow is formed. The transition regime occurs when or shortly after the weir is flooded. The rotation cell under the jet is clockwise smaller than the flow regime and larger than the submergence regime. At a distance L/B = 1.83, a plunging flow is formed so that the plunging jet dips into the pool and extends downstream to the center of the pool. The clockwise rotation of the cell is bounded by the dipping jet of the weir and is located between the bottom and the side walls of the weir and the channel.

figure 17
Fig. 17

Figure 18 shows the average depth velocity bar graph for each weir at different bed slopes and with and without orifice plates. As the distance between weirs increases, all models’ average depth velocity increases. As the slope of the bottom increases and an orifice plate is present, the average depth velocity in the pool increases. In addition, the average pool depth velocity increases as the discharge increases. Among the models, Model A’s average depth velocity is higher than Model B’s. The variation in velocity ranged from 8.11 to 12.24% for the models without an orifice plate and from 10.26 to 16.87% for the models with an orifice plate.

figure 18
Fig. 18

3.4 Turbulence Characteristics

The turbulent kinetic energy is one of the important parameters reflecting the turbulent properties of the flow field [23]. When the k value is high, more energy and a longer transit time are required to migrate the target species. The turbulent kinetic energy is defined as follows:

�=12(�x′2+�y′2+�z′2)

(15)

where uxuy, and uz are fluctuating velocities in the xy, and z directions, respectively. An illustration of the TKE and the effects of the geometric arrangement of the weir and the presence of an opening in the weir is shown in Fig. 19. For a given bed slope, in Model A, the highest TKE values are uniformly distributed in the weir’s upstream portion in the channel’s cross section. In contrast, for the rectangular labyrinth weir (Model B), the highest TKE values are concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value in Models A and B is 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%). In the downstream portion of the conventional weir and within the crest of the weir and the walls of the rectangular labyrinth, there was a much lower TKE value that provided the best conditions for fish to recover in the pool between the weirs. The average of the lowest TKE for bottom slopes of 5 and 10% in Model A is 0.041 and 0.056 J/kg, and for Model B, is 0.047 and 0.064 J/kg. The presence of an opening in the weirs reduces the area of the highest TKE within the pool. It also increases the resting areas for fish (lower TKE). The highest TKE at the highest bottom slope in Models A and B with an orifice is 0.208 and 0.191 J/kg, respectively.

figure 19
Fig. 19

Figure 20 shows the effect of slope on the longitudinal distribution of TKE in the pools. TKE values significantly increase for a given discharge with an increasing bottom slope. Thus, for a low bed slope (S0 = 5%), a large pool area has expanded with average values of 0.131 and 0.168 J/kg for low and high discharge, respectively. For a bed slope of S0 = 10%, the average TKE values are 0.176 and 0.234 J/kg. Furthermore, as the discharge increases, the area with high TKE values within the pool increases. Lower TKE values are observed at the apex of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall for both bottom slopes. The effect of distance between weirs on TKE is shown in Fig. 21. Low TKE values were observed at low discharge and short distances between weirs. Low TKE values are located at the top of the rectangular labyrinth weir and the downstream corner of the weir wall. There is a maximum value of TKE at the large distances between weirs, L/B = 1.83, along the center line of the pool, where the dip jet meets the bottom of the bed. At high discharge, the maximum TKE value for the distance L/B = 0.61, 1.22, and 1.83 was 0.246, 0.322, and 0.417 J/kg, respectively. In addition, the maximum TKE range increases with the distance between weirs.

figure 20
Fig. 20
figure 21
Fig. 21

For TKE size, the average value (TKEave) is plotted against q in Fig. 22. For all models, the TKE values increase with increasing q. For example, in models A and B with L/B = 0.61 and a slope of 10%, the TKE value increases by 41.66 and 86.95%, respectively, as q increases from 0.1 to 0.27 m2/s. The TKE values in Model B are higher than Model A for a given discharge, bed slope, and weir distance. The TKEave in Model B is higher compared to Model A, ranging from 31.46 to 57.94%. The presence of an orifice in the weir reduces the TKE values in both weirs. The intensity of the reduction is greater in Model B. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, an orifice reduces TKEave values by 60.35 and 19.04%, respectively. For each model, increasing the bed slope increases the TKEave values in the pool. For example, for Model B with q = 0.18 m2/s, increasing the bed slope from 5 to 10% increases the TKEave value by 14.34%. Increasing the distance between weirs increases the TKEave values in the pool. For example, in Model B with S0 = 10% and q = 0.3 m2/s, the TKEave in the pool increases by 34.22% if you increase the distance between weirs from L/B = 0.61 to L/B = 0.183.

figure 22
Fig. 22

Cotel et al. [24] suggested that turbulence intensity (TI) is a suitable parameter for studying fish swimming performance. Figure 23 shows the plot of TI and the effects of the geometric arrangement of the weir and the presence of an orifice. In Model A, the highest TI values are found upstream of the weirs and are evenly distributed across the cross section of the channel. The TI values increase as you move upstream to downstream in the pool. For the rectangular labyrinth weir, the highest TI values were concentrated on the sides of the pool, between the top of the weir and the side wall of the channel, and along the top of the weir. Downstream of the conventional weir, within the apex of the weir, and at the corners of the walls of the rectangular labyrinth weir, the percentage of TI was low. At the highest discharge, the average range of TI in Models A and B was 24–45% and 15–62%, respectively. The diversity of TI is greater in the rectangular labyrinth weir than the conventional weir. Fish swimming performance is reduced due to higher turbulence intensity. However, fish species may prefer different disturbance intensities depending on their swimming abilities; for example, Salmo trutta prefers a disturbance intensity of 18–53% [25]. Kupferschmidt and Zhu [26] found a higher range of TI for fishways, such as natural rock weirs, of 40–60%. The presence of an orifice in the weir increases TI values within the pool, especially along the middle portion of the cross section of the fishway. With an orifice in the weir, the average range of TI in Models A and B was 28–59% and 22–73%, respectively.

figure 23
Fig. 23

The effect of bed slope on TI variation is shown in Fig. 24. TI increases in different pool areas as the bed slope increases for a given discharge. For a low bed slope (S0 = 5%), a large pool area has increased from 38 to 63% and from 56 to 71% for low and high discharge, respectively. For a bed slope of S0 = 10%, the average values of TI are 45–67% and 61–73% for low and high discharge, respectively. Therefore, as runoff increases, the area with high TI values within the pool increases. A lower TI is observed for both bottom slopes in the corner of the wall, downstream of the crest walls, and between the side walls in the weir and channel. Figure 25 compares weir spacing with the distribution of TI values within the pool. The TI values are low at low flows and short distances between weirs. A maximum value of TI occurs at long spacing and where the plunging stream impinges on the bed and the area around the bed. TI ranges from 36 to 57%, 58–72%, and 47–76% for the highest flow in a wide pool area for L/B = 0.61, 1.22, and 1.83, respectively.

figure 24
Fig. 24
figure 25
Fig. 25

The average value of turbulence intensity (TIave) is plotted against q in Fig. 26. The increase in TI values with the increase in q values is seen in all models. For example, the average values of TI for Models A and B at L/B = 0.61 and slope of 10% increased from 23.9 to 33.5% and from 42 to 51.8%, respectively, with the increase in q from 0.1 to 0.27 m2/s. For a given discharge, a given gradient, and a given spacing of weirs, the TIave is higher in Model B than Model A. The presence of an orifice in the weirs increases the TI values in both types. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, the presence of an orifice increases TIave from 23.9 to 37.1% and from 42 to 48.8%, respectively. For each model, TIave in the pool increases with increasing bed slope. For Model B with q = 0.18 m2/s, TIave increases from 37.5 to 45.8% when you increase the invert slope from 5 to 10%. Increasing the distance between weirs increases the TIave in the pool. In Model B with S0 = 10% and q = 0.3 m2/s, the TIave in the pool increases from 51.8 to 63.7% as the distance between weirs increases from L/B = 0.61 to L/B = 0.183.

figure 26
Fig. 26

3.5 Energy Dissipation

To facilitate the passage of various target species through the pool of fishways, it is necessary to pay attention to the energy dissipation of the flow and to keep the flow velocity in the pool slow. The average volumetric energy dissipation (k) in the pool is calculated using the following basic formula:

�=����0��

(16)

where ρ is the water density, and H is the average water depth of the pool. The change in k versus Q for all models at two bottom slopes, S0 = 5%, and S0 = 10%, is shown in Fig. 27. Like the results of Yagci [8] and Kupferschmidt and Zhu [26], at a constant bottom slope, the energy dissipation in the pool increases with increasing discharge. The trend of change in k as a function of Q from the present study at a bottom gradient of S0 = 5% is also consistent with the results of Kupferschmidt and Zhu [26] for the fishway with rock weir. The only difference between the results is the geometry of the fishway and the combination of boulders instead of a solid wall. Comparison of the models shows that the conventional model has lower energy dissipation than the rectangular labyrinth for a given discharge. Also, increasing the distance between weirs decreases the volumetric energy dissipation for each model with the same bed slope. Increasing the slope of the bottom leads to an increase in volumetric energy dissipation, and an opening in the weir leads to a decrease in volumetric energy dissipation for both models. Therefore, as a guideline for volumetric energy dissipation, if the value within the pool is too high, the increased distance of the weir, the decreased slope of the bed, or the creation of an opening in the weir would decrease the volumetric dissipation rate.

figure 27
Fig. 27

To evaluate the energy dissipation inside the pool, the general method of energy difference in two sections can use:

ε=�1−�2�1

(17)

where ε is the energy dissipation rate, and E1 and E2 are the specific energies in Sects. 1 and 2, respectively. The distance between Sects. 1 and 2 is the same. (L is the distance between two upstream and downstream weirs.) Figure 28 shows the changes in ε relative to q (flow per unit width). The rectangular labyrinth weir (Model B) has a higher energy dissipation rate than the conventional weir (Model A) at a constant bottom gradient. For example, at S0 = 5%, L/B = 0.61, and q = 0.08 m3/s.m, the energy dissipation rate in Model A (conventional weir) was 0.261. In Model B (rectangular labyrinth weir), however, it was 0.338 (22.75% increase). For each model, the energy dissipation rate within the pool increases as the slope of the bottom increases. For Model B with L/B = 1.83 and q = 0.178 m3/s.m, the energy dissipation rate at S0 = 5% and 10% is 0.305 and 0.358, respectively (14.8% increase). Figure 29 shows an orifice’s effect on the pools’ energy dissipation rate. With an orifice in the weir, both models’ energy dissipation rates decreased. Thus, the reduction in energy dissipation rate varied from 7.32 to 9.48% for Model A and from 8.46 to 10.57 for Model B.

figure 28
Fig. 28
figure 29
Fig. 29

4 Discussion

This study consisted of entirely of numerical analysis. Although this study was limited to two weirs, the hydraulic performance and flow characteristics in a pooled fishway are highlighted by the rectangular labyrinth weir and its comparison with the conventional straight weir. The study compared the numerical simulations with laboratory experiments in terms of surface profiles, velocity vectors, and flow characteristics in a fish ladder pool. The results indicate agreement between the numerical and laboratory data, supporting the reliability of the numerical model in capturing the observed phenomena.

When the configuration of the weir changes to a rectangular labyrinth weir, the flow characteristics, the maximum and minimum area, and even the location of each hydraulic parameter change compared to a conventional weir. In the rectangular labyrinth weir, the flow is gradually directed to the sides as it passes the weir. This increases the velocity at the sides of the channel [21]. Therefore, the high-velocity area is located on the sides. In the downstream apex of the weir, the flow velocity is low, and this area may be suitable for swimming target fish. However, no significant change in velocity was observed at the conventional weir within the fish ladder. This resulted in an average increase in TKE of 32% and an average increase in TI of about 17% compared to conventional weirs.

In addition, there is a slight difference in the flow regime for both weir configurations. In addition, the rectangular labyrinth weir has a higher energy dissipation rate for a given discharge and constant bottom slope than the conventional weir. By reducing the distance between the weirs, this becomes even more intense. Finally, the presence of an orifice in both configurations of the weir increased the flow velocity at the orifice and in the middle of the pool, reducing the highest TKE value and increasing the values of TI within the pool of the fish ladder. This resulted in a reduction in volumetric energy dissipation for both weir configurations.

The results of this study will help the reader understand the direct effects of the governing geometric parameters on the hydraulic characteristics of a fishway with a pool and weir. However, due to the limited configurations of the study, further investigation is needed to evaluate the position of the weir’s crest on the flow direction and the difference in flow characteristics when combining boulders instead of a solid wall for this type of labyrinth weir [26]. In addition, hydraulic engineers and biologists must work together to design an effective fishway with rectangular labyrinth configurations. The migration habits of the target species should be considered when designing the most appropriate design [27]. Parametric studies and field observations are recommended to determine the perfect design criteria.

The current study focused on comparing a rectangular labyrinth weir with a conventional straight weir. Further research can explore other weir configurations, such as variations in crest position, different shapes of labyrinth weirs, or the use of boulders instead of solid walls. This would help understand the influence of different geometric parameters on hydraulic characteristics.

5 Conclusions

A new layout of the weir was evaluated, namely a rectangular labyrinth weir compared to a straight weir in a pool and weir system. The differences between the weirs were highlighted, particularly how variations in the geometry of the structures, such as the shape of the weir, the spacing of the weir, the presence of an opening at the weir, and the slope of the bottom, affect the hydraulics within the structures. The main findings of this study are as follows:

  • The calculated dimensionless discharge (Qt*) confirmed three different flow regimes: when the corresponding range of Qt* is smaller than 0.6, the regime of plunging flow occurs for values of L/B = 1.83. (L: distance of the weir; B: channel width). When the corresponding range of Qt* is greater than 0.5, transitional flow occurs at L/B = 1.22. On the other hand, if Qt* is greater than 1, the streaming flow is at values of L/B = 0.61.
  • For the conventional weir and the rectangular labyrinth weir with the plunging flow, it can be assumed that the discharge (Q) is proportional to 1.56 and 1.47h, respectively (h: water depth above the weir). This information is useful for estimating the discharge based on water depth in practical applications.
  • In the rectangular labyrinth weir, the high-velocity zone is located on the side walls between the top of the weir and the channel wall. A high-velocity variation within short distances of the weir. Low velocity occurs within the downstream apex of the weir. This area may be suitable for swimming target fish.
  • As the distance between weirs increased, the zone of maximum velocity increased. However, the zone of low speed decreased. The prevailing maximum velocity for a rectangular labyrinth weir at L/B = 0.61, 1.22, and 1.83 was 1.46, 1.65, and 1.84 m/s, respectively. The low mean velocities for these distances were 0.27, 0.44, and 0.72 m/s, respectively. This finding highlights the importance of weir spacing in determining the flow characteristics within the fishway.
  • The presence of an orifice in the weir increased the flow velocity at the orifice and in the middle of the pool, especially in a conventional weir. The increase ranged from 7.7 to 12.48%.
  • For a given bottom slope, in a conventional weir, the highest values of turbulent kinetic energy (TKE) are uniformly distributed in the upstream part of the weir in the cross section of the channel. In contrast, for the rectangular labyrinth weir, the highest TKE values were concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value for the conventional and the rectangular labyrinth weir was 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%).
  • For a given discharge, bottom slope, and weir spacing, the average values of TI are higher for the rectangular labyrinth weir than for the conventional weir. At the highest discharge, the average range of turbulence intensity (TI) for the conventional and rectangular labyrinth weirs was between 24 and 45% and 15% and 62%, respectively. This reveals that the rectangular labyrinth weir may generate more turbulent flow conditions within the fishway.
  • For a given discharge and constant bottom slope, the rectangular labyrinth weir has a higher energy dissipation rate than the conventional weir (22.75 and 34.86%).
  • Increasing the distance between weirs decreased volumetric energy dissipation. However, increasing the gradient increased volumetric energy dissipation. The presence of an opening in the weir resulted in a decrease in volumetric energy dissipation for both model types.

Availability of data and materials

Data is contained within the article.

References

  1. Katopodis C (1992) Introduction to fishway design, working document. Freshwater Institute, Central Arctic Region
  2. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C.: Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 63, 88–101 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.010Article Google Scholar 
  3. Dasineh, M.; Ghaderi, A.; Bagherzadeh, M.; Ahmadi, M.; Kuriqi, A.: Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics 9, 3135 (2021)Article Google Scholar 
  4. Silva, A.T.; Bermúdez, M.; Santos, J.M.; Rabuñal, J.R.; Puertas, J.: Pool-type fishway design for a potamodromous cyprinid in the Iberian Peninsula: the Iberian barbel—synthesis and future directions. Sustainability 12, 3387 (2020). https://doi.org/10.3390/su12083387Article Google Scholar 
  5. Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A.: Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: effect of boulder density and fishway discharge. Ecol. Eng. 73, 335–344 (2014). https://doi.org/10.1016/j.ecoleng.2014.09.065Article Google Scholar 
  6. Ead, S.; Katopodis, C.; Sikora, G.; Rajaratnam, N.J.J.: Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 3, 379–390 (2004)Article Google Scholar 
  7. Guiny, E.; Ervine, D.A.; Armstrong, J.D.: Hydraulic and biological aspects of fish passes for Atlantic salmon. J. Hydraul. Eng. 131, 542–553 (2005)Article Google Scholar 
  8. Yagci, O.: Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 36, 36–46 (2010). https://doi.org/10.1016/j.ecoleng.2009.09.007Article Google Scholar 
  9. Dizabadi, S.; Hakim, S.S.; Azimi, A.H.: Discharge characteristics and structure of flow in labyrinth weirs with a downstream pool. Flow Meas. Instrum. 71, 101683 (2020). https://doi.org/10.1016/j.flowmeasinst.2019.101683Article Google Scholar 
  10. Kim, J.H.: Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 16, 425–433 (2001). https://doi.org/10.1016/S0925-8574(00)00125-7Article Google Scholar 
  11. Zhong, Z.; Ruan, T.; Hu, Y.; Liu, J.; Liu, B.; Xu, W.: Experimental and numerical assessment of hydraulic characteristic of a new semi-frustum weir in the pool-weir fishway. Ecol. Eng. 170, 106362 (2021). https://doi.org/10.1016/j.ecoleng.2021.106362Article Google Scholar 
  12. Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5Article Google Scholar 
  13. Roache, P.J.: Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 1994(116), 405–413 (1994)Article Google Scholar 
  14. Guo, S.; Chen, S.; Huang, X.; Zhang, Y.; Jin, S.: CFD and experimental investigations of drag force on spherical leak detector in pipe flows at high Reynolds number. Comput. Model. Eng. Sci. 101(1), 59–80 (2014)Google Scholar 
  15. Ahmadi, M.; Kuriqi, A.; Nezhad, H.M.; Ghaderi, A.; Mohammadi, M.: Innovative configuration of vertical slot fishway to enhance fish swimming conditions. J. Hydrodyn. 34, 917–933 (2022). https://doi.org/10.1007/s42241-022-0071-yArticle Google Scholar 
  16. Ahmadi, M.; Ghaderi, A.; MohammadNezhad, H.; Kuriqi, A.; Di Francesco, S.J.W.: Numerical investigation of hydraulics in a vertical slot fishway with upgraded configurations. Water 13, 2711 (2021)Article Google Scholar 
  17. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME (2008). https://doi.org/10.1115/1.2960953Article Google Scholar 
  18. Li, S.; Yang, J.; Ansell, A.: Evaluation of pool-type fish passage with labyrinth weirs. Sustainability (2022). https://doi.org/10.3390/su14031098Article Google Scholar 
  19. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)Article Google Scholar 
  20. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T.: Pool-type fishways: two different morpho-ecological cyprinid species facing plunging and streaming flows. PLoS ONE 8, e65089 (2013). https://doi.org/10.1371/journal.pone.0065089Article Google Scholar 
  21. Baki, A.B.M.; Zhu, D.Z.; Harwood, A.; Lewis, A.; Healey, K.: Rock-weir fishway I: flow regimes and hydraulic characteristics. J. Ecohydraulics 2, 122–141 (2017). https://doi.org/10.1080/24705357.2017.1369182Article Google Scholar 
  22. Dizabadi, S.; Azimi, A.H.: Hydraulic and turbulence structure of triangular labyrinth weir-pool fishways. River Res. Appl. 36, 280–295 (2020). https://doi.org/10.1002/rra.3581Article Google Scholar 
  23. Faizal, W.M.; Ghazali, N.N.N.; Khor, C.Y.; Zainon, M.Z.; Ibrahim, N.B.; Razif, R.M.: Turbulent kinetic energy of flow during inhale and exhale to characterize the severity of obstructive sleep apnea patient. Comput. Model. Eng. Sci. 136(1), 43–61 (2023)Google Scholar 
  24. Cotel, A.J.; Webb, P.W.; Tritico, H.: Do brown trout choose locations with reduced turbulence? Trans. Am. Fish. Soc. 135, 610–619 (2006). https://doi.org/10.1577/T04-196.1Article Google Scholar 
  25. Hargreaves, D.M.; Wright, N.G.: On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 95, 355–369 (2007). https://doi.org/10.1016/j.jweia.2006.08.002Article Google Scholar 
  26. Kupferschmidt, C.; Zhu, D.Z.: Physical modelling of pool and weir fishways with rock weirs. River Res. Appl. 33, 1130–1142 (2017). https://doi.org/10.1002/rra.3157Article Google Scholar 
  27. Romão, F.; Quaresma, A.L.; Santos, J.M.; Amaral, S.D.; Branco, P.; Pinheiro, A.N.: Multislot fishway improves entrance performance and fish transit time over vertical slots. Water (2021). https://doi.org/10.3390/w13030275Article Google Scholar 

Download references

Figure 1. Three-dimensional finite element model of local scouring of semi-exposed submarine cable.

반노출 해저케이블의 국부 정련과정 및 영향인자에 대한 수치적 연구

Numerical Study of the Local Scouring Process and Influencing Factors of Semi-Exposed Submarine Cables

by Qishun Li,Yanpeng Hao *,Peng Zhang,Haotian Tan,Wanxing Tian,Linhao Chen andLin Yang

School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China

*Author to whom correspondence should be addressed.J. Mar. Sci. Eng.202311(7), 1349; https://doi.org/10.3390/jmse11071349

Received: 10 June 2023 / Revised: 19 June 2023 / Accepted: 27 June 2023 / Published: 1 July 2023(This article belongs to the Section Ocean Engineering)

일부 수식이 손상되어 표시될 수 있습니다. 이 경우 원문을 참조하시기 바랍니다.

Abstract

Local scouring might result in the spanning of submarine cables, endangering their mechanical and electrical properties. In this contribution, a three-dimensional computational fluid dynamics simulation model is developed using FLOW-3D, and the scouring process of semi-exposed submarine cables is investigated. The effects of the sediment critical Shields number, sediment density, and ocean current velocity on local scouring are discussed, and variation rules for the submarine cables’ spanning time are provided. The results indicate that three scouring holes are formed around the submarine cables. The location of the bottom of the holes corresponds to that of the maximum shear velocity. The continuous development of scouring holes at the wake position leads to the spanning of the submarine cables. The increase in the sediment’s critical Shields number and sediment density, as well as the decrease in the ocean current velocity, will extend the time for maintaining the stability of the upstream scouring hole and retard the development velocity of the wake position and downstream scouring holes. The spanning time has a cubic relationship with the sediment’s critical Shields number, a linear relationship with the sediment density, and an exponential relationship with the ocean current velocity. In this paper, the local scouring process of semi-exposed submarine cables is studied, which provides a theoretical basis for the operation and maintenance of submarine cables.

Keywords: 

submarine cablelocal scouringnumerical simulationcomputational fluid dynamics

1. Introduction

As a key piece of equipment in cross-sea power grids, submarine cables are widely used to connect autonomous power grids, supply power to islands or offshore platforms, and transmit electric power generated by marine renewable energy installations to onshore substations [1]. Once submarine cables break down due to natural disasters or human-made damage, the normal operation of other marine electric power equipment connected to them may be affected. These chain reactions will cause great economic losses and serious social impacts [2].

To protect submarine cables, they are usually buried 1 to 3 m below the seabed [3]. However, submarine cables are still confronted with potential threats from the complex subsea environment. Under the influence of fishing, anchor damage, ocean current scouring, and other factors, the sediment above submarine cables will always inevitably migrate. When a submarine cable is partially exposed, the scouring at this position will be exacerbated; eventually, it will cause the submarine cable to span. According to a field investigation of the 500 kV oil-filled submarine cable that is part of the Hainan networking system, the total length of the span is 49 m [4]. Under strong ocean currents, spanning submarine cables may experience vortex-induced vibrations. Fatigue stress caused by vortex-induced vibrations may lead to metal sheath rupture [5], which endangers the mechanical and electrical properties of submarine cables. Therefore, understanding the local scouring processes of partially exposed submarine cables is crucial for predicting scouring patterns. This is the basis for developing effective operation and maintenance strategies for submarine cables.

The mechanism and influencing factors of sediment erosion have been examined by researchers around the world. In 1988, Sumer [6] conducted experiments to show that the shedding vortex in the wake of a pipeline would increase the Shields parameter by 3–4 times, which would result in severe scouring. In 1991, Chiew [7] performed experiments to prove that the maximum scouring depth could be obtained when the pipeline was located on a flat bed and was scoured by a unidirectional water flow. Based on the test results, they provided a prediction formula for the maximum scouring depth. In 2003, Mastbergen [8] proposed a one-dimensional, steady-state numerical model of turbidity currents, which considered the negative pore pressures in the seabed. The calculated results of this model were basically consistent with the actual scouring of a submarine canyon. In 2007, Dey [9] presented a semitheoretical model for the computation of the maximum clear-water scour depth below underwater pipelines in uniform sediments under a steady flow, and the predicted scour depth in clear water satisfactorily agreed with the observed values. In 2008, Dey [10] conducted experiments on clear-water scour below underwater pipelines under a steady flow and obtained a variation pattern of the depth of the scouring hole. In 2008, Liang [11] used a two-dimensional numerical simulation to study the scouring process of a tube bundle under the action of currents and waves. They discovered that, compared with the scouring of a single tube, the scouring depth of the tube bundle was deeper, and the scouring time was longer. In 2012, Yang [12] found that placing rubber sheets under pipes can greatly accelerate their self-burial. The rubber sheets had the best performance when their length was about 1.5 times the size of the pipe. In 2020, Li [13] investigated the two-dimensional local scour beneath two submarine pipelines in tandem under wave-plus-current conditions via numerical simulation. They found that for conditions involving waves plus a low-strength current, the scour pattern beneath the two pipelines behaved like that in the pure-wave condition. Conversely, when the current had equal strength to the wave-induced flow, the scour pattern beneath the two pipelines resembled that in the pure-current condition. In 2020, Guan [14] studied and discussed the interactive coupling effects among a vibrating pipeline, flow field, and scour process through experiments, and the experimental data showed that the evolution of the scour hole had significant influences on the pipeline vibrations. In 2021, Liu [15] developed a two-dimensional finite element numerical model and researched the local scour around a vibrating pipeline. The numerical results showed that the maximum vibration amplitude of the pipeline could reach about 1.2 times diameter, and the maximum scour depth occurred on the wake side of the vibrating pipeline. In 2021, Huang [16] carried out two-dimensional numerical simulations to investigate the scour beneath a single pipeline and piggyback pipelines subjected to an oscillatory flow condition at a KC number of 11 and captured typical steady-streaming structures around the pipelines due to the oscillatory flow condition. In 2021, Cui [17] investigated the characteristics of the riverbed scour profile for a pipeline buried at different depths under the condition of riverbed sediments with different particle sizes. The results indicated that, in general, the equilibrium scour depth changed in a spoon shape with the gradual increase in the embedment ratio. In 2022, Li [18] used numerical simulation to study the influence of the burial depth of partially buried pipelines on the surrounding flow field, but they did not investigate the scour depth. In 2022, Zhu [19] performed experiments to prove that the scour hole propagation rate under a pipeline decreases with an increasing pipeline embedment ratio and rises with the KC number. In 2022, Najafzadeh [20] proposed equations for the prediction of the scouring propagation rate around pipelines due to currents based on a machine learning model, and the prediction results were consistent with the experimental data. In 2023, Ma [21] used the computational fluid dynamics coarse-grained discrete element method to simulate the scour process around a pipeline. The results showed that this method can effectively reduce the considerable need for computing resources and excessive computation time. In 2023, through numerical simulations, Hu [22] discovered that the water velocity and the pipeline diameter had a significant effect on the depth of scouring.

In the preceding works, the researchers investigated the mechanism of sediment scouring and the effect of various factors on the local scouring of submarine pipelines. However, submarine cables are buried beneath the seabed, while submarine pipelines are erected above the seabed. The difference in laying methods leads to a large discrepancy between their local scouring processes. Therefore, the conclusions of the above investigations are not applicable to the local scouring of submarine cables. Currently, there is no report on the research of the local scouring of partially exposed submarine cables.

In this paper, a three-dimensional computational fluid dynamics (CFD) finite element model, based on two-phase flow, is established using FLOW-3D. The local scouring process of semi-exposed submarine cables under steady-state ocean currents is studied, and the variation rules of the depth and the shape of the scouring holes, as well as the shear velocity with time, are obtained. By setting different critical Shields numbers of the sediment, different sediment densities, and different ocean current velocities, the change rule of the scouring holes’ development rate and the time required for the spanning of submarine cables are explored.

2. Sediment Scouring Model

In the sediment scouring model, the sediment is set as the dispersed particle, which is regarded as a kind of quasifluid. In this context, sediment scouring is considered as a two-phase flow process between the liquid phase and solid particle phase. The sediment in this process is further divided into two categories: one is suspended in the fluid, and the other is deposited on the bottom.When the local Shields number of sediment is greater than the critical Shields number, the deposited sediment will be transformed into the suspended sediment under the action of ocean currents. The calculation formulae of the local Shields numbers θ and the critical Shields numbers 

θcr of sediment is given as [23,24

]

𝜃=𝑈2𝑓(𝜌𝑠/𝜌𝑓−1)𝑔𝑑50,�=��2(��/��−1)��50,(1)

𝜃𝑐𝑟=0.31+1.2𝐷∗+0.055(1−𝑒−0.02𝐷∗),���=0.31+1.2�*+0.055(1−�−0.02�*),(2)

𝐷∗=𝑑50𝜌𝑓(𝜌𝑠−𝜌𝑓)𝑔/𝜇2−−−−−−−−−−−−−−√3,�*=�50��(��−��)�/�23,(3)where 

Uf is the shearing velocity of bed surface, 

ρs is the density of the sediment particle, 

ρf is the fluid density, g is the acceleration of gravity, d

50 is the median size of sediment, and μ is the dynamic viscosity of sediment.And each sediment particle suspended in the fluid obeys the equations for mass conservation and energy conservation

∂𝑐𝑠∂𝑡+∇⋅(𝑢𝑐𝑠)=0,∂��∂�+∇⋅(�¯��)=0,(4)

∂𝑢𝑠∂𝑡+𝑢⋅∇𝑢𝑠=−1𝜌𝑠∇𝑃+𝐹−𝐾𝑓𝑠𝜌𝑠𝑢𝑟,∂��∂�+�¯⋅∇��=−1��∇�+�−�������,(5)where 

cs is the concentration of the sediment particle, 

𝑢�¯ is the mean velocity vector of the fluid and the sediment particle, 

us is the velocity of the sediment particle, 

fs is the volume fraction of the sediment particle, P is the pressure, F is the volumetric and viscous force, K is the drag force, and 

ur is the relative velocity.

3. Numerical Setup and Modeling

In this paper, a three-dimensional submarine cable local scouring simulation model is established by FLOW-3D. Based on the numerical simulation, the process of the submarine cable, which gradually changes from semi-exposed to the spanning state under the steady-state ocean current, is studied. The geometric modeling, the mesh division, the physical field setup, and the grid independent test of CFD numerical model are as follows.

3.1. Geometric Modeling and Mesh Division

A three-dimensional (3D) numerical model of the local scouring of a semi-exposed submarine cable is established, which is shown in Figure 1. The dimensions of the model are marked in Figure 1. The inlet direction of the ocean current is defined as the upstream of the submarine cable (referred to as upstream), and the outlet direction of the ocean current is defined as the downstream of the submarine cable (referred to as downstream).

Jmse 11 01349 g001 550

Figure 1. Three-dimensional finite element model of local scouring of semi-exposed submarine cable.

The submarine cable with a diameter of 0.2 m is positioned on sediment that is initially in a semi-exposed state. When the length of the span is short, the submarine cable will not show obvious deformation due to gravity or scouring from the ocean current. Therefore, the submarine cable surface is set as the fixed boundary. The model’s left boundary is set as the inlet, the right boundary is set as the outlet, the front and rear boundaries are set as symmetry, and the bottom boundary is set as the non-slip wall. Since the water depth above the submarine cable is more than 0.6 m in practice, the top boundary of the model is also set as symmetry. The sediment near the inlet and the outlet will be carried by ocean currents, which leads to the abnormal scouring terrain. At each end of the sediment, a baffle (thickness of 3 cm) is installed to ensure that the simulation results can reflect the real situation.

Due to the fact that the flow field around the semi-exposed submarine cable is not a simple two-dimensional symmetrical distribution, it should be solved by three-dimensional numerical simulation. Considering the accuracy and efficiency of the calculation, the size of mesh is set to 0.02 m. The total number of meshes after the dissection is 133,254.

3.2. Physical Field Setup

The CFD finite element model contains four physical field modules: sediment scouring module, gravity and non-inertial reference frame module, density evaluation module, and viscosity and turbulence module. In this paper, the renormalization group (RNG) kε turbulence model is used, which has high computational accuracy for turbulent vortices. Therefore, this turbulence model is suitable for calculating the sediment scouring process around the semi-exposed submarine cable [25]. The key parameters of the numerical simulation are referring to the survey results of submarine sediments in the Korean Peninsula [26], as listed in Table 1.Table 1. Key parameters of numerical simulation.

Table

3.3. Mesh Independent Test

In order to eliminate errors caused by the quantity of grids in the calculation process, two sizes of mesh are set on the validation model, and the scour profiles under different mesh sizes are compared. The validation model is shown in Figure 2, and the scouring terrain under different mesh size is given in Figure 3.

Jmse 11 01349 g002 550

Figure 2. Validation model.

Jmse 11 01349 g003 550

Figure 3. Scouring terrain under different mesh sizes.

It can be seen from Figure 3 that with the increase in the number of meshes, the scouring terrain of the verification model changes slightly, and the scouring depth is basically unchanged. Considering the accuracy of the numerical simulation and the calculation’s time cost, it is reasonable to consider setting the mesh size to 0.02 m.

4. Results and Analysis

4.1. Analysis of Local Scouring Process

Based on the CFD finite element numerical simulation, the local scouring process of the submarine cable under the steady-state ocean current is analyzed. The end time of the simulation is 9 h, the initial time step is 0.01 s, and the fluid velocity is 0.40 m/s. Simulation results are saved every minute. Figure 4 illustrates the scouring terrain around the semi-exposed submarine cable, which has been scoured by the steady-state current for 5 h.

Jmse 11 01349 g004 550

Figure 4. Scouring terrain around semi-exposed submarine cable (scour for 5 h).

As can be seen from Figure 4, three scouring holes were separately formed in the upstream wake position and downstream of the semi-exposed submarine cable. The scouring holes are labeled according to their locations. The variation of the scouring terrain around the semi-exposed submarine cable over time is given in Figure 5. The red circle in the picture corresponds to the position of the submarine cable, and the red box in the legend marks the time when the submarine cable is spanning.

Jmse 11 01349 g005 550

Figure 5. Variation of scouring terrain around semi-exposed submarine cable adapted to time.

From Figure 5, in the first hour of scouring, the upstream (−0.5 m to −0.1 m) and downstream (0.43 m to 1.5 m) scouring holes appeared. The upstream scouring hole was relatively flat with depth of 0.04 m. The depth of the downstream scouring hole increased with the increase in distance, and the maximum depth was 0.13 m. The scouring hole that developed at the wake position was very shallow, and its depth was only 0.007 m.

In the second hour of scouring, the upstream scouring hole’s depth remained nearly constant. The depth of the downstream scouring hole only increased by 0.002 m. The scouring hole at the wake position developed steadily, and its depth increased from 0.007 m to 0.014 m.

The upstream and downstream scouring holes did not continue to develop during the third to the sixth hour. Compared to the first two hours, the development of scouring holes at the wake position accelerated significantly, with an average growth rate of 0.028 m/h. The growth rate in the fifth hour of the scouring hole at the wake position was slightly faster than the other times. After 6 h of scouring, the sediment on the right side of the submarine cable had been hollowed out.

In the seventh and the eighth hour of scouring, the upstream scouring hole’s depth increased slightly, the downstream scouring hole still remained stable, and the depth of the scouring hole at wake position increased by 0.019 m. The sediment under the submarine cable was gradually eroded as well. By the end of the eighth hour, the lower right part of the submarine cable had been exposed to water as well.

At 8 h 21 min of the scouring, the submarine cable was completely spanned, and the scouring holes were connected to each other. Within the next 10 min, the development of the scouring holes sped up significantly, and the maximum depth of scouring holes increased greatly to 0.27 m.

In reference [17], researchers have studied the local scouring process of semi-buried pipelines in sandy riverbeds through experiments. The test results show that the scouring process can be divided into a start-up stage, micropore formation stage, extension stage, and equilibrium stage. In this paper, the first three stages are simulated, and the results are in good agreement with the experiment, which proves the accuracy of the present numerical model.

In this research, the velocity of ocean currents at the sediment surface is defined as the shear velocity, which plays an important role in the process of local scouring. Figure 6 provides visual data on how the shear velocity varies over time.

Jmse 11 01349 g006 550

Figure 6. Shear velocity changes in the scouring process.

The semi-exposed submarine cable protrudes from the seabed, which makes the shear velocity of its surface much higher than other locations. After the submarine cable is spanned, the shear velocity of the scouring hole surface below it is taken. This is the reason for the sudden change of shear velocity at the submarine cable’s location in Figure 6.The shear velocity in the initial state of the upstream scouring hole is obviously greater than in subsequent times. After 1 h of scouring, the shear velocity in the upstream scouring hole rapidly decreased from 1.1 × 10

−2 m/s to 3.98 × 10

−3 m/s and remained stable until the end of the sixth hour. This phenomenon explains why the upstream scouring hole developed rapidly in the first hour but remained stable for the following 5 h.The shear velocity in the downstream scouring hole reduced at first and then increased; its initial value was 1.41 × 10

−2 m/s. It took approximately 5 h for the shear velocity to stabilize, and the stable shear velocity was 2.26 × 10

−3 m/s. Therefore, compared with the upstream scouring hole, the downstream scouring hole was deeper and required more time to reach stability.The initial shear velocity in the scouring hole at the wake position was only 7.1 × 10

−3 m/s, which almost does not change in the first hour. This leads to a very slow development of the scouring hole at the wake position in the early stages. The maximum shear velocity in this scouring hole gradually increased to 1.05 × 10

−2 m/s from the second to the fifth hour, and then decreased to 6.61 × 10

−3 m/s by the end of the eighth hour. This is why the scouring hole at the wake position grows fastest around the fifth hour. Consistent with the pattern of change in the scouring hole’s terrain, the location of the maximal shear velocity also shifted to the right with time.

The shear velocity of all three scouring holes rose dramatically in the last hour. Combined with the terrain in Figure 5, this can be attributed to the complete spanning of the submarine cable.

From Equations (3)–(5), one can see the movement of the sediment is related directly with the sediment’s critical Shields number, sediment density, and ocean current velocity. Based on the parameters in Table 1, the influence of the above parameters on the local scouring process of semi-exposed submarine cables will be discussed.

4.2. Influence Factors

4.2.1. Sediment’s Critical Shields Number

The sediment’s critical Shields number 

θcr is set as 0.02, 0.03, 0.04, 0.05, 0.06, and 0.07, and the variations of scouring terrain over time under each 

θcr are displayed in Figure 7.

Jmse 11 01349 g007 550

Figure 7. Influence of sediment’s critical Shields number 

θcr on local scouring around semi-exposed submarine cable: (a

θcr = 0.02; (b

θcr = 0.03; (c

θcr = 0.04; (d

θcr = 0.05; (e

θcr = 0.06; and (f

θcr = 0.07.From Figure 7, one can see that a change in 

θcr will affect the depth of the upstream scouring hole and the development speed of the scouring hole at the wake position, but it will have no significant impact on the expansion of the downstream scouring hole.Under conditions of different 

θcr, the upstream scouring hole will reach a temporary plateau within 1 h, at which time the stable depth will be about 0.04 m. When 

θcr ≤ 0.05, the upstream scouring hole will continue to expand after a few hours. The stable time is obviously affected by 

θcr, which will gradually increase from 1 h to 11 h with the increase in 

θcr. The terrain of the upstream scouring hole will gradually convert to deep on the left and to shallow on the right. Since the scouring hole at the wake position has not been stable, its state at the time of submarine cable spanning is studied emphatically. In the whole process of scouring, the scouring hole at the wake position continues to develop and does not reach a stable state. With the increase in 

θcr, the development velocity of the scouring hole at the wake position will decrease considerably. Its average evolution velocity decreases from 3.88 cm/h to 1.62 cm/h, and its depth decreases from 21.9 cm to 18.8 cm. Under the condition of each 

θcr, the downstream scouring hole will stabilize within 1 h, and the stable depth will be basically unchanged (all about 13.5 cm).As 

θcr increases, so does the sediment’s ability to withstand shearing forces, which will cause it to become increasingly difficult to be eroded or carried away by ocean currents. This effect has been directly reflected in the depth of scouring holes (upstream and wake position). Due to the blocking effect of semi-exposed submarine cables, the wake is elongated, which is why the downstream scouring hole develops before the scouring hole at the wake position and quickly reaches a stable state. However, due to the high wake intensity, this process is not significantly affected by the change of 

θcr.

4.2.2. Sediment Density

The density of sediment 

ρs is set as 1550 kg/m

3, 1600 kg/m

3, 1650 kg/m

3, 1700 kg/m

3, 1750 kg/m

3, and 1800 kg/m

3, and the variation of scouring terrain over time under each 

ρs are displayed in Figure 8.

Jmse 11 01349 g008 550

Figure 8. Influence of sediment density 

ρs on local scouring around semi-exposed submarine cable: (a

ρs = 1550 kg/m

3; (bρs = 1600 kg/m

3; (cρs = 1650 kg/m

3; (dρs = 1700 kg/m

3; (eρs = 1750 kg/m

3; and (f

ρs = 1800 kg/m

3.From Figure 8, one can see that a change in 

ρs will also affect the depth of the upstream scouring hole and the development speed of the scouring hole at the wake position. In addition, it can even have an impact on the downstream scouring hole depth.Under different 

ρs conditions, the upstream scouring hole will always reach a temporary stable state in 1 h, at which time the stable depth will be 0.04 m. When 

ρs ≤ 1750 kg/m

3, the upstream scouring hole will continue to expand after a few hours. The stabilization time of upstream scouring hole is more clearly affected by 

ρs, which will gradually increase from 3 h to 13 h with the increase in 

ρs. The terrain of the upstream scouring hole will gradually change to deep on the left and to shallow on the right. Since the scouring hole at the wake position has not been stable, its state at the time of the submarine cable spanning is studied emphatically, too. In the whole process of scouring, the scouring hole at the wake position continues to develop and does not reach a stable state. When 

ρs is large, the development rate of scouring hole obviously decreased with time. With the increase in 

ρs, the development velocity of the scouring hole at the wake position reduces from 3.38 cm/h to 1.14 cm/h, and the depth of this scouring hole declines from 20 cm to 15 cm. As 

ρs increases, the stabilization time of the downstream scouring hole increases from less than 1 h to about 2 h, but the stabilization depth of the downstream scouring hole remains essentially the same (all around 13.5 cm).As can be seen from Equation (1), the increase in 

ρs will reduce the Shields number, thus weakening the shear action of the sediment by the ocean current, which explains the extension of the stability time of the upstream scouring hole. At the same time, with the increase in the depth of scouring hole at the wake position, its shear velocity will decreases. Therefore, under a larger 

ρs value, the development speed of scouring hole at the wake position will decrease significantly with time. Possibly for the same reason, 

ρs can affect the development rate of downstream scouring hole.

4.2.3. Ocean Current Velocity

The ocean current velocity v is set as 0.35 m/s, 0.40 m/s, 0.45 m/s, 0.50 m/s, 0.55 m/s, and 0.60 m/s. Figure 9 presents the variation in scouring terrain with time for each v.

Jmse 11 01349 g009 550

Figure 9. Influence of ocean current velocity v on local scouring around semi-exposed submarine cable: (av = 0.35 m/s; (bv = 0.40 m/s; (cv = 0.45 m/s; (dv = 0.50 m/s; (ev = 0.55 m/s; and (fv = 0.60 m/s.

Changes in v affect the depth of the upstream and downstream scouring holes, as well as the development velocity of the wake position and downstream scouring holes.

When v ≤ 0.45 m/s, the upstream scouring hole will reach a temporary stable state within 1 h, at which point the stable depth will be 0.04 m. The stabilization time of the upstream scouring hole is affected by v, which will gradually decrease from 15 h to 3 h with the increase in v. When v > 0.45 m/s, the upstream scouring hole is going to expand continuously. With the increase in v, its average development velocity increases from 6.68 cm/h to 8.66 cm/h, and its terrain changes to deep on the left and to shallow on the right. When the submarine cable is spanning, special attention should be paid to the depth of the scouring hole at the wake position. Throughout whole scouring process, the scouring hole at the wake position continues to develop and does not reach a stable state. With the increase in v, the depth of scouring hole at the wake position will increase from 14 cm to 20 cm, and the average development velocity will increase from 0.91 cm/h to 10.43 cm/h. As v increases, the time required to stabilize the downstream scouring hole is shortened from 1to 2 h to less than 1 h, but the stable depth is remains nearly constant at 13.5 cm.

An increase in v will increase the shear velocity. Therefore, when the depth of the scouring hole increases, the shear velocity in the hole will also increase, which can deepen both the upstream and downstream scouring hole. According to Equation (1), the Shields number is proportional to the square of the shear velocity. The increase in shear velocity significantly intensifies local scouring, which increases the development rate of scouring holes at the wake position and downstream.

4.3. Variation Rule of Spanning Time

In this paper, the spanning time is defined as the time taken for a semi-exposed submarine cable (initial state) to become a spanning submarine cable. Figure 10 illustrates the effect of the above parameters on the spanning time of the semi-exposed submarine cable.

Jmse 11 01349 g010 550

Figure 10. Influence of different parameters on spanning time of the semi-exposed submarine cable: (a) Sediment critical Shields number; (b) Sediment density; and (c) Ocean current velocity.From Figure 10a, the spanning time monotonically increases with the increase in the critical Shields number of sediment. However, the slope of the curve decreases first and then increases, and the inflection point is at 

θcr = 4.59 × 10

−2. The relationship between spanning time t and sediment’s critical Shields number 

θcr can be formulated by a cubic function as shown in Equation (6):

𝑡=−2.98+6.76𝜃𝑐𝑟−1.45𝜃2𝑐𝑟+0.11𝜃3𝑐𝑟.�=−2.98+6.76���−1.45���2+0.11���3.(6)It can be seen from Figure 10b that with the increase in the sediment density, the spanning time increases monotonically and linearly. The relationship between the spanning time t and the sediment’s density 

ρs can be formulated by the first order function as shown in Equation (7):

𝑡=−41.59+30.54𝜌𝑠.�=−41.59+30.54��.(7)Figure 10c shows that with the increase in the ocean current velocity, the spanning time decreases monotonically. The slope of the curve increases with the increase in the ocean current velocity, so it can be considered that there is saturation of the ocean current velocity effect. The relationship between the spanning time t and the ocean current velocity v can be formulated by the exponential function

𝑡=0.15𝑣−4.38.�=0.15�−4.38.(8)

5. Conclusions

In this paper, a three-dimensional CFD finite element numerical simulation model is established, which is used to research the local scouring process of the semi-exposed submarine cable under the steady-state ocean current. The relationship between shear velocity and scouring terrain is discussed, the influence of sediment critical Shields number, sediment density and ocean current velocity on the local scouring process is analyzed, and the variation rules of the spanning time of the semi-exposed submarine cable is given. The conclusions are as follows:

  • Under the steady-state ocean currents, scouring holes will be formed at the upstream, wake position and downstream of the semi-exposed submarine cable. The upstream and downstream scouring holes develop faster, which will reach a temporary stable state at about 1 h after the start of the scouring. The scouring hole at the wake position will continue to expand at a slower rate and eventually lead to the spanning of the submarine cable.
  • There is a close relationship between the distribution of shear velocity and the scouring terrain. As the local scouring process occurs, the location of the maximum shear velocity within the scouring hole shifts and causes the bottom of the hole to move as well.
  • When the sediment’s critical Shields number and density are significantly large and ocean current velocity is sufficiently low, the duration of the stable state of the upstream scouring hole will be prolonged, and the average development velocity of the scouring holes at the wake position and downstream will be reduced.
  • The relationship between the spanning time and the critical Shields number θcr can be formulated as a cubic function, in which the curve’s inflection point is θcr = 4.59 × 10−2. The relationship between spanning time and sediment density can be formulated as a linear function. The relationship between spanning time and ocean current velocity can be formulated by exponential function.

Based on the conclusions of this paper, even when it is too late to take measures or when the exposed position of the submarine cable cannot be located, the degree of burial depth development still can be predicted. This prediction is important for the operation and maintenance of the submarine cable. However, the study still leaves something to be desired. Only the local scouring process under the steady-state ocean current was studied, which is an extreme condition. In practice, exposed submarine cables are more likely to be scoured by reciprocating ocean currents. In the future, we will investigate the local scouring of submarine cables under the reciprocating ocean current.

Author Contributions

Conceptualization, Y.H. and Q.L.; methodology, Q.L., P.Z. and H.T.; software, Q.L.; validation, Q.L., L.C. and W.T.; writing—original draft preparation, Q.L.; writing—review and editing, Y.H. and Q.L.; supervision, Y.H. and L.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the [Smart Grid Joint Fund Key Project between National Natural Science Foundation of China and State Grid Corporation] grant number [U1766220].

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data supporting the reported results cannot be shared at this time, as they have been used in producing more publications on this research.

Acknowledgments

This work is supported by the Smart Grid Joint Fund Key Project of the National Natural Science Foundation of China and State Grid Corporation (Grant No. U1766220).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Taormina, B.; Bald, J.; Want, A.; Thouzeau, G.; Lejart, M.; Desroy, N.; Carlier, A. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renew. Sust. Energ. Rev. 201896, 380–391. [Google Scholar] [CrossRef]
  2. Gulski, E.; Anders, G.J.; Jogen, R.A.; Parciak, J.; Siemiński, J.; Piesowicz, E.; Paszkiewicz, S.; Irska, I. Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability. Renew. Sust. Energ. Rev. 2021151, 111580. [Google Scholar] [CrossRef]
  3. Wang, W.; Yan, X.; Li, S.; Zhang, L.; Ouyang, J.; Ni, X. Failure of submarine cables used in high-voltage power transmission: Characteristics, mechanisms, key issues and prospects. IET Gener. Transm. Distrib. 202115, 1387–1402. [Google Scholar] [CrossRef]
  4. Chen, H.; Chen, Z.; Lu, H.; Wu, C.; Liang, J. Protection method for submarine cable detection and exposed suspension problem in Qiongzhou straits. Telecom Pow. Technol. 201936, 60–61+63. [Google Scholar]
  5. Zhu, J.; Ren, B.; Dong, P.; Chen, W. Vortex-induced vibrations of a free spanning submarine power cable. Ocean Eng. 2023272, 113792. [Google Scholar] [CrossRef]
  6. Sumer, B.M.; Jensen, H.R.; Mao, Y.; Fredsøe, J. Effect of lee-wake on scour below pipelines in current. J. Waterw. Port Coast. Ocean. Eng. 1988114, 599–614. [Google Scholar] [CrossRef]
  7. Chiew, Y.M. Prediction of maximum scour depth at submarine pipelines. J. Hydraul. Eng. 1991117, 452–466. [Google Scholar] [CrossRef]
  8. Mastbergen, D.R.; Vandenberg, J.H. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 200350, 625–637. [Google Scholar] [CrossRef]
  9. Dey, S.; Singh, N.P. Clear-water scour depth below underwater pipelines. J. Hydro-Env. Res. 20071, 157–162. [Google Scholar] [CrossRef]
  10. Dey, S.; Singh, N.P. Clear-water scour below underwater pipelines under steady flow. J. Hydraul. Eng. 2008134, 588–600. [Google Scholar] [CrossRef]
  11. Liang, D.; Cheng, L. Numerical study of scour around a pipeline bundle. Proc. Inst. Civil Eng. Mar. Eng. 2008161, 89–95. [Google Scholar] [CrossRef]
  12. Yang, L.; Guo, Y.; Shi, B.; Kuang, C.; Xu, W.; Cao, S. Study of scour around submarine pipeline with a rubber plate or rigid spoiler in wave conditions. J. Waterw. Port Coast. Ocean Eng. 2012138, 484–490. [Google Scholar] [CrossRef]
  13. Li, Y.; Ong, M.C.; Fuhrman, D.R.; Larsen, B.E. Numerical investigation of wave-plus-current induced scour beneath two submarine pipelines in tandem. Coast. Eng. 2020156, 103619. [Google Scholar] [CrossRef]
  14. Guan, D.; Hsieh, S.C.; Chiew, Y.M.; Low, Y.M.; Wei, M. Local scour and flow characteristics around pipeline subjected to vortex-induced vibrations. J. Hydraul. Eng. 2020146, 04019048. [Google Scholar] [CrossRef]
  15. Liu, M.M.; Jin, X.; Wang, L.; Yang, F.; Tang, J. Numerical investigation of local scour around a vibrating pipeline under steady currents. Ocean Eng. 2021221, 108546. [Google Scholar] [CrossRef]
  16. Huang, J.; Yin, G.; Ong, M.C.; Myrhaug, D.; Jia, X. Numerical investigation of scour beneath pipelines subjected to an oscillatory flow condition. J. Mar. Sci. Eng. 20219, 1102. [Google Scholar] [CrossRef]
  17. Cui, F.; Du, Y.; Hao, X.; Peng, S.; Bao, Z.; Peng, S. Experimental study on local scour and related mechanical effects at river-crossing underwater oil and gas pipelines. Adv. Civ. Eng. 20212021, 6689212. [Google Scholar] [CrossRef]
  18. Li, B.; Ma, H. Scouring mechanism of suspended and partially-buried pipelines under steady flow. Coast. Eng. 2022177, 104201. [Google Scholar] [CrossRef]
  19. Najafzadeh, M.; Oliveto, G. Scour propagation rates around offshore pipelines exposed to currents by applying data-driven models. Water 202214, 493. [Google Scholar] [CrossRef]
  20. Zhu, Y.; Xie, L.; Wong, T.; Su, T. Development of three-dimensional scour below pipelines in regular waves. J. Mar. Sci. Eng. 202210, 124. [Google Scholar] [CrossRef]
  21. Ma, H.; Li, B. CFD-CGDEM coupling model for scour process simulation of submarine pipelines. Ocean Eng. 2023271, 113789. [Google Scholar] [CrossRef]
  22. Hu, K.; Bai, X.; Vaz, M.A. Numerical simulation on the local scour processing and influencing factors of submarine pipeline. J. Mar. Sci. Eng. 202311, 234. [Google Scholar] [CrossRef]
  23. Yang, B.; Gao, F.; Wu, Y. Experimental study on local scour of sandy seabed under submarine pipeline in unidirectional currents. Eng. Mech. 200825, 206–210. [Google Scholar]
  24. Cheng, Y.; Wang, X.; Luo, W.; Huang, X.; Lyu, X. Experimental study of local scour around a downstream inclined pile under combined waves and current. Adv. Eng. Sci. 202153, 64–71. [Google Scholar]
  25. Lu, Y.; Zhou, L.; Shen, X. Different turbulence models for simulating a liquid-liquid hydro cyclone. J. Tsinghua Univ. 200141, 105–109. [Google Scholar]
  26. Yun, D.H.; Kim, Y.T. Experimental study on settlement and scour characteristics of artificial reef with different reinforcement type and soil type. Geotext. Geomembr. 201846, 448–454. [Google Scholar] [CrossRef]
Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process

극저온 자체 가압 공정을 위한 인기 있는 액체-증기 상 변화 모델의 타당성 평가

액체-증기 상 변화 모델은 밀폐된 용기의 자체 가압 프로세스 시뮬레이션에 매우 큰 영향을 미칩니다. Hertz-Knudsen 관계, 에너지 점프 모델 및 그 파생물과 같은 널리 사용되는 액체-증기 상 변화 모델은 실온 유체를 기반으로 개발되었습니다. 액체-증기 전이를 통한 극저온 시뮬레이션에 널리 적용되었지만 각 모델의 성능은 극저온 조건에서 명시적으로 조사 및 비교되지 않았습니다. 본 연구에서는 171가지 일반적인 액체-증기 상 변화 모델을 통합한 통합 다상 솔버가 제안되었으며, 이를 통해 이러한 모델을 실험 데이터와 직접 비교할 수 있습니다. 증발 및 응축 모델의 예측 정확도와 계산 속도를 평가하기 위해 총 <>개의 자체 가압 시뮬레이션이 수행되었습니다. 압력 예측은 최적화 전략이 서로 다른 모델 계수에 크게 의존하는 것으로 나타났습니다. 에너지 점프 모델은 극저온 자체 가압 시뮬레이션에 적합하지 않은 것으로 나타났습니다. 평균 편차와 CPU 소비량에 따르면 Lee 모델과 Tanasawa 모델은 다른 모델보다 안정적이고 효율적인 것으로 입증되었습니다.

Elsevier

International Journal of Heat and Mass Transfer

Volume 181, December 2021, 121879

International Journal of Heat and Mass Transfer

Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process

Author links open overlay panelZhongqi Zuo, Jingyi Wu, Yonghua HuangShow moreAdd to MendeleyShareCite

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121879Get rights and content

Abstract

Liquid-vapor phase change models vitally influence the simulation of self-pressurization processes in closed containers. Popular liquid-vapor phase change models, such as the Hertz-Knudsen relation, energy jump model, and their derivations were developed based on room-temperature fluids. Although they had widely been applied in cryogenic simulations with liquid-vapor transitions, the performance of each model was not explicitly investigated and compared yet under cryogenic conditions. A unified multi-phase solver incorporating four typical liquid-vapor phase change models has been proposed in the present study, which enables direct comparison among those models against experimental data. A total number of 171 self-pressurization simulations were conducted to evaluate the evaporation and condensation models’ prediction accuracy and calculation speed. It was found that the pressure prediction highly depended on the model coefficients, whose optimization strategies differed from each other. The energy jump model was found inadequate for cryogenic self-pressurization simulations. According to the average deviation and CPU consumption, the Lee model and the Tanasawa model were proven to be more stable and more efficient than the others.

Introduction

The liquid-vapor phase change of cryogenic fluids is widely involved in industrial applications, such as the hydrogen transport vehicles [1], shipborne liquid natural gas (LNG) containers [2] and on-orbit cryogenic propellant tanks [3]. These applications require cryogenic fluids to be stored for weeks to months. Although high-performance insulation measures are adopted, heat inevitably enters the tank via radiation and conduction. The self-pressurization in the tank induced by the heat leakage eventually causes the venting loss of the cryogenic fluids and threatens the safety of the craft in long-term missions. To reduce the boil-off loss and extend the cryogenic storage duration, a more comprehensive understanding of the self-pressurization mechanism is needed.

Due to the difficulties and limitations in implementing cryogenic experiments, numerical modeling is a convenient and powerful way to study the self-pressurization process of cryogenic fluids. However, how the phase change models influence the mass and heat transfer under cryogenic conditions is still unsettled [4]. As concluded by Persad and Ward [5], a seemingly slight variation in the liquid-vapor phase change models can lead to erroneous predictions.

Among the liquid-vapor phase change models, the kinetic theory gas (KTG) based models and the energy jump model are the most popular ones used in recent self-pressurization simulations [6]. The KTG based models, also known as the Hertz-Knudsen relation models, were developed on the concept of the Maxwell-Boltzmann distribution of the gas molecular [7]. The Hertz-Knudsen relation has evolved to several models, including the Schrage model [8], the Tanasawa model [9], the Lee model [10] and the statistical rate theory (SRT) [11], which will be described in Section 2.2. Since the Schrage model and the Lee model are embedded and configured as the default ones in the commercial CFD solvers Flow-3D® and Ansys Fluent® respectively, they have been widely used in self-pressurization simulations for liquid nitrogen [12], [13] and liquid hydrogen [14], [15]. The major drawback of the KTG models lies in the difficulty of selecting model coefficients, which were reported in a considerably wide range spanning three magnitudes even for the same working fluid [16], [17], [18], [19], [20], [21]. Studies showed that the liquid level, pressure and mass transfer rate are directly influenced by the model coefficients [16], [22], [23], [24], [25]. Wrong coefficients will lead to deviation or even divergence of the results. The energy jump model is also known as the thermal limitation model. It assumes that the evaporation and condensation at the liquid-vapor interface are induced only by heat conduction. The model is widely adopted in lumped node simulations due to its simplicity [6], [26], [27]. To improve the accuracy of mass flux prediction, the energy jump model was modified by including the convection heat transfer [28], [29]. However, the convection correlations are empirical and developed mainly for room-temperature fluids. Whether the correlation itself can be precisely applied in cryogenic simulations still needs further investigation.

Fig. 1 summarizes the cryogenic simulations involving the modeling of evaporation and condensation processes in recent years. The publication has been increasing rapidly. However, the characteristics of each evaporation and condensation model are not explicitly revealed when simulating self-pressurization. A comparative study of the phase change models is highly needed for cryogenic fluids for a better simulation of the self-pressurization processes.

In the present paper, a unified multi-phase solver incorporating four typical liquid-vapor phase change models, namely the Tanasawa model, the Lee model, the energy jump model, and the modified energy jump model has been proposed, which enables direct comparison among different models. The models are used to simulate the pressure and temperature evolutions in an experimental liquid nitrogen tank in normal gravity, which helps to evaluate themselves in the aspects of accuracy, calculation speed and robustness.

Section snippets

Governing equations for the self-pressurization tank

In the present study, both the fluid domain and the solid wall of the tank are modeled and discretized. The heat transportation at the solid boundaries is considered to be irrelevant with the nearby fluid velocity. Consequently, two sets of the solid and the fluid governing equations can be decoupled and solved separately. The pressures in the cryogenic container are usually from 100 kPa to 300 kPa. Under these conditions, the Knudsen number is far smaller than 0.01, and the fluids are

Self-pressurization results and phase change model comparison

This section compares the simulation results by different phase change models. Section 3.1 compares the pressure and temperature outputs from two KTG based models, namely the Lee model and the Tanasawa model. Section 3.2 presents the pressure predictions from the energy transport models, namely the energy jump model and the modified energy jump model, and compares pressure prediction performances between the KTG based models and the energy transport models. Section 3.3 evaluates the four models 

Conclusion

A unified vapor-liquid-solid multi-phase numerical solver has been accomplished for the self pressurization simulation in cryogenic containers. Compared to the early fluid-only solver, the temperature prediction in the vicinity of the tank wall improves significantly. Four liquid-vapor phase change models were integrated into the solver, which enables fair and effective comparison for performances between each other. The pressure and temperature prediction accuracies, and the calculation speed

CRediT authorship contribution statement

Zhongqi Zuo: Data curation, Formal analysis, Writing – original draft, Validation. Jingyi Wu: Conceptualization, Writing – review & editing, Validation. Yonghua Huang: Conceptualization, Formal analysis, Writing – review & editing, Validation.

Declaration of Competing Interest

Authors declare that they have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process”.

Acknowledgement

This project is supported by the National Natural Science Foundation of China (No. 51936006).

References (40)

There are more references available in the full text version of this article.

Cited by (7)

The distribution of the computed maximum current speed during the entire duration of the NAMI DANCE and FLOW-3D simulations. The resolution of computational domain is 10 m

Performance Comparison of NAMI DANCE and FLOW-3D® Models in Tsunami Propagation, Inundation and Currents using NTHMP Benchmark Problems

NTHMP 벤치마크 문제를 사용하여 쓰나미 전파, 침수 및 해류에서 NAMI DANCE 및 FLOW-3D® 모델의 성능 비교

Pure and Applied Geophysics volume 176, pages3115–3153 (2019)Cite this article

Abstract

Field observations provide valuable data regarding nearshore tsunami impact, yet only in inundation areas where tsunami waves have already flooded. Therefore, tsunami modeling is essential to understand tsunami behavior and prepare for tsunami inundation. It is necessary that all numerical models used in tsunami emergency planning be subject to benchmark tests for validation and verification. This study focuses on two numerical codes, NAMI DANCE and FLOW-3D®, for validation and performance comparison. NAMI DANCE is an in-house tsunami numerical model developed by the Ocean Engineering Research Center of Middle East Technical University, Turkey and Laboratory of Special Research Bureau for Automation of Marine Research, Russia. FLOW-3D® is a general purpose computational fluid dynamics software, which was developed by scientists who pioneered in the design of the Volume-of-Fluid technique. The codes are validated and their performances are compared via analytical, experimental and field benchmark problems, which are documented in the ‘‘Proceedings and Results of the 2011 National Tsunami Hazard Mitigation Program (NTHMP) Model Benchmarking Workshop’’ and the ‘‘Proceedings and Results of the NTHMP 2015 Tsunami Current Modeling Workshop”. The variations between the numerical solutions of these two models are evaluated through statistical error analysis.

현장 관찰은 연안 쓰나미 영향에 관한 귀중한 데이터를 제공하지만 쓰나미 파도가 이미 범람한 침수 지역에서만 가능합니다. 따라서 쓰나미 모델링은 쓰나미 행동을 이해하고 쓰나미 범람에 대비하는 데 필수적입니다.

쓰나미 비상 계획에 사용되는 모든 수치 모델은 검증 및 검증을 위한 벤치마크 테스트를 받아야 합니다. 이 연구는 검증 및 성능 비교를 위해 NAMI DANCE 및 FLOW-3D®의 두 가지 숫자 코드에 중점을 둡니다.

NAMI DANCE는 터키 중동 기술 대학의 해양 공학 연구 센터와 러시아 해양 연구 자동화를 위한 특별 조사국 연구소에서 개발한 사내 쓰나미 수치 모델입니다. FLOW-3D®는 Volume-of-Fluid 기술의 설계를 개척한 과학자들이 개발한 범용 전산 유체 역학 소프트웨어입니다.

코드의 유효성이 검증되고 분석, 실험 및 현장 벤치마크 문제를 통해 코드의 성능이 비교되며, 이는 ‘2011년 NTHMP(National Tsunami Hazard Mitigation Program) 모델 벤치마킹 워크숍의 절차 및 결과’와 ”절차 및 NTHMP 2015 쓰나미 현재 모델링 워크숍 결과”. 이 두 모델의 수치 해 사이의 변동은 통계적 오류 분석을 통해 평가됩니다.

The distribution of the computed maximum current speed during the entire duration of the NAMI DANCE and FLOW-3D simulations. The resolution of computational domain is 10 m
The distribution of the computed maximum current speed during the entire duration of the NAMI DANCE and FLOW-3D simulations. The resolution of computational domain is 10 m

References

  • Allan, J. C., Komar, P. D., Ruggiero, P., & Witter, R. (2012). The March 2011 Tohoku tsunami and its impacts along the U.S. West Coast. Journal of Coastal Research, 28(5), 1142–1153. https://doi.org/10.2112/jcoastres-d-11-00115.1.Article Google Scholar 
  • Apotsos, A., Buckley, M., Gelfenbaum, G., Jafe, B., & Vatvani, D. (2011). Nearshore tsunami inundation and sediment transport modeling: towards model validation and application. Pure and Applied Geophysics, 168(11), 2097–2119. https://doi.org/10.1007/s00024-011-0291-5.Article Google Scholar 
  • Barberopoulou, A., Legg, M. R., & Gica, E. (2015). Time evolution of man-made harbor modifications in San Diego: effects on Tsunamis. Journal of Marine Science and Engineering, 3, 1382–1403.Article Google Scholar 
  • Basu, D., Green, S., Das, K., Janetzke, R. and Stamatakos, J. (2009). Numerical Simulation of Surface Waves Generated by a Subaerial Landslide at Lituya Bay, Alaska. Proceedings of 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii, USA.
  • Briggs, M. J., Synolakis, C. E., Harkins, G. S., & Green, D. R. (1995). Laboratory experiments of tsunami run-up on a circular island. Pure and Applied Geophysics, 144(3/4), 569–593.Article Google Scholar 
  • Cheung, K. F., Bai, Y., & Yamazaki, Y. (2013). Surges around the Hawaiian Islands from the 2011 Tohoku Tsunami. Journal of Geophysical Research: Oceans, 118, 5703–5719. https://doi.org/10.1002/jgrc.20413.Google Scholar 
  • Choi, B. H., Dong, C. K., Pelinovsky, E., & Woo, S. B. (2007). Three-dimensional Simulation of Tsunami Run-up Around Conical Island. Coastal Engineering, 54, 618–629.Article Google Scholar 
  • Cox, D., T. Tomita, P. Lynett, R.A., Holman. (2008). Tsunami Inundation with Macroroughness in the Constructed Environment. Proceedings of 31st International Conference on Coastal Engineering, ASCE, pp. 1421–1432.
  • Flow Science. (2002). FLOW-3D User’s Manual.
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201–225.Article Google Scholar 
  • Horrillo, J., Grilli, S. T., Nicolsky, D., Roeber, V., & Zang, J. (2015). Performance benchmarking Tsunami models for NTHMP’s inundation mapping activities. Pure and Applied Geophysics, 172, 869–884.Article Google Scholar 
  • http://nws.weather.gov/nthmp/documents/nthmpWorkshopProcMerged.pdf.
  • http://nws.weather.gov/nthmp/documents/NTHMP_Currents_Workshop_Report.pdf.
  • Kim, K. O., Kim, D. C., Choi, B.-H., Jung, T. K., Yuk, J. H., & Pelinovsky, E. (2015). The role of diffraction effects in extreme run-up inundation at Okushiri Island due to 1993 Tsunami. Natural Hazards and Earth Systems Sciences, 15, 747–755.Article Google Scholar 
  • Liu, P. L.-F. (1994). Model equations for wave propagations from deep to shallow water. (P.-F. Liu, Ed.) Advances in Coastal and Ocean Engineering, 1, 125–158.
  • Liu, P. L.-F., Yeh, H., & Synolakis, C. E. (2008). Advanced numerical models for simulating Tsunami waves and run-up. Advances in Coastal and Ocean Engineering, 10, 344.Google Scholar 
  • Lynett, P. J., Borrero, J., Son, S., Wilson, R., & Miller, K. (2014). Assessment of the tsunami-induced current hazard. Geophysical Research Letters, 41, 2048–2055. https://doi.org/10.1002/2013GL058680.Article Google Scholar 
  • Lynett, P. J., Gately, K., Wilson, R., Montoya, L., Arcas, D., Aytore, B., et al. (2017). Inter-model analysis of Tsunami-induced coastal currents. Ocean Modelling, 114, 14–32.Article Google Scholar 
  • Lynett, P. J., Wu, T.-R., & Liu, P. L.-F. (2002). Modeling wave run-up with depth-integrated equations. Coastal Engineering, 46(2), 89–107.Article Google Scholar 
  • Macias, J., Castro, M. J., Ortega, S., Escalante, C., & Gonzalez-Vida, J. M. (2017). Performance benchmarking of Tsunami-HySEA model for nthmp’s inundation mapping activities. Pure and Applied Geophysics, 174, 3147–3183.Article Google Scholar 
  • Matsuyama, M., & Tanaka, H. (2001). An experimental study of the highest run-up height in the 1993 Hokkaidō Nansei-Oki Earthquake Tsunami. Proceedings of ITS, 2001, 879–889.Google Scholar 
  • National Tsunami Hazard Mitigation Program. 2012. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Boulder: U.S. Department of Commerce/NOAA/NTHMP; (NOAA Special Report). p. 436.
  • National Tsunami Hazard Mitigation Program. (2017). Proceedings and Results of the National Tsunami Hazard Mitigation Program 2015 Tsunami Current Modeling Workshop, February 9-10, 2015, Portland, Oregon: compiled by Patrick Lynett and Rick Wilson, p 194.
  • Necmioglu, O., & Ozel, N. M. (2014). An earthquake source sensitivity analysis for Tsunami propagation in the Eastern Mediterranean. Oceanography, 27(2), 76–85.Article Google Scholar 
  • Nichols, B.D. and Hirt, C.W. (1975). Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies. Proceedings of 1st International Conference Num. Ship Hydrodynamics. Gaithersburg.
  • Nicolsky, D. J., Suleimani, E. N., & Hansen, R. A. (2011). Validation and verification of a numerical model for Tsunami propagation and run-up. Pure and Applied Geophysics, 168(6), 1199–1222.Article Google Scholar 
  • NOAA Center for Tsunami Research: Tsunami Run-up onto a Complex Three-dimensional Beach; Monai Valley. (n.d). Retrieved from: https://nctr.pmel.noaa.gov/benchmark/Laboratory/Laboratory_MonaiValley/.
  • Park, H., Cox, D. T., Lynett, P. J., Wiebe, D. M., & Shin, S. (2013). Tsunami inundation modeling in constructed environments: a physical and numerical comparison of free-surface elevation, velocity, and momentum flux. Coastal Engineering, 79, 9–21.Article Google Scholar 
  • Patel, V. M., Dholakia, M. B., & Singh, A. P. (2016). Emergency preparedness in the case of Makran Tsunami: a case study on Tsunami risk visualization for the Western Parts of Gujarat, India. Geomatics Natural Hazard and Risk, 7(2), 826–842.Article Google Scholar 
  • Pelinovsky, E., Kim, D.-C., Kim, K.-O., & Choi, B.-H. (2013). Three-dimensional simulation of extreme run-up heights during the 2004 Indonesian and 2011 Japanese Tsunamis. Vienna: EGU General Assembly.Google Scholar 
  • Rueben, M., Holman, R., Cox, D., Shin, S., Killian, J., & Stanley, J. (2011). Optical measurements of Tsunami inundation through an urban waterfront modeled in a large-scale laboratory basin. Coastal Engineering, 58, 229–238.Article Google Scholar 
  • Shuto, N. (1991). Numerical simulation of Tsunamis—its present and near future. Natural Hazards, 4, 171–191.Article Google Scholar 
  • Synolakis, C. E. (1986). The run-up of long waves. Ph.D. Thesis. California Institute of Technology, Pasadena, California.
  • Synolakis, C. E., Bernard, E. N., Titov, V. V., Kanoglu, U. & Gonzalez, F. (2007). Standards, criteria, and procedures for NOAA evaluation of Tsunami Numerical Models. 55 p. Seattle, Washington: NOAA OAR Special Report, Contribution No 3053, NOAA/OAR/PMEL.
  • Synolakis, C. E., Bernard, E. N., Titov, V. V., Kanoglu, U., & Gonzalez, F. I. (2008). Validation and verification of Tsunami numerical models. Pure and Applied Geophysics, 165, 2197–2228.Article Google Scholar 
  • Tolkova, E. (2014). Land-water boundary treatment for a tsunami model with dimensional splitting. Pure and Applied Geophysics, 171(9), 2289–2314.Article Google Scholar 
  • Velioglu, D. (2017). Advanced two- and three-dimensional Tsunami models: benchmarking and validation. Ph.D. Thesis. Middle East Technical University, Ankara.
  • Velioglu, D., Kian, R., Yalciner, A.C. and Zaytsev, A. (2016). Performance assessment of NAMI DANCE in Tsunami evolution and currents using a benchmark problem. (R. Signell, Ed.) J. Mar. Sci. Eng., 4(3), 49.
  • Wu, T. (2001). A unified theory for modeling water waves. Advances in Applied Mechanics, 37, 1–88.Article Google Scholar 
  • Wu, N.-J., Hsiao, S.-C., Chen, H.-H., & Yang, R.-Y. (2016). The study on solitary waves generated by a piston-type wave maker. Ocean Engineering, 117, 114–129.Article Google Scholar 
  • Yalciner, A. C., Dogan, P. and Sukru. E. (2005). December 26 2004, Indian Ocean Tsunami Field Survey, North of Sumatra Island. UNESCO.
  • Yalciner, A. C., Gülkan, P., Dilmen, I., Aytore, B., Ayca, A., Insel, I., et al. (2014). Evaluation of Tsunami scenarios For Western Peloponnese, Greece. Bollettino di Geofisica Teorica ed Applicata, 55, 485–500.Google Scholar 
  • Yen, B. C. (1991). Hydraulic resistance in open channels. In B. C. Yen (Ed.), Channel flow resistance: centennial of manning’s formula (pp. 1–135). Highlands Ranch: Water Resource Publications.Google Scholar 
  • Zaitsev, A. I., Kovalev, D. P., Kurkin, A. A., Levin, B. V., Pelinovskii, E. N., Chernov, A. G., et al. (2009). The Tsunami on Sakhalin on August 2, 2007: mareograph evidence and numerical simulation. Tikhookeanskaya Geologiya, 28, 30–35.Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Andrey Zaytsev due to his undeniable contributions to the development of in-house numerical model, NAMI DANCE. The Turkish branch of Flow Science, Inc. is also acknowledged. Finally, the National Tsunami Hazard Mitigation Program (NTHMP), who provided most of the benchmark data, is appreciated. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Author notes

  1. Deniz Velioglu SogutPresent address: 1212 Computer Science, Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA

Authors and Affiliations

  1. Middle East Technical University, 06800, Ankara, TurkeyDeniz Velioglu Sogut & Ahmet Cevdet Yalciner

Corresponding author

Correspondence to Deniz Velioglu Sogut.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Reprints and Permissions

About this article

Cite this article

Velioglu Sogut, D., Yalciner, A.C. Performance Comparison of NAMI DANCE and FLOW-3D® Models in Tsunami Propagation, Inundation and Currents using NTHMP Benchmark Problems. Pure Appl. Geophys. 176, 3115–3153 (2019). https://doi.org/10.1007/s00024-018-1907-9

Download citation

  • Received22 December 2017
  • Revised16 May 2018
  • Accepted24 May 2018
  • Published07 June 2018
  • Issue Date01 July 2019
  • DOIhttps://doi.org/10.1007/s00024-018-1907-9

Keywords

  • Tsunami
  • depth-averaged shallow water
  • Reynolds-averaged Navier–Stokes
  • benchmarking
  • NAMI DANCE
  • FLOW-3D®
Figure 11. Sketch of scour mechanism around USAF under random waves.

Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves

by Ruigeng Hu 1,Hongjun Liu 2,Hao Leng 1,Peng Yu 3 andXiuhai Wang 1,2,*

1College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China

2Key Lab of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266000, China

3Qingdao Geo-Engineering Survering Institute, Qingdao 266100, China

*Author to whom correspondence should be addressed.

J. Mar. Sci. Eng. 20219(8), 886; https://doi.org/10.3390/jmse9080886

Received: 6 July 2021 / Revised: 8 August 2021 / Accepted: 13 August 2021 / Published: 17 August 2021

(This article belongs to the Section Ocean Engineering)

Download 

Abstract

A series of numerical simulation were conducted to study the local scour around umbrella suction anchor foundation (USAF) under random waves. In this study, the validation was carried out firstly to verify the accuracy of the present model. Furthermore, the scour evolution and scour mechanism were analyzed respectively. In addition, two revised models were proposed to predict the equilibrium scour depth Seq around USAF. At last, a parametric study was carried out to study the effects of the Froude number Fr and Euler number Eu for the Seq. The results indicate that the present numerical model is accurate and reasonable for depicting the scour morphology under random waves. The revised Raaijmakers’s model shows good agreement with the simulating results of the present study when KCs,p < 8. The predicting results of the revised stochastic model are the most favorable for n = 10 when KCrms,a < 4. The higher Fr and Eu both lead to the more intensive horseshoe vortex and larger Seq.

Keywords: 

scournumerical investigationrandom wavesequilibrium scour depthKC number

1. Introduction

The rapid expansion of cities tends to cause social and economic problems, such as environmental pollution and traffic jam. As a kind of clean energy, offshore wind power has developed rapidly in recent years. The foundation of offshore wind turbine (OWT) supports the upper tower, and suffers the cyclic loading induced by waves, tides and winds, which exerts a vital influence on the OWT system. The types of OWT foundation include the fixed and floating foundation, and the fixed foundation was used usually for nearshore wind turbine. After the construction of fixed foundation, the hydrodynamic field changes in the vicinity of the foundation, leading to the horseshoe vortex formation and streamline compression at the upside and sides of foundation respectively [1,2,3,4]. As a result, the neighboring soil would be carried away by the shear stress induced by vortex, and the scour hole would emerge in the vicinity of foundation. The scour holes increase the cantilever length, and weaken the lateral bearing capacity of foundation [5,6,7,8,9]. Moreover, the natural frequency of OWT system increases with the increase of cantilever length, causing the resonance occurs when the system natural frequency equals the wave or wind frequency [10,11,12]. Given that, an innovative foundation called umbrella suction anchor foundation (USAF) has been designed for nearshore wind power. The previous studies indicated the USAF was characterized by the favorable lateral bearing capacity with the low cost [6,13,14]. The close-up of USAF is shown in Figure 1, and it includes six parts: 1-interal buckets, 2-external skirt, 3-anchor ring, 4-anchor branch, 5-supporting rod, 6-telescopic hook. The detailed description and application method of USAF can be found in reference [13].

Jmse 09 00886 g001 550

Figure 1. The close-up of umbrella suction anchor foundation (USAF).

Numerical and experimental investigations of scour around OWT foundation under steady currents and waves have been extensively studied by many researchers [1,2,15,16,17,18,19,20,21,22,23,24]. The seabed scour can be classified as two types according to Shields parameter θ, i.e., clear bed scour (θ < θcr) or live bed scour (θ > θcr). Due to the set of foundation, the adverse hydraulic pressure gradient exists at upstream foundation edges, resulting in the streamline separation between boundary layer flow and seabed. The separating boundary layer ascended at upstream anchor edges and developed into the horseshoe vortex. Then, the horseshoe vortex moved downstream gradually along the periphery of the anchor, and the vortex shed off continually at the lee-side of the anchor, i.e., wake vortex. The core of wake vortex is a negative pressure center, liking a vacuum cleaner. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortexes. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow when the turbulence energy could not support the survival of wake vortex. According to Tavouktsoglou et al. [25], the scale of pile wall boundary layer is proportional to 1/ln(Rd) (Rd is pile Reynolds), which means the turbulence intensity induced by the flow-structure interaction would decrease with Rd increases, but the effects of Rd can be neglected only if the flow around the foundation is fully turbulent [26]. According to previous studies [1,15,27,28,29,30,31,32], the scour development around pile foundation under waves was significantly influenced by Shields parameter θ and KC number simultaneously (calculated by Equation (1)). Sand ripples widely existed around pile under waves in the case of live bed scour, and the scour morphology is related with θ and KC. Compared with θKC has a greater influence on the scour morphology [21,27,28]. The influence mechanism of KC on the scour around the pile is reflected in two aspects: the horseshoe vortex at upstream and wake vortex shedding at downstream.

KC=UwmTD��=�wm��(1)

where, Uwm is the maximum velocity of the undisturbed wave-induced oscillatory flow at the sea bottom above the wave boundary layer, T is wave period, and D is pile diameter.

There are two prerequisites to satisfy the formation of horseshoe vortex at upstream pile edges: (1) the incoming flow boundary layer with sufficient thickness and (2) the magnitude of upstream adverse pressure gradient making the boundary layer separating [1,15,16,18,20]. The smaller KC results the lower adverse pressure gradient, and the boundary layer cannot separate, herein, there is almost no horseshoe vortex emerging at upside of pile. Sumer et al. [1,15] carried out several sets of wave flume experiments under regular and irregular waves respectively, and the experiment results show that there is no horseshoe vortex when KC is less than 6. While the scale and lifespan of horseshoe vortex increase evidently with the increase of KC when KC is larger than 6. Moreover, the wake vortex contributes to the scour at lee-side of pile. Similar with the case of horseshoe vortex, there is no wake vortex when KC is less than 6. The wake vortex is mainly responsible for scour around pile when KC is greater than 6 and less than O(100), while horseshoe vortex controls scour nearly when KC is greater than O(100).

Sumer et al. [1] found that the equilibrium scour depth was nil around pile when KC was less than 6 under regular waves for live bed scour, while the equilibrium scour depth increased with the increase of KC. Based on that, Sumer proposed an equilibrium scour depth predicting equation (Equation (2)). Carreiras et al. [33] revised Sumer’s equation with m = 0.06 for nonlinear waves. Different with the findings of Sumer et al. [1] and Carreiras et al. [33], Corvaro et al. [21] found the scour still occurred for KC ≈ 4, and proposed the revised equilibrium scour depth predicting equation (Equation (3)) for KC > 4.

Rudolph and Bos [2] conducted a series of wave flume experiments to investigate the scour depth around monopile under waves only, waves and currents combined respectively, indicting KC was one of key parameters in influencing equilibrium scour depth, and proposed the equilibrium scour depth predicting equation (Equation (4)) for low KC (1 < KC < 10). Through analyzing the extensive data from published literatures, Raaijmakers and Rudolph [34] developed the equilibrium scour depth predicting equation (Equation (5)) for low KC, which was suitable for waves only, waves and currents combined. Khalfin [35] carried out several sets of wave flume experiments to study scour development around monopile, and proposed the equilibrium scour depth predicting equation (Equation (6)) for low KC (0.1 < KC < 3.5). Different with above equations, the Khalfin’s equation considers the Shields parameter θ and KC number simultaneously in predicting equilibrium scour depth. The flow reversal occurred under through in one wave period, so sand particles would be carried away from lee-side of pile to upside, resulting in sand particles backfilled into the upstream scour hole [20,29]. Considering the backfilling effects, Zanke et al. [36] proposed the equilibrium scour depth predicting equation (Equation (7)) around pile by theoretical analysis, and the equation is suitable for the whole range of KC number under regular waves and currents combined.

S/D=1.3(1−exp([−m(KC−6)])�/�=1.3(1−exp(−�(��−6))(2)

where, m = 0.03 for linear waves.

S/D=1.3(1−exp([−0.02(KC−4)])�/�=1.3(1−exp(−0.02(��−4))(3)

S/D=1.3γKwaveKhw�/�=1.3��wave�ℎw(4)

where, γ is safety factor, depending on design process, typically γ = 1.5, Kwave is correction factor considering wave action, Khw is correction factor considering water depth.

S/D=1.5[tanh(hwD)]KwaveKhw�/�=1.5tanh(ℎw�)�wave�ℎw(5)

where, hw is water depth.

S/D=0.0753(θθcr−−−√−0.5)0.69KC0.68�/�=0.0753(��cr−0.5)0.69��0.68(6)

where, θ is shields parameter, θcr is critical shields parameter.

S/D=2.5(1−0.5u/uc)xrelxrel=xeff/(1+xeff)xeff=0.03(1−0.35ucr/u)(KC−6)⎫⎭⎬⎪⎪�/�=2.5(1−0.5�/��)��������=����/(1+����)����=0.03(1−0.35�cr/�)(��−6)(7)

where, u is near-bed orbital velocity amplitude, uc is critical velocity corresponding the onset of sediment motion.

S/D=1.3{1−exp[−0.03(KC2lnn+36)1/2−6]}�/�=1.31−exp−0.03(��2ln�+36)1/2−6(8)

where, n is the 1/n’th highest wave for random waves

For predicting equilibrium scour depth under irregular waves, i.e., random waves, Sumer and Fredsøe [16] found it’s suitable to take Equation (2) to predict equilibrium scour depth around pile under random waves with the root-mean-square (RMS) value of near-bed orbital velocity amplitude Um and peak wave period TP to calculate KC. Khalfin [35] recommended the RMS wave height Hrms and peak wave period TP were used to calculate KC for Equation (6). References [37,38,39,40] developed a series of stochastic theoretical models to predict equilibrium scour depth around pile under random waves, nonlinear random waves plus currents respectively. The stochastic approach thought the 1/n’th highest wave were responsible for scour in vicinity of pile under random waves, and the KC was calculated in Equation (8) with Um and mean zero-crossing wave period Tz. The results calculated by Equation (8) agree well with experimental values of Sumer and Fredsøe [16] if the 1/10′th highest wave was used. To author’s knowledge, the stochastic approach proposed by Myrhaug and Rue [37] is the only theoretical model to predict equilibrium scour depth around pile under random waves for the whole range of KC number in published documents. Other methods of predicting scour depth under random waves are mainly originated from the equation for regular waves-only, waves and currents combined, which are limited to the large KC number, such as KC > 6 for Equation (2) and KC > 4 for Equation (3) respectively. However, situations with relatively low KC number (KC < 4) often occur in reality, for example, monopile or suction anchor for OWT foundations in ocean environment. Moreover, local scour around OWT foundations under random waves has not yet been investigated fully. Therefore, further study are still needed in the aspect of scour around OWT foundations with low KC number under random waves. Given that, this study presents the scour sediment model around umbrella suction anchor foundation (USAF) under random waves. In this study, a comparison of equilibrium scour depth around USAF between this present numerical models and the previous theoretical models and experimental results was presented firstly. Then, this study gave a comprehensive analysis for the scour mechanisms around USAF. After that, two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] respectively to predict the equilibrium scour depth. Finally, a parametric study was conducted to study the effects of the Froude number (Fr) and Euler number (Eu) to equilibrium scour depth respectively.

2. Numerical Method

2.1. Governing Equations of Flow

The following equations adopted in present model are already available in Flow 3D software. The authors used these theoretical equations to simulate scour in random waves without modification. The incompressible viscous fluid motion satisfies the Reynolds-averaged Navier-Stokes (RANS) equation, so the present numerical model solves RANS equations:

∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρf∂p∂x+Gx+fx∂�∂�+1��(���∂�∂�+���∂�∂�+���∂�∂�)=−1�f∂�∂�+��+��(9)

∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρf∂p∂y+Gy+fy∂�∂�+1��(���∂�∂�+���∂�∂�+���∂�∂�)=−1�f∂�∂�+��+��(10)

∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρf∂p∂z+Gz+fz∂�∂�+1��(���∂�∂�+���∂�∂�+���∂�∂�)=−1�f∂�∂�+��+��(11)

where, VF is the volume fraction; uv, and w are the velocity components in xyz direction respectively with Cartesian coordinates; Ai is the area fraction; ρf is the fluid density, fi is the viscous fluid acceleration, Gi is the fluid body acceleration (i = xyz).

2.2. Turbulent Model

The turbulence closure is available by the turbulent model, such as one-equation, the one-equation k-ε model, the standard k-ε model, RNG k-ε turbulent model and large eddy simulation (LES) model. The LES model requires very fine mesh grid, so the computational time is large, which hinders the LES model application in engineering. The RNG k-ε model can reduce computational time greatly with high accuracy in the near-wall region. Furthermore, the RNG k-ε model computes the maximum turbulent mixing length dynamically in simulating sediment scour model. Therefore, the RNG k-ε model was adopted to study the scour around anchor under random waves [41,42].

∂kT∂T+1VF(uAx∂kT∂x+vAy∂kT∂y+wAz∂kT∂z)=PT+GT+DiffkT−εkT∂��∂�+1��(���∂��∂�+���∂��∂�+���∂��∂�)=��+��+������−���(12)

∂εT∂T+1VF(uAx∂εT∂x+vAy∂εT∂y+wAz∂εT∂z)=CDIS1εTkT(PT+CDIS3GT)+Diffε−CDIS2ε2TkT∂��∂�+1��(���∂��∂�+���∂��∂�+���∂��∂�)=����1����(��+����3��)+�����−����2��2��(13)

where, kT is specific kinetic energy involved with turbulent velocity, GT is the turbulent energy generated by buoyancy; εT is the turbulent energy dissipating rate, PT is the turbulent energy, Diffε and DiffkT are diffusion terms associated with VFAiCDIS1CDIS2 and CDIS3 are dimensionless parameters, and CDIS1CDIS3 have default values of 1.42, 0.2 respectively. CDIS2 can be obtained from PT and kT.

2.3. Sediment Scour Model

The sand particles may suffer four processes under waves, i.e., entrainment, bed load transport, suspended load transport, and deposition, so the sediment scour model should depict the above processes efficiently. In present numerical simulation, the sediment scour model includes the following aspects:

2.3.1. Entrainment and Deposition

The combination of entrainment and deposition determines the net scour rate of seabed in present sediment scour model. The entrainment lift velocity of sand particles was calculated as [43]:

ulift,i=αinsd0.3∗(θ−θcr)1.5∥g∥di(ρi−ρf)ρf−−−−−−−−−−−−√�lift,i=�����*0.3(�−�cr)1.5���(��−�f)�f(14)

where, αi is the entrainment parameter, ns is the outward point perpendicular to the seabed, d* is the dimensionless diameter of sand particles, which was calculated by Equation (15), θcr is the critical Shields parameter, g is the gravity acceleration, di is the diameter of sand particles, ρi is the density of seabed species.

d∗=di(∥g∥ρf(ρi−ρf)μ2f)1/3�*=��(��f(��−�f)�f2)1/3(15)

where μf is the fluid dynamic viscosity.

In Equation (14), the entrainment parameter αi confirms the rate at which sediment erodes when the given shear stress is larger than the critical shear stress, and the recommended value 0.018 was adopted according to the experimental data of Mastbergen and Von den Berg [43]. ns is the outward pointing normal to the seabed interface, and ns = (0,0,1) according to the Cartesian coordinates used in present numerical model.

The shields parameter was obtained from the following equation:

θ=U2f,m(ρi/ρf−1)gd50�=�f,m2(��/�f−1)��50(16)

where, Uf,m is the maximum value of the near-bed friction velocity; d50 is the median diameter of sand particles. The detailed calculation procedure of θ was available in Soulsby [44].

The critical shields parameter θcr was obtained from the Equation (17) [44]

θcr=0.31+1.2d∗+0.055[1−exp(−0.02d∗)]�cr=0.31+1.2�*+0.0551−exp(−0.02�*)(17)

The sand particles begin to deposit on seabed when the turbulence energy weaken and cann’t support the particles suspending. The setting velocity of the particles was calculated from the following equation [44]:

usettling,i=νfdi[(10.362+1.049d3∗)0.5−10.36]�settling,�=�f��(10.362+1.049�*3)0.5−10.36(18)

where νf is the fluid kinematic viscosity.

2.3.2. Bed Load Transport

This is called bed load transport when the sand particles roll or bounce over the seabed and always have contact with seabed. The bed load transport velocity was computed by [45]:

ubedload,i=qb,iδicb,ifb�bedload,�=�b,����b,��b(19)

where, qb,i is the bed load transport rate, which was obtained from Equation (20), δi is the bed load thickness, which was calculated by Equation (21), cb,i is the volume fraction of sand i in the multiple species, fb is the critical packing fraction of the seabed.

qb,i=8[∥g∥(ρi−ρfρf)d3i]1/2�b,�=8�(��−�f�f)��31/2(20)

δi=0.3d0.7∗(θθcr−1)0.5di��=0.3�*0.7(��cr−1)0.5��(21)

2.3.3. Suspended Load Transport

Through the following transport equation, the suspended sediment concentration could be acquired.

∂Cs,i∂t+∇(us,iCs,i)=∇∇(DfCs,i)∂�s,�∂�+∇(�s,��s,�)=∇∇(�f�s,�)(22)

where, Cs,i is the suspended sand particles mass concentration of sand i in the multiple species, us,i is the sand particles velocity of sand iDf is the diffusivity.

The velocity of sand i in the multiple species could be obtained from the following equation:

us,i=u¯¯+usettling,ics,i�s,�=�¯+�settling,��s,�(23)

where, u¯�¯ is the velocity of mixed fluid-particles, which can be calculated by the RANS equation with turbulence model, cs,i is the suspended sand particles volume concentration, which was computed from Equation (24).

cs,i=Cs,iρi�s,�=�s,���(24)

3. Model Setup

The seabed-USAF-wave three-dimensional scour numerical model was built using Flow-3D software. As shown in Figure 2, the model includes sandy seabed, USAF model, sea water, two baffles and porous media. The dimensions of USAF are shown in Table 1. The sandy bed (210 m in length, 30 m in width and 11 m in height) is made up of uniform fine sand with median diameter d50 = 0.041 cm. The USAF model includes upper steel tube with the length of 20 m, which was installed in the middle of seabed. The location of USAF is positioned at 140 m from the upstream inflow boundary and 70 m from the downstream outflow boundary. Two baffles were installed at two ends of seabed. In order to eliminate the wave reflection basically, the porous media was set at the outflow side on the seabed.

Jmse 09 00886 g002 550

Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wv-wave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.

Table 1. Numerical simulating cases.

Table

3.1. Mesh Geometric Dimensions

In the simulation of the scour under the random waves, the model includes the umbrella suction anchor foundation, seabed and fluid. As shown in Figure 3, the model mesh includes global mesh grid and nested mesh grid, and the total number of grids is 1,812,000. The basic procedure for building mesh grid consists of two steps. Step 1: Divide the global mesh using regular hexahedron with size of 0.6 × 0.6. The global mesh area is cubic box, embracing the seabed and whole fluid volume, and the dimensions are 210 m in length, 30 m in width and 32 m in height. The details of determining the grid size can see the following mesh sensitivity section. Step 2: Set nested fine mesh grid in vicinity of the USAF with size of 0.3 × 0.3 so as to shorten the computation cost and improve the calculation accuracy. The encryption range is −15 m to 15 m in x direction, −15 m to 15 m in y direction and 0 m to 32 m in z direction, respectively. In order to accurately capture the free-surface dynamics, such as the fluid-air interface, the volume of fluid (VOF) method was adopted for tracking the free water surface. One specific algorithm called FAVORTM (Fractional Area/Volume Obstacle Representation) was used to define the fractional face areas and fractional volumes of the cells which are open to fluid flow.

Jmse 09 00886 g003 550

Figure 3. The sketch of mesh grid.

3.2. Boundary Conditions

As shown in Figure 2, the initial fluid length is 210 m as long as seabed. A wave boundary was specified at the upstream offshore end. The details of determining the random wave spectrum can see the following wave parameters section. The outflow boundary was set at the downstream onshore end. The symmetry boundary was used at the top and two sides of the model. The symmetric boundaries were the better strategy to improve the computation efficiency and save the calculation cost [46]. At the seabed bottom, the wall boundary was adopted, which means the u = v = w= 0. Besides, the upper steel tube of USAF was set as no-slip condition.

3.3. Wave Parameters

The random waves with JONSWAP wave spectrum were used for all simulations as realistic representation of offshore conditions. The unidirectional JONSWAP frequency spectrum was described as [47]:

S(ω)=αg2ω5exp[−54(ωpω)4]γexp[−(ω−ωp)22σ2ω2p]�(�)=��2�5exp−54(�p�)4�exp−(�−�p)22�2�p2(25)

where, α is wave energy scale parameter, which is calculated by Equation (26), ω is frequency, ωp is wave spectrum peak frequency, which can be obtained from Equation (27). γ is wave spectrum peak enhancement factor, in this study γ = 3.3. σ is spectral width factor, σ equals 0.07 for ω ≤ ωp and 0.09 for ω > ωp respectively.

α=0.0076(gXU2)−0.22�=0.0076(���2)−0.22(26)

ωp=22(gU)(gXU2)−0.33�p=22(��)(���2)−0.33(27)

where, X is fetch length, U is average wind velocity at 10 m height from mean sea level.

In present numerical model, the input key parameters include X and U for wave boundary with JONSWAP wave spectrum. The objective wave height and period are available by different combinations of X and U. In this study, we designed 9 cases with different wave heights, periods and water depths for simulating scour around USAF under random waves (see Table 2). For random waves, the wave steepness ε and Ursell number Ur were acquired form Equations (28) and (29) respectively

ε=2πgHsT2a�=2���s�a2(28)

Ur=Hsk2h3w�r=�s�2ℎw3(29)

where, Hs is significant wave height, Ta is average wave period, k is wave number, hw is water depth. The Shield parameter θ satisfies θ > θcr for all simulations in current study, indicating the live bed scour prevails.

Table 2. Numerical simulating cases.

Table

3.4. Mesh Sensitivity

In this section, a mesh sensitivity analysis was conducted to investigate the influence of mesh grid size to results and make sure the calculation is mesh size independent and converged. Three mesh grid size were chosen: Mesh 1—global mesh grid size of 0.75 × 0.75, nested fine mesh grid size of 0.4 × 0.4, and total number of grids 1,724,000, Mesh 2—global mesh grid size of 0.6 × 0.6, nested fine mesh grid size of 0.3 × 0.3, and total number of grids 1,812,000, Mesh 3—global mesh grid size of 0.4 × 0.4, nested fine mesh grid size of 0.2 × 0.2, and total number of grids 1,932,000. The near-bed shear velocity U* is an important factor for influencing scour process [1,15], so U* at the position of (4,0,11.12) was evaluated under three mesh sizes. As the Figure 4 shown, the maximum error of shear velocity ∆U*1,2 is about 39.8% between the mesh 1 and mesh 2, and 4.8% between the mesh 2 and mesh 3. According to the mesh sensitivity criterion adopted by Pang et al. [48], it’s reasonable to think the results are mesh size independent and converged with mesh 2. Additionally, the present model was built according to prototype size, and the mesh size used in present model is larger than the mesh size adopted by Higueira et al. [49] and Corvaro et al. [50]. If we choose the smallest cell size, it will take too much time. For example, the simulation with Mesh3 required about 260 h by using a computer with Intel Xeon Scalable Gold 4214 CPU @24 Cores, 2.2 GHz and 64.00 GB RAM. Therefore, in this case, considering calculation accuracy and computation efficiency, the mesh 2 was chosen for all the simulation in this study.

Jmse 09 00886 g004 550

Figure 4. Comparison of near-bed shear velocity U* with different mesh grid size.

The nested mesh block was adopted for seabed in vicinity of the USAF, which was overlapped with the global mesh block. When two mesh blocks overlap each other, the governing equations are by default solved on the mesh block with smaller average cell size (i.e., higher grid resolution). It is should be noted that the Flow 3D software used the moving mesh captures the scour evolution and automatically adjusts the time step size to be as large as possible without exceeding any of the stability limits, affecting accuracy, or unduly increasing the effort required to enforce the continuity condition [51].

3.5. Model Validation

In order to verify the reliability of the present model, the results of present study were compared with the experimental data of Khosronejad et al. [52]. The experiment was conducted in an open channel with a slender vertical pile under unidirectional currents. The comparison of scour development between the present results and the experimental results is shown in Figure 5. The Figure 5 reveals that the present results agree well with the experimental data of Khosronejad et al. [52]. In the first stage, the scour depth increases rapidly. After that, the scour depth achieves a maximum value gradually. The equilibrium scour depth calculated by the present model is basically corresponding with the experimental results of Khosronejad et al. [52], although scour depth in the present model is slightly larger than the experimental results at initial stage.

Jmse 09 00886 g005 550

Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].

Secondly, another comparison was further conducted between the results of present study and the experimental data of Petersen et al. [17]. The experiment was carried out in a flume with a circular vertical pile in combined waves and current. Figure 4 shows a comparison of time evolution of scour depth between the simulating and the experimental results. As Figure 5 indicates, the scour depth in this study has good overall agreement with the experimental results proposed in Petersen et al. [17]. The equilibrium scour depth calculated by the present model is 0.399 m, which equals to the experimental value basically. Overall, the above verifications prove the present model is accurate and capable in dealing with sediment scour under waves.

In addition, in order to calibrate and validate the present model for hydrodynamic parameters, the comparison of water surface elevation was carried out with laboratory experiments conducted by Stahlmann [53] for wave gauge No. 3. The Figure 6 depicts the surface wave profiles between experiments and numerical model results. The comparison indicates that there is a good agreement between the model results and experimental values, especially the locations of wave crest and trough. Comparison of the surface elevation instructs the present model has an acceptable relative error, and the model is a calibrated in terms of the hydrodynamic parameters.

Jmse 09 00886 g006 550

Figure 6. Comparison of surface elevation between the present study and Stahlmann [53].

Finally, another comparison was conducted for equilibrium scour depth or maximum scour depth under random waves with the experimental data of Sumer and Fredsøe [16] and Schendel et al. [22]. The Figure 7 shows the comparison between the numerical results and experimental data of Run01, Run05, Run21 and Run22 in Sumer and Fredsøe [16] and test A05 and A09 in Schendel et al. [22]. As shown in Figure 7, the equilibrium scour depth or maximum scour depth distributed within the ±30 error lines basically, meaning the reliability and accuracy of present model for predicting equilibrium scour depth around foundation in random waves. However, compared with the experimental values, the present model overestimated the equilibrium scour depth generally. Given that, a calibration for scour depth was carried out by multiplying the mean reduced coefficient 0.85 in following section.

Jmse 09 00886 g007 550

Figure 7. Comparison of equilibrium (or maximum) scour depth between the present study and Sumer and Fredsøe [16], Schendel et al. [22].

Through the various examination for hydrodynamic and morphology parameters, it can be concluded that the present model is a validated and calibrated model for scour under random waves. Thus, the present numerical model would be utilized for scour simulation around foundation under random waves.

4. Numerical Results and Discussions

4.1. Scour Evolution

Figure 8 displays the scour evolution for case 1–9. As shown in Figure 8a, the scour depth increased rapidly at the initial stage, and then slowed down at the transition stage, which attributes to the backfilling occurred in scour holes under live bed scour condition, resulting in the net scour decreasing. Finally, the scour reached the equilibrium state when the amount of sediment backfilling equaled to that of scouring in the scour holes, i.e., the net scour transport rate was nil. Sumer and Fredsøe [16] proposed the following formula for the scour development under waves

St=Seq(1−exp(−t/Tc))�t=�eq(1−exp(−�/�c))(30)

where Tc is time scale of scour process.

Jmse 09 00886 g008 550

Figure 8. Time evolution of scour for case 1–9: (a) Case 1–5; (b) Case 6–9.

The computing time is 3600 s and the scour development curves in Figure 8 kept fluctuating, meaning it’s still not in equilibrium scour stage in these cases. According to Sumer and Fredsøe [16], the equilibrium scour depth can be acquired by fitting the data with Equation (30). From Figure 8, it can be seen that the scour evolution obtained from Equation (30) is consistent with the present study basically at initial stage, but the scour depth predicted by Equation (30) developed slightly faster than the simulating results and the Equation (30) overestimated the scour depth to some extent. Overall, the whole tendency of the results calculated by Equation (30) agrees well with the simulating results of the present study, which means the Equation (30) is applicable to depict the scour evolution around USAF under random waves.

4.2. Scour Mechanism under Random Waves

The scour morphology and scour evolution around USAF are similar under random waves in case 1~9. Taking case 7 as an example, the scour morphology is shown in Figure 9.

Jmse 09 00886 g009 550

Figure 9. Scour morphology under different times for case 7.

From Figure 9, at the initial stage (t < 1200 s), the scour occurred at upstream foundation edges between neighboring anchor branches. The maximum scour depth appeared at the lee-side of the USAF. Correspondingly, the sediments deposited at the periphery of the USAF, and the location of the maximum accretion depth was positioned at an angle of about 45° symmetrically with respect to the wave propagating direction in the lee-side of the USAF. After that, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.

According to previous studies [1,15,16,19,30,31], the horseshoe vortex, streamline compression and wake vortex shedding were responsible for scour around foundation. The Figure 10 displays the distribution of flow velocity in vicinity of foundation, which reflects the evolving processes of horseshoe vertex.

Jmse 09 00886 g010a 550
Jmse 09 00886 g010b 550

Figure 10. Velocity profile around USAF: (a) Flow runup and down stream at upstream anchor edges; (b) Horseshoe vortex at upstream anchor edges; (c) Flow reversal during wave through stage at lee side.

As shown in Figure 10, the inflow tripped to the upstream edges of the USAF and it was blocked by the upper tube of USAF. Then, the downflow formed the horizontal axis clockwise vortex and rolled on the seabed bypassing the tube, that is, the horseshoe vortex (Figure 11). The Figure 12 displays the turbulence intensity around the tube on the seabed. From Figure 12, it can be seen that the turbulence intensity was high-intensity with respect to the region of horseshoe vortex. This phenomenon occurred because of drastic water flow momentum exchanging in the horseshoe vortex. As a result, it created the prominent shear stress on the seabed, causing the local scour at the upstream edges of USAF. Besides, the horseshoe vortex moved downstream gradually along the periphery of the tube and the wake vortex shed off continually at the lee-side of the USAF, i.e., wake vortex.

Jmse 09 00886 g011 550

Figure 11. Sketch of scour mechanism around USAF under random waves.

Jmse 09 00886 g012 550

Figure 12. Turbulence intensity: (a) Turbulence intensity of horseshoe vortex; (b) Turbulence intensity of wake vortex; (c) Turbulence intensity of accretion area.

The core of wake vortex is a negative pressure center, liking a vacuum cleaner [11,42]. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortex. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow at the downside of USAF. As is shown in Figure 12, the turbulence intensity was low where the downflow occurred at lee-side, which means the turbulence energy may not be able to support the survival of wake vortex, leading to accretion happening. As mentioned in previous section, the formation of horseshoe vortex was dependent with adverse pressure gradient at upside of foundation. As shown in Figure 13, the evaluated range of pressure distribution is −15 m to 15 m in x direction. The t = 450 s and t = 1800 s indicate that the wave crest and trough arrived at the upside and lee-side of the foundation respectively, and the t = 350 s was neither the wave crest nor trough. The adverse gradient pressure reached the maximum value at t = 450 s corresponding to the wave crest phase. In this case, it’s helpful for the wave boundary separating fully from seabed, which leads to the formation of horseshoe vortex with high turbulence intensity. Therefore, the horseshoe vortex is responsible for the local scour between neighboring anchor branches at upside of USAF. What’s more, due to the combination of the horseshoe vortex and streamline compression, the maximum scour depth occurred at the upside of the USAF with an angle of about 45° corresponding to the wave propagating direction. This is consistent with the findings of Pang et al. [48] and Sumer et al. [1,15] in case of regular waves. At the wave trough phase (t = 1800 s), the pressure gradient became positive at upstream USAF edges, which hindered the separating of wave boundary from seabed. In the meantime, the flow reversal occurred (Figure 10) and the adverse gradient pressure appeared at downstream USAF edges, but the magnitude of adverse gradient pressure at lee-side was lower than the upstream gradient pressure under wave crest. In this way, the intensity of horseshoe vortex behind the USAF under wave trough was low, which explains the difference of scour depth at upstream and downstream, i.e., the scour asymmetry. In other words, the scour asymmetry at upside and downside of USAF was attributed to wave asymmetry for random waves, and the phenomenon became more evident for nonlinear waves [21]. Briefly speaking, the vortex system at wave crest phase was mainly related to the scour process around USAF under random waves.

Jmse 09 00886 g013 550

Figure 13. Pressure distribution around USAF.

4.3. Equilibrium Scour Depth

The KC number is a key parameter for horseshoe vortex emerging and evolving under waves. According to Equation (1), when pile diameter D is fixed, the KC depends on the maximum near-bed velocity Uwm and wave period T. For random waves, the Uwm can be denoted by the root-mean-square (RMS) value of near-bed velocity amplitude Uwm,rms or the significant value of near-bed velocity amplitude Uwm,s. The Uwm,rms and Uwm,s for all simulating cases of the present study are listed in Table 3 and Table 4. The T can be denoted by the mean up zero-crossing wave period Ta, peak wave period Tp, significant wave period Ts, the maximum wave period Tm, 1/10′th highest wave period Tn = 1/10 and 1/5′th highest wave period Tn = 1/5 for random waves, so the different combinations of Uwm and T will acquire different KC. The Table 3 and Table 4 list 12 types of KC, for example, the KCrms,s was calculated by Uwm,rms and Ts. Sumer and Fredsøe [16] conducted a series of wave flume experiments to investigate the scour depth around monopile under random waves, and found the equilibrium scour depth predicting equation (Equation (2)) for regular waves was applicable for random waves with KCrms,p. It should be noted that the Equation (2) is only suitable for KC > 6 under regular waves or KCrms,p > 6 under random waves.

Table 3. Uwm,rms and KC for case 1~9.

Table

Table 4. Uwm,s and KC for case 1~9.

Table

Raaijmakers and Rudolph [34] proposed the equilibrium scour depth predicting model (Equation (5)) around pile under waves, which is suitable for low KC. The format of Equation (5) is similar with the formula proposed by Breusers [54], which can predict the equilibrium scour depth around pile at different scour stages. In order to verify the applicability of Raaijmakers’s model for predicting the equilibrium scour depth around USAF under random waves, a validation of the equilibrium scour depth Seq between the present study and Raaijmakers’s equation was conducted. The position where the scour depth Seq was evaluated is the location of the maximum scour depth, and it was depicted in Figure 14. The Figure 15 displays the comparison of Seq with different KC between the present study and Raaijmakers’s model.

Jmse 09 00886 g014 550

Figure 14. Sketch of the position where the Seq was evaluated.

Jmse 09 00886 g015a 550
Jmse 09 00886 g015b 550

Figure 15. Comparison of the equilibrium scour depth between the present model and the model of Raaijmakers and Rudolph [34]: (aKCrms,sKCrms,a; (bKCrms,pKCrms,m; (cKCrms,n = 1/10KCrms,n = 1/5; (dKCs,sKCs,a; (eKCs,pKCs,m; (fKCs,n = 1/10KCs,n = 1/5.

As shown in Figure 15, there is an error in predicting Seq between the present study and Raaijmakers’s model, and Raaijmakers’s model underestimates the results generally. Although the error exists, the varying trend of Seq with KC obtained from Raaijmakers’s model is consistent with the present study basically. What’s more, the error is minimum and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves by using KCs,p. Based on this, a further revision was made to eliminate the error as much as possible, i.e., add the deviation value ∆S/D in the Raaijmakers’s model. The revised equilibrium scour depth predicting equation based on Raaijmakers’s model can be written as

S′eq/D=1.95[tanh(hD)](1−exp(−0.012KCs,p))+ΔS/D�eq′/�=1.95tanh(ℎ�)(1−exp(−0.012��s,p))+∆�/�(31)

As the Figure 16 shown, through trial-calculation, when ∆S/D = 0.05, the results calculated by Equation (31) show good agreement with the simulating results of the present study. The maximum error is about 18.2% and the engineering requirements have been met basically. In order to further verify the accuracy of the revised model for large KC (KCs,p > 4) under random waves, a validation between the revised model and the previous experimental results [21]. The experiment was conducted in a flume (50 m in length, 1.0 m in width and 1.3 m in height) with a slender vertical pile (D = 0.1 m) under random waves. The seabed is composed of 0.13 m deep layer of sand with d50 = 0.6 mm and the water depth is 0.5 m for all tests. The significant wave height is 0.12~0.21 m and the KCs,p is 5.52~11.38. The comparison between the predicting results by Equation (31) and the experimental results of Corvaro et al. [21] is shown in Figure 17. From Figure 17, the experimental data evenly distributes around the predicted results and the prediction accuracy is favorable when KCs,p < 8. However, the gap between the predicting results and experimental data becomes large and the Equation (31) overestimates the equilibrium scour depth to some extent when KCs,p > 8.

Jmse 09 00886 g016 550

Figure 16. Comparison of Seq between the simulating results and the predicting values by Equation (31).

Jmse 09 00886 g017 550

Figure 17. Comparison of Seq/D between the Experimental results of Corvaro et al. [21] and the predicting values by Equation (31).

In ocean environment, the waves are composed of a train of sinusoidal waves with different frequencies and amplitudes. The energy of constituent waves with very large and very small frequencies is relatively low, and the energy of waves is mainly concentrated in a certain range of moderate frequencies. Myrhaug and Rue [37] thought the 1/n’th highest wave was responsible for scour and proposed the stochastic model to predict the equilibrium scour depth around pile under random waves for full range of KC. Noteworthy is that the KC was denoted by KCrms,a in the stochastic model. To verify the application of the stochastic model for predicting scour depth around USAF, a validation between the simulating results of present study and predicting results by the stochastic model with n = 2,3,5,10,20,500 was carried out respectively.

As shown in Figure 18, compared with the simulating results, the stochastic model underestimates the equilibrium scour depth around USAF generally. Although the error exists, the varying trend of Seq with KCrms,a obtained from the stochastic model is consistent with the present study basically. What’s more, the gap between the predicting values by stochastic model and the simulating results decreases with the increase of n, but for large n, for example n = 500, the varying trend diverges between the predicting values and simulating results, meaning it’s not feasible only by increasing n in stochastic model to predict the equilibrium scour depth around USAF.

Jmse 09 00886 g018 550

Figure 18. Comparison of Seq between the simulating results and the predicting values by Equation (8).

The Figure 19 lists the deviation value ∆Seq/D′ between the predicting values and simulating results with different KCrms,a and n. Then, fitted the relationship between the ∆S′and n under different KCrms,a, and the fitting curve can be written by Equation (32). The revised stochastic model (Equation (33)) can be acquired by adding ∆Seq/D′ to Equation (8).

ΔSeq/D=0.052*exp(−n/6.566)+0.068∆�eq/�=0.052*exp(−�/6.566)+0.068(32)

S′eq¯/D=S′eq/D+0.052*exp(−n/6.566)+0.068�eq′¯/�=�eq′/�+0.052*exp(−�/6.566)+0.068(33)

Jmse 09 00886 g019 550

Figure 19. The fitting line between ∆S′and n.

The comparison between the predicting results by Equation (33) and the simulating results of present study is shown in Figure 20. According to the Figure 20, the varying trend of Seq with KCrms,a obtained from the stochastic model is consistent with the present study basically. Compared with predicting results by the stochastic model, the results calculated by Equation (33) is favorable. Moreover, comparison with simulating results indicates that the predicting results are the most favorable for n = 10, which is consistent with the findings of Myrhaug and Rue [37] for equilibrium scour depth predicting around slender pile in case of random waves.

Jmse 09 00886 g020 550

Figure 20. Comparison of Seq between the simulating results and the predicting values by Equation (33).

In order to further verify the accuracy of the Equation (33) for large KC (KCrms,a > 4) under random waves, a validation was conducted between the Equation (33) and the previous experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. The details of experiments conducted by Corvaro et al. [21] were described in above section. Sumer and Fredsøe [16] investigated the local scour around pile under random waves. The experiments were conducted in a wave basin with a slender vertical pile (D = 0.032, 0.055 m). The seabed is composed of 0.14 m deep layer of sand with d50 = 0.2 mm and the water depth was maintained at 0.5 m. The JONSWAP wave spectrum was used and the KCrms,a was 5.29~16.95. The comparison between the predicting results by Equation (33) and the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] are shown in Figure 21. From Figure 21, contrary to the case of low KCrms,a (KCrms,a < 4), the error between the predicting values and experimental results increases with decreasing of n for KCrms,a > 4. Therefore, the predicting results are the most favorable for n = 2 when KCrms,a > 4.

Jmse 09 00886 g021 550

Figure 21. Comparison of Seq between the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] and the predicting values by Equation (33).

Noteworthy is that the present model was built according to prototype size, so the errors between the numerical results and experimental data of References [16,21] may be attribute to the scale effects. In laboratory experiments on scouring process, it is typically impossible to ensure a rigorous similarity of all physical parameters between the model and prototype structure, leading to the scale effects in the laboratory experiments. To avoid a cohesive behaviour, the bed material was not scaled geometrically according to model scale. As a consequence, the relatively large-scaled sediments sizes may result in the overestimation of bed load transport and underestimation of suspended load transport compared with field conditions. What’s more, the disproportional scaled sediment presumably lead to the difference of bed roughness between the model and prototype, and thus large influences for wave boundary layer on the seabed and scour process. Besides, according to Corvaro et al. [21] and Schendel et al. [55], the pile Reynolds numbers and Froude numbers both affect the scour depth for the condition of non fully developed turbulent flow in laboratory experiments.

4.4. Parametric Study

4.4.1. Influence of Froude Number

As described above, the set of foundation leads to the adverse pressure gradient appearing at upstream, leading to the wave boundary layer separating from seabed, then horseshoe vortex formatting and the horseshoe vortex are mainly responsible for scour around foundation (see Figure 22). The Froude number Fr is the key parameter to influence the scale and intensity of horseshoe vortex. The Fr under waves can be calculated by the following formula [42]

Fr=UwgD−−−√�r=�w��(34)

where Uw is the mean water particle velocity during 1/4 cycle of wave oscillation, obtained from the following formula. Noteworthy is that the root-mean-square (RMS) value of near-bed velocity amplitude Uwm,rms is used for calculating Uwm.

Uw=1T/4∫0T/4Uwmsin(t/T)dt=2πUwm�w=1�/4∫0�/4�wmsin(�/�)��=2��wm(35)

Jmse 09 00886 g022 550

Figure 22. Sketch of flow field at upstream USAF edges.

Tavouktsoglou et al. [25] proposed the following formula between Fr and the vertical location of the stagnation y

yh∝Fer�ℎ∝�r�(36)

where e is constant.

The Figure 23 displays the relationship between Seq/D and Fr of the present study. In order to compare with the simulating results, the experimental data of Corvaro et al. [21] was also depicted in Figure 23. As shown in Figure 23, the equilibrium scour depth appears a logarithmic increase as Fr increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increase of Fr, which is benefit for the wave boundary layer separating from seabed, resulting in the high-intensity horseshoe vortex, hence, causing intensive scour around USAF. Based on the previous study of Tavouktsoglou et al. [25] for scour around pile under currents, the high Fr leads to the stagnation point is closer to the mean sea level for shallow water, causing the stronger downflow kinetic energy. As mentioned in previous section, the energy of downflow at upstream makes up the energy of the subsequent horseshoe vortex, so the stronger downflow kinetic energy results in the more intensive horseshoe vortex. Therefore, the higher Fr leads to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably. Qi and Gao [19] carried out a series of flume tests to investigate the scour around pile under regular waves, and proposed the fitting formula between Seq/D and Fr as following

lg(Seq/D)=Aexp(B/Fr)+Clg(�eq/�)=�exp(�/�r)+�(37)

where AB and C are constant.

Jmse 09 00886 g023 550

Figure 23. The fitting curve between Seq/D and Fr.

Jmse 09 00886 g024 550

Figure 24. Sketch of adverse pressure gradient at upstream USAF edges.

Took the Equation (37) to fit the simulating results with A = −0.002, B = 0.686 and C = −0.808, and the results are shown in Figure 23. From Figure 23, the simulating results evenly distribute around the Equation (37) and the varying trend of Seq/D and Fr in present study is consistent with Equation (37) basically, meaning the Equation (37) is applicable to express the relationship of Seq/D with Fr around USAF under random waves.

4.4.2. Influence of Euler Number

The Euler number Eu is the influencing factor for the hydrodynamic field around foundation. The Eu under waves can be calculated by the following formula. The Eu can be represented by the Equation (38) for uniform cylinders [25]. The root-mean-square (RMS) value of near-bed velocity amplitude Um,rms is used for calculating Um.

Eu=U2mgD�u=�m2��(38)

where Um is depth-averaged flow velocity.

The Figure 25 displays the relationship between Seq/D and Eu of the present study. In order to compare with the simulating results, the experimental data of Sumer and Fredsøe [16] and Corvaro et al. [21] were also plotted in Figure 25. As shown in Figure 25, similar with the varying trend of Seq/D and Fr, the equilibrium scour depth appears a logarithmic increase as Eu increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increasing of Eu, which is benefit for the wave boundary layer separating from seabed, inducing the high-intensity horseshoe vortex, hence, causing intensive scour around USAF.

Jmse 09 00886 g025 550

Figure 25. The fitting curve between Seq/D and Eu.

Therefore, the variation of Fr and Eu reflect the magnitude of adverse pressure gradient pressure at upstream. Given that, the Equation (37) also was used to fit the simulating results with A = 8.875, B = 0.078 and C = −9.601, and the results are shown in Figure 25. From Figure 25, the simulating results evenly distribute around the Equation (37) and the varying trend of Seq/D and Eu in present study is consistent with Equation (37) basically, meaning the Equation (37) is also applicable to express the relationship of Seq/D with Eu around USAF under random waves. Additionally, according to the above description of Fr, it can be inferred that the higher Fr and Eu both lead to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably.

5. Conclusions

A series of numerical models were established to investigate the local scour around umbrella suction anchor foundation (USAF) under random waves. The numerical model was validated for hydrodynamic and morphology parameters by comparing with the experimental data of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22]. Based on the simulating results, the scour evolution and scour mechanisms around USAF under random waves were analyzed respectively. Two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves. Finally, a parametric study was carried out with the present model to study the effects of the Froude number Fr and Euler number Eu to the equilibrium scour depth around USAF under random waves. The main conclusions can be described as follows.(1)

The packed sediment scour model and the RNG k−ε turbulence model were used to simulate the sand particles transport processes and the flow field around UASF respectively. The scour evolution obtained by the present model agrees well with the experimental results of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22], which indicates that the present model is accurate and reasonable for depicting the scour morphology around UASF under random waves.(2)

The vortex system at wave crest phase is mainly related to the scour process around USAF under random waves. The maximum scour depth appeared at the lee-side of the USAF at the initial stage (t < 1200 s). Subsequently, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.(3)

The error is negligible and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves when KC is calculated by KCs,p. Given that, a further revision model (Equation (31)) was proposed according to Raaijmakers’s model to predict the equilibrium scour depth around USAF under random waves and it shows good agreement with the simulating results of the present study when KCs,p < 8.(4)

Another further revision model (Equation (33)) was proposed according to the stochastic model established by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves, and the predicting results are the most favorable for n = 10 when KCrms,a < 4. However, contrary to the case of low KCrms,a, the predicting results are the most favorable for n = 2 when KCrms,a > 4 by the comparison with experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21].(5)

The same formula (Equation (37)) is applicable to express the relationship of Seq/D with Eu or Fr, and it can be inferred that the higher Fr and Eu both lead to the more intensive horseshoe vortex and larger Seq.

Author Contributions

Conceptualization, H.L. (Hongjun Liu); Data curation, R.H. and P.Y.; Formal analysis, X.W. and H.L. (Hao Leng); Funding acquisition, X.W.; Writing—original draft, R.H. and P.Y.; Writing—review & editing, X.W. and H.L. (Hao Leng); The final manuscript has been approved by all the authors. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Fundamental Research Funds for the Central Universities (grant number 202061027) and the National Natural Science Foundation of China (grant number 41572247).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour Around Vertical Pile in Waves. J. Waterw. Port. Coast. Ocean Eng. 1992118, 15–31. [Google Scholar] [CrossRef]
  2. Rudolph, D.; Bos, K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of the 6th International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; pp. 582–588. [Google Scholar]
  3. Nielsen, A.W.; Liu, X.; Sumer, B.M.; Fredsøe, J. Flow and bed shear stresses in scour protections around a pile in a current. Coast. Eng. 201372, 20–38. [Google Scholar] [CrossRef]
  4. Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Three-dimensional numerical modelling of wave-induced scour around piles in a side-by-side arrangement. Coast. Eng. 2018138, 132–151. [Google Scholar] [CrossRef]
  5. Li, H.; Ong, M.C.; Leira, B.J.; Myrhaug, D. Effects of Soil Profile Variation and Scour on Structural Response of an Offshore Monopile Wind Turbine. J. Offshore Mech. Arct. Eng. 2018140, 042001. [Google Scholar] [CrossRef]
  6. Li, H.; Liu, H.; Liu, S. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Géoméch. Energy Environ. 201710, 12–20. [Google Scholar] [CrossRef]
  7. Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J.A.F.D.O. Editorial: Advanced research on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng. Marit. Eng. 2019172, 118–123. [Google Scholar] [CrossRef]
  8. Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik, D.; et al. Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS Project. Energies 201912, 1709. [Google Scholar] [CrossRef][Green Version]
  9. Wu, M.; De Vos, L.; Chavez, C.E.A.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current Conditions. J. Mar. Sci. Eng. 20208, 417. [Google Scholar] [CrossRef]
  10. Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng. 201363, 17–25. [Google Scholar] [CrossRef]
  11. Prendergast, L.; Gavin, K.; Doherty, P. An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng. 2015101, 1–11. [Google Scholar] [CrossRef][Green Version]
  12. Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.; Giannini, G.; Haerens, P. Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng. 20219, 297. [Google Scholar] [CrossRef]
  13. Yang, Q.; Yu, P.; Liu, Y.; Liu, H.; Zhang, P.; Wang, Q. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng. 2020202, 106701. [Google Scholar] [CrossRef]
  14. Yu, P.; Hu, R.; Yang, J.; Liu, H. Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves. Ocean Eng. 2020213, 107696. [Google Scholar] [CrossRef]
  15. Sumer, B.M.; Christiansen, N.; Fredsøe, J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. J. Fluid Mech. 1997332, 41–70. [Google Scholar] [CrossRef]
  16. Sumer, B.M.; Fredsøe, J. Scour around Pile in Combined Waves and Current. J. Hydraul. Eng. 2001127, 403–411. [Google Scholar] [CrossRef]
  17. Petersen, T.U.; Sumer, B.M.; Fredsøe, J. Time scale of scour around a pile in combined waves and current. In Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012. [Google Scholar]
  18. Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J.-J. Edge scour at scour protections around piles in the marine environment—Laboratory and field investigation. Coast. Eng. 2015106, 42–72. [Google Scholar] [CrossRef]
  19. Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Ser. E Technol. Sci. 201457, 1030–1039. [Google Scholar] [CrossRef][Green Version]
  20. Larsen, B.E.; Fuhrman, D.R.; Baykal, C.; Sumer, B.M. Tsunami-induced scour around monopile foundations. Coast. Eng. 2017129, 36–49. [Google Scholar] [CrossRef][Green Version]
  21. Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics Induced by a Vertical Slender Pile under Regular and Random Waves. J. Waterw. Port. Coast. Ocean Eng. 2018144, 04018018. [Google Scholar] [CrossRef]
  22. Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coast. Eng. 2020161, 103751. [Google Scholar] [CrossRef]
  23. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Reis, M.; das Neves, L. Reliability assessment of offshore dynamic scour protections using copulas. Wind. Eng. 201843, 506–538. [Google Scholar] [CrossRef]
  24. Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble mound scour protections. Coast. Eng. 2020158, 103671. [Google Scholar] [CrossRef]
  25. Tavouktsoglou, N.S.; Harris, J.M.; Simons, R.R.; Whitehouse, R.J.S. Equilibrium Scour-Depth Prediction around Cylindrical Structures. J. Waterw. Port. Coast. Ocean Eng. 2017143, 04017017. [Google Scholar] [CrossRef][Green Version]
  26. Ettema, R.; Melville, B.; Barkdoll, B. Scale Effect in Pier-Scour Experiments. J. Hydraul. Eng. 1998124, 639–642. [Google Scholar] [CrossRef]
  27. Umeda, S. Scour Regime and Scour Depth around a Pile in Waves. J. Coast. Res. Spec. Issue 201164, 845–849. [Google Scholar]
  28. Umeda, S. Scour process around monopiles during various phases of sea storms. J. Coast. Res. 2013165, 1599–1604. [Google Scholar] [CrossRef]
  29. Baykal, C.; Sumer, B.; Fuhrman, D.R.; Jacobsen, N.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng. 2017122, 87–107. [Google Scholar] [CrossRef][Green Version]
  30. Miles, J.; Martin, T.; Goddard, L. Current and wave effects around windfarm monopile foundations. Coast. Eng. 2017121, 167–178. [Google Scholar] [CrossRef][Green Version]
  31. Miozzi, M.; Corvaro, S.; Pereira, F.A.; Brocchini, M. Wave-induced morphodynamics and sediment transport around a slender vertical cylinder. Adv. Water Resour. 2019129, 263–280. [Google Scholar] [CrossRef]
  32. Yu, T.; Zhang, Y.; Zhang, S.; Shi, Z.; Chen, X.; Xu, Y.; Tang, Y. Experimental study on scour around a composite bucket foundation due to waves and current. Ocean Eng. 2019189, 106302. [Google Scholar] [CrossRef]
  33. Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave Scour Around Piles. In Proceedings of the Coastal Engineering 2000, American Society of Civil Engineers (ASCE), Sydney, Australia, 16–21 July 2000; pp. 1860–1870. [Google Scholar]
  34. Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions—Laboratory experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 152–161. [Google Scholar]
  35. Khalfin, I.S. Modeling and calculation of bed score around large-diameter vertical cylinder under wave action. Water Resour. 200734, 357. [Google Scholar] [CrossRef][Green Version]
  36. Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast. Eng. 201158, 986–991. [Google Scholar] [CrossRef]
  37. Myrhaug, D.; Rue, H. Scour below pipelines and around vertical piles in random waves. Coast. Eng. 200348, 227–242. [Google Scholar] [CrossRef]
  38. Myrhaug, D.; Ong, M.C.; Føien, H.; Gjengedal, C.; Leira, B.J. Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean Eng. 200936, 605–616. [Google Scholar] [CrossRef]
  39. Myrhaug, D.; Ong, M.C. Random wave-induced onshore scour characteristics around submerged breakwaters using a stochastic method. Ocean Eng. 201037, 1233–1238. [Google Scholar] [CrossRef]
  40. Ong, M.C.; Myrhaug, D.; Hesten, P. Scour around vertical piles due to long-crested and short-crested nonlinear random waves plus a current. Coast. Eng. 201373, 106–114. [Google Scholar] [CrossRef]
  41. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 19861, 3–51. [Google Scholar] [CrossRef]
  42. Yakhot, V.; Smith, L.M. The renormalization group, the e-expansion and derivation of turbulence models. J. Sci. Comput. 19927, 35–61. [Google Scholar] [CrossRef]
  43. Mastbergen, D.R.; Berg, J.V.D. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 200350, 625–637. [Google Scholar] [CrossRef]
  44. Soulsby, R. Dynamics of Marine Sands; Thomas Telford Ltd.: London, UK, 1998. [Google Scholar] [CrossRef]
  45. Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng. 1984110, 1431–1456. [Google Scholar] [CrossRef][Green Version]
  46. Zhang, Q.; Zhou, X.-L.; Wang, J.-H. Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng. 2017142, 625–638. [Google Scholar] [CrossRef]
  47. Yu, Y.X.; Liu, S.X. Random Wave and Its Applications to Engineering, 4th ed.; Dalian University of Technology Press: Dalian, China, 2011. [Google Scholar]
  48. Pang, A.; Skote, M.; Lim, S.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Appl. Ocean Res. 201657, 114–124. [Google Scholar] [CrossRef]
  49. Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using Open-FOAM®. Part I: Formulation and validation. Coast. Eng. 201483, 243–258. [Google Scholar] [CrossRef]
  50. Corvaro, S.; Crivellini, A.; Marini, F.; Cimarelli, A.; Capitanelli, L.; Mancinelli, A. Experimental and Numerical Analysis of the Hydrodynamics around a Vertical Cylinder in Waves. J. Mar. Sci. Eng. 20197, 453. [Google Scholar] [CrossRef][Green Version]
  51. Flow3D User Manual, version 11.0.3; Flow Science, Inc.: Santa Fe, NM, USA, 2013.
  52. Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour. 201237, 73–85. [Google Scholar] [CrossRef]
  53. Stahlmann, A. Experimental and Numerical Modeling of Scour at Foundation Structures for Offshore Wind Turbines. Ph.D. Thesis, Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, Hannover, Germany, 2013. [Google Scholar]
  54. Breusers, H.N.C.; Nicollet, G.; Shen, H. Local Scour Around Cylindrical Piers. J. Hydraul. Res. 197715, 211–252. [Google Scholar] [CrossRef]
  55. Schendel, A.; Hildebrandt, A.; Goseberg, N.; Schlurmann, T. Processes and evolution of scour around a monopile induced by tidal currents. Coast. Eng. 2018139, 65–84. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

      

MDPI and ACS Style

Hu, R.; Liu, H.; Leng, H.; Yu, P.; Wang, X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. J. Mar. Sci. Eng. 20219, 886. https://doi.org/10.3390/jmse9080886

AMA Style

Hu R, Liu H, Leng H, Yu P, Wang X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. Journal of Marine Science and Engineering. 2021; 9(8):886. https://doi.org/10.3390/jmse9080886Chicago/Turabian Style

Hu, Ruigeng, Hongjun Liu, Hao Leng, Peng Yu, and Xiuhai Wang. 2021. “Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves” Journal of Marine Science and Engineering 9, no. 8: 886. https://doi.org/10.3390/jmse9080886

Find Other Styles

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

For more information on the journal statistics, click here.

Multiple requests from the same IP address are counted as one view.

Study on Hydrodynamic Performance of Unsymmetrical Double Vertical Slotted Barriers

침수된 강성 식생을 갖는 개방 수로 흐름의 특성에 대한 3차원 수치 시뮬레이션

A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation

Journal of Hydrodynamics volume 33, pages833–843 (2021)Cite this article

Abstract

이 백서는 Flow-3D를 적용하여 다양한 흐름 배출 및 식생 시나리오가 흐름 속도(세로, 가로 및 수직 속도 포함)에 미치는 영향을 조사합니다.

실험적 측정을 통한 검증 후 식생직경, 식생높이, 유량방류량에 대한 민감도 분석을 수행하였다. 종방향 속도의 경우 흐름 구조에 가장 큰 영향을 미치는 것은 배출보다는 식생 직경에서 비롯됩니다.

그러나 식생 높이는 수직 분포의 변곡점을 결정합니다. 식생지 내 두 지점, 즉 상류와 하류의 횡속도를 비교하면 수심에 따른 대칭적인 패턴을 확인할 수 있다. 식생 지역의 가로 및 세로 유체 순환 패턴을 포함하여 흐름 또는 식생 시나리오와 관계없이 수직 속도에 대해서도 동일한 패턴이 관찰됩니다.

또한 식생의 직경이 클수록 이러한 패턴이 더 분명해집니다. 상부 순환은 초목 캐노피 근처에서 발생합니다. 식생지역의 가로방향과 세로방향의 순환에 관한 이러한 발견은 침수식생을 통한 3차원 유동구조를 밝혀준다.

This paper applies the Flow-3D to investigate the impacts of different flow discharge and vegetation scenarios on the flow velocity (including the longitudinal, transverse and vertical velocities). After the verification by using experimental measurements, a sensitivity analysis is conducted for the vegetation diameter, the vegetation height and the flow discharge. For the longitudinal velocity, the greatest impact on the flow structure originates from the vegetation diameter, rather than the discharge. The vegetation height, however, determines the inflection point of the vertical distribution. Comparing the transverse velocities at two positions in the vegetated area, i.e., the upstream and the downstream, a symmetric pattern is identified along the water depth. The same pattern is also observed for the vertical velocity regardless of the flow or vegetation scenario, including both transverse and vertical fluid circulation patterns in the vegetated area. Moreover, the larger the vegetation diameter is, the more evident these patterns become. The upper circulation occurs near the vegetation canopy. These findings regarding the circulations along the transverse and vertical directions in the vegetated region shed light on the 3-D flow structure through the submerged vegetation.

Key words

  • Submerged rigid vegetation
  • longitudinal velocity
  • transverse velocity
  • vertical velocity
  • open channel

References

  1. Angelina A., Jordanova C. S. J. Experimental study of bed load transport through emergent vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(6): 474–478.Article Google Scholar 
  2. Li Y., Wang Y., Anim D. O. et al. Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants [J]. Geomorphology, 2014, 204: 314–324.Article Google Scholar 
  3. Bai F., Yang Z., Huai W. et al. A depth-averaged two dimensional shallow water model to simulate flow-rigid vegetation interactions [J]. Procedia Engineering, 2016, 154: 482–489.Article Google Scholar 
  4. Huai W. X., Song S., Han J. et al. Prediction of velocity distribution in straight open-channel flow with partial vegetation by singular perturbation method [J]. Applied Mathematics and Mechanics (Engilsh Editon), 2016, 37(10): 1315–1324.Article MathSciNet Google Scholar 
  5. Wang P. F., Wang C. Numerical model for flow through submerged vegetation regions in a shallow lake [J]. Journal of Hydrodynamics, 2011, 23(2): 170–178.Article Google Scholar 
  6. Wang W. J., Cui X. Y., Dong F. et al. Predictions of bulk velocity for open channel flow through submerged vegetation [J]. Journal of Hydrodynamics, 2020, 32(4): 795–799.Article Google Scholar 
  7. Zhang M., Li C. W., Shen Y. Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation [J]. Applied Mathematical Modelling, 2013, 37(1–2): 540–553.Article MathSciNet Google Scholar 
  8. Huai W., Wang W., Hu Y. et al. Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation [J]. Advances in Water Resources, 2014, 69: 106–113.Article Google Scholar 
  9. Panigrahi K., Khatua K. K. Prediction of velocity distribution in straight channel with rigid vegetation [J]. Aquatic Procedia, 2015, 4: 819–825.Article Google Scholar 
  10. Huai W. X., Zeng Y. H., Xu Z. G. et al. Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation [J]. Advances in Water Resources, 2009, 32(4): 487–492.Article Google Scholar 
  11. Chen S. C., Kuo Y. M., Li Y. H. Flow characteristics within different configurations of submerged flexible vegetation [J]. Journal of Hydrology, 2011, 398(1–2): 124–134.Article Google Scholar 
  12. Yagci O., Tschiesche U., Kabdasli M. S. The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics [J]. Advances in Water Resources, 2010, 33(5): 601–614.Article Google Scholar 
  13. Wu F. S. Characteristics of flow resistance in open channels with non-submerged rigid vegetation [J]. Journal of Hydrodynamics, 2008, 20(2): 239–245.Article Google Scholar 
  14. Huai W., Hu Y., Zeng Y. et al. Velocity distribution for open channel flows with suspended vegetation [J]. Advances in Water Resources, 2012, 49: 56–61.Article Google Scholar 
  15. Pu J. H., Hussain A., Guo Y. K. et al. Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction [J]. Water Science and Engineering, 2019, 12(2): 121–128.Article Google Scholar 
  16. Zhang M. L., Li C. W., Shen Y. M. A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation [J]. Applied Mathematical Modelling, 2010, 34(4): 1021–1031.Article MathSciNet Google Scholar 
  17. Anjum N., Tanaka N. Numerical investigation of velocity distribution of turbulent flow through vertically double-layered vegetation [J]. Water Science and Engineering, 2019, 12(4): 319–329.Article Google Scholar 
  18. Wang W., Huai W. X., Gao M. Numerical investigation of flow through vegetated multi-stage compound channel [J]. Journal of Hydrodynamics, 2014, 26(3): 467–473.Article Google Scholar 
  19. Ghani U., Anjum N., Pasha G. A. et al. Numerical investigation of the flow characteristics through discontinuous and layered vegetation patches of finite width in an open channel [J]. Environmental Fluid Mechanics, 2019, 19(6): 1469–1495.Article Google Scholar 
  20. Aydin M. C., Emiroglu M. E. Determination of capacity of labyrinth side weir by CFD [J]. Flow Measurement and Instrumentation, 2013, 29: 1–8.Article Google Scholar 
  21. Hao W. L., Wu W. Q., Zhu C. J. et al. Experimental study on vertical distribution of flow velocity in vegetated river channel [J]. Water Resources and Power, 2015, 33(2): 85–88(in Chinese).Google Scholar 
  22. Pietri L., Petroff A., Amielh M. et al. Turbulent flows interacting with varying density canopies [J]. Mécanique and Industries, 2009, 10(3–4): 181–185.Article Google Scholar 
  23. Li Y., Du W., Yu Z. et al. Impact of flexible emergent vegetation on the flow turbulence and kinetic energy characteristics in a flume experiment [J]. Journal of Hydro-environment Research, 2015, 9(3): 354–367.Article Google Scholar 
  24. Li W. Q., Wang D., Jiao J. L. et al. Effects of vegetation patch density on flow velocity characteristics in an open channel [J]. Journal of Hydrodynamics, 2018, 31(5): 1052–1059.Article Google Scholar 
  25. Langre E. D., Gutierrez A., Cossé J. On the scaling of drag reduction by reconfiguration in plants [J]. Comptes Rendus Mécanique, 2012, 340(1–2): 35–40.Article Google Scholar 
  26. Fathi-Maghadam M., Kouwen N. Nonrigid, nonsubmerged, vegetative roughness on floodplains [J]. Journal of Hydraulic Engineering, ASCE, 1997, 123(1): 51–57.Article Google Scholar 
  27. Liang D., Wu X. A random walk simulation of scalar mixing in flows through submerged vegetations [J]. Journal of Hydrodynamics, 2014, 26(3): 343–350.Article MathSciNet Google Scholar 
  28. Ghisalberti M., Nepf H. Mass transport in vegetated shear flows [J]. Environmental Fluid Mechanics, 2005, 5(6): 527–551.Article Google Scholar 
Figure 2 Modeling the plant with cylindrical tubes at the bottom of the canal.

Optimized Vegetation Density to Dissipate Energy of Flood Flow in Open Canals

열린 운하에서 홍수 흐름의 에너지를 분산시키기 위해 최적화된 식생 밀도

Mahdi Feizbahr,1Navid Tonekaboni,2Guang-Jun Jiang,3,4and Hong-Xia Chen3,4
Academic Editor: Mohammad Yazdi

Abstract

강을 따라 식생은 조도를 증가시키고 평균 유속을 감소시키며, 유동 에너지를 감소시키고 강 횡단면의 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받기 때문에 홍수시 유동저항에 큰 영향을 미친다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건과 식물에 따라 달라지므로 모델은 유속, 유속 깊이 및 수로를 따라 식생 유형의 영향을 고려하여 유속을 시뮬레이션해야 합니다. 총 48개의 모델을 시뮬레이션하여 근관의 거칠기 효과를 조사했습니다. 결과는 속도를 높임으로써 베드 속도를 감소시키는 식생의 영향이 무시할만하다는 것을 나타냅니다.

Abstract

Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.

1. Introduction

Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [114]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [1527]. Consequently, it is necessary to study the effects of the passive factors on the active domain [2836]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [3841].

One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [4345]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [4748].

Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity  is another form of current resistance. The reason for using the  ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].

To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].

The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where nf, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed,  = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:

Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.

On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:

By using equation (6), equation (5) is converted as follows:

Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the  ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].

Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [4555].

One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [475758] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [455961]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [496366] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where  is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.

FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where  are mass accelerations in the directions xyz and  are viscosity accelerations in the directions xyz and are obtained from the following equations:

Shear stresses  in equation (11) are obtained from the following equations:

The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.

Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.

Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.

In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).

Table 1 

The studied models.

The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After  seconds, this model reached a convergence accuracy of .

Figure 1 

The simulated model and its boundary conditions.

Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.

48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.

Any control and simulation system has some inputs that we should determine to test any technology [7077]. Determination and true implementation of such parameters is one of the key steps of any simulation [237881] and computing procedure [8286]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.

Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [8788]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).

Figure 2 

Modeling the plant with cylindrical tubes at the bottom of the canal.

Figure 3 

Velocity profiles in positions 2 and 5.

The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.

The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.

The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.

2. Modeling Results

After analyzing the models, the results were shown in graphs (Figures 414 ). The total number of experiments in this study was 48 due to the limitations of modeling.


(d)


(a)


(b)


(c)


(d)


(a)


(b)


(c)


(d)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)
  • (d)
    (d)

Figure 4 

Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.

Figure 5 

Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.

Figure 6 

Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.

Figure 7 

Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.

Figure 8 

Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.


(d)


(a)


(b)


(c)


(d)


(a)


(b)


(c)


(d)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)
  • (d)
    (d)

Figure 9 

Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

Figure 10 

Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.

Figure 11 

Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.

Figure 12 

Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.

Figure 13 

Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.


(d)


(a)


(b)


(c)


(d)


(a)


(b)


(c)


(d)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)
  • (d)
    (d)

Figure 14 

Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.

According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.

According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.

According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.

According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 510, which can be justified by increasing the speed and, of course, increasing the Froude number.

With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 58 and 1011), which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.

Figure 15 

Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.

According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 16 

Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.

According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 17 

Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.

According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 18 

Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.

According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.


(c)


(a)


(b)


(c)


(a)


(b)


(c)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)

Figure 19 

Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.

According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.


(c)


(a)


(b)


(c)


(a)


(b)


(c)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)

Figure 20 

Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.

According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [27815188994]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [9599].


(c)


(a)


(b)


(c)


(a)


(b)


(c)

  • (a)
    (a)
  • (b)
    (b)
  • (c)
    (c)

Figure 21 

Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.

3. Conclusion

The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.

Nomenclature

n:Manning’s roughness coefficient
C:Chézy roughness coefficient
f:Darcy–Weisbach coefficient
V:Flow velocity
R:Hydraulic radius
g:Gravitational acceleration
y:Flow depth
Ks:Bed roughness
A:Constant coefficient
:Reynolds number
y/∂x:Depth of water change
S0:Slope of the canal floor
Sf:Slope of energy line
Fr:Froude number
D:Characteristic length of the canal
G:Mass acceleration
:Shear stresses.

Data Availability

All data are included within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
  2. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  3. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
  4. C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
  5. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
  6. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
  7. Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
  8. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  9. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  10. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  11. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  12. M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
  13. L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
  14. F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  15. D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
  16. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
  17. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  18. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  19. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  20. Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
  21. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
  22. Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
  23. H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
  24. H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
  25. H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
  26. H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
  27. J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
  28. C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  29. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  30. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
  31. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
  32. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
  34. L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
  35. Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
  36. J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
  37. P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
  38. A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
  39. T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
  40. G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
  41. L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
  42. K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
  43. L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
  44. M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
  45. F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
  46. M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
  47. C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
  48. R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  49. G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
  50. N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
  51. S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
  52. C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
  53. F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
  54. M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
  55. A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
  56. S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
  57. V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
  58. T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
  59. U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
  60. F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
  61. W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
  62. P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
  63. J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
  64. G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
  65. Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
  66. E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
  67. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
  68. M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
  69. V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
  70. X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
  71. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
  72. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
  73. B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
  74. Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
  75. J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
  76. M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
  77. A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
  78. W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
  79. G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
  80. Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
  81. A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
  82. Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
  83. E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
  84. S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
  85. Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
  86. A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
  87. M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  88. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  89. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  90. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
  91. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
  92. M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
  93. H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
  94. N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
  95. Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
  96. B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
  97. Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
  98. B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
  99. M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
Figure 5. Schematic view of flap and support structure [32]

Design Optimization of Ocean Renewable Energy Converter Using a Combined Bi-level Metaheuristic Approach

결합된 Bi-level 메타휴리스틱 접근법을 사용한 해양 재생 에너지 변환기의 설계 최적화

Erfan Amini a1, Mahdieh Nasiri b1, Navid Salami Pargoo a, Zahra Mozhgani c, Danial Golbaz d, Mehrdad Baniesmaeil e, Meysam Majidi Nezhad f, Mehdi Neshat gj, Davide Astiaso Garcia h, Georgios Sylaios i

Abstract

In recent years, there has been an increasing interest in renewable energies in view of the fact that fossil fuels are the leading cause of catastrophic environmental consequences. Ocean wave energy is a renewable energy source that is particularly prevalent in coastal areas. Since many countries have tremendous potential to extract this type of energy, a number of researchers have sought to determine certain effective factors on wave converters’ performance, with a primary emphasis on ambient factors. In this study, we used metaheuristic optimization methods to investigate the effects of geometric factors on the performance of an Oscillating Surge Wave Energy Converter (OSWEC), in addition to the effects of hydrodynamic parameters. To do so, we used CATIA software to model different geometries which were then inserted into a numerical model developed in Flow3D software. A Ribed-surface design of the converter’s flap is also introduced in this study to maximize wave-converter interaction. Besides, a Bi-level Hill Climbing Multi-Verse Optimization (HCMVO) method was also developed for this application. The results showed that the converter performs better with greater wave heights, flap freeboard heights, and shorter wave periods. Additionally, the added ribs led to more wave-converter interaction and better performance, while the distance between the flap and flume bed negatively impacted the performance. Finally, tracking the changes in the five-dimensional objective function revealed the optimum value for each parameter in all scenarios. This is achieved by the newly developed optimization algorithm, which is much faster than other existing cutting-edge metaheuristic approaches.

Keywords

Wave Energy Converter

OSWEC

Hydrodynamic Effects

Geometric Design

Metaheuristic Optimization

Multi-Verse Optimizer

1Introduction

The increase in energy demand, the limitations of fossil fuels, as well as environmental crises, such as air pollution and global warming, are the leading causes of calling more attention to harvesting renewable energy recently [1][2][3]. While still in its infancy, ocean wave energy has neither reached commercial maturity nor technological convergence. In recent decades, remarkable progress has been made in the marine energy domain, which is still in the early stage of development, to improve the technology performance level (TPL) [4][5]and technology readiness level (TRL) of wave energy converters (WECs). This has been achieved using novel modeling techniques [6][7][8][9][10][11][12][13][14] to gain the following advantages [15]: (i) As a source of sustainable energy, it contributes to the mix of energy resources that leads to greater diversity and attractiveness for coastal cities and suppliers. [16] (ii) Since wave energy can be exploited offshore and does not require any land, in-land site selection would be less expensive and undesirable visual effects would be reduced. [17] (iii) When the best layout and location of offshore site are taken into account, permanent generation of energy will be feasible (as opposed to using solar energy, for example, which is time-dependent) [18].

In general, the energy conversion process can be divided into three stages in a WEC device, including primary, secondary, and tertiary stages [19][20]. In the first stage of energy conversion, which is the subject of this study, the wave power is converted to mechanical power by wave-structure interaction (WSI) between ocean waves and structures. Moreover, the mechanical power is transferred into electricity in the second stage, in which mechanical structures are coupled with power take-off systems (PTO). At this stage, optimal control strategies are useful to tune the system dynamics to maximize power output [10][13][12]. Furthermore, the tertiary energy conversion stage revolves around transferring the non-standard AC power into direct current (DC) power for energy storage or standard AC power for grid integration [21][22]. We discuss only the first stage regardless of the secondary and tertiary stages. While Page 1 of 16 WECs include several categories and technologies such as terminators, point absorbers, and attenuators [15][23], we focus on oscillating surge wave energy converters (OSWECs) in this paper due to its high capacity for industrialization [24].

Over the past two decades, a number of studies have been conducted to understand how OSWECs’ structures and interactions between ocean waves and flaps affect converters performance. Henry et al.’s experiment on oscillating surge wave energy converters is considered as one of the most influential pieces of research [25], which demonstrated how the performance of oscillating surge wave energy converters (OSWECs) is affected by seven different factors, including wave period, wave power, flap’s relative density, water depth, free-board of the flap, the gap between the tubes, gap underneath the flap, and flap width. These parameters were assessed in their two models in order to estimate the absorbed energy from incoming waves [26][27]. In addition, Folly et al. investigated the impact of water depth on the OSWECs performance analytically, numerically, and experimentally. According to this and further similar studies, the average annual incident wave power is significantly reduced by water depth. Based on the experimental results, both the surge wave force and the power capture of OSWECs increase in shallow water [28][29]. Following this, Sarkar et al. found that under such circumstances, the device that is located near the coast performs much better than those in the open ocean [30]. On the other hand, other studies are showing that the size of the converter, including height and width, is relatively independent of the location (within similar depth) [31]. Subsequently, Schmitt et al. studied OSWECs numerically and experimentally. In fact, for the simulation of OSWEC, OpenFOAM was used to test the applicability of Reynolds-averaged Navier-Stokes (RANS) solvers. Then, the experimental model reproduced the numerical results with satisfying accuracy [32]. In another influential study, Wang et al. numerically assessed the effect of OSWEC’s width on their performance. According to their findings, as converter width increases, its efficiency decreases in short wave periods while increases in long wave periods [33]. One of the main challenges in the analysis of the OSWEC is the coupled effect of hydrodynamic and geometric variables. As a result, numerous cutting-edge geometry studies have been performed in recent years in order to find the optimal structure that maximizes power output and minimizes costs. Garcia et al. reviewed hull geometry optimization studies in the literature in [19]. In addition, Guo and Ringwood surveyed geometric optimization methods to improve the hydrodynamic performance of OSWECs at the primary stage [14]. Besides, they classified the hull geometry of OSWECs based on Figure 1. Subsequently, Whittaker et al. proposed a different design of OSWEC called Oyster2. There have been three examples of different geometries of oysters with different water depths. Based on its water depth, they determined the width and height of the converter. They also found that in the constant wave period the less the converter’s width, the less power captures the converter has [34]. Afterward, O’Boyle et al. investigated a type of OSWEC called Oyster 800. They compared the experimental and numerical models with the prototype model. In order to precisely reproduce the shape, mass distribution, and buoyancy properties of the prototype, a 40th-scale experimental model has been designed. Overall, all the models were fairly accurate according to the results [35].

Inclusive analysis of recent research avenues in the area of flap geometry has revealed that the interaction-based designs of such converters are emerging as a novel approach. An initiative workflow is designed in the current study to maximizing the wave energy extrication by such systems. To begin with, a sensitivity analysis plays its role of determining the best hydrodynamic values for installing the converter’s flap. Then, all flap dimensions and characteristics come into play to finalize the primary model. Following, interactive designs is proposed to increase the influence of incident waves on the body by adding ribs on both sides of the flap as a novel design. Finally, a new bi-level metaheuristic method is proposed to consider the effects of simultaneous changes in ribs properties and other design parameters. We hope this novel approach will be utilized to make big-scale projects less costly and justifiable. The efficiency of the method is also compared with four well known metaheuristic algorithms and out weight them for this application.

This paper is organized as follows. First, the research methodology is introduced by providing details about the numerical model implementation. To that end, we first introduced the primary model’s geometry and software details. That primary model is later verified with a benchmark study with regard to the flap angle of rotation and water surface elevation. Then, governing equations and performance criteria are presented. In the third part of the paper, we discuss the model’s sensitivity to lower and upper parts width (we proposed a two cross-sectional design for the flap), bottom elevation, and freeboard. Finally, the novel optimization approach is introduced in the final part and compared with four recent metaheuristic algorithms.

2. Numerical Methods

In this section, after a brief introduction of the numerical software, Flow3D, boundary conditions are defined. Afterwards, the numerical model implementation, along with primary model properties are described. Finally, governing equations, as part of numerical process, are discussed.

2.1Model Setup

FLOW-3D is a powerful and comprehensive CFD simulation platform for studying fluid dynamics. This software has several modules to solve many complex engineering problems. In addition, modeling complex flows is simple and effective using FLOW-3D’s robust meshing capabilities [36]. Interaction between fluid and moving objects might alter the computational range. Dynamic meshes are used in our modeling to take these changes into account. At each time step, the computational node positions change in order to adapt the meshing area to the moving object. In addition, to choose mesh dimensions, some factors are taken into account such as computational accuracy, computational time, and stability. The final grid size is selected based on the detailed procedure provided in [37]. To that end, we performed grid-independence testing on a CFD model using three different mesh grid sizes of 0.01, 0.015, and 0.02 meters. The problem geometry and boundary conditions were defined the same, and simulations were run on all three grids under the same conditions. The predicted values of the relevant variable, such as velocity, was compared between the grids. The convergence behavior of the numerical solution was analyzed by calculating the relative L2 norm error between two consecutive grids. Based on the results obtained, it was found that the grid size of 0.02 meters showed the least error, indicating that it provided the most accurate and reliable solution among the three grids. Therefore, the grid size of 0.02 meters was selected as the optimal spatial resolution for the mesh grid.

In this work, the flume dimensions are 10 meters long, 0.1 meters wide, and 2.2 meters high, which are shown in figure2. In addition, input waves with linear characteristics have a height of 0.1 meters and a period of 1.4 seconds. Among the linear wave methods included in this software, RNGk-ε and k- ε are appropriate for turbulence model. The research of Lopez et al. shows that RNGk- ε provides the most accurate simulation of turbulence in OSWECs [21]. We use CATIA software to create the flap primary model and other innovative designs for this project. The flap measures 0.1 m x 0.65 m x 0.360 m in x, y and z directions, respectively. In Figure 3, the primary model of flap and its dimensions are shown. In this simulation, five boundaries have been defined, including 1. Inlet, 2. Outlet, 3. Converter flap, 4. Bed flume, and 5. Water surface, which are shown in figure 2. Besides, to avoid wave reflection in inlet and outlet zones, Flow3D is capable of defining some areas as damping zones, the length of which has to be one to one and a half times the wavelength. Therefore, in the model, this length is considered equal to 2 meters. Furthermore, there is no slip in all the boundaries. In other words, at every single time step, the fluid velocity is zero on the bed flume, while it is equal to the flap velocity on the converter flap. According to the wave theory defined in the software, at the inlet boundary, the water velocity is called from the wave speed to be fed into the model.

2.2Verification

In the current study, we utilize the Schmitt experimental model as a benchmark for verification, which was developed at the Queen’s University of Belfast. The experiments were conducted on the flap of the converter, its rotation, and its interaction with the water surface. Thus, the details of the experiments are presented below based up on the experimental setup’s description [38]. In the experiment, the laboratory flume has a length of 20m and a width of 4.58m. Besides, in order to avoid incident wave reflection, a wave absorption source is devised at the end of the left flume. The flume bed, also, includes two parts with different slops. The flap position and dimensions of the flume can be seen in Figure4. In addition, a wave-maker with 6 paddles is installed at one end. At the opposite end, there is a beach with wire meshes. Additionally, there are 6 indicators to extract the water level elevation. In the flap model, there are three components: the fixed support structure, the hinge, and the flap. The flap measures 0.1m x 0.65m x 0.341m in x, y and z directions, respectively. In Figure5, the details are given [32]. The support structure consists of a 15 mm thick stainless steel base plate measuring 1m by 1.4m, which is screwed onto the bottom of the tank. The hinge is supported by three bearing blocks. There is a foam centerpiece on the front and back of the flap which is sandwiched between two PVC plates. Enabling changes of the flap, three metal fittings link the flap to the hinge. Moreover, in this experiment, the selected wave is generated based on sea wave data at scale 1:40. The wave height and the wave period are equal to 0.038 (m) and 2.0625 (s), respectively, which are tantamount to a wave with a period of 13 (s) and a height of 1.5 (m).

Two distinct graphs illustrate the numerical and experi-mental study results. Figure6 and Figure7 are denoting the angle of rotation of flap and surface elevation in computational and experimental models, respectively. The two figures roughly represent that the numerical and experimental models are a good match. However, for the purpose of verifying the match, we calculated the correlation coefficient (C) and root mean square error (RMSE). According to Figure6, correlation coefficient and RMSE are 0.998 and 0.003, respectively, and in Figure7 correlation coefficient and RMSE are respectively 0.999 and 0.001. Accordingly, there is a good match between the numerical and empirical models. It is worth mentioning that the small differences between the numerical and experimental outputs may be due to the error of the measuring devices and the calibration of the data collection devices.

Including continuity equation and momentum conserva- tion for incompressible fluid are given as [32][39]:(1)

where P represents the pressure, g denotes gravitational acceleration, u represents fluid velocity, and Di is damping coefficient. Likewise, the model uses the same equation. to calculate the fluid velocity in other directions as well. Considering the turbulence, we use the two-equation model of RNGK- ε. These equations are:

(3)��t(��)+����(����)=����[�eff�������]+��-��and(4)���(��)+����(����)=����[�eff�������]+�1�∗����-��2��2�Where �2� and �1� are constants. In addition, �� and �� represent the turbulent Prandtl number of � and k, respectively.

�� also denote the production of turbulent kinetic energy of k under the effect of velocity gradient, which is calculated as follows:(5)��=�eff[�����+�����]�����(6)�eff=�+��(7)�eff=�+��where � is molecular viscosity,�� represents turbulence viscosity, k denotes kinetic energy, and ∊∊ is energy dissipation rate. The values of constant coefficients in the two-equation RNGK ∊-∊ model is as shown in the Table 1 [40].Table 2.

Table 1. Constant coefficients in RNGK- model

Factors�0�1�2������
Quantity0.0124.381.421.681.391.390.084

Table 2. Flap properties

Joint height (m)0.476
Height of the center of mass (m)0.53
Weight (Kg)10.77

It is worth mentioning that the volume of fluid method is used to separate water and air phases in this software [41]. Below is the equation of this method [40].(8)����+����(���)=0where α and 1 − α are portion of water phase and air phase, respectively. As a weighting factor, each fluid phase portion is used to determine the mixture properties. Finally, using the following equations, we calculate the efficiency of converters [42][34][43]:(9)�=14|�|2�+�2+(�+�a)2(�n2-�2)2where �� represents natural frequency, I denotes the inertia of OSWEC, Ia is the added inertia, F is the complex wave force, and B denotes the hydrodynamic damping coefficient. Afterward, the capture factor of the converter is calculated by [44]:(10)��=�1/2��2����gw where �� represents the capture factor, which is the total efficiency of device per unit length of the wave crest at each time step [15], �� represent the dimensional amplitude of the incident wave, w is the flap’s width, and Cg is the group velocity of the incident wave, as below:(11)��=��0·121+2�0ℎsinh2�0ℎwhere �0 denotes the wave number, h is water depth, and H is the height of incident waves.

According to previous sections ∊,����-∊ modeling is used for all models simulated in this section. For this purpose, the empty boundary condition is used for flume walls. In order to preventing wave reflection at the inlet and outlet of the flume, the length of wave absorption is set to be at least one incident wavelength. In addition, the structured mesh is chosen, and the mesh dimensions are selected in two distinct directions. In each model, all grids have a length of 2 (cm) and a height of 1 (cm). Afterwards, as an input of the software for all of the models, we define the time step as 0.001 (s). Moreover, the run time of every simulation is 30 (s). As mentioned before, our primary model is Schmitt model, and the flap properties is given in table2. For all simulations, the flume measures 15 meters in length and 0.65 meters in width, and water depth is equal to 0.335 (m). The flap is also located 7 meters from the flume’s inlet.

Finally, in order to compare the results, the capture factor is calculated for each simulation and compared to the primary model. It is worth mentioning that capture factor refers to the ratio of absorbed wave energy to the input wave energy.

According to primary model simulation and due to the decreasing horizontal velocity with depth, the wave crest has the highest velocity. Considering the fact that the wave’s orbital velocity causes the flap to move, the contact between the upper edge of the flap and the incident wave can enhance its performance. Additionally, the numerical model shows that the dynamic pressure decreases as depth increases, and the hydrostatic pressure increases as depth increases.

To determine the OSWEC design, it is imperative to understand the correlation between the capture factor, wave period, and wave height. Therefore, as it is shown in Figure8, we plot the change in capture factor over the variations in wave period and wave height in 3D and 2D. In this diagram, the first axis features changes in wave period, the second axis displays changes in wave height, and the third axis depicts changes in capture factor. According to our wave properties in the numerical model, the wave period and wave height range from 2 to 14 seconds and 2 to 8 meters, respectively. This is due to the fact that the flap does not oscillate if the wave height is less than 2 (m), and it does not reverse if the wave height is more than 8 (m). In addition, with wave periods more than 14 (s), the wavelength would be so long that it would violate the deep-water conditions, and with wave periods less than 2 (s), the flap would not oscillate properly due to the shortness of wavelength. The results of simulation are shown in Figure 8. As it can be perceived from Figure 8, in a constant wave period, the capture factor is in direct proportion to the wave height. It is because of the fact that waves with more height have more energy to rotate the flap. Besides, in a constant wave height, the capture factor increases when the wave period increases, until a given wave period value. However, the capture factor falls after this point. These results are expected since the flap’s angular displacement is not high in lower wave periods, while the oscillating motion of that is not fast enough to activate the power take-off system in very high wave periods.

As is shown in Figure 9, we plot the change in capture factor over the variations in wave period (s) and water depth (m) in 3D. As it can be seen in this diagram, the first axis features changes in water depth (m), the second axis depicts the wave period (s), and the third axis displays OSWEC’s capture factor. The wave period ranges from 0 to 10 seconds based on our wave properties, which have been adopted from Schmitt’s model, while water depth ranges from 0 to 0.5 meters according to the flume and flap dimensions and laboratory limitations. According to Figure9, for any specific water depth, the capture factor increases in a varying rate when the wave period increases, until a given wave period value. However, the capture factor falls steadily after this point. In fact, the maximum capture factor occurs when the wave period is around 6 seconds. This trend is expected since, in a specific water depth, the flap cannot oscillate properly when the wavelength is too short. As the wave period increases, the flap can oscillate more easily, and consequently its capture factor increases. However, the capture factor drops in higher wave periods because the wavelength is too large to move the flap. Furthermore, in a constant wave period, by changing the water depth, the capture factor does not alter. In other words, the capture factor does not depend on the water depth when it is around its maximum value.

3Sensitivity Analysis

Based on previous studies, in addition to the flap design, the location of the flap relative to the water surface (freeboard) and its elevation relative to the flume bed (flap bottom elevation) play a significant role in extracting energy from the wave energy converter. This study measures the sensitivity of the model to various parameters related to the flap design including upper part width of the flap, lower part width of the flap, the freeboard, and the flap bottom elevation. Moreover, as a novel idea, we propose that the flap widths differ in the lower and upper parts. In Figure10, as an example, a flap with an upper thickness of 100 (mm) and a lower thickness of 50 (mm) and a flap with an upper thickness of 50 (mm) and a lower thickness of 100 (mm) are shown. The influence of such discrepancy between the widths of the upper and lower parts on the interaction between the wave and the flap, or in other words on the capture factor, is evaluated. To do so, other parameters are remained constant, such as the freeboard, the distance between the flap and the flume bed, and the wave properties.

In Figure11, models are simulated with distinct upper and lower widths. As it is clear in this figure, the first axis depicts the lower part width of the flap, the second axis indicates the upper part width of the flap, and the colors represent the capture factor values. Additionally, in order to consider a sufficient range of change, the flap thickness varies from half to double the value of the primary model for each part.

According to this study, the greater the discrepancy in these two parts, the lower the capture factor. It is on account of the fact that when the lower part of the flap is thicker than the upper part, and this thickness difference in these two parts is extremely conspicuous, the inertia against the motion is significant at zero degrees of rotation. Consequently, it is difficult to move the flap, which results in a low capture factor. Similarly, when the upper part of the flap is thicker than the lower part, and this thickness difference in these two parts is exceedingly noticeable, the inertia is so great that the flap can not reverse at the maximum degree of rotation. As the results indicate, the discrepancy can enhance the performance of the converter if the difference between these two parts is around 20%. As it is depicted in the Figure11, the capture factor reaches its own maximum amount, when the lower part thickness is from 5 to 6 (cm), and the upper part thickness is between 6 and 7 (cm). Consequently, as a result of this discrepancy, less material will be used, and therefore there will be less cost.

As illustrated in Figure12, this study examines the effects of freeboard (level difference between the flap top and water surface) and the flap bottom elevation (the distance between the flume bed and flap bottom) on the converter performance. In this diagram, the first axis demonstrates the freeboard and the second axis on the left side displays the flap bottom elevation, while the colors indicate the capture factor. In addition, the feasible range of freeboard is between -15 to 15 (cm) due to the limitation of the numerical model, so that we can take the wave slamming and the overtopping into consideration. Additionally, based on the Schmitt model and its scaled model of 1:40 of the base height, the flap bottom should be at least 9 (cm) high. Since the effect of surface waves is distributed over the depth of the flume, it is imperative to maintain a reasonable flap height exposed to incoming waves. Thus, the maximum flap bottom elevation is limited to 19 (cm). As the Figure12 pictures, at constant negative values of the freeboard, the capture factor is in inverse proportion with the flap bottom elevation, although slightly.

Furthermore, at constant positive values of the freeboard, the capture factor fluctuates as the flap bottom elevation decreases while it maintains an overall increasing trend. This is on account of the fact that increasing the flap bottom elevation creates turbulence flow behind the flap, which encumbers its rotation, as well as the fact that the flap surface has less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, the capture factor increases by raising the freeboard. This is due to the fact that there is overtopping with adverse impacts on the converter performance when the freeboard is negative and the flap is under the water surface. Besides, increasing the freeboard makes the wave slam more vigorously, which improves the converter performance.

Adding ribs to the flap surface, as shown in Figure13, is a novel idea that is investigated in the next section. To achieve an optimized design for the proposed geometry of the flap, we determine the optimal number and dimensions of ribs based on the flap properties as our decision variables in the optimization process. As an example, Figure13 illustrates a flap with 3 ribs on each side with specific dimensions.

Figure14 shows the flow velocity field around the flap jointed to the flume bed. During the oscillation of the flap, the pressure on the upper and lower surfaces of the flap changes dynamically due to the changing angle of attack and the resulting change in the direction of fluid flow. As the flap moves upwards, the pressure on the upper surface decreases, and the pressure on the lower surface increases. Conversely, as the flap moves downwards, the pressure on the upper surface increases, and the pressure on the lower surface decreases. This results in a cyclic pressure variation around the flap. Under certain conditions, the pressure field around the flap can exhibit significant variations in magnitude and direction, forming vortices and other flow structures. These flow structures can affect the performance of the OSWEC by altering the lift and drag forces acting on the flap.

4Design Optimization

We consider optimizing the design parameters of the flap of converter using a nature-based swarm optimization method, that fall in the category of metaheuristic algorithms [45]. Accordingly, we choose four state-of-the-art algorithms to perform an optimization study. Then, based on their performances to achieve the highest capture factor, one of them will be chosen to be combined with the Hill Climb algorithm to carry out a local search. Therefore, in the remainder of this section, we discuss the search process of each algorithm and visualize their performance and convergence curve as they try to find the best values for decision variables.

4.1. Metaheuristic Approaches

As the first considered algorithm, the Gray Wolf Optimizer (GWO) algorithm simulates the natural leadership and hunting performance of gray wolves which tend to live in colonies. Hunters must obey the alpha wolf, the leader, who is responsible for hunting. Then, the beta wolf is at the second level of the gray wolf hierarchy. A subordinate of alpha wolf, beta stands under the command of the alpha. At the next level in this hierarchy, there are the delta wolves. They are subordinate to the alpha and beta wolves. This category of wolves includes scouts, sentinels, elders, hunters, and caretakers. In this ranking, omega wolves are at the bottom, having the lowest level and obeying all other wolves. They are also allowed to eat the prey just after others have eaten. Despite the fact that they seem less important than others, they are really central to the pack survival. Since, it has been shown that without omega wolves, the entire pack would experience some problems like fighting, violence, and frustration. In this simulation, there are three primary steps of hunting including searching, surrounding, and finally attacking the prey. Mathematically model of gray wolves’ hunting technique and their social hierarchy are applied in determined by optimization. this study. As mentioned before, gray wolves can locate their prey and surround them. The alpha wolf also leads the hunt. Assuming that the alpha, beta, and delta have more knowledge about prey locations, we can mathematically simulate gray wolf hunting behavior. Hence, in addition to saving the top three best solutions obtained so far, we compel the rest of the search agents (also the omegas) to adjust their positions based on the best search agent. Encircling behavior can be mathematically modeled by the following equations: [46].(12)�→=|�→·��→(�)-�→(�)|(13)�→(�+1)=��→(�)-�→·�→(14)�→=2.�2→(15)�→=2�→·�1→-�→Where �→indicates the position vector of gray wolf, ��→ defines the vector of prey, t indicates the current iteration, and �→and �→are coefficient vectors. To force the search agent to diverge from the prey, we use �→ with random values greater than 1 or less than -1. In addition, C→ contains random values in the range [0,2], and �→ 1 and �2→ are random vectors in [0,1]. The second considered technique is the Moth Flame Optimizer (MFO) algorithm. This method revolves around the moths’ navigation mechanism, which is realized by positioning themselves and maintaining a fixed angle relative to the moon while flying. This effective mechanism helps moths to fly in a straight path. However, when the source of light is artificial, maintaining an angle with the light leads to a spiral flying path towards the source that causes the moth’s death [47]. In MFO algorithm, moths and flames are both solutions. The moths are actual search agents that fly in hyper-dimensional space by changing their position vectors, and the flames are considered pins that moths drop when searching the search space [48]. The problem’s variables are the position of moths in the space. Each moth searches around a flame and updates it in case of finding a better solution. The fitness value is the return value of each moth’s fitness (objective) function. The position vector of each moth is passed to the fitness function, and the output of the fitness function is assigned to the corresponding moth. With this mechanism, a moth never loses its best solution [49]. Some attributes of this algorithm are as follows:

  • •It takes different values to converge moth in any point around the flame.
  • •Distance to the flame is lowered to be eventually minimized.
  • •When the position gets closer to the flame, the updated positions around the flame become more frequent.

As another method, the Multi-Verse Optimizer is based on a multiverse theory which proposes there are other universes besides the one in which we all live. According to this theory, there are more than one big bang in the universe, and each big bang leads to the birth of a new universe [50]. Multi-Verse Optimizer (MVO) is mainly inspired by three phenomena in cosmology: white holes, black holes, and wormholes. A white hole has never been observed in our universe, but physicists believe the big bang could be considered a white hole [51]. Black holes, which behave completely in contrast to white holes, attract everything including light beams with their extremely high gravitational force [52]. In the multiverse theory, wormholes are time and space tunnels that allow objects to move instantly between any two corners of a universe (or even simultaneously from one universe to another) [53]. Based on these three concepts, mathematical models are designed to perform exploration, exploitation, and local search, respectively. The concept of white and black holes is implied as an exploration phase, while the concept of wormholes is considered as an exploitation phase by MVO. Additionally, each solution is analogous to a universe, and each variable in the solution represents an object in that universe. Furthermore, each solution is assigned an inflation rate, and the time is used instead of iterations. Following are the universe rules in MVO:

  • •The possibility of having white hole increases with the inflation rate.
  • •The possibility of having black hole decreases with the inflation rate.
  • •Objects tend to pass through black holes more frequently in universes with lower inflation rates.
  • •Regardless of inflation rate, wormholes may cause objects in universes to move randomly towards the best universe. [54]

Modeling the white/black hole tunnels and exchanging objects of universes mathematically was accomplished by using the roulette wheel mechanism. With every iteration, the universes are sorted according to their inflation rates, then, based on the roulette wheel, the one with the white hole is selected as the local extremum solution. This is accomplished through the following steps:

Assume that

(16)���=����1<��(��)����1≥��(��)

Where ��� represents the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui) is normalized inflation rate of the ith universe, r1 is a random number in [0,1], and j xk shows the jth parameter of the kth universe selected by a roulette wheel selection mechanism [54]. It is assumed that wormhole tunnels always exist between a universe and the best universe formed so far. This mechanism is as follows:(17)���=if�2<���:��+���×((���-���)×�4+���)�3<0.5��-���×((���-���)×�4+���)�3≥0.5����:���where Xj indicates the jth parameter of the best universe formed so far, TDR and WEP are coefficients, where Xj indicates the jth parameter of the best universelbjshows the lower bound of the jth variable, ubj is the upper bound of the jth variable, and r2, r3, and r4 are random numbers in [1][54].

Finally, one of the newest optimization algorithms is WOA. The WOA algorithm simulates the movement of prey and the whale’s discipline when looking for their prey. Among several species, Humpback whales have a specific method of hunting [55]. Humpback whales can recognize the location of prey and encircle it before hunting. The optimal design position in the search space is not known a priori, and the WOA algorithm assumes that the best candidate solution is either the target prey or close to the optimum. This foraging behavior is called the bubble-net feeding method. Two maneuvers are associated with bubbles: upward spirals and double loops. A unique behavior exhibited only by humpback whales is bubble-net feeding. In fact, The WOA algorithm starts with a set of random solutions. At each iteration, search agents update their positions for either a randomly chosen search agent or the best solution obtained so far [56][55]. When the best search agent is determined, the other search agents will attempt to update their positions toward that agent. It is important to note that humpback whales swim around their prey simultaneously in a circular, shrinking circle and along a spiral-shaped path. By using a mathematical model, the spiral bubble-net feeding maneuver is optimized. The following equation represents this behavior:(18)�→(�+1)=�′→·�bl·cos(2��)+�∗→(�)

Where:(19)�′→=|�∗→(�)-�→(�)|

X→(t+ 1) indicates the distance of the it h whale to the prey (best solution obtained so far),� is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1, 1], and dot (.) is an element-by-element multiplication [55].

Comparing the four above-mentioned methods, simulations are run with 10 search agents for 400 iterations. In Figure 15, there are 20 plots the optimal values of different parameters in optimization algorithms. The five parameters of this study are freeboard, bottom elevations, number of ribs on the converter, rib thickness, and rib Height. The optimal value for each was found by optimization algorithms, naming WOA, MVO, MFO, and GWO. By looking through the first row, the freeboard parameter converges to its maximum possible value in the optimization process of GWO after 300 iterations. Similarly, MFO finds the same result as GWO. In contrast, the freeboard converges to its minimum possible value in MVO optimizing process, which indicates positioning the converter under the water. Furthermore, WOA found the optimal value of freeboard as around 0.02 after almost 200 iterations. In the second row, the bottom elevation is found at almost 0.11 (m) in all algorithms; however, the curves follow different trends in each algorithm. The third row shows the number of ribs, where results immediately reveal that it should be over 4. All algorithms coincide at 5 ribs as the optimal number in this process. The fourth row displays the trends of algorithms to find optimal rib thickness. MFO finds the optimal value early and sets it to around 0.022, while others find the same value in higher iterations. Finally, regarding the rib height, MVO, MFO, and GWO state that the optimal value is 0.06 meters, but WOA did not find a higher value than 0.039.

4.2. HCMVO Bi-level Approach

Despite several strong search characteristics of MVO and its high performance in various optimization problems, it suffers from a few deficiencies in local and global search mechanisms. For instance, it is trapped in the local optimum when wormholes stochastically generate many solutions near the best universe achieved throughout iterations, especially in solving complex multimodal problems with high dimensions [57]. Furthermore, MVO needs to be modified by an escaping strategy from the local optima to enhance the global search abilities. To address these shortages, we propose a fast and effective meta-algorithm (HCMVO) to combine MVO with a Random-restart hill-climbing local search. This meta-algorithm uses MVO on the upper level to develop global tracking and provide a range of feasible and proper solutions. The hill-climbing algorithm is designed to develop a comprehensive neighborhood search around the best-found solution proposed by the upper-level (MVO) when MVO is faced with a stagnation issue or falling into a local optimum. The performance threshold is formulated as follows.(20)Δ����THD=∑�=1�����TH��-����TH��-1�where BestTHDis the best-found solution per generation, andM is related to the domain of iterations to compute the average performance of MVO. If the proposed best solution by the local search is better than the initial one, the global best of MVO will be updated. HCMVO iteratively runs hill climbing when the performance of MVO goes down, each time with an initial condition to prepare for escaping such undesirable situations. In order to get a better balance between exploration and exploitation, the search step size linearly decreases as follows:(21)��=��-����Ma�iter��+1where iter and Maxiter are the current iteration and maximum number of evaluation, respectively. �� stands for the step size of the neighborhood search. Meanwhile, this strategy can improve the convergence rate of MVO compared with other algorithms.

Algorithm 1 shows the technical details of the proposed optimization method (HCMVO). The initial solution includes freeboard (�), bottom elevation (�), number of ribs (Nr), rib thickness (�), and rib height(�).

5. Conclusion

The high trend of diminishing worldwide energy resources has entailed a great crisis upon vulnerable societies. To withstand this effect, developing renewable energy technologies can open doors to a more reliable means, among which the wave energy converters will help the coastal residents and infrastructure. This paper set out to determine the optimized design for such devices that leads to the highest possible power output. The main goal of this research was to demonstrate the best design for an oscillating surge wave energy converter using a novel metaheuristic optimization algorithm. In this regard, the methodology was devised such that it argued the effects of influential parameters, including wave characteristics, WEC design, and interaction criteria.

To begin with, a numerical model was developed in Flow 3D software to simulate the response of the flap of a wave energy converter to incoming waves, followed by a validation study based upon a well-reputed experimental study to verify the accuracy of the model. Secondly, the hydrodynamics of the flap was investigated by incorporating the turbulence. The effect of depth, wave height, and wave period are also investigated in this part. The influence of two novel ideas on increasing the wave-converter interaction was then assessed: i) designing a flap with different widths in the upper and lower part, and ii) adding ribs on the surface of the flap. Finally, four trending single-objective metaheuristic optimization methods

Empty CellAlgorithm 1: Hill Climb Multiverse Optimization
01:procedure HCMVO
02:�=30,�=5▹���������������������������������
03:�=〈F1,B1,N,R,H1〉,…〈FN,B2,N,R,HN〉⇒lb1N⩽�⩽ubN
04:Initialize parameters�ER,�DR,�EP,Best�,���ite��▹Wormhole existence probability (WEP)
05:��=����(��)
06:��=Normalize the inflation rate��
07:for iter in[1,⋯,���iter]do
08:for�in[1,⋯,�]do
09:Update�EP,�DR,Black����Index=�
10:for���[1,⋯,�]��
11:�1=����()
12:if�1≤��(��)then
13:White HoleIndex=Roulette�heelSelection(-��)
14:�(Black HoleIndex,�)=��(White HoleIndex,�)
15:end if
16:�2=����([0,�])
17:if�2≤�EPthen
18:�3=����(),�4=����()
19:if�3<0.5then
20:�1=((��(�)-��(�))�4+��(�))
21:�(�,�)=Best�(�)+�DR�
22:else
23:�(�,�)=Best�(�)-�DR�
24:end if
25:end if
26:end for
27:end for
28:�HD=����([�1,�2,⋯,�Np])
29:Bes�TH�itr=����HD
30:ΔBestTHD=∑�=1�BestTII��-BestTII��-1�
31:ifΔBestTHD<��then▹Perform hill climbing local search
32:BestTHD=����-�lim��������THD
33:end if
34:end for
35:return�,BestTHD▹Final configuration
36:end procedure

The implementation details of the hill-climbing algorithm applied in HCMPA can be seen in Algorithm 2. One of the critical parameters isg, which denotes the resolution of the neighborhood search around the proposed global best by MVO. If we set a small step size for hill-climbing, the convergence speed will be decreased. On the other hand, a large step size reinforces the exploration ability. Still, it may reduce the exploitation ability and in return increase the act of jumping from a global optimum or surfaces with high-potential solutions. Per each decision variable, the neighborhood search evaluates two different direct searches, incremental or decremental. After assessing the generated solutions, the best candidate will be selected to iterate the search algorithm. It is noted that the hill-climbing algorithm should not be applied in the initial iteration of the optimization process due to the immense tendency for converging to local optima. Meanwhile, for optimizing largescale problems, hill-climbing is not an appropriate selection. In order to improve understanding of the proposed hybrid optimization algorithm’s steps, the flowchart of HCMVO is designed and can be seen in Figure 16.

Figure 17 shows the observed capture factor (which is the absorbed energy with respect to the available energy) by each optimization algorithm from iterations 1 to 400. The algorithms use ten search agents in their modified codes to find the optimal solutions. While GWO and MFO remain roughly constant after iterations 54 and 40, the other three algorithms keep improving the capture factor. In this case, HCMVO and MVO worked very well in the optimizing process with a capture factor obtained by the former as 0.594 and by the latter as 0.593. MFO almost found its highest value before the iteration 50, which means the exploration part of the algorithm works out well. Similarly, HCMVO does the same. However, it keeps finding the better solution during the optimization process until the last iteration, indicating the strong exploitation part of the algorithm. GWO reveals a weakness in exploration and exploitation because not only does it evoke the least capture factor value, but also the curve remains almost unchanged throughout 350 iterations.

Figure 18 illustrates complex interactions between the five optimization parameters and the capture factor for HCMVO (a), MPA (b), and MFO (c) algorithms. The first interesting observation is that there is a high level of nonlinear relationships among the setting parameters that can make a multi-modal search space. The dark blue lines represent the best-found configuration throughout the optimisation process. Based on both HCMVO (a) and MVO (b), we can infer that the dark blue lines concentrate in a specific range, showing the high convergence ability of both HCMVO and MVO. However, MFO (c) could not find the exact optimal range of the decision variables, and the best-found solutions per generation distribute mostly all around the search space.

Empty CellAlgorithm 1: Hill Climb Multiverse Optimization
01:procedure HCMVO
02:Initialization
03:Initialize the constraints��1�,��1�
04:�1�=Mi�1�+���1�/�▹Compute the step size,�is search resolution
05:So�1=〈�,�,�,�,�〉▹���������������
06:�������1=����So�1▹���������ℎ���������
07:Main loop
08:for iter≤���ita=do
09:���=���±��
10:while�≤���(Sol1)do
11:���=���+�,▹����ℎ���ℎ��������ℎ
12:fitness��iter=�������
13:t = t+1
14:end while
15:〈�����,������max〉=����������
16:���itev=���Inde�max▹�������ℎ�������������������������������ℎ�������
17:��=��-����Max��+1▹�����������������
18:end for
19:return���iter,����
20:end procedure

were utilized to illuminate the optimum values of the design parameters, and the best method was chosen to develop a new algorithm that performs both local and global search methods.

The correlation between hydrodynamic parameters and the capture factor of the converter was supported by the results. For any given water depth, the capture factor increases as the wave period increases, until a certain wave period value (6 seconds) is reached, after which the capture factor gradually decreases. It is expected since the flap cannot oscillate effectively when the wavelength is too short for a certain water depth. Conversely, when the wavelength is too long, the capture factor decreases. Furthermore, under a constant wave period, increasing the water depth does not affect the capture factor. Regarding the sensitivity analysis, the study found that increasing the flap bottom elevation causes turbulence flow behind the flap and limitation of rotation, which leads to less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, increasing the freeboard improves the capture factor. Overtopping happens when the freeboard is negative and the flap is below the water surface, which has a detrimental influence on converter performance. Furthermore, raising the freeboard causes the wave impact to become more violent, which increases converter performance.

In the last part, we discussed the search process of each algorithm and visualized their performance and convergence curves as they try to find the best values for decision variables. Among the four selected metaheuristic algorithms, the Multi-verse Optimizer proved to be the most effective in achieving the best answer in terms of the WEC capture factor. However, the MVO needed modifications regarding its escape approach from the local optima in order to improve its global search capabilities. To overcome these constraints, we presented a fast and efficient meta-algorithm (HCMVO) that combines MVO with a Random-restart hill-climbing local search. On a higher level, this meta-algorithm employed MVO to generate global tracking and present a range of possible and appropriate solutions. Taken together, the results demonstrated that there is a significant degree of nonlinearity among the setup parameters that might result in a multimodal search space. Since MVO was faced with a stagnation issue or fell into a local optimum, we constructed a complete neighborhood search around the best-found solution offered by the upper level. In sum, the newly-developed algorithm proved to be highly effective for the problem compared to other similar optimization methods. The strength of the current findings may encourage future investigation on design optimization of wave energy converters using developed geometry as well as the novel approach.

CRediT authorship contribution statement

Erfan Amini: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Mahdieh Nasiri: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Navid Salami Pargoo: Writing – original draft, Writing – review & editing. Zahra Mozhgani: Conceptualization, Methodology. Danial Golbaz: Writing – original draft. Mehrdad Baniesmaeil: Writing – original draft. Meysam Majidi Nezhad: . Mehdi Neshat: Supervision, Conceptualization, Writing – original draft, Writing – review & editing, Visualization. Davide Astiaso Garcia: Supervision. Georgios Sylaios: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research has been carried out within ILIAD (Inte-grated Digital Framework for Comprehensive Maritime Data and Information Services) project that received funding from the European Union’s H2020 programme.

Data availability

Data will be made available on request.

References

Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.

Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment

by Hongbo Mi 1,2, Chuan Wang 1,3, Xuanwen Jia 3,*, Bo Hu 2, Hongliang Wang 4, Hui Wang 3 and Yong Zhu 5

1College of Mechatronics Engineering, Hainan Vocational University of Science and Technology, Haikou 571126, China

2Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

4School of Aerospace and Mechanical Engineering/Flight College, Changzhou Institute of Technology, Changzhou 213032, China

5National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

*Author to whom correspondence should be addressed.Sustainability202315(6), 5159; https://doi.org/10.3390/su15065159

Received: 30 January 2023 / Revised: 4 March 2023 / Accepted: 10 March 2023 / Published: 14 March 2023(This article belongs to the Special Issue Advanced Technologies of Renewable Energy and Water Management for Sustainable Environment

Abstract

Due to their high efficiency, low heat loss and associated sustainability advantages, impinging jets have been used extensively in marine engineering, geotechnical engineering and other engineering practices. In this paper, the flow structure and impact characteristics of impinging jets with different Reynolds numbers and impact distances are systematically studied by Flow-3D based on PIV experiments. In the study, the relevant state parameters of the jets are dimensionlessly treated, obtaining not only the linear relationship between the length of the potential nucleation zone and the impinging distance, but also the linear relationship between the axial velocity and the axial distance in the impinging zone. In addition, after the jet impinges on the flat plate, the vortex action range caused by the wall-attached flow of the jet gradually decreases inward with the increase of the impinging distance. By examining the effect of Reynolds number Re on the hydraulic characteristics of the submerged impact jet, it can be found that the structure of the continuous submerged impact jet is relatively independent of the Reynolds number. At the same time, the final simulation results demonstrate the applicability of the linear relationship between the length of the potential core region and the impact distance. This study provides methodological guidance and theoretical support for relevant engineering practice and subsequent research on impinging jets, which has strong theoretical and practical significance.

Keywords: 

PIVFlow-3Dimpinging jethydraulic characteristicsimpinging distance

Sustainability 15 05159 g001 550

Figure 1. Geometric model.

Sustainability 15 05159 g002 550

Figure 2. Model grid schematic.

Sustainability 15 05159 g003 550

Figure 3. (a) Schematic diagram of the experimental setup; (b) PIV images of vertical impinging jets with velocity fields.

Sustainability 15 05159 g004 550

Figure 4. (a) Velocity distribution verification at the outlet of the jet pipe; (b) Distribution of flow angle in the mid-axis of the jet [39].

Sustainability 15 05159 g005 550

Figure 5. Along-range distribution of the dimensionless axial velocity of the jet at different impact distances.Figure 6 shows the variation of H

Sustainability 15 05159 g006 550

Figure 6. Relationship between the distribution of potential core region and the impact height H/D.

Sustainability 15 05159 g007 550

Figure 7. The relationship between the potential core length 

Sustainability 15 05159 g008 550

Figure 8. Along-range distribution of the flow angle φ of the jet at different impact distances.

Sustainability 15 05159 g009 550

Figure 9. Velocity distribution along the axis of the jet at different impinging regions.

Sustainability 15 05159 g010 550

Figure 10. The absolute value distribution of slope under different impact distances.

Sustainability 15 05159 g011a 550
Sustainability 15 05159 g011b 550

Figure 11. Velocity distribution of impinging jet on wall under different impinging distances.

Sustainability 15 05159 g012 550

Figure 12. Along-range distribution of the dimensionless axial velocity of the jet at different Reynolds numbers.

Sustainability 15 05159 g013 550

Figure 13. Along-range distribution of the flow angle φ of the jet at different Reynolds numbers.

Sustainability 15 05159 g014 550

Figure 14. Velocity distribution along the jet axis at different Reynolds numbers.

Sustainability 15 05159 g015 550

Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.

References

  1. Zhang, J.; Li, Y.; Zhang, Y.; Yang, F.; Liang, C.; Tan, S. Using a high-pressure water jet-assisted tunnel boring machine to break rock. Adv. Mech. Eng. 202012, 1687814020962290. [Google Scholar] [CrossRef]
  2. Shi, X.; Zhang, G.; Xu, G.; Ma, Y.; Wu, X. Inactivating Microorganism on Medical Instrument Using Plasma Jet. High Volt. Eng. 200935, 632–635. [Google Scholar]
  3. Gao, Y.; Han, P.; Wang, F.; Cao, J.; Zhang, S. Study on the Characteristics of Water Jet Breaking Coal Rock in a Drilling Hole. Sustainability 202214, 8258. [Google Scholar] [CrossRef]
  4. Xu, W.; Wang, C.; Zhang, L.; Ge, J.; Zhang, D.; Gao, Z. Numerical study of continuous jet impinging on a rotating wall based on Wray—Agarwal turbulence model. J. Braz. Soc. Mech. Sci. Eng. 202244, 433. [Google Scholar] [CrossRef]
  5. Hu, B.; Wang, C.; Wang, H.; Yu, Q.; Liu, J.; Zhu, Y.; Ge, J.; Chen, X.; Yang, Y. Numerical Simulation Study of the Horizontal Submerged Jet Based on the Wray—Agarwal Turbulence Model. J. Mar. Sci. Eng. 202210, 1217. [Google Scholar] [CrossRef]
  6. Dahiya, A.K.; Bhuyan, B.K.; Kumar, S. Perspective study of abrasive water jet machining of composites—A review. J. Mech. Sci. Technol. 202236, 213–224. [Google Scholar] [CrossRef]
  7. Abushanab, W.S.; Moustafa, E.B.; Harish, M.; Shanmugan, S.; Elsheikh, A.H. Experimental investigation on surface characteristics of Ti6Al4V alloy during abrasive water jet machining process. Alex. Eng. J. 202261, 7529–7539. [Google Scholar] [CrossRef]
  8. Hu, B.; Wang, H.; Liu, J.; Zhu, Y.; Wang, C.; Ge, J.; Zhang, Y. A numerical study of a submerged water jet impinging on a stationary wall. J. Mar. Sci. Eng. 202210, 228. [Google Scholar] [CrossRef]
  9. Peng, J.; Shen, H.; Xie, W.; Zhai, S.; Xi, G. Influence of flow fluctuation characteristics on flow and heat transfer in different regions. J. Drain. Irrig. Mach. Eng. 202240, 826–833. [Google Scholar]
  10. Zhai, S.; Xie, F.; Yin, G.; Xi, G. Effect of gap ratio on vortex-induced vibration characteristics of different blunt bodies near-wall. J. Drain. Irrig. Mach. Eng. 202139, 1132–1138. [Google Scholar]
  11. Lin, W.; Zhou, Y.; Wang, L.; Tao, L. PIV experiment and numerical simulation of trailing vortex structure of improved INTER-MIG impeller. J. Drain. Irrig. Mach. Eng. 202139, 158–164. [Google Scholar]
  12. Han, B.; Yao, Z.; Tang, R.; Xu, H. On the supersonic impinging jet by laser Doppler velocimetry. Exp. Meas. Fluid Mech. 200216, 99–103. [Google Scholar]
  13. Darisse, A.; Lemay, J.; Benaissa, A. LDV measurements of well converged third order moments in the far field of a free turbulent round jet. Exp. Therm. Fluid Sci. 201344, 825–833. [Google Scholar] [CrossRef]
  14. Kumar, S.; Kumar, A. Effect of initial conditions on mean flow characteristics of a three dimensional turbulent wall jet. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021235, 6177–6190. [Google Scholar] [CrossRef]
  15. Tao, D.; Zhang, R.; Ying, C. Development and application of the pollutant diffusion testing apparatus based on the image analysis. J. Saf. Environ. 201616, 247–251. [Google Scholar]
  16. Seo, H.; Kim, K.C. Experimental study on flow and turbulence characteristics of bubbly jet with low void fraction. Int. J. Multiph. Flow 2021142, 103738. [Google Scholar] [CrossRef]
  17. Wen, Q.; Sha, J.; Liu, Y. TR-PIV measurement of the turbulent submerged jet and POB analysis of the dynamic structure. J. Exp. Fluid Mech. 20144, 16–24. [Google Scholar]
  18. Yang, Y.; Zhou, L.; Shi, W.; He, Z.; Han, Y.; Xiao, Y. Interstage difference of pressure pulsation in a three-stage electrical submersible pump. J. Petrol. Sci. Eng. 2021196, 107653. [Google Scholar] [CrossRef]
  19. Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform. 202150, 101406. [Google Scholar] [CrossRef]
  20. Han, Y.; Song, X.; Li, K.; Yan, X. Hybrid modeling for submergence depth of the pumping well using stochastic configuration networks with random sampling. J. Petrol. Sci. Eng. 2022208, 109423. [Google Scholar] [CrossRef]
  21. Tang, S.; Zhu, Y.; Yuan, S. A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images. Adv. Eng. Inform. 202252, 101554. [Google Scholar] [CrossRef]
  22. Long, J.; Song, X.; Shi, J.; Chen, J. Optimization and CFD Analysis on Nozzle Exit Position of Two-phase Ejector. J. Refrig. 202243, 39–45. [Google Scholar]
  23. Ni, Q.; Ruan, W. Optimization design of desilting jet pump parameters based on response surface model. J. Ship Mech. 202226, 365–374. [Google Scholar]
  24. Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S. Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Therm. Eng. 2017126, 594–601. [Google Scholar] [CrossRef]
  25. Fu, W.; Liu, Z.; Li, Y.; Wu, H.; Tang, Y. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance. Int. J. Therm. Sci. 2018132, 509–516. [Google Scholar] [CrossRef]
  26. Lucas, C.; Rusche, H.; Schroeder, A.; Koehler, J. Numerical investigation of a two-phase CO2 ejector. Int. J. Refrigeration 201443, 154–166. [Google Scholar] [CrossRef]
  27. Ma, X.; Zhu, T.; Fu, Y.; Yan, Y.; Chen, W. Numerical simulation of rock breaking by abrasive water jet. J. Coast. Res. 201993, 274–283. [Google Scholar] [CrossRef]
  28. He, L.; Liu, Y.; Shen, K.; Yang, X.; Ba, Q.; Xiong, W. Numerical research on the dynamic rock-breaking process of impact drilling with multi-nozzle water jets. J. Pet. Sci. Eng. 2021207, 109145. [Google Scholar] [CrossRef]
  29. Yu, Z.; Wang, Z.; Lei, C.; Zhou, Y.; Qiu, X. Numerical Simulation on Internal Flow Field of a Self-excited Oscillation Pulsed Jet Nozzle with Back-flow. Mech. Sci. Technol. Aerosp. Eng. 202241, 998–1002. [Google Scholar]
  30. Huang, J.; Ni, F.; Gu, L. Numerical method of FLOW-3D for sediment erosion simulation. China Harb. Eng. 201939, 6–11. [Google Scholar]
  31. Al Shaikhli, H.I.; Khassaf, S.I. Using of flow 3d as CFD materials approach in waves generation. Mater. Today Proc. 202249, 2907–2911. [Google Scholar] [CrossRef]
  32. Kosaj, R.; Alboresha, R.S.; Sulaiman, S.O. Comparison Between Numerical Flow3d Software and Laboratory Data, For Sediment Incipient Motion. IOP Conf. Ser. Earth Environ. Sci. 2022961, 012031. [Google Scholar] [CrossRef]
  33. Du, C.; Liu, X.; Zhang, J.; Wang, B.; Chen, X.; Yu, X. Long-distance water hammer protection of pipeline after pump being first lowered and then rasied. J. Drain. Irrig. Mach. Eng. 202240, 1248–1253, 1267. [Google Scholar]
  34. Gao, F.; Li, X.; Gao, Q. Experiment and numerical simulation on hydraulic characteristics of novel trapezoidal measuring weir. J. Drain. Irrig. Mach. Eng. 202240, 1104–1111. [Google Scholar]
  35. Tu, A.; Nie, X.; Li, Y.; Li, H. Experimental and simulation study on water infiltration characteristics of layered red soil. J. Drain. Irrig. Mach. Eng. 202139, 1243–1249. [Google Scholar]
  36. Chen, J.; Zeng, B.; Liu, L.; Tao, K.; Zhao, H.; Zhang, C.; Zhang, J.; Li, D. Investigating the anchorage performance of full-grouted anchor bolts with a modified numerical simulation method. Eng. Fail. Anal. 2022141, 106640. [Google Scholar] [CrossRef]
  37. Hu, B.; Yao, Y.; Wang, M.; Wang, C.; Liu, Y. Flow and Performance of the Disk Cavity of a Marine Gas Turbine at Varying Nozzle Pressure and Low Rotation Speeds: A Numerical Investigation. Machines 202311, 68. [Google Scholar] [CrossRef]
  38. Yao, J.; Wang, X.; Zhang, S.; Xu, S.; Jin, B.; Ding, S. Orthogonal test of important parameters affecting hydraulic performance of negative pressure feedback jet sprinkler. J. Drain. Irrig. Mach. Eng. 202139, 966–972. [Google Scholar]
  39. Wang, C.; Wang, X.; Shi, W.; Lu, W.; Tan, S.K.; Zhou, L. Experimental investigation on impingement of a submerged circular water jet at varying impinging angles and Reynolds numbers. Exp. Therm. Fluid Sci. 201789, 189–198. [Google Scholar] [CrossRef]
  40. Speziale, C.G.; Thangam, S. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci. 199230, 1379–1388. [Google Scholar] [CrossRef]
  41. El Hassan, M.; Assoum, H.H.; Sobolik, V.; Vétel, J.; Abed-Meraim, K.; Garon, A.; Sakout, A. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids 201252, 1475–1489. [Google Scholar] [CrossRef]
  42. Fairweather, M.; Hargrave, G. Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp. Fluids 200233, 464–471. [Google Scholar] [CrossRef]
  43. Ashforth-Frost, S.; Jambunathan, K. Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int. Commun. Heat Mass Transf. 199623, 155–162. [Google Scholar] [CrossRef]
  44. Chen, M.; Huang, H.; Wang, D.; Lv, S.; Chen, Y. PIV tests for flow characteristics of impinging jet in a semi-closed circular pipe. J. Vib. Shock 202140, 90–97, 113. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

      

MDPI and ACS Style

Mi, H.; Wang, C.; Jia, X.; Hu, B.; Wang, H.; Wang, H.; Zhu, Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability 202315, 5159. https://doi.org/10.3390/su15065159

AMA Style

Mi H, Wang C, Jia X, Hu B, Wang H, Wang H, Zhu Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability. 2023; 15(6):5159. https://doi.org/10.3390/su15065159Chicago/Turabian Style

Mi, Hongbo, Chuan Wang, Xuanwen Jia, Bo Hu, Hongliang Wang, Hui Wang, and Yong Zhu. 2023. “Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment” Sustainability 15, no. 6: 5159. https://doi.org/10.3390/su15065159

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

Abstract

Flow hydrodynamics in the main channel due to floodplain sand mining is important for a better understanding of maintaining the natural habitat or the reliance between the flood plain and the main channel for the river’s long-term survival and also facilitates more effective river restoration engineering. Day by day anthropogenic stresses are increasing in the river corridor system, indiscriminate sand mining is one of them. In this study, a computational fluid dynamics (CFD)-based software Flow-3D hydro (renormalized group K-ε turbulence model used) is used to study the flow hydrodynamics of sinuous (sinuosity index = 1.25) channel 18 m long, 1 m width, and 0.3 m height with floodplain sand mining pit. Sand mining additionally increases the secondary current near the outer bank of the channel, therefore leading to scouring or erosion at the outer bank, as a result, rivers migrate laterally. The turbulence kinetic energy (TKE) is concentrated in the mining pit and near the inner bank. This study result can be used to understand the flow hydrodynamic of the river system due to the series of sand mining.

Keywords

  • Flow hydrodynamics
  • Turbulence modeling
  • Flow-3D
  • Sinuosity
  • Sand mining

References

  1. Best, J.: Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12(1), 7–21 (2019)CrossRef CAS Google Scholar 
  2. Bagnold, R.A.: Some Aspects of the Shape of River Meanders. US Government Printing Office (1960)Google Scholar 
  3. Kondolf, G.M.: Freshwater Gravel Mining and Dredging Issues: White Paper. Washington Department of Fish and Wildlife (2002)Google Scholar 
  4. Molnár, P., Ramírez, J.A.: Energy dissipation theories and optimal channel characteristics of river networks. Water Resour. Res. 34(7), 1809–1818 (1998)CrossRef Google Scholar 
  5. Padmalal, D., Maya, K.: Sand Mining: Environmental Impacts and Selected Case Studies. Springer (2014)Google Scholar 
  6. Hübler, M., Pothen, F.: Can smart policies solve the sand mining problem? PLoS ONE 16(4), e0248882 (2021)CrossRef Google Scholar 
  7. Khan, S., Sugie, A.: Sand mining and its social impacts on local society in rural Bangladesh: a case study of a village in Tangail district. J. Urban Reg. Stud. Contemp. India 2(1), 1–11 (2015)Google Scholar 
  8. Daneshfaraz, R. et al.: The experimental study of the effects of river mining holes on the bridge piers. Iranian J. Soil Water Res. 50(7), 1619–1633 (2019)Google Scholar 
  9. Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., … & Houseago, R. C.: River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3(3), 217–225 (2020)Google Scholar 
  10. Callander, R.A.: River meandering. Annu. Rev. Fluid Mech. 10(1), 129–158 (1978)CrossRef Google Scholar 
  11. Koehnken, L., Rintoul, M.: Impacts of sand mining on ecosystem structure, process and biodiversity in rivers. World Wildlife Fund International (2018)Google Scholar 
  12. Gavriletea, M.D.: Environmental impacts of sand exploitation. Analysis of sand market. Sustainability 9(7), 1118 (2017)Google Scholar 
  13. Koehnken, L., et al.: Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res. Appl. 36(3), 362–370 (2020)Google Scholar 
  14. Myers, W.R.C.: Momentum transfer in a compound channel. J. Hydraul. Res. 16(2), 139–150 (1978)CrossRef Google Scholar 
  15. Rajaratnam, N., Ahmadi, R.M.: Interaction between main channel and flood-plain flows. J. Hydraul. Div. 105(5), 573–588 (1979)CrossRef Google Scholar 
  16. Sellin, R.H.J.: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche 7, 793–802 (1964)CrossRef Google Scholar 
  17. Karami, H., et al.: Verification of numerical study of scour around spur dikes using experimental data. Water Environ. J. 28(1), 124–134 (2014)Google Scholar 
  18. Bathurst, J.C., et al.: Overbank sediment deposition patterns for straight and meandering flume channels. Earth Surf. Proc. Land. 27(6), 659–665 (2002)CrossRef Google Scholar 
  19. Xu, D., Bai, Y.: Experimental study on the bed topography evolution in alluvial meandering rivers with various sinuousnesses. J. Hydro-Environ. Res. 7(2), 92–102 (2013)CrossRef Google Scholar 
  20. Priego-Hernández, G.A., Rivera-Trejo, F.: Secondary currents: measurement and analysis. Atmósfera 29(1), 23–34 (2016)Google Scholar 
  21. Alshamani, K.M.M.: Correlations among turbulent shear stress, turbulent kinetic energy, and axial turbulence intensity. AIAA J. 16(8), 859–861 (1978)CrossRef Google Scholar 
  22. Biron, P.M., et al.: Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surface Process. Landforms: J. British Geomorphol. Res. Group 29(11), 1403–1415 (2004)Google Scholar 
  23. Clark, L.A., Theresa, M.W.: Boundary Shear Stress Along Vegetated Streambanks (2007)Google Scholar 
  24. Kim, S.-C., et al.: Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. J. Hydraul. Eng. 126(6), 399–406 (2000)CrossRef Google Scholar 

  1. Home  
  2. Sustainable Environment  
  3. Conference paper

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

  • 14 Accesses

Abstract

Flow hydrodynamics in the main channel due to floodplain sand mining is important for a better understanding of maintaining the natural habitat or the reliance between the flood plain and the main channel for the river’s long-term survival and also facilitates more effective river restoration engineering. Day by day anthropogenic stresses are increasing in the river corridor system, indiscriminate sand mining is one of them. In this study, a computational fluid dynamics (CFD)-based software Flow-3D hydro (renormalized group K-ε turbulence model used) is used to study the flow hydrodynamics of sinuous (sinuosity index = 1.25) channel 18 m long, 1 m width, and 0.3 m height with floodplain sand mining pit. Sand mining additionally increases the secondary current near the outer bank of the channel, therefore leading to scouring or erosion at the outer bank, as a result, rivers migrate laterally. The turbulence kinetic energy (TKE) is concentrated in the mining pit and near the inner bank. This study result can be used to understand the flow hydrodynamic of the river system due to the series of sand mining.

Keywords

  • Flow hydrodynamics
  • Turbulence modeling
  • Flow-3D
  • Sinuosity
  • Sand mining

This is a preview of subscription content, access via your institution.

References

  1. Best, J.: Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12(1), 7–21 (2019)CrossRef CAS Google Scholar 
  2. Bagnold, R.A.: Some Aspects of the Shape of River Meanders. US Government Printing Office (1960)Google Scholar 
  3. Kondolf, G.M.: Freshwater Gravel Mining and Dredging Issues: White Paper. Washington Department of Fish and Wildlife (2002)Google Scholar 
  4. Molnár, P., Ramírez, J.A.: Energy dissipation theories and optimal channel characteristics of river networks. Water Resour. Res. 34(7), 1809–1818 (1998)CrossRef Google Scholar 
  5. Padmalal, D., Maya, K.: Sand Mining: Environmental Impacts and Selected Case Studies. Springer (2014)Google Scholar 
  6. Hübler, M., Pothen, F.: Can smart policies solve the sand mining problem? PLoS ONE 16(4), e0248882 (2021)CrossRef Google Scholar 
  7. Khan, S., Sugie, A.: Sand mining and its social impacts on local society in rural Bangladesh: a case study of a village in Tangail district. J. Urban Reg. Stud. Contemp. India 2(1), 1–11 (2015)Google Scholar 
  8. Daneshfaraz, R. et al.: The experimental study of the effects of river mining holes on the bridge piers. Iranian J. Soil Water Res. 50(7), 1619–1633 (2019)Google Scholar 
  9. Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., … & Houseago, R. C.: River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3(3), 217–225 (2020)Google Scholar 
  10. Callander, R.A.: River meandering. Annu. Rev. Fluid Mech. 10(1), 129–158 (1978)CrossRef Google Scholar 
  11. Koehnken, L., Rintoul, M.: Impacts of sand mining on ecosystem structure, process and biodiversity in rivers. World Wildlife Fund International (2018)Google Scholar 
  12. Gavriletea, M.D.: Environmental impacts of sand exploitation. Analysis of sand market. Sustainability 9(7), 1118 (2017)Google Scholar 
  13. Koehnken, L., et al.: Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res. Appl. 36(3), 362–370 (2020)Google Scholar 
  14. Myers, W.R.C.: Momentum transfer in a compound channel. J. Hydraul. Res. 16(2), 139–150 (1978)CrossRef Google Scholar 
  15. Rajaratnam, N., Ahmadi, R.M.: Interaction between main channel and flood-plain flows. J. Hydraul. Div. 105(5), 573–588 (1979)CrossRef Google Scholar 
  16. Sellin, R.H.J.: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche 7, 793–802 (1964)CrossRef Google Scholar 
  17. Karami, H., et al.: Verification of numerical study of scour around spur dikes using experimental data. Water Environ. J. 28(1), 124–134 (2014)Google Scholar 
  18. Bathurst, J.C., et al.: Overbank sediment deposition patterns for straight and meandering flume channels. Earth Surf. Proc. Land. 27(6), 659–665 (2002)CrossRef Google Scholar 
  19. Xu, D., Bai, Y.: Experimental study on the bed topography evolution in alluvial meandering rivers with various sinuousnesses. J. Hydro-Environ. Res. 7(2), 92–102 (2013)CrossRef Google Scholar 
  20. Priego-Hernández, G.A., Rivera-Trejo, F.: Secondary currents: measurement and analysis. Atmósfera 29(1), 23–34 (2016)Google Scholar 
  21. Alshamani, K.M.M.: Correlations among turbulent shear stress, turbulent kinetic energy, and axial turbulence intensity. AIAA J. 16(8), 859–861 (1978)CrossRef Google Scholar 
  22. Biron, P.M., et al.: Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surface Process. Landforms: J. British Geomorphol. Res. Group 29(11), 1403–1415 (2004)Google Scholar 
  23. Clark, L.A., Theresa, M.W.: Boundary Shear Stress Along Vegetated Streambanks (2007)Google Scholar 
  24. Kim, S.-C., et al.: Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. J. Hydraul. Eng. 126(6), 399–406 (2000)CrossRef Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, IndiaO. P. Maurya, K. K. Nandi, S. Modalavalasa & S. Dutta

Corresponding author

Correspondence to O. P. Maurya .

Editor information

Editors and Affiliations

  1. Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, IndiaDeepmoni Deka
  2. Department of Chemical engineering, Indian Institute of Technology Guwahati, Guwahati, IndiaSubrata Kumar Majumder
  3. Department of Chemical engineering, Indian Institute of Technology Guwahati, Guwahati, IndiaMihir Kumar Purkait
Figure 4. Field gate discharge experiment.

FLOW-3D Model Development for the Analysis of the Flow Characteristics of Downstream Hydraulic Structures

하류 유압 구조물의 유동 특성 분석을 위한 FLOW-3D 모델 개발

Beom-Jin Kim 1, Jae-Hong Hwang 2 and Byunghyun Kim 3,*
1 Advanced Structures and Seismic Safety Research Division, Korea Atomic Energy Research Institute,
Daejeon 34057, Korea
2 Korea Water Resources Corporation (K-Water), Daejeon 34350, Korea
3 Department of Civil Engineering, Kyungpook National University, Daegu 41566, Korea

  • Correspondence: bhkimc@knu.ac.kr; Tel.: +82-53-950-7819

Abstract

Hydraulic structures installed in rivers inevitably create a water level difference between upstream and downstream regions. The potential energy due to this difference in water level is converted into kinetic energy, causing high-velocity flow and hydraulic jumps in the river. As a result, problems such as scouring and sloping downstream may occur around the hydraulic structures. In this study, a FLOW-3D model was constructed to perform a numerical analysis of the ChangnyeongHaman weir in the Republic of Korea. The constructed model was verified based on surface velocity measurements from a field gate operation experiment. In the simulation results, the flow discharge differed from the measured value by 9–15 m3/s, from which the accuracy was evaluated to be 82–87%. The flow velocity was evaluated with an accuracy of 92% from a difference of 0.01 to 0.16 m/s. Following this verification, a flow analysis of the hydraulic structures was performed according to boundary conditions and operation conditions for numerous scenarios. Since 2018, the ChangnyeongHaman weir gate has been fully opened due to the implementation of Korea’s eco-environmental policy; therefore, in this study, the actual gate operation history data prior to 2018 was applied and evaluated. The evaluation conditions were a 50% open gate condition and the flow discharge of two cases with a large difference in water level. As a result of the analysis, the actual operating conditions showed that the velocity and the Froude number were lower than the optimal conditions, confirming that the selected design was appropriate. It was also found that in the bed protection section, the average flow velocity was high when the water level difference was large, whereas the bottom velocity was high when the gate opening was large. Ultimately, through the reviewed status survey data in this study, the downstream flow characteristics of hydraulic structures along with adequacy verification techniques, optimal design techniques such as procedures for design, and important considerations were derived. Based on the current results, the constructed FLOW-3D-based model can be applied to creating or updating flow analysis guidelines for future repair and reinforcement measures as well as hydraulic structure design.

하천에 설치되는 수력구조물은 필연적으로 상류와 하류의 수위차를 발생시킨다. 이러한 수위차로 인한 위치에너지는 운동에너지로 변환되어 하천의 고속유동과 수압점프를 일으킨다. 그 결과 수력구조물 주변에서 하류의 세굴, 경사 등의 문제가 발생할 수 있다.

본 연구에서는 대한민국 창녕함안보의 수치해석을 위해 FLOW-3D 모델을 구축하였다. 구축된 모델은 현장 게이트 작동 실험에서 표면 속도 측정을 기반으로 검증되었습니다.

시뮬레이션 결과에서 유량은 측정값과 9~15 m3/s 차이가 나고 정확도는 82~87%로 평가되었다. 유속은 0.01~0.16m/s의 차이에서 92%의 정확도로 평가되었습니다.

검증 후 다양한 시나리오에 대한 경계조건 및 운전조건에 따른 수리구조물의 유동해석을 수행하였다. 2018년부터 창녕함안보 문은 한국의 친환경 정책 시행으로 전면 개방되었습니다.

따라서 본 연구에서는 2018년 이전의 실제 게이트 운영 이력 데이터를 적용하여 평가하였다. 평가조건은 50% open gate 조건과 수위차가 큰 2가지 경우의 유수방류로 하였다. 해석 결과 실제 운전조건은 속도와 Froude수가 최적조건보다 낮아 선정된 설계가 적합함을 확인하였다.

또한 베드보호구간에서는 수위차가 크면 평균유속이 높고, 수문개구가 크면 저저유속이 높은 것으로 나타났다. 최종적으로 본 연구에서 검토한 실태조사 자료를 통해 적정성 검증기법과 함께 수력구조물의 하류 유동특성, 설계절차 등 최적 설계기법 및 중요 고려사항을 도출하였다.

현재의 결과를 바탕으로 구축된 FLOW-3D 기반 모델은 수력구조 설계뿐만 아니라 향후 보수 및 보강 조치를 위한 유동해석 가이드라인 생성 또는 업데이트에 적용할 수 있습니다.

Figure 1. Effect of downstream riverbed erosion according to the type of weir foundation.
Figure 1. Effect of downstream riverbed erosion according to the type of weir foundation.
Figure 2. Changnyeong-Haman weir depth survey results (June 2015)
Figure 2. Changnyeong-Haman weir depth survey results (June 2015)
Figure 4. Field gate discharge experiment.
Figure 4. Field gate discharge experiment.
Figure 16. Analysis results for Case 7 and Case 8
Figure 16. Analysis results for Case 7 and Case 8

References

  1. Wanoschek, R.; Hager, W.H. Hydraulic jump in trapezoidal channel. J. Hydraul. Res. 1989, 27, 429–446. [CrossRef]
  2. Bohr, T.; Dimon, P.; Putkaradze, V. Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 1993, 254, 635–648.
    [CrossRef]
  3. Chanson, H.; Brattberg, T. Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 2000, 26,
    583–607. [CrossRef]
  4. Dhamotharan, S.; Gulliver, J.S.; Stefan, H.G. Unsteady one-dimensional settling of suspended sediment. Water Resour. Res. 1981,
    17, 1125–1132. [CrossRef]
  5. Ziegler, C.K.; Nisbet, B.S. Long-term simulation of fine-grained sediment transport in large reservoir. J. Hydraul. Eng. 1995, 121,
    773–781. [CrossRef]
  6. Olsen, N.R.B. Two-dimensional numerical modelling of flushing processes in water reservoirs. J. Hydraul. Res. 1999, 37, 3–16.
    [CrossRef]
  7. Saad, N.Y.; Fattouh, E.M. Hydraulic characteristics of flow over weirs with circular openings. Ain Shams Eng. J. 2017, 8, 515–522.
    [CrossRef]
  8. Bagheri, S.; Kabiri-Samani, A.R. Hydraulic Characteristics of flow over the streamlined weirs. Modares Civ. Eng. J. 2018, 17, 29–42.
  9. Hussain, Z.; Khan, S.; Ullah, A.; Ayaz, M.; Ahmad, I.; Mashwani, W.K.; Chu, Y.-M. Extension of optimal homotopy asymptotic
    method with use of Daftardar–Jeffery polynomials to Hirota–Satsuma coupled system of Korteweg–de Vries equations. Open
    Phys. 2020, 18, 916–924. [CrossRef]
  10. Arifeen, S.U.; Haq, S.; Ghafoor, A.; Ullah, A.; Kumam, P.; Chaipanya, P. Numerical solutions of higher order boundary value
    problems via wavelet approach. Adv. Differ. Equ. 2021, 2021, 347. [CrossRef]
  11. Sharafati, A.; Haghbin, M.; Motta, D.; Yaseen, Z.M. The application of soft computing models and empirical formulations for
    hydraulic structure scouring depth simulation: A comprehensive review, assessment and possible future research direction. Arch.
    Comput. Methods Eng. 2021, 28, 423–447. [CrossRef]
  12. Khan, S.; Selim, M.M.; Khan, A.; Ullah, A.; Abdeljawad, T.; Ayaz, M.; Mashwani, W.K. On the analysis of the non-Newtonian
    fluid flow past a stretching/shrinking permeable surface with heat and mass transfer. Coatings 2021, 11, 566. [CrossRef]
  13. Khan, S.; Selim, M.M.; Gepreel, K.A.; Ullah, A.; Ayaz, M.; Mashwani, W.K.; Khan, E. An analytical investigation of the mixed
    convective Casson fluid flow past a yawed cylinder with heat transfer analysis. Open Phys. 2021, 19, 341–351. [CrossRef]
  14. Ullah, A.; Selim, M.M.; Abdeljawad, T.; Ayaz, M.; Mlaiki, N.; Ghafoor, A. A Magnetite–Water-Based Nanofluid Three-Dimensional
    Thin Film Flow on an Inclined Rotating Surface with Non-Linear Thermal Radiations and Couple Stress Effects. Energies 2021,
    14, 5531. [CrossRef]
  15. Aamir, M.; Ahmad, Z.; Pandey, M.; Khan, M.A.; Aldrees, A.; Mohamed, A. The Effect of Rough Rigid Apron on Scour Downstream
    of Sluice Gates. Water 2022, 14, 2223. [CrossRef]
  16. Gharebagh, B.A.; Bazargan, J.; Mohammadi, M. Experimental Investigation of Bed Scour Rate in Flood Conditions. Environ. Water
    Eng. 2022, in press. [CrossRef]
  17. Laishram, K.; Devi, T.T.; Singh, N.B. Experimental Comparison of Hydraulic Jump Characteristics and Energy Dissipation
    Between Sluice Gate and Radial Gate. In Innovative Trends in Hydrological and Environmental Systems; Springer: Berlin/Heidelberg,
    Germany, 2022; pp. 207–218.
  18. Varaki, M.E.; Sedaghati, M.; Sabet, B.S. Effect of apron length on local scour at the downstream of grade control structures with
    labyrinth planform. Arab. J. Geosci. 2022, 15, 1240. [CrossRef]
  19. Rizk, D.; Ullah, A.; Elattar, S.; Alharbi, K.A.M.; Sohail, M.; Khan, R.; Khan, A.; Mlaiki, N. Impact of the KKL Correlation Model on
    the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ ZnO+ Water) Flow through Permeable Vertically Rotating
    Surface. Energies 2022, 15, 2872. [CrossRef]
  20. Kim, K.H.; Choi, G.W.; Jo, J.B. An Experimental Study on the Stream Flow by Discharge Ratio. Korea Water Resour. Assoc. Acad.
    Conf. 2005, 05b, 377–382.
  21. Lee, D.S.; Yeo, H.G. An Experimental Study for Determination of the Material Diameter of Riprap Bed Protection Structure. Korea
    Water Resour. Assoc. Acad. Conf. 2005, 05b, 1036–1039.
  22. Choi, G.W.; Byeon, S.J.; Kim, Y.G.; Cho, S.U. The Flow Characteristic Variation by Installing a Movable Weir having Water
    Drainage Equipment on the Bottom. J. Korean Soc. Hazard Mitig. 2008, 8, 117–122.
  23. Jung, J.G. An Experimental Study for Estimation of Bed Protection Length. J. Korean Wetl. Soc. 2011, 13, 677–686.
  24. Kim, S.H.; Kim, W.; Lee, E.R.; Choi, G.H. Analysis of Hydraulic Effects of Singok Submerged Weir in the Lower Han River. J.
    Korean Water Resour. Assoc. 2005, 38, 401–413. [CrossRef]
  25. Kim, J.H.; Sim, M.P.; Choi, G.W.; Oh, J.M. Hydraulic Analysis of Air Entrainment by Weir Types. J. Korean Water Resour. Assoc.
    2003, 36, 971–984. [CrossRef]
  26. Jeong, S.; Yeo, C.G.; Yun, G.S.; Lee, S.O. Analysis of Characteristics for Bank Scour around Low Dam using 3D Numerical
    Simulation. Korean Soc. Hazard Mitig. Acad. Conf. 2011, 02a, 102.
  27. Son, A.R.; Kim, B.H.; Moon, B.R.; Han, G.Y. An Analysis of Bed Change Characteristics by Bed Protection Work. J. Korean Soc. Civ.
    Eng. 2015, 35, 821–834.
  28. French, R.H.; French, R.H. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1985; ISBN 0070221340.
Fig. 9. Simulated separation regions for surface mounted cylinder

Investigation on the Local Scour Beneath Piggyback Pipelines Under Clear-Water Conditions

China Ocean Engineering volume 35, pages422–431 (2021)Cite this article

Abstract

피기백 파이프라인은 2개의 파이프로 구성되어 2차 라인이 2개의 파이프 사이의 길이가 고정된 거리로 메인 파이프에 탑승합니다. 새로운 전략은 단일 흐름 라인 대신 연안 지역에서 활용됩니다.

이와 관련하여 정상 전류에서 피기백 파이프라인 아래의 세굴 효과를 조사하는 실험 및 수치 연구는 소수에 불과합니다. 따라서 본 연구에서는 수치모사 및 실험적 실험을 통해 관직경, 관간격 등 정류에 의한 세굴에 영향을 미치는 요인을 살펴보고자 합니다.

따라서 연구의 첫 번째 단계에서 단일 파이프를 설치하고 실험식의 결과와 결과를 비교하기 위해 실험실에서 테스트했습니다. 실험적 검증을 마친 후, 피기백 파이프라인도 조립하여 안정된 전류 조건에서 정련을 연구했습니다. 파이프 사이의 간격을 늘리면 최대 세굴 깊이가 감소한다는 결론이 내려졌습니다.

그러나 작은 파이프의 직경이 증가하면 최대 세굴 깊이가 커집니다. 둘째, 본 연구의 수치적 조사에 적합한 도구인 FLOW-3D 소프트웨어를 사용하여 수치해석을 수행하였습니다.

마지막으로, 수치 결과를 해당 실험 데이터와 비교했으며, 이들 사이에 비교적 좋은 일치가 달성되었습니다.

A piggyback pipeline consists of two pipes such that the secondary line rides on the main pipe with a fixed distance between two pipes in length. The novel strategy is utilized in offshore areas instead of a single flow line. In this regard, there are only a handful of experimental and numerical studies investigating the effect of scour below a piggyback pipeline under steady current. Hence, this study focuses on examining the influential factors on scouring due to steady current including the pipe diameter and the gap between pipes through numerical simulations and experimental tests. Accordingly, at the first phase of the research, a single pipe was established and tested in laboratory to compare the results with those of an empirical equation. After finishing experimental verifications, piggyback pipelines were also assembled to study the scouring under steady current conditions. It was concluded that by increasing the gap distance between the pipes, the maximum scour depth decreases; however, an increase in the small pipe’s diameter results in a larger maximum scour depth. Secondly, numerical simulations were carried out using the FLOW-3D software which was found to be a suitable tool for the numerical investigation of this study. Finally, the numerical results have been compared with the corresponding experimental data and a relatively good agreement was achieved between them.

This is a preview of subscription content, access via your institution.

Fig. 1.   (a) Arrangement of piggyback pipeline, (b) Plan view of experimental flume.
Fig. 1. (a) Arrangement of piggyback pipeline, (b) Plan view of experimental flume.
Fig. 3.   Initial photos of two mounted piggyback pipelines in experimental setup for d/D=0.25.
Fig. 3. Initial photos of two mounted piggyback pipelines in experimental setup for d/D=0.25.
Fig. 9.     Simulated  separation  regions  for  surface  mounted  cylinder
Fig. 9. Simulated separation regions for surface mounted cylinder

References

  • Alfonsi, G., Lauria, A. and Primavera, L., 2012. Structures of a viscous-wave flow around a large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, 19(4), 323–354.Article Google Scholar 
  • Brørs, B., 1999. Numerical modeling of flow and scour at pipelines, Journal of Hydraulic Engineering, 125(5), 511–523.Article Google Scholar 
  • Cheng, L., Yeow, K., Zang, Z.P. and Li, F.J., 2014. 3D scour below pipelines under waves and combined waves and currents, Coastal Engineering, 83(5), 137–149.Article Google Scholar 
  • Chiew, Y.M., 1991. Prediction of maximum scour depth at submarine pipelines, Journal of Hydraulic Engineering, 117(4), 452–466.Article Google Scholar 
  • Dey, S. and Singh, N.P., 2007. Clear-water scour depth below underwater pipelines, Journal of Hydro-Environment Research, 1(2), 157–162.Article Google Scholar 
  • Flow Science, 2015. Flow-3D Solver, Version 11.1.1.3 win64 2015, Interface version 11.1.0.22 11/2/2015.
  • Fredsøe, J. and Deigaard, R., 1992. Mechanics of Coastal Sediment Transport, Advanced Series on Ocean Engineering: Volume 3, World Scientific, Singapore.Book Google Scholar 
  • Hatipoglu, F. and Avci, I., 2003. Flow around a partly buried cylinder in a steady current, Ocean Engineering, 30(2), 239–249.Article Google Scholar 
  • Hosseini, D., Hakimzadeh, H. and Ghiassi, R., 2005. Numerical and experimental modeling of scour around submarine pipeline due to currents, Pipelines 2005, Houston, Texas, United States, pp. 793–802.
  • Kumar, V., Ranga Raju, K.G. and Vittal, N., 1999. Reduction of local scour around bridge piers using slots and collars, Journal of Hydraulic Engineering, 125(12), 1302–1305.Article Google Scholar 
  • Lauria, A., Calomino, F., Alfonsi, G. and D’Ippolito, A., 2020. Discharge coefficients for sluice gates set in weirs at different upstream wall inclinations, Water, 12(1), 245.Article Google Scholar 
  • Myrhaug, D., Ong, M.C., Føien, H., Gjengedal, C. and Leira, B.J., 2009. Scour below pipelines and around vertical piles due to second-order random waves plus a current, Ocean Engineering, 36(8), 605–616.Article Google Scholar 
  • Olsen, N.R.B., 2012. Numerical Modelling and Hydraulics, Department of Hydraulic and Environmental Engineering the Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar 
  • Postacchini, M. and Brocchini, M., 2015. Scour depth under pipelines placed on weakly cohesive soils, Applied Ocean Research, 52, 73–79.Article Google Scholar 
  • Richardson, E.V. and Davis, S.R., 1995. Evaluating Scour at Bridges, Third Edition, Office of Technology Applications, HTA-22, Federal Highway Administration, U.S. Department of Transportation, Washington, DC, USA.Google Scholar 
  • Sudhan, C.M., Sundar, V. and Rao, S.N., 2002. Wave induced forces around buried pipelines, Ocean Engineering, 29(5), 533–544.Article Google Scholar 
  • Sumer, B.M., Truelsen, C., Sichmann, T. and Fredsøe, J., 2001a. Onset of scour below pipelines and self-burial, Coastal Engineering, 42(4), 313–335.Article Google Scholar 
  • Sumer, B.M., Whitehouse, R.J.S. and Tørum, A., 2001b. Scour around coastal structures: A summary of recent research, Coastal Engineering, 44(2), 153–190.Article Google Scholar 
  • Sumer, B.M. and Fredsøe, J., 2002. The mechanics of scour in the marine environment, in Advanced Series on Ocean Engineering: Volume 17, World Scientific, Singapore.Google Scholar 
  • Yang, H., Ni, H. and Zhu, X.H., 2007. An applicable replacement bundled pipeline structure for offshore marginal oilfield development, Shipbuilding of China, 48, 563–570. (in Chinese)Google Scholar 
  • Zakeri, A., Høeg, K. and Nadim, F., 2009. Submarine debris flow impact on pipelines-Part II: Numerical analysis, Coastal Engineering, 56(1), 1–10.Article Google Scholar 
  • Zang, Z.P. and Gao, F.P., 2014. Steady current induced vibration of near-bed piggyback pipelines: Configuration effects on VIV suppression, Applied Ocean Research, 46, 62–69.Article Google Scholar 
  • Zhang, X.L., Xu, C.S. and Han, Y., 2015. Three-dimensional poroelasto-plastic model for wave-induced seabed response around submarine pipeline, Soil Dynamics and Earthquake Engineering, 69, 163–171.Article Google Scholar 
  • Zhao, E.J., Shi, B., Qu, K., Dong, W.B. and Zhang, J., 2018. Experimental and numerical investigation of local scour around submarine piggyback pipeline under steady current, Journal of Ocean University of China, 17(2), 244–256.Article Google Scholar 
  • Zhao, M. and Cheng, L., 2008. Numerical modeling of local scour below a piggyback pipeline in currents, Journal of Hydraulic Engineering, 134(10), 1452–1463.Article Google Scholar 
  • Zhou, X.L., Wang, J.H., Zhang, J. and Jeng, D.S., 2014. Wave and current induced seabed response around a submarine pipeline in an anisotropic seabed, Ocean Engineering, 75, 112–127.Article Google Scholar 
Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

반고체 레오 다이 캐스팅 공정으로 제작된 알루미늄 합금 브래킷의 수치 시뮬레이션 및 생산 실험 검증을 기반으로 한 게이팅 시스템 설계

International Journal of Metalcasting volume 16, pages878–893 (2022)Cite this article

Abstract

In this study a gating system including sprue, runner and overflows for semi-solid rheocasting of aluminum alloy was designed by means of numerical simulations with a commercial software. The effects of pouring temperature, mold temperature and injection speed on the filling process performance of semi-solid die casting were studied. Based on orthogonal test analysis, the optimal die casting process parameters were selected, which were metal pouring temperature 590 °C, mold temperature 260 °C and injection velocity 0.5 m/s. Semi-solid slurry preparation process of Swirled Enthalpy Equilibration Device (SEED) was used for die casting production experiment. Aluminum alloy semi-solid bracket components were successfully produced with the key die casting process parameters selected, which was consistent with the simulation result. The design of semi-solid gating system was further verified by observing and analyzing the microstructure of different zones of the casting. The characteristic parameters, particle size and shape factor of microstructure of the produced semi-solid casting showed that the semi-solid aluminum alloy components are of good quality.

이 연구에서 알루미늄 합금의 반고체 레오캐스팅을 위한 스프루, 러너 및 오버플로를 포함하는 게이팅 시스템은 상용 소프트웨어를 사용한 수치 시뮬레이션을 통해 설계되었습니다. 주입 온도, 금형 온도 및 사출 속도가 반고체 다이캐스팅의 충전 공정 성능에 미치는 영향을 연구했습니다. 직교 테스트 분석을 기반으로 금속 주입 온도 590°C, 금형 온도 260°C 및 사출 속도 0.5m/s인 최적의 다이 캐스팅 공정 매개변수가 선택되었습니다. Swirled Enthalpy Equilibration Device(SEED)의 반고체 슬러리 제조 공정을 다이캐스팅 생산 실험에 사용하였다. 알루미늄 합금 반고체 브래킷 구성 요소는 시뮬레이션 결과와 일치하는 주요 다이 캐스팅 공정 매개변수를 선택하여 성공적으로 생산되었습니다. 반고체 게이팅 시스템의 설계는 주조의 다른 영역의 미세 구조를 관찰하고 분석하여 추가로 검증되었습니다. 생산된 반고체 주조물의 특성 매개변수, 입자 크기 및 미세 구조의 형상 계수는 반고체 알루미늄 합금 부품의 품질이 양호함을 보여주었습니다.

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process
Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

References

  1. G. Li, H. Lu, X. Hu et al., Current progress in rheoforming of wrought aluminum alloys: a review. Met. Open Access Metall. J. 10(2), 238 (2020)CAS Google Scholar 
  2. G. Eisaabadi, A. Nouri, Effect of Sr on the microstructure of electromagnetically stirred semi-solid hypoeutectic Al–Si alloys. Int. J. Metalcast. 12, 292–297 (2018). https://doi.org/10.1007/s40962-017-0161-8CAS Article Google Scholar 
  3. C. Xghab, D. Qza, E. Spma et al., Blistering in semi-solid die casting of aluminium alloys and its avoidance. Acta Mater. 124, 446–455 (2017)Article Google Scholar 
  4. M. Modigell, J. Koke, Rheological modelling on semi-solid metal alloys and simulation of thixocasting processes. J. Mater. Process. Technol. 111(1–3), 53–58 (2001)CAS Article Google Scholar 
  5. A. Pola, M. Tocci, P. Kapranos, Microstructure and properties of semi-solid aluminum alloys: a literature review. Met. Open Access Metall. J. 8(3), 181 (2018)Google Scholar 
  6. M.C. Flemings, Behavior of metal alloys in the semisolid state. Metall. Trans. B 22, 269–293 (1991). https://doi.org/10.1007/BF02651227Article Google Scholar 
  7. Q. Zhu, Semi-solid moulding: competition to cast and machine from forging in making automotive complex components. Trans. Nonferrous Met. Soc. China 20, 1042–1047 (2010)Article Google Scholar 
  8. K. Prapasajchavet, Y. Harada, S. Kumai, Microstructure analysis of Al–5.5 at.%Mg alloy semi-solid slurry by Weck’s reagent. Int. J. Metalcast. 11(1), 123 (2017). https://doi.org/10.1007/s40962-016-0084-9Article Google Scholar 
  9. P. Das, S.K. Samanta, S. Tiwari, P. Dutta, Die filling behaviour of semi solid A356 Al alloy slurry during rheo pressure die casting. Trans. Indian Inst. Met. 68(6), 1215–1220 (2015). https://doi.org/10.1007/s12666-015-0706-6CAS Article Google Scholar 
  10. B. Zhou, S. Lu, K. Xu et al., Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling. Int. J. Metalcast. 14(2), 396–408 (2019). https://doi.org/10.1007/s40962-019-00357-6CAS Article Google Scholar 
  11. S. Ji, Z. Fan, Solidification behavior of Sn–15 wt Pct Pb alloy under a high shear rate and high intensity of turbulence during semisolid processing. Metall. Mater. Trans. A. 33(11), 3511–3520 (2002). https://doi.org/10.1007/s11661-002-0338-4Article Google Scholar 
  12. P. Kapranos, P.J. Ward, H.V. Atkinson, D.H. Kirkwood, Near net shaping by semi-solid metal processing. Mater. Des. 21, 387–394 (2000). https://doi.org/10.1016/S0261-3069(99)00077-1Article Google Scholar 
  13. H.V. Atkinson, Alloys for semi-solid processing. Solid State Phenom. 192–193, 16–27 (2013)Google Scholar 
  14. L. Rogal, Critical assessment: opportunities in developing semi-solid processing: aluminium, magnesium, and high-temperature alloys. Mater. Sci. Technol. Mst A Publ. Inst. Met. 33, 759–764 (2017)CAS Article Google Scholar 
  15. H. Guo, Rheo-diecasting process for semi-solid aluminum alloys. J. Wuhan Univ. Technol. Mater. Sci. Ed. 22(004), 590–595 (2007)CAS Article Google Scholar 
  16. T. Chucheep, J. Wannasin, R. Canyook, T. Rattanochaikul, S. Janudom, S. Wisutmethangoon, M.C. Flemings, Characterization of flow behavior of semi-solid slurries with low solid fractions. Metall. Mater. Trans. A 44(10), 4754–4763 (2013)CAS Article Google Scholar 
  17. M. Li, Y.D. Li, W.L. Yang et al., Effects of forming processes on microstructures and mechanical properties of A356 aluminum alloy prepared by self-inoculation method. Mater. Res. 22(3) (2019)
  18. P. Côté, M.E. Larouche, X.G. Chen et al., New developments with the SEED technology. Solid State Phenom. 192(3), 373–378 (2012)Article Google Scholar 
  19. I. Dumanić, S. Jozić, D. Bajić et al., Optimization of semi-solid high-pressure die casting process by computer simulation, Taguchi method and grey relational analysis. Inter Metalcast. 15, 108–118 (2021). https://doi.org/10.1007/s40962-020-00422-5Article Google Scholar 
  20. Y. Bai et al., Numerical simulation on the rheo-diecasting of the semi-solid A356 aluminum alloy. Int. J. Miner. Metall. Mater. 16, 422 (2009). https://doi.org/10.1016/S1674-4799(09)60074-1CAS Article Google Scholar 
  21. B.C. Bhunia, Studies on die filling of A356 Al alloy and development of a steering knuckle component using rheo pressure die casting system. J. Mater. Process. Technol. 271, 293–311 (2019). https://doi.org/10.1016/j.jmatprotec.2019.04.014CAS Article Google Scholar 
  22. A. Guo, J. Zhao, C. Xu et al., Effects of pouring temperature and electromagnetic stirring on porosity and mechanical properties of A357 aluminum alloy rheo-diecasting. J. Mater. Eng. Perform. (2018). https://doi.org/10.1007/s11665-018-3310-1Article Google Scholar 
  23. C.G. Kang, S.M. Lee, B.M. Kim, A study of die design of semi-solid die casting according to gate shape and solid fraction. J. Mater. Process. Technol. 204(1–3), 8–21 (2008)CAS Article Google Scholar 
  24. Z. Liu, W. Mao, T. Wan et al., Study on semi-solid A380 aluminum alloy slurry prepared by water-cooling serpentine channel and its rheo-diecasting. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00672-2Article Google Scholar 
  25. Z.Y. Liu, W.M. Mao, W.P. Wang et al., Investigation of rheo-diecasting mold filling of semi-solid A380 aluminum alloy slurry. Int. J. Miner. Metall. Mater. 24(006), 691–700 (2017)CAS Article Google Scholar 
  26. M. Arif, M.Z. Omar, N. Muhamad et al., Microstructural evolution of solid-solution-treated Zn–22Al in the semisolid state. J. Mater. Sci. Technol. 29(008), 765–774 (2013)CAS Article Google Scholar 

Keywords

  • semi-solid rheo-die casting
  • gating system
  • process parameters
  • numerical simulation
  • microstructure
Figure 6. Circular section of the viscosity and shear-rate clouds.

Simulation and Visual Tester Verification of Solid Propellant Slurry Vacuum Plate Casting

Wu Yue,Li Zhuo,Lu RongFirst published: 26 February 2020 https://doi.org/10.1002/prep.201900411Citations: 3

Abstract

Using an improved Carreau constitutive model, a numerical simulation of the casting process of a type of solid propellant slurry vacuum plate casting was carried out using the Flow3D software. Through the flow process in the orifice flow channel and the combustion chamber, the flow velocity of the slurry passing through the plate flow channel was quantitatively analyzed, and the viscosity, shear rate, and leveling characteristics of the slurry in the combustion chamber were qualitatively analyzed and predicted. The pouring time, pouring quality, and flow state predicted by the numerical simulation were verified using a visual tester consisting of a vacuum plate casting system in which a pouring experiment was carried out. Studies have shown that HTPB three-component propellant slurry is a typical yielding pseudoplastic fluid. When the slurry flows through the flower plate and the airfoil, the fluid shear rate reaches its maximum value and the viscosity of the slurry decreases. The visual pouring platform was built and the experiment was controlled according to the numerically-calculated parameters, ensuring the same casting speed. The comparison between the predicted casting quality and the one obtained in the verification test resulted in an error less than 10 %. Moreover, the error between the simulated casting completion time and the process verification test result was also no more than 10 %. Last, the flow state of the slurry during the simulation was consistent with the one during the experimental test. The overall leveling of the slurry in the combustion chamber was adequate and no relatively large holes and flaws developed during the pouring process.

개선된 Carreau 구성 모델을 사용하여 FLOW-3D 소프트웨어를 사용하여 고체 추진제 슬러리 진공판 유형의 Casting Process에 대한 수치 시뮬레이션을 수행했습니다. 오리피스 유로와 연소실에서의 유동과정을 통해 판 유로를 통과하는 슬러리의 유속을 정량적으로 분석하고, 연소실에서 슬러리의 점도, 전단율, 레벨링 특성을 정성적으로 분석하하고, 예측하였습니다.

타설시간, 타설품질, 수치해석으로 예측된 ​​유동상태는 타설실험을 수행한 진공판주조시스템으로 구성된 비주얼 테스터를 이용하여 검증하였습니다.

연구에 따르면 HTPB 3성분 추진제 슬러리는 전형적인 생성 가소성 유체입니다. 슬러리가 플라워 플레이트와 에어포일을 통과할 때 유체 전단율이 최대값에 도달하고 슬러리의 점도가 감소합니다.

시각적 주입 플랫폼이 구축되었고 동일한 주조 속도를 보장하기 위해 수치적으로 계산된 매개변수에 따라 실험이 제어되었습니다. 예측된 casting 품질과 검증 테스트에서 얻은 품질을 비교한 결과 10 % 미만의 오류가 발생했습니다.

또한 모의 casting 완료시간과 공정검증시험 결과의 오차도 10 % 이하로 나타났습니다.

마지막으로 시뮬레이션 중 슬러리의 흐름 상태는 실험 테스트 시와 일치하였다. 연소실에서 슬러리의 전체 레벨링은 적절했으며 주입 과정에서 상대적으로 큰 구멍과 결함이 발생하지 않았습니다.

Figure 1. The equipment used in the vacuum flower-plate pouring process.
Figure 1. The equipment used in the vacuum flower-plate pouring process.
Figure 2. Calculation model.
Figure 2. Calculation model.
Figure 3. Grid block division unit.
Figure 3. Grid block division unit.
Figure 4. Circular section of the speed cloud.
Figure 4. Circular section of the speed cloud.
Figure 5. Viscosity and shear rate distribution cloud pattern flowing through the plate holes.
Figure 5. Viscosity and shear rate distribution cloud pattern flowing through the plate holes.
Figure 6. Circular section of the viscosity and shear-rate clouds.
Figure 6. Circular section of the viscosity and shear-rate clouds.
Figure 7. Volume fraction cloud chart at different time.
Figure 7. Volume fraction cloud chart at different time.
Figure 8. Experimental program.
Figure 8. Experimental program.
Figure 9. Emulation experimental device.
Figure 9. Emulation experimental device.
Figure 10. Visualization of the flow state of the pulp inside the tester.
Figure 10. Visualization of the flow state of the pulp inside the tester.

References

[1] B. M. Bandgar, V. N. Krishnamurthy, T. Mukundan, K. C. Sharma,
Mathematical Modeling of Rheological Properties of HydroxylTerminated Polybutadiene Binder and Dioctyl Adipate Plasticizer, J. Appl. Polym. Sci. 2002, 85, 1002–1007.
[2] B. Thiyyarkandy, M. Jain, G. S. Dombe, M. Mehilal, P. P. Singh, B.
Bhattacharya, Numerical Studies on Flow Behavior of Composite Propellant Slurry during Vacuum Casting, J.Aerosp.Technol.
Manage. 2012, 4, 197–203.
[3] T. Shimada, H. Habu, Y. Seike, S. Ooya, H. Miyachi, M. Ishikawa,
X-Ray Visualization Measurement of Slurry Flow in Solid Propellant Casting, Flow Meas. Instrum. 2007, 18, 235–240.
[4] Y. Damianou, G. C. Georgiou, On Poiseuille Flows of a Bingham
Plastic with Pressure-Dependent Rheological Parameters, J.
Non-Newtonian Fluid Mech. 2017, 250, 1–7.
[5] S. Sadasivan, S. K. Arumugam, M. Aggarwal, Numerical Simulation of Diffuser of a Gas Turbine using the Actuator Disc
Model, J.Appl. Fluid Mech. 2019, 12, 77–84.
[6] M. Acosta, V. L. Wiesner, C. J. Martinez, R. W. Trice, J. P. Youngblood, Effect of Polyvinylpyrrolidone Additions on the Rheology of Aqueous, Highly Loaded Alumina Suspensions, J. Am.
Ceram. Soc. 2013, 96, 1372–1382.
[7] Y. Wu, Numerical Simulation and Experiment Study of Flower
Plate Pouring System for Solid Propellant, Chin. J. Expl. Propell.
2017, 41, 506–511.
[8] T. M. G. Chu, J. W. Halloran, High-Temperature Flow Behavior
of Ceramic Suspensions, J. Am. Ceram. Soc. 2004, 83, 2189–
2195.
[9] T. Kaully, A. Siegmann, D. Shacham, Rheology of Highly Filled
Natural CaCO3 Composites. I. Effects of Solid Loading and Particle Size Distribution on Capillary Rheometry, Polym. Compos.
2007, 28, 512–523.
[10] M. M. Rueda, M.-C. Auscher, R. Fulchiron, T. Périé, G. Martin, P.
Sonntag, P. Cassagnau, Rheology and Applications of Highly
Filled Polymers: A Review of Current Understanding, Prog. Polym. Sci. 2017, 66, 22–53.
[11] F. Soltani, Ü. Yilmazer, Slip Velocity and Slip Layer Thickness in
Flow of Concentrated Suspensions, J. Appl. Polym. Sci. 1998,
70, 515–522.

[12] E. Landsem, T. L. Jensen, F. K. Hansen. E. Unneberg, T. E. Kristensen, Neutral Polymeric Bonding Agents (NPBA) and Their
Use in Smokeless Composite Rocket Propellants Based on
HMX-GAP-BuNENA. Propellants, Explos., Pyrotech.. 2012, 37,
581–589.
[13] J. Mewis, N. J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, 2011.
[14] D. M. Kalyon, An Overview of the Rheological Behavior and
Characterization of Energetic Formulations: Ramifications on
Safety and Product Quality, J. Energ. Mater. 2006, 24, 213–245.
[15] H. Ohshima, Effective Viscosity of a Concentrated Suspension
of Uncharged Spherical Soft Particles, Langmuir 2010, 26,
6287–6294.

Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity.

Hybrid modeling on 3D hydraulic features of a step-pool unit

Chendi Zhang1
, Yuncheng Xu1,2, Marwan A Hassan3
, Mengzhen Xu1
, Pukang He1
1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China. 2
College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100081, China.
5 3Department of Geography, University of British Columbia, 1984 West Mall, Vancouver BC, V6T1Z2, Canada.
Correspondence to: Chendi Zhang (chendinorthwest@163.com) and Mengzhen Xu (mzxu@mail.tsinghua.edu.cn)

Abstract

스텝 풀 시스템은 계류의 일반적인 기반이며 전 세계의 하천 복원 프로젝트에 활용되었습니다. 스텝 풀 장치는 스텝 풀 기능의 형태학적 진화 및 안정성과 밀접하게 상호 작용하는 것으로 보고된 매우 균일하지 않은 수력 특성을 나타냅니다.

그러나 스텝 풀 형태에 대한 3차원 수리학의 자세한 정보는 측정의 어려움으로 인해 부족했습니다. 이러한 지식 격차를 메우기 위해 SfM(Structure from Motion) 및 CFD(Computational Fluid Dynamics) 기술을 기반으로 하이브리드 모델을 구축했습니다. 이 모델은 CFD 시뮬레이션을 위한 입력으로 6가지 유속의 자연석으로 만든 인공 스텝 풀 장치가 있는 침대 표면의 3D 재구성을 사용했습니다.

하이브리드 모델은 스텝 풀 장치에 대한 3D 흐름 구조의 고해상도 시각화를 제공하는 데 성공했습니다. 결과는 계단 아래의 흐름 영역의 분할, 즉 수면에서의 통합 점프, 침대 근처의 줄무늬 후류 및 그 사이의 고속 제트를 보여줍니다.

수영장에서 난류 에너지의 매우 불균일한 분포가 밝혀졌으며 비슷한 용량을 가진 두 개의 에너지 소산기가 수영장에 공존하는 것으로 나타났습니다. 흐름 증가에 따른 풀 세굴 개발은 점프 및 후류 와류의 확장으로 이어지지만 이러한 증가는 스텝 풀 실패에 대한 임계 조건에 가까운 높은 흐름에서 점프에 대해 멈춥니다.

음의 경사면에서 발달된 곡물 20 클러스터와 같은 미세 지반은 국부 수력학에 상당한 영향을 주지만 이러한 영향은 수영장 바닥에서 억제됩니다. 스텝 스톤의 항력은 가장 높은 흐름이 사용되기 전에 배출과 함께 증가하는 반면 양력은 더 큰 크기와 더 넓은 범위를 갖습니다. 우리의 결과는 계단 풀 형태의 복잡한 흐름 특성을 조사할 때 물리적 및 수치적 모델링을 결합한 하이브리드 모델 접근 방식의 가능성과 큰 잠재력을 강조합니다.

Step-pool systems are common bedforms in mountain streams and have been utilized in river restoration projects around the world. Step-pool units exhibit highly non-uniform hydraulic characteristics which have been reported to closely 10 interact with the morphological evolution and stability of step-pool features. However, detailed information of the threedimensional hydraulics for step-pool morphology has been scarce due to the difficulty of measurement. To fill in this knowledge gap, we established a hybrid model based on the technologies of Structure from Motion (SfM) and computational fluid dynamics (CFD). The model used 3D reconstructions of bed surfaces with an artificial step-pool unit built by natural stones at six flow rates as inputs for CFD simulations. The hybrid model succeeded in providing high-resolution visualization 15 of 3D flow structures for the step-pool unit. The results illustrate the segmentation of flow regimes below the step, i.e., the integral jump at the water surface, streaky wake vortexes near the bed, and high-speed jets in between. The highly non-uniform distribution of turbulence energy in the pool has been revealed and two energy dissipaters with comparable capacity are found to co-exist in the pool. Pool scour development under flow increase leads to the expansion of the jump and wake vortexes but this increase stops for the jump at high flows close to the critical condition for step-pool failure. The micro-bedforms as grain 20 clusters developed on the negative slope affect the local hydraulics significantly but this influence is suppressed at pool bottom. The drag forces on the step stones increase with discharge before the highest flow is used while the lift force has a larger magnitude and wider varying range. Our results highlight the feasibility and great potential of the hybrid model approach combining physical and numerical modeling in investigating the complex flow characteristics of step-pool morphology.

Figure 1: Workflow of the hybrid modeling. SfM-MVS refers to the technology of Structure from Motion with Multi View Stereo. DSM is short for digital surface model. RNG-VOF is short for Renormalized Group (RNG) k-ε turbulence model coupled with Volume of Fluid method.
Figure 1: Workflow of the hybrid modeling. SfM-MVS refers to the technology of Structure from Motion with Multi View Stereo. DSM is short for digital surface model. RNG-VOF is short for Renormalized Group (RNG) k-ε turbulence model coupled with Volume of Fluid method.
Figure 2: Flume experiment settings in Zhang et al., (2020): (a) the artificially built-up step-pool model using natural stones, with stone number labelled; (b) the unsteady hydrograph of the run of CIFR (continually-increasing-flow-rate) T2 used in this study.
Figure 2: Flume experiment settings in Zhang et al., (2020): (a) the artificially built-up step-pool model using natural stones, with stone number labelled; (b) the unsteady hydrograph of the run of CIFR (continually-increasing-flow-rate) T2 used in this study.
Figure 3: Setup of the CFD model: (a) three-dimensional digital surface model (DSM) of the step-pool unit by structure from motion with multi view stereo (SfM-MVS) method as the input to the 3D computational fluid dynamics (CFD) modeling; (b) extruded bed 160 surface model connected to the extra downstream component (in purple blue) and rectangular columns to fill leaks (in green), with the boundary conditions shown on mesh planes; (c) recognized geometry with mesh grids of two mesh blocks shown where MS is short for mesh size; (d) sampling volumes to capture the flow forces acting on each step stone at X, Y, and Z directions; and (e) an example for the simulated 3D flow over the step-pool unit colored by velocity magnitude at the discharge of 49.9 L/s. The abbreviations for boundary conditions in (b) are: V for specified velocity; C for continuative; P for specific pressure; and W for wall 165 condition. The contraction section in Figure (e) refers to the edge between the jet and jump at water surface.
Figure 3: Setup of the CFD model: (a) three-dimensional digital surface model (DSM) of the step-pool unit by structure from motion with multi view stereo (SfM-MVS) method as the input to the 3D computational fluid dynamics (CFD) modeling; (b) extruded bed 160 surface model connected to the extra downstream component (in purple blue) and rectangular columns to fill leaks (in green), with the boundary conditions shown on mesh planes; (c) recognized geometry with mesh grids of two mesh blocks shown where MS is short for mesh size; (d) sampling volumes to capture the flow forces acting on each step stone at X, Y, and Z directions; and (e) an example for the simulated 3D flow over the step-pool unit colored by velocity magnitude at the discharge of 49.9 L/s. The abbreviations for boundary conditions in (b) are: V for specified velocity; C for continuative; P for specific pressure; and W for wall 165 condition. The contraction section in Figure (e) refers to the edge between the jet and jump at water surface.
Figure 4: Distribution of time-averaged velocity magnitude (VM_mean) and vectors in three longitudinal sections. The section at Y = 0 cm goes across the keystone while the other two (Y = -18 and 13.5 cm) are located at the step stones beside the keystone with 265 lower top elevations. Q refers to the discharge at the inlet of the computational domain. The spacing for X, Y, and Z axes are all 10 cm in the plots.
Figure 4: Distribution of time-averaged velocity magnitude (VM_mean) and vectors in three longitudinal sections. The section at Y = 0 cm goes across the keystone while the other two (Y = -18 and 13.5 cm) are located at the step stones beside the keystone with lower top elevations. Q refers to the discharge at the inlet of the computational domain. The spacing for X, Y, and Z axes are all 10 cm in the plots.
Figure 5: Distribution of time-averaged flow velocity at five cross sections which are set according to the reference section (x0). The reference cross section x0 is located at the downstream end of the keystone (KS). The five sections are located at 18 cm and 6 cm upstream of the reference section (x0-18 and x0-6), and 2 cm, 15 cm and 40 cm downstream of the reference section (x0+2, x0+15, x0+40). The spacing for X, Y, and Z axes are all 10 cm in the plots.
Figure 5: Distribution of time-averaged flow velocity at five cross sections which are set according to the reference section (x0). The reference cross section x0 is located at the downstream end of the keystone (KS). The five sections are located at 18 cm and 6 cm upstream of the reference section (x0-18 and x0-6), and 2 cm, 15 cm and 40 cm downstream of the reference section (x0+2, x0+15, x0+40). The spacing for X, Y, and Z axes are all 10 cm in the plots.
Figure 6: Distribution of the time-averaged turbulence kinetic energy (TKE) at the five cross sections same with Figure 3.
Figure 6: Distribution of the time-averaged turbulence kinetic energy (TKE) at the five cross sections same with Figure 3.
Figure 7: Boxplots for the distributions of the mass-averaged flow kinetic energy (KE, panels a-f), turbulence kinetic energy (TKE, panels g-l), and turbulent dissipation (εT, panels m-r) in the pool for all the six tested discharges (the plots at the same discharge are in the same row). The mass-averaged values were calculated every 2 cm in the streamwise direction. The flow direction is from left to right in all the plots. The general locations of the contraction section for all the flow rates are marked by the dashed lines, except for Q = 5 L/s when the jump is located too close to the step. The longitudinal distance taken up by negative slope in the pool for the inspected range is shown by shaded area in each plot.
Figure 7: Boxplots for the distributions of the mass-averaged flow kinetic energy (KE, panels a-f), turbulence kinetic energy (TKE, panels g-l), and turbulent dissipation (εT, panels m-r) in the pool for all the six tested discharges (the plots at the same discharge are in the same row). The mass-averaged values were calculated every 2 cm in the streamwise direction. The flow direction is from left to right in all the plots. The general locations of the contraction section for all the flow rates are marked by the dashed lines, except for Q = 5 L/s when the jump is located too close to the step. The longitudinal distance taken up by negative slope in the pool for the inspected range is shown by shaded area in each plot.
Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity.
Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity.
Figure 9: Time-averaged dynamic pressure (DP_mean) on the bed surface in the step-pool model under the two highest discharges, with the step numbers marked. The negative values in the plots result from the setting of standard atmospheric pressure = 0 Pa, whose absolute value is 1.013×105 Pa.
Figure 9: Time-averaged dynamic pressure (DP_mean) on the bed surface in the step-pool model under the two highest discharges, with the step numbers marked. The negative values in the plots result from the setting of standard atmospheric pressure = 0 Pa, whose absolute value is 1.013×105 Pa.
Figure 10: Time-averaged shear stress (SS_mean) on bed surface in the step-pool model, with the step numbers marked. The standard atmospheric pressure is set as 0 Pa.
Figure 10: Time-averaged shear stress (SS_mean) on bed surface in the step-pool model, with the step numbers marked. The standard atmospheric pressure is set as 0 Pa.
Figure 11: Variation of fluid force components and magnitude of resultant flow force acting on step stones with flow rate. The stone 4 is the keystone. Stone numbers are consistent with those in Fig. 9-10. The upper limit of the sampling volumes for flow force calculation is higher than water surface while the lower limit is set at 3 cm lower than the keystone crest.
Figure 11: Variation of fluid force components and magnitude of resultant flow force acting on step stones with flow rate. The stone 4 is the keystone. Stone numbers are consistent with those in Fig. 9-10. The upper limit of the sampling volumes for flow force calculation is higher than water surface while the lower limit is set at 3 cm lower than the keystone crest.
Figure 12: Variation of drag (CD) and lift (CL) coefficient of the step stones along with flow rate. Stone numbers are consistent with those in Fig. 8-9. KS is short for keystone. The negative values of CD correspond to the drag forces towards the upstream while the negative values of CL correspond to lift forces pointing downwards.
Figure 12: Variation of drag (CD) and lift (CL) coefficient of the step stones along with flow rate. Stone numbers are consistent with those in Fig. 8-9. KS is short for keystone. The negative values of CD correspond to the drag forces towards the upstream while the negative values of CL correspond to lift forces pointing downwards.
Figure 13: Longitudinal distributions of section-averaged and -integral turbulent kinetic energy (TKE) for the jump and wake vortexes at the largest three discharges. The flow direction is from left to right in all the plots. The general locations of the contraction sections under the three flow rates are marked by dashed lines in figures (d) to (f).
Figure 13: Longitudinal distributions of section-averaged and -integral turbulent kinetic energy (TKE) for the jump and wake vortexes at the largest three discharges. The flow direction is from left to right in all the plots. The general locations of the contraction sections under the three flow rates are marked by dashed lines in figures (d) to (f).
Figure A1: Water surface profiles of the simulations with different mesh sizes at the discharge of 43.6 L/s at the longitudinal sections at: (a) Y = 24.5 cm (left boundary); (b) Y = 0.3 cm (middle section); (c) Y = -24.5 cm (right boundary). MS is short for mesh size. The flow direction is from left to right in each plot.
Figure A1: Water surface profiles of the simulations with different mesh sizes at the discharge of 43.6 L/s at the longitudinal sections at: (a) Y = 24.5 cm (left boundary); (b) Y = 0.3 cm (middle section); (c) Y = -24.5 cm (right boundary). MS is short for mesh size. The flow direction is from left to right in each plot.
Figure A2: Contours of velocity magnitude in the longitudinal section at Y = 0 cm at different mesh sizes (MSs) under the flow condition with the discharge of 43.6 L/s: (a) 0.50 cm; (b) 0.375 cm; (c) 0.30 cm; (d) 0.27 cm; (e) 0.25 cm; (f) 0.24 cm. The flow direction is from left to right.
Figure A2: Contours of velocity magnitude in the longitudinal section at Y = 0 cm at different mesh sizes (MSs) under the flow condition with the discharge of 43.6 L/s: (a) 0.50 cm; (b) 0.375 cm; (c) 0.30 cm; (d) 0.27 cm; (e) 0.25 cm; (f) 0.24 cm. The flow direction is from left to right.
Figure A3: Measurements of water surfaces (orange lines) used in model verification: (a) water surface profiles from both sides of the flume; (b) upstream edge of the jump regime from top view. KS refers to keystone in figure (b).
Figure A3: Measurements of water surfaces (orange lines) used in model verification: (a) water surface profiles from both sides of the flume; (b) upstream edge of the jump regime from top view. KS refers to keystone in figure (b).
Figure A15. Figure (a) shows the locations of the cross sections and target coarse grains at Q = 49.9 L/s. Figures (b) to (e) show the distribution of velocity magnitude (VM_mean) in the four chosen cross sections: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5. G1 to G6 refer to 6 protruding grains in the micro-bedforms in the pool.
Figure A15. Figure (a) shows the locations of the cross sections and target coarse grains at Q = 49.9 L/s. Figures (b) to (e) show the distribution of velocity magnitude (VM_mean) in the four chosen cross sections: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5. G1 to G6 refer to 6 protruding grains in the micro-bedforms in the pool.
Figure A16. The distribution of turbulent kinetic energy (TKE) in the same cross sections as in figure S15: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5.
Figure A16. The distribution of turbulent kinetic energy (TKE) in the same cross sections as in figure S15: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5.

References

720 Aberle, J. and Smart, G. M: The influence of roughness structure on flow resistance on steep slopes, J. Hydraul. Res., 41(3),
259-269, https://doi.org/10.1080/00221680309499971, 2003.
Abrahams, A. D., Li, G., and Atkinson, J. F.: Step-pool streams: Adjustment to maximum flow resistance. Water Resour. Res.,
31(10), 2593-2602, https://doi.org/10.1029/95WR01957, 1995.
Adrian, R. J.: Twenty years of particle image velocimetry. Exp. Fluids, 39(2), 159-169, https://doi.org/10.1007/s00348-005-
725 0991-7 2005.
Chanson, H.: Hydraulic design of stepped spillways and downstream energy dissipators. Dam Eng., 11(4), 205-242, 2001.
Chartrand, S. M., Jellinek, M., Whiting, P. J., and Stamm, J.: Geometric scaling of step-pools in mountain streams:
Observations and implications, Geomorphology, 129(1-2), 141-151, https://doi.org/10.1016/j.geomorph.2011.01.020,
2011.
730 Chen, Y., DiBiase, R. A., McCarroll, N., and Liu, X.: Quantifying flow resistance in mountain streams using computational
fluid dynamics modeling over structure‐from‐motion photogrammetry‐derived microtopography, Earth Surf. Proc.
Land., 44(10), 1973-1987, https://doi.org/10.1002/esp.4624, 2019.
Church, M. and Zimmermann, A.: Form and stability of step‐pool channels: Research progress, Water Resour. Res., 43(3),
W03415, https://doi.org/10.1029/2006WR005037, 2007.
735 Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.: Meshlab: an open-source mesh
processing tool, in: Eurographics Italian chapter conference, Salerno, Italy, 2-4 July 2008, 129-136, 2008.

Comiti, F., Andreoli, A., and Lenzi, M. A.: Morphological effects of local scouring in step-pool streams, Earth Surf. Proc.
Land., 30(12), 1567-1581, https://doi.org/10.1002/esp.1217, 2005.
Comiti, F., Cadol, D., and Wohl, E.: Flow regimes, bed morphology, and flow resistance in self‐formed step-pool
740 channels, Water Resour. Res., 45(4), 546-550, https://doi.org/10.1029/2008WR007259, 2009.
Dudunake, T., Tonina, D., Reeder, W. J., and Monsalve, A.: Local and reach‐scale hyporheic flow response from boulder ‐
induced geomorphic changes, Water Resour. Res., 56, e2020WR027719, https://doi.org/10.1029/2020WR027719, 2020.
Flow Science.: Flow-3D Version 11.2 User Manual, Flow Science, Inc., Los Alamos, 2016.
Gibson, S., Heath, R., Abraham, D., and Schoellhamer, D.: Visualization and analysis of temporal trends of sand infiltration
745 into a gravel bed, Water Resour. Res., 47(12), W12601, https://doi.org/10.1029/2011WR010486, 2011.
Hassan, M. A., Tonina, D., Beckie, R. D., and Kinnear, M.: The effects of discharge and slope on hyporheic flow in step‐pool
morphologies, Hydrol. Process., 29(3), 419-433, https://doi.org/10.1002/hyp.10155, 2015.
Hirt, C. W. and Nichols, B. D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39,
201-225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981.
750 Javernick L., Brasington J., and Caruso B.: Modeling the topography of shallow braided rivers using structure-from-motion
photogrammetry, Geomorphology, 213(4), 166-182, https://doi.org/10.1016/j.geomorph.2014.01.006, 2014.
Lai, Y. G., Smith, D. L., Bandrowski, D. J., Xu, Y., Woodley, C. M., and Schnell, K.: Development of a CFD model and
procedure for flows through in-stream structures, J. Appl. Water Eng. Res., 1-15,
https://doi.org/10.1080/23249676.2021.1964388, 2021.
755 Lenzi, M. A.: Step-pool evolution in the Rio Cordon, northeastern Italy, Earth Surf. Proc. Land., 26(9), 991-1008,
https://doi.org/10.1002/esp.239, 2001.
Lenzi, M. A.: Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern
Italy, Geomorphology, 45(3-4), 243-260, https://doi.org/10.1016/S0169-555X(01)00157-X, 2002.
Lenzi, M. A., Marion, A., and Comiti, F.: Local scouring at grade‐control structures in alluvial mountain rivers, Water Resour.
760 Res., 39(7), 1176, https://doi:10.1029/2002WR001815, 2003.
Li, W., Wang Z., Li, Z., Zhang, C., and Lv, L.: Study on hydraulic characteristics of step-pool system, Adv. Water Sci., 25(3),
374-382, https://doi.org/10.14042/j.cnki.32.1309.2014.03.012, 2014. (In Chinese with English abstract)
Maas, H. G., Gruen, A., and Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids, 15(2),
133-146. https://doi.org/10.1007/BF00223406, 1993.

765 Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bul., 109(5), 596-611, https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2, 1997. Morgan J. A., Brogan D. J., and Nelson P. A.: Application of structure-from-motion photogrammetry in laboratory flumes, Geomorphology, 276(1), 125-143, https://doi.org/10.1016/j.geomorph.2016.10.021, 2017. Recking, A., Leduc, P., Liébault, F., and Church, M.: A field investigation of the influence of sediment supply on step-pool 770 morphology and stability. Geomorphology, 139, 53-66, https://doi.org/10.1016/j.geomorph.2011.09.024, 2012. Roth, M. S., Jähnel, C., Stamm, J., and Schneider, L. K.: Turbulent eddy identification of a meander and vertical-slot fishways in numerical models applying the IPOS-framework, J. Ecohydraulics, 1-20, https://doi.org/10.1080/24705357.2020.1869916, 2020. Saletti, M. and Hassan, M. A.: Width variations control the development of grain structuring in steep step‐pool dominated 775 streams: insight from flume experiments, Earth Surf. Proc. Land., 45(6), 1430-1440, https://doi.org/10.1002/esp.4815, 2020. Smith, D. P., Kortman, S. R., Caudillo, A. M., Kwan‐Davis, R. L., Wandke, J. J., Klein, J. W., Gennaro, M. C. S., Bogdan, M. A., and Vannerus, P. A.: Controls on large boulder mobility in an ‘auto-naturalized’ constructed step-pool river: San Clemente Reroute and Dam Removal Project, Carmel River, California, USA, Earth Surf. Proc. Land., 45(9), 1990-2003, 780 https://doi.org/10.1002/esp.4860, 2020. Thappeta, S. K., Bhallamudi, S. M., Fiener, P., and Narasimhan, B.: Resistance in Steep Open Channels due to Randomly Distributed Macroroughness Elements at Large Froude Numbers, J. Hydraul. Eng., 22(12), 04017052, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001587, 2017. Thappeta, S. K., Bhallamudi, S. M., Chandra, V., Fiener, P., and Baki, A. B. M.: Energy loss in steep open channels with step785 pools, Water, 13(1), 72, https://doi.org/10.3390/w13010072, 2021. Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.: The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel, Earth Surf. Proc. Land., 34(12), 1661-1673, https://doi.org/10.1002/esp.1855, 2009. Vallé, B. L. and Pasternack, G. B.: Air concentrations of submerged and unsubmerged hydraulic jumps in a bedrock step‐pool 790 channel, J. Geophys. Res.-Earth, 111(F3), F03016. https://doi:10.1029/2004JF000140, 2006. Waldon, M. G.: Estimation of average stream velocity, J. Hydraul. Eng., 130(11), 1119-1122. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1119), 2004. Wang, Z., Melching, C., Duan, X., and Yu, G.: Ecological and hydraulic studies of step-pool systems, J. Hydraul. Eng., 135(9), 705-717, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:9(705), 2009

795 Wang, Z., Qi, L., and Wang, X.: A prototype experiment of debris flow control with energy dissipation structures, Nat. Hazards, 60(3), 971-989, https://doi.org/10.1007/s11069-011-9878-5, 2012. Weichert, R. B.: Bed Morphology and Stability in Steep Open Channels, Ph.D. Dissertation, No. 16316. ETH Zurich, Switzerland, 247pp., 2005. Wilcox, A. C., Wohl, E. E., Comiti, F., and Mao, L.: Hydraulics, morphology, and energy dissipation in an alpine step‐pool 800 channel, Water Resour. Res., 47(7), W07514, https://doi.org/10.1029/2010WR010192, 2011. Wohl, E. E. and Thompson, D. M.: Velocity characteristics along a small step–pool channel. Earth Surf. Proc. Land., 25(4), 353-367, https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5, 2000. Wu, S. and Rajaratnam, N.: Impinging jet and surface flow regimes at drop. J. Hydraul. Res., 36(1), 69-74, https://doi.org/10.1080/00221689809498378, 1998. 805 Xu, Y. and Liu, X.: 3D computational modeling of stream flow resistance due to large woody debris, in: Proceedings of the 8th International Conference on Fluvial Hydraulics, St. Louis, USA, 11-14, Jul, 2346-2353, 2016. Xu, Y. and Liu, X.: Effects of different in-stream structure representations in computational fluid dynamics models—Taking engineered log jams (ELJ) as an example, Water, 9(2), 110, https://doi.org/10.3390/w9020110, 2017. Zeng, Y. X., Ismail, H., and Liu, X.: Flow Decomposition Method Based on Computational Fluid Dynamics for Rock Weir 810 Head-Discharge Relationship. J. Irrig. Drain. Eng., 147(8), 04021030, https://doi.org/10.1061/(ASCE)IR.1943- 4774.0001584, 2021. Zhang, C., Wang, Z., and Li, Z.: A physically-based model of individual step-pool stability in mountain streams, in: Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 801-809, 2016. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., and Wang, Z.: Experimental study on the stability and failure of individual 815 step-pool, Geomorphology, 311, 51-62, https://doi.org/10.1016/j.geomorph.2018.03.023, 2018. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., Wang, Z., and Ma, Z.: Experiment on morphological and hydraulic adjustments of step‐pool unit to flow increase, Earth Surf. Proc. Land., 45(2), 280-294, https://doi.org/10.1002/esp.4722, 2020. Zimmermann A., E.: Flow resistance in steep streams: An experimental study, Water Resour. Res., 46, W09536, 820 https://doi.org/10.1029/2009WR007913, 2010. Zimmermann A. E., Salleti M., Zhang C., Hassan M. A.: Step-pool Channel Features, in: Treatise on Geomorphology (2nd Edition), vol. 9, Fluvial Geomorphology, edited by: Shroder, J. (Editor in Chief), Wohl, E. (Ed.), Elsevier, Amsterdam, Netherlands, https://doi.org/10.1016/B978-0-12-818234-5.00004-3, 2020.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid


Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4

Abstract

태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.

다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.

본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.

나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.

본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.

The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.

1. Introduction

Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].

Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].

Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.

There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.

Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.

Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [21215].

Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [1819].

Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.

Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.

The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.

2. Cycle Description

CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].

For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1 The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.

According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.

2.1. System Analysis Equations

An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic

Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.

Figure 1 Schematic shape of the cogeneration cycle.Table 2 Temperature and humidity of different points of system.

Based on the first law of thermodynamic, energy analysis is based on the following steps.

First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.

Collector efficiency is going to be calculated by the following equation [9]:

Total energy received by the collector is given by [9]

Also, the auxiliary boiler heat load is [2]

Energy consumed from vapor to expander is calculated by [2]

The power output form by the screw expander [9]:

The efficiency of the expander is 80% in this case [11].

In this step, cooling and heating loads were calculated and then, the required heating load to reach sanitary hot water will be calculated as follows:

First step: calculating the cooling load with the following equation [9]:

Second step: calculating heating loads [9]:

Then, calculating the required loud for sanitary hot water will be [9]

According to the above-mentioned equations, efficiency is [9]

In the third step, calculated exergy analysis as follows.

First, the received exergy collector from the sun is calculated [9]:

In the previous equation, f is the constant of air dilution.

The received exergy from the collector is [9]

In the case of using natural gas in an auxiliary heater, the gas exergy is calculated from the following equation [12]:

Delivering exergy from vapor to expander is calculated with the following equation [9]:

In the fourth step, the exergy in cooling and heating is calculated by the following equation:

Cooling exergy in summer is calculated [9]:

Heating exergy in winter is calculated [9]:

In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:

3. Porous Media

The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.

Figure 2 Copper foam with a porosity of 95%.Table 3 Thermophysical parameters and dimensions of copper foam.

In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.

Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

3.1. Nano Fluid

In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4 Properties of the nanoparticles [9].

System constant parameters for input in the software are shown in Table 5.Table 5 System constant parameters.

The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).

The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.

The specific heat capacity is calculated from the following equation [29]:

The thermal conductivity of the nanofluid is calculated from the following equation [29]:

The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.

The mixture viscosity is calculated as follows [30]:

In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.

4. Results and Discussion

In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.

Figure 4 Verification charts of energy analysis results.

Figure 5 Verification charts of exergy analysis results.

We may also investigate the application of machine learning paradigms [3141] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [4255], and intelligent model studies [5661] as well, for example, methods such as particle swarm optimizer (PSO) [6062], differential search (DS) [63], ant colony optimizer (ACO) [616465], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [5367], differential evolution (DE) [6869], and other fusion and boosted systems [4146485054557071].

At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [922263072]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6 Collectors with different percentages of nanofluids and porous media.

In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.

Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.

Figure 6 Energy and exergy efficiencies of the PTC with porous media and nanofluid.

Figure 7 Energy and exergy efficiency of the SCCHP.

Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.

In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.

5. Conclusion and Future Directions

In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.

In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.

In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.

Nomenclature

:Solar radiation
a:Heat transfer augmentation coefficient
A:Solar collector area
Bf:Basic fluid
:Specific heat capacity of the nanofluid
F:Constant of air dilution
:Thermal conductivity of the nanofluid
:Thermal conductivity of the basic fluid
:Viscosity of the nanofluid
:Viscosity of the basic fluid
:Collector efficiency
:Collector energy receives
:Auxiliary boiler heat
:Expander energy
:Gas energy
:Screw expander work
:Cooling load, in kilowatts
:Heating load, in kilowatts
:Solar radiation energy on collector, in Joule
:Sanitary hot water load
Np:Nanoparticle
:Energy efficiency
:Heat exchanger efficiency
:Sun exergy
:Collector exergy
:Natural gas exergy
:Expander exergy
:Cooling exergy
:Heating exergy
:Exergy efficiency
:Steam mass flow rate
:Hot water mass flow rate
:Specific heat capacity of water
:Power output form by the screw expander
Tam:Average ambient temperature
:Density of the mixture.

Greek symbols

ρ:Density
ϕ:Nanoparticles volume fraction
β:Ratio of the nanolayer thickness.

Abbreviations

CCHP:Combined cooling, heating, and power
EES:Engineering equation solver.

Data Availability

For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
  2. G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
  3. J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
  4. Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
  5. J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
  6. M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
  7. I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
  8. F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
  9. H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
  10. M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
  11. R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
  12. F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
  13. F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
  14. B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
  15. F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
  16. J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
  17. Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
  18. J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
  19. L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
  20. S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
  21. E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
  22. H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
  23. J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
  24. E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
  25. A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
  26. D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
  27. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
  28. K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
  29. K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
  30. M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
  31. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
  32. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  34. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  35. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  36. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
  37. M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
  38. M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
  39. M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
  40. A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
  41. F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  42. H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
  43. C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
  44. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
  45. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
  46. Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
  47. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
  48. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  49. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  50. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  51. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  52. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  53. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  54. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
  55. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  56. R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
  57. A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
  58. N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
  59. N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
  60. M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
  61. I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
  62. B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
  63. J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
  64. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  65. D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
  66. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  67. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
  68. G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
  69. G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
  70. A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
  71. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  72. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
  73. S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
  74. N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
Fig. 6. Configuration of Johnson (1958) hydraulic experiment.

전체 수심 범위에서 선박 파고에 대한 방정식

Equation for ship wave crests in the entire range of water depths

Byeong Wook Lee a
, Changhoon Lee b,
*a Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science & Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea
b Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea

ABSTRACT

An equation for ship wave crests y/x in the entire range of water depths is developed using the linear dispersion relation. In deep water, the developed equation is reduced to the equation of Kelvin (1906). The locations of ship wave crests in the x – and y -directions are obtained using a dimensionless constant C. The wave ray angle θc at the cusp locus is determined using the condition that θc is maximal at the cusp locus and the cusp locus angle is determined as αc=−tan−1(y/x)max. Numerical experiments are conducted using the FLOW-3D to simulate ship wave propagation. The cusp locus angles of the FLOW-3D are similar to both those of the present theory and Havelock (1908) theory in the entire range of the Froude number. Both the present theory and the FLOW-3D yield that, with the increase of ship speed, the Froude number increases and does the wavelength. For the Froude number equal to or greater than unity, the wavelength becomes infinitely large and the transverse waves disappear. The wavelengths of the FLOW-3D are slightly smaller than those of the present theory because the FLOW-3D considers the decrease of wavelength due to energy dissipation which happens because of viscosity of water and turbulence of high-speed particle velocities.

Fig. 6. Configuration of Johnson (1958) hydraulic experiment.
Fig. 6. Configuration of Johnson (1958) hydraulic experiment.
Fig. 8. Comparison of ship wave crest patterns: (a) Fr ¼ 0:66 (Us ¼ 6:5m=s,  kh � 0:724π), (b) Fr ¼ 0:86 (Us ¼ 8:5m=s, kh � 0:342π), (c) Fr ¼ 1:21 (Us ¼ 12:0m=s, kh � 0:003π). Line definition: red solid line ¼ present theory; yellow  dashed line ¼ Kelvin theory; white dot ¼ FLOW-3D solution. (For interpretation  of the references to colour in this figure legend, the reader is referred to the  Web version of this article.)
Fig. 8. Comparison of ship wave crest patterns: (a) Fr ¼ 0:66 (Us ¼ 6:5m=s, kh >= 0:724π), (b) Fr ¼ 0:86 (Us ¼ 8:5m=s, kh >= 0:342π), (c) Fr ¼ 1:21 (Us ¼ 12:0m=s, kh >= 0:003π). Line definition: red solid line ¼ present theory; yellow dashed line ¼ Kelvin theory; white dot ¼ FLOW-3D solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Keywords

Ship wave crests
Cusp locus angle
Entire range of water depths
Theoretical solution
Numerical experiment

References

kylas, T.R., 1984. On the excitation of long nonlinear water waves by a moving pressure
distribution. J. Fluid Mech. 141, 455–466.

Chen, X.N., Sharma, S.D., 1995. A slender ship moving at a near-critical speed in a
shallow channel. J. Fluid Mech. 291, 263–285.
David, C.G., Roeber, V., Goseberg, N., Schlurmann, T., 2017. Generation and propagation
of ship-borne waves – solutions from a Boussinesq-type model. Cost Eng. 127,
170–187.
Ersan, D.B., Beji, S., 2013. Numerical simulation of waves generated by a moving
pressure field. Ocean Eng. 59, 231–239.
Ertekin, R.C., Webster, W.C., Wehausen, J.V., 1986. Waves caused by a moving
disturbance in a shallow channel of finite width. J. Fluid Mech. 169, 275–292.
Fang, M.-C., Yang, R.-Y., Shugan, I.V., 2011. Kelvin ship wake in the wind waves field
and on the finite sea depth. J. Mech. 27 (1), 71–77.
Havelock, T.H., 1908. The propagation of groups of waves in dispersive media with
application to waves on water produced by a travelling disturbance. Proc. Royal Soc.
London Ser. A 398–430.
Hennings, I., Romeiser, R., Alpers, W., Viola, A., 1999. Radar imaging of Kelvin arms of
ship wakes. Int. J. Remote Sens. 20 (13), 2519–2543.
Hur, D.S., Lee, J., Choi, D.S., Lee, H.W., 2011. On run-up characteristics of revetment
under interaction among ocean wave, current and ship induced wave in the canal.
In: Proceedings of the 37th Conference on the Korean Society of Civil Engineers,
pp. 588–591 (in Korean).
Johnson, J.W., 1958. Ship waves in navigation channels. In: Proceedings of the 6th
Conference on Coastal Engineering, pp. 666–690.
Kang, Y.S., Kim, P.J., Hyun, S.K., Sung, H.K., 2008. Numerical simulation of ship-induced
wave using FLOW-3D. J. Korean Soc. Coast. Ocean Eng. 20 (3), 255–267 (in Korean).
Kelvin, 1887. On ship waves. In: Proceedings of the Institution of Mechanical
Engineering, pp. 409–433.
Kelvin, 1906. Deep sea ship-waves. Proc. R. Soc. Edinb. 25 (2), 1060–1084.
Lamb, H., 1945. Hydrodynamics. Dover Publications.
Lee, C., Lee, B.W., Kim, Y.J., Ko, K.O., 2011. Ship wave crests in intermediate-depth
water. In: Proceedings of the 6th International Conference on Asian and Pacific
Coasts, pp. 1818–1825.
Lee, B.W., Lee, C., Kim, Y.J., Ko, K.O., 2013. Prediction of ship wave crests on varying
water depths and verification by FLOW-3D. J. Korean Soc. Civil Eng. 33 (4),
1447–1454 (in Korean).
Lighthill, M.J., Whitham, G.B., 1955. On kinematic waves: I. Flood movement in long
rivers; II. Theory of traffic flow on long crowded roads. Proc. R. Soc. A 229, 281–345.
Newman, J.N., 1970. Recent research on ship waves. In: Proceedings of the 8th
Symposium on Naval Hydrodynamics, pp. 519–545.
Newman, J.N., 1977. Marine Hydrodynamics. The MIT Press.
Reed, A.M., Milgram, J.H., 2002. Ship wakes and their radar images. Annu. Rev. Fluid
Mech. 34, 469–502.
Shemdin, O.H., 1990. Synthetic aperture radar imaging of ship wakes in the Gulf of
Alaska. J. Geophys. Res. 95 (C9), 16319–16338.
Shi, F., Malej, M., Smith, J.M., Kirby, J.T., 2018. Breaking of ship bores in a Boussinesqtype ship-wake model. Cost Eng. 132, 1–12.
Sorensen, R.M., 1967. Investigation of ship-generated waves. J. Waterw. Harb. Div.
85–99. ASCE.
Sorensen, R.M., 1969. Waves generated by model ship hull. J. Waterw. Harb. Div.
513–538. ASCE.
Sorensen, R.M., Weggel, J.R., 1984. Development of ship wave design information. In:
Proceedings of the 19th Conference on Coastal Engineering, pp. 3227–3243. ASCE.
Stoker, J.J., 1957. Water Waves: the Mathematical Theory with Applications.
Interscience Publishers.
Tuck, E.O., 1966. Shallow-water flows past slender bodies. J. Fluid Mech. 26, 81–95.
Wu, D.M., Wu, T.Y., 1982. Three-dimensional nonlinear long waves due to moving
surface pressure. In: Proceedings of the 14th Symposium on Naval Hydrodynamics,
pp. 103–129.

Fig. 11. Velocity vectors along x-direction through the center of the box culvert for B0, B30, B50, and B70 respectively.

Numerical investigation of scour characteristics downstream of blocked culverts

막힌 암거 하류의 세굴 특성 수치 조사

NesreenTahabMaged M.El-FekyaAtef A.El-SaiadaIsmailFathya
aDepartment of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
bLab Manager, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

횡단 구조물을 통한 막힘은 안정성을 위협하는 위험한 문제 중 하나입니다. 암거의 막힘 형상 및 하류 세굴 특성에 미치는 영향에 관한 연구는 거의 없습니다.

이 연구의 목적은 수면과 세굴 모두에서 상자 암거를 통한 막힘의 작용을 수치적으로 논의하는 것입니다. 이를 위해 FLOW 3D v11.1.0을 사용하여 퇴적물 수송 모델을 조사했습니다.

상자 암거를 통한 다양한 차단 비율이 연구되었습니다. FLOW 3D 모델은 실험 데이터로 보정되었습니다. 결과는 FLOW 3D 프로그램이 세굴 다운스트림 상자 암거를 정확하게 시뮬레이션할 수 있음을 나타냅니다.

막힌 경우에 대한 속도 분포, 최대 세굴 깊이 및 수심을 플롯하고 비차단된 사례(기본 사례)와 비교했습니다.

그 결과 암거 높이의 70% 차단율은 상류의 수심을 암거 높이의 2.3배 증가시키고 평균 유속은 기본 경우보다 3배 더 증가시키는 것으로 입증되었다. 막힘 비율의 함수로 상대 최대 세굴 깊이를 추정하는 방정식이 만들어졌습니다.

Blockage through crossing structures is one of the dangerous problems that threaten its stability. There are few researches concerned with blockage shape in culverts and its effect on characteristics of scour downstream it.

The study’s purpose is to discuss the action of blockage through box culvert on both water surface and scour numerically. A sediment transport model has been investigated for this purpose using FLOW 3D v11.1.0. Different ratios of blockage through box culvert have been studied. The FLOW 3D model was calibrated with experimental data.

The results present that the FLOW 3D program was capable to simulate accurately the scour downstream box culvert. The velocity distribution, maximum scour depth and water depths for blocked cases have been plotted and compared with the non-blocked case (base case).

The results proved that the blockage ratio 70% of culvert height makes the water depth upstream increases by 2.3 times of culvert height and mean velocity increases by 3 times more than in the base case. An equation has been created to estimate the relative maximum scour depth as a function of blockage ratio.

1. Introduction

Local scour is the removal of granular bed material by the action of hydrodynamic forces. As the depth of scour hole increases, the stability of the foundation of the structure may be endangered, with a consequent risk of damage and failure [1]. So the prediction and control of scour is considered to be very important for protecting the water structures from failure. Most previous studies were designed to study the different factors that impact on scour and their relationship with scour hole dimensions like fluid characteristics, flow conditions, bed properties, and culvert geometry. Many previous researches studied the effect of flow rate on scour hole by information Froude number or modified Froude number [2][3][4][5][6]. Cesar Mendoza [6] found a good correlation between the scour depth and the discharge Intensity (Qg−.5D−2.5). Breusers and Raudkiv [7] used shear velocity in the outlet-scour prediction procedure. Ali and Lim [8] used the densimetric Froude number in estimation of the scour depth [1][8][9][10][11][12][13][14]. “The densimetric Froude number presents the ratio of the tractive force on sediment particle to the submerged specific weight of the sediment” [15](1)Fd=uρsρ-1gD50

Ali and Lim [8] pointed to the consequence of tailwater depth on scour behavior [1][2][8][13]. Abida and Townsend [2] indicated that the maximum depth of local scour downstream culvert was varying with the tailwater depth in three ways: first, for very shallow tailwater depths, local scouring decreases with a decrease in tailwater depth; second, when the ratio of tailwater depth to culvert height ranged between 0.2 and 0.7, the scour depth increases with decreasing tailwater depth; and third for a submerged outlet condition. The tailwater depth has only a marginal effect on the maximum depth of scour [2]. Ruff et al. [16] observed that for materials having similar mean grain sizes (d50) but different standard deviations (σ). As (σ) increased, the maximum scour hole depth decreased. Abt et al. [4] mentioned to role of soil type of maximum scour depth. It was noticed that local scour was more dangerous for uniform sands than for well-graded mixtures [1][2][4][9][17][18]. Abt et al [3][19] studied the culvert shape effect on scour hole. The results evidenced that the culvert shape has a limited effect on outlet scour. Under equivalent discharge conditions, it was noted that a square culvert with height equal to the diameter of a circular culvert would reduce scour [16][20]. The scour hole dimension was also effected by the culvert slope. Abt et al. [3][21] showed that the culvert slope is a key element in estimating the culvert flow velocity, the discharge capacity, and sediment transport capability. Abt et al. [21][22] tested experimentally culvert drop height effect on maximum scour depth. It was observed that as the drop height was increasing, the depth of scour was also increasing. From the previous studies, it could have noticed that the most scour prediction formula downstream unblocked culvert was the function of densimetric Froude number, soil properties (d50, σ), tailwater depth and culvert opening size. Blockage is the phenomenon of plugging water structures due to the movement of water flow loaded with sediment and debris. Water structures blockage has a bad effect on water flow where it causes increasing of upstream water level that may cause flooding around the structure and increase of scour rate downstream structures [23][24]. The blockage phenomenon through was studied experimentally and numerical [15][25][26][27][28][29][30][31][32][33]. Jaeger and Lucke [33] studied the debris transport behavior in a natural channel in Australia. Froude number scale model of an existing culvert was used. It was noticed that through rainfall event, the mobility of debris was impressed by stream shape (depth and width). The condition of the vegetation (size and quantities) through the catchment area was the main factor in debris transport. Rigby et al. [26] reported that steep slope was increasing the ability to mobilize debris that form field data of blocked culverts and bridges during a storm in Wollongong city.

Streftaris et al. [32] studied the probability of screen blockage by debris at trash screens through a numerical model to relate between the blockage probability and nature of the area around. Recently, many commercial computational fluid programs (CFD) such as SSIIM, Fluent, and FLOW 3D are used in the analysis of the scour process. Scour and sediment transport numerical model need to validate by using experimental data or field data [34][35][36][37][38]. Epely-Chauvin et al. [36] investigated numerically the effect of a series of parallel spur diked. The experimental data were compared by SSIIM and FLOW 3D program. It was found that the accuracy of calibrated FLOW 3D model was better than SSIIM model. Nielsen et al.