Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.

Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump over Triangular Macroroughnesses

Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션

by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater202113(5), 674; https://doi.org/10.3390/w13050674

Abstract

The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.

Keywords: submerged hydraulic jumptriangular macroroughnessesTKEbed shear stress coefficientvelocityFLOW-3D model

수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.

이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.

내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.

 Introduction

격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].

베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.

Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.

Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.

그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.

Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.

자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.

Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.

Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.

Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.

ReferenceShape Bed-Channel Type-
Jump Type
Channel Dimension (m)Roughness (mm)Fr1Investigated Flow
Properties
Ead and Rajaratnam [10]-Smooth and rough beds-Rectangular channel-Free jumpCL1 = 7.60
CW2 = 0.44
CH3 = 0.60
-Corrugated sheets (RH4 = 13 and 22)4–10-Upstream and tailwater depths-Jump length-Roller length-Velocity-Water surface profile
Tokyay et al. [11]-Smooth and rough beds-Rectangular channel-Free jumpCL = 10.50
CW = 0.253
CH = 0.432
-Two sinusoidal corrugated (RH = 10 and 13)5–12-Depth ratio-Jump length-Energy loss
Izadjoo and Shafai-Bejestan [14]-Smooth and rough beds-Two rectangular-channel-Free jumpCL = 1.2, 9
CW = 0.25, 0.50
CH = 0.40
Baffle with trapezoidal cross section
(RH: 13 and 26)
6–12-Upstream and tailwater depths-Jump length-Velocity-Bed shear stress coefficient
Abbaspour et al. [12]-Horizontal bed with slope 0.002-Rectangular channel—smooth and rough beds-Free jumpCL = 10
CW = 0.25
CH = 0.50
-Sinusoidal bed (RH = 15,20, 25 and 35)3.80–8.60-Water surface profile-Depth ratio-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Shafai-Bejestan and Neisi [13]-Smooth and rough beds-Rectangular channel-Free jumpCL = 7.50
CW = 0.35
CH = 0.50
Lozenge bed4.50–12-Sequent depth-Jump length
Elsebaie and Shabayek [18]-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jumpCL = 9
CW = 0.295
CH = 0.32
-Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)50-Water surface profile-Sequent depth-Jump length-Bed shear stress coefficient
Samadi-Boroujeni et al. [19]-Rectangular channel-Smooth and rough beds-Free jumpCL = 12
CW = 0.40
CH = 0.40
-Six triangular corrugated (RH = 2.5)6.10–13.10-Water surface profile-Sequent depth-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Ahmed et al. [20]-Smooth and rough beds-Rectangular channel-Submerged jumpCL = 24.50
CW = 0.75
CH = 0.70
-Triangular corrugated sheet (RH = 40)1.68–9.29-Conjugated and tailwater depths-Submerged ratio-Deficit depth-Relative jump length-Jump length-Relative roller jump length-Jump efficiency-Bed shear stress coefficient
Nikmehr and Aminpour [15]-Horizontal bed with slope 0.002-Rectangular channel-Rough bed-Free jumpCL = 12
CW = 0.25
CH = 0.50
-Trapezoidal blocks (RH = 2, 3 and 4)5.01–13.70-Water surface profile-Sequent depth-Jump length-Roller length-Velocity
Ghaderi et al. [17]-Smooth and rough beds-Rectangular channel-Free and submerged jumpCL = 4.50
CW = 0.75
CH = 0.70
-Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
Present studyRectangular channel
Smooth and rough beds
Submerged jump
CL = 4.50
CW = 0.75
CH = 0.70
-Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss

CL1: channel length, CW2: channel width, CH3: channel height, RH4: roughness height.

이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.

베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.

다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.

CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].

본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.

Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.

Table 2. Effective parameters in the numerical model.

Bed TypeQ
(l/s)
I
(cm)
T (cm)d (cm)y1
(cm)
y4
(cm)
Fr1= u1/(gy1)0.5SRe1= (u1y1)/υ
Smooth30, 4551.62–3.839.64–32.101.7–9.30.26–0.5039,884–59,825
Triangular macroroughnesses30, 454, 8, 12, 16, 20451.62–3.846.82–30.081.7–9.30.21–0.4439,884–59,825
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).

Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).

ModelsBed TypeQ (l/s)d (cm)y1 (cm)u1 (m/s)Fr1
Numerical and PhysicalSmooth4551.62–3.831.04–3.701.7–9.3
T/I = 0.54551.61–3.831.05–3.711.7–9.3
T/I = 0.254551.60–3.841.04–3.711.7–9.3
Figure 3. The boundary conditions governing the simulations.
Figure 3. The boundary conditions governing the simulations.
Figure 4. Sketch of mesh setup.
Figure 4. Sketch of mesh setup.

Table 4. Characteristics of the computational grids.

MeshNested Block Cell Size (cm)Containing Block Cell Size (cm)
10.551.10
20.651.30
30.851.70

Table 5. The numerical results of mesh convergence analysis.

ParametersAmounts
fs1 (-)7.15
fs2 (-)6.88
fs3 (-)6.19
K (-)5.61
E32 (%)10.02
E21 (%)3.77
GCI21 (%)3.03
GCI32 (%)3.57
GCI32/rp GCI210.98
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).

Conclusions

  • 본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
  • 개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
  • T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
  • 삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
  • 삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
  • 매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
  • 삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
  • 거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
  • 일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 ​​대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.

References

  1. White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
  2. Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci. 197919, 81–128. [Google Scholar] [CrossRef]
  3. McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
  4. Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids 201234, 35–46. [Google Scholar] [CrossRef]
  5. Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A 201394, 83–87. [Google Scholar] [CrossRef]
  6. Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech. 2016797, 60–94. [Google Scholar] [CrossRef]
  7. Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc. 2016108, 425–432. [Google Scholar] [CrossRef]
  8. Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng. 201742, 3751–3760. [Google Scholar] [CrossRef]
  9. De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech. 201818, 849–870. [Google Scholar] [CrossRef]
  10. Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 2002128, 656–663. [Google Scholar] [CrossRef]
  11. Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
  12. Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 20093, 109–117. [Google Scholar] [CrossRef]
  13. Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci. 20092, 436–445. [Google Scholar] [CrossRef]
  14. Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci. 20077, 1164–1169. [Google Scholar] [CrossRef]
  15. Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng. 201764, 396–407. [Google Scholar] [CrossRef]
  16. Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
  17. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform. 202022, 1554–1572. [Google Scholar] [CrossRef]
  18. Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS 201010, 37–47. [Google Scholar]
  19. Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng. 201340, 841–847. [Google Scholar] [CrossRef]
  20. Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J. 20145, 1033–1042. [Google Scholar] [CrossRef]
  21. Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water 201911, 28. [Google Scholar] [CrossRef]
  22. Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 2016142, 04015037. [Google Scholar] [CrossRef]
  23. Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng. 2017143, 04016091. [Google Scholar] [CrossRef]
  24. Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div. 196591, 107–132. [Google Scholar] [CrossRef]
  25. Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
  26. Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res. 199028, 437–460. [Google Scholar] [CrossRef]
  27. Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
  28. Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
  29. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139, 201–225. [Google Scholar] [CrossRef]
  30. Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng. 2020, 1–9. [Google Scholar] [CrossRef]
  31. Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water 201911, 235. [Google Scholar] [CrossRef]
  32. Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol. 201634, 186–190. [Google Scholar]
  33. Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res. 200846, 739–752. [Google Scholar] [CrossRef]
  34. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 201680, 322–335. [Google Scholar] [CrossRef]
  35. Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids 20205, 182. [Google Scholar] [CrossRef]
  36. Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā 201944, 216. [Google Scholar] [CrossRef]
  37. Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water 202012, 1992. [Google Scholar] [CrossRef]
  38. Ghaderi, A.; Abbasi, S.; Abraham, J.; Azamathulla, H.M. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Meas. Instrum. 202072, 101711. [Google Scholar] [CrossRef]
  39. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput. 19861, 3–51. [Google Scholar] [CrossRef] [PubMed]
  40. Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water 20168, 545. [Google Scholar] [CrossRef]
  41. Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour. 20204, 425–436. [Google Scholar] [CrossRef]
  42. Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev. 200962. [Google Scholar] [CrossRef]
  43. Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water 202113, 14. [Google Scholar] [CrossRef]
  44. Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008130, 0780011–0780013. [Google Scholar]
  45. Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis. 20069, 57–68. [Google Scholar] [CrossRef]
  46. Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math. 2020, 1–13. [Google Scholar] [CrossRef]
  47. Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res. 201227, 100–111. [Google Scholar] [CrossRef]
  48. Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
  49. Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
  50. Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng. 2015105, 160–175. [Google Scholar] [CrossRef]
  51. Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng. 201439, 6969–6981. [Google Scholar] [CrossRef]
  52. Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng. 1996122, 540–548. [Google Scholar] [CrossRef]
  53. De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 201715, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow

Numerical Methods in Civil Engineering

Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham****

토목공학의 수치해석법

Abstract

The main purpose of this study is to provide a method to increase energy dissipation on an inclined drop. Therefore, three types of rough elements with cylindrical, triangular and batshaped geometries are used on the inclined slope in the relative critical depth range of 0.128 to 0.36 and the effect of the geometry of these elements is examined using Flow 3D software. The results showed demonstrate that the downstream relative depth obtained from the numerical analysis is in good agreement with the laboratory results. The application of rough elements on the inclined drop increased the downstream relative depth and also the relative energy dissipation. The application of rough elements on the sloping surface of the drop significantly reduced the downstream Froude number, so that the Froude number in all models ranging from 4.7~7.5 to 1.45~3.36 also decreased compared to the plain drop. Bat-shaped elements are structurally smaller in size, so the use of these elements, in addition to dissipating more energy, is also economically viable.

이 연구의 주요 목적은 경사진 낙하에서 에너지 소산을 증가시키는 방법을 제공하는 것입니다. 따라서 0.128 ~ 0.36의 상대 임계 깊이 범위에서 경사면에 원통형, 삼각형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거친 요소가 사용되며 이러한 요소의 형상의 영향은 Flow 3D 소프트웨어를 사용하여 조사됩니다. 결과는 수치 분석에서 얻은 하류 상대 깊이가 실험실 결과와 잘 일치함을 보여줍니다. 경 사진 낙하에 거친 요소를 적용하면 하류 상대 깊이와 상대 에너지 소산이 증가했습니다. 낙차 경사면에 거친 요소를 적용하면 하류의 Froude 수를 크게 감소시켜 4.7~7.5에서 1.45~3.36 범위의 모든 모델에서 Froude 수도 일반 낙차에 비해 감소했습니다. 박쥐 모양의 요소는 구조적으로 크기가 더 작기 때문에 더 많은 에너지를 분산시키는 것 외에도 이러한 요소를 사용하는 것이 경제적으로도 가능합니다.

Keywords: Downstream depth, Energy dissipation, Froude number, Inclined drop, Roughness elements

Introduction

급수 네트워크 시스템, 침식 수로, 수처리 시스템 및 경사가 큰 경우 흐름 에너지를 더 잘 제어하기 위해 경사 방울을 사용할 수 있습니다. 낙하 구조는 지반의 자연 경사를 설계 경사로 변환하여 에너지 소산, 유속 감소 및 수심 증가를 유발합니다. 따라서 흐름의 하류 에너지를 분산 시키기 위해 에너지 분산 구조를 사용할 수 있습니다. 난기류와 혼합된 물과 공기의 형성은 에너지 소비를 증가 시키는 효과적인 방법입니다. 흐름 경로에서 거칠기 요소를 사용하는 것은 에너지 소산을 위한 알려진 방법입니다. 이러한 요소는 흐름 경로에 배치됩니다. 그들은 종종 에너지 소산을 증가시키기 위해 다른 기하학적 구조와 배열을 가지고 있습니다. 이 연구의 목적은 직사각형 경사 방울에 대한 거칠기 요소의 영향을 조사하는 것입니다.

Fig. 1: Model made in Ardabil, Iran
Fig. 1: Model made in Ardabil, Iran
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 5: Variation of the RMSE varying cell size
Fig. 5: Variation of the RMSE varying cell size
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 8: Relative edge depth versus the relative critical depth
Fig. 8: Relative edge depth versus the relative critical depth
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth

Conclusions

현재 연구에서 FLOW-3D 소프트웨어를 사용하여 한 높이, 한 각도, 밀도 15% 및 지그재그 배열에서 삼각형, 원통형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거칠기 요소를 사용하여 경사 낙하 수리학적 매개변수에 대한 거칠기 요소 형상의 영향 평가되었다. VOF 방법을 사용하여 자유 표면 흐름을 시뮬레이션하고 초기에 3개의 난류 모델 RNG, k-ɛ 및 kω를 검증에 사용하고 이를 검토한 후 RNG 방법을 사용하여 다른 모델을 시뮬레이션했습니다. 1- 수치 결과에서 얻은 부드러운 경사 방울의 하류 상대 깊이는 실험실 데이터와 매우 좋은 상관 관계가 있으며 원통형 요소가 장착 된 경사 방울의 상대 에지 깊이 값이 가장 높았습니다. 2- 하류 상대깊이는 임계상대깊이가 증가함에 따라 상승하는 경향을 나타내어 박쥐형 요소를 구비한 경사낙하와 완만한 경사낙하가 각각 하류상대깊이가 가장 높고 가장 낮았다. 3- 하류 깊이의 증가로 인해 상대적 임계 깊이가 증가함에 따라 상대적 에너지 소산이 감소합니다. 한편, 가장 높은 에너지 소산은 박쥐 모양의 요소가 장착된 경사 낙하와 관련이 있으며 가장 낮은 에너지 소산은 부드러운 낙하와 관련이 있습니다. 삼각형, 원통형 및 박쥐 모양의 거친 요소가 장착된 드롭은 부드러운 드롭보다 각각 65%, 76% 및 85% 더 많은 흐름 에너지를 소산합니다. 4- 낙차의 경사면에 거친 요소를 적용하여 다운 스트림 Froude 수를 크게 줄여 4.7 ~ 7.5에서 1.45 ~ 3.36까지의 모든 모델에서 Froude 수가 부드러운 낙하에 비해 감소했습니다. 또한, 다른 원소보다 부피가 작은 박쥐 모양의 거칠기의 부피로 인해 이러한 유형의 거칠기를 사용하는 것이 경제적입니다.

References

References:
[1] Abbaspour, A., Shiravani, P., and Hosseinzadeh dalir, A.,
“Experimental study of the energy dissipation on the rough ramps”,
ISH journal of hydraulic engineering, 2019, p. 1-9.
[2] Abraham, J.P., Sparrow, E.M., Gorman, J.M., Zhao, Y., and
Minkowycz, W.J., “Application of an Intermittency model for
laminar, transitional, and turbulent internal flows”, Journal of
Fluids Engineering, vol. 141, 2019, paper no. 071204.
[3] Ahmad, Z., Petappa, N.M., and Westrich, B., “Energy
dissipation on block ramps with staggered boulders”, Journal of
hydraulic engineering, vol. 135(6), 2009, p. 522-526.
[4] Babaali, H.R., Shamsai, A., and Vosoughifar, H.R.,
“Computational modeling of the hydraulic jump in the stilling
basin with convergence walls using CFD codes”, Arabian Journal
for Science and Engineering, vol. 40(2), 2014, p. 381-395.
[5] Castillo, L.G., Carrillo, J.M., and Cacía, J.T., “Numerical
simulations and laboratory measurements in hydraulic jumps”,
International conference on hydroinformatics. (2014, August) New
York city.
[6] Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S.,
and Abraham, J., “Experimental and numerical investigation for
energy dissipation of supercritical flow in sudden contractions”,
Journal of groundwater science and engineering, vol. 8(4), 2020a,
p. 396-406.
[7] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., and
Abraham, J., “Three-dimensional investigation of hydraulic
properties of vertical drop in the presence of step and grid
dissipators”, Symmetry, vol. 13 (5), 2021a, p. 895.
[8] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., and
Bagherzadeh, M., “SVM performance for predicting the effect of
horizontal screen diameters on the hydraulic parameters of a
vertical drop”, Applied sciences, vol. 11 (9), 2021b, p. 4238.
[9] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R.,
and Abraham, J. “Study of the performance of support vector
machine for predicting vertical drop hydraulic parameters in the
presence of dual horizontal screens”, Water supply, vol 21(1),
2021c, p. 217-231.
[10] Daneshfaraz, R., and Ghaderi, A., “Numerical investigation of
inverse curvature ogee spillways”, Civil engineering journal, vol.
3(11), 2017, p. 1146-1156.
[11] Daneshfaraz, R., Majedi Asl, M., and Bagherzadeh, M.,
“Experimental Investigation of the Energy Dissipation and the
Downstream Relative Depth of Pool in the Sloped Gabion Drop
and the Sloped simple Drop”, AUT Journal of Civil Engineering,
2020b (In persian).
[12] Daneshfaraz, R., Majedi Asl, M., Bazyar, A., Abraham, J.,
Norouzi, R., “The laboratory study of energy dissipation in inclined
drops equipped with a screen”, Journal of Applied Water
Engineering and Research, 2020c, p. 1-10.
[13] Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and
Ghaderi, A., “3-D Numerical simulation of water flow over a
broad-crested weir with openings”, ISH Journal of Hydraulic
Engineering, 2019, p.1-9.
[14] Daneshfaraz, R., Sadeghfam, S., and Kashani, M., “Numerical
simulation of flow over stepped spillways”, Research in civil
engineering and environmental engineering, vol. 2(4), 2014, p.
190-198.
[15] Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M.,
“Efficiency of trapezoidal labyrinth shaped stepped spillways”,
Flow measurement and instrumentation, vol. 72, 2020a.
[16] Ghaderi, A., Daneshfaraz, R., Dasineh, M., and Di Francesco,
S., “Energy dissipation and hydraulics of flow over trapezoidaltriangular labyrinth weirs”, Water, vol. 12(7), 2020b, p. 1-18.
[17] Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, and
Azamathulla, H.M. “Experimental investigation on effective
scouring parameters downstream from stepped spillways”, Water
supply, vol. 20(4), 2020c, p. 1-11.
[18] Ghare, A.D., Ingle, R.N., Porey, P.D., and Gokhale, S.S.
“Block ramp design for efficient energy dissipation”, Journal of
energy dissipation, vol. 136(1), 2010, p. 1-5.
[19] Gorman, J.M., Sparrow, E.M., Smith, C.J., Ghoash, A.,
Abraham, J.P., Daneshfaraz, R., Rezezadeh, J., “In-bend pressure
drop and post-bend heat transfer for a bend with partial blockage at
its inlet”, Numerical Heat Transfer A, vol, 73, 2018, p. 743-767.
[20] Jamil, M., and Khan, S.A., “Theorical study of hydraulic jump
in circular channel section”, ISH journal of hydraulic engineering,
vol. 16(1), 2010, p. 1-10.
[21] Katourani, S., and Kashefipour, S.M., “Effect of the geometric
characteristics of baffle on hydraulic flow condition in baffled
apron drop”, Irrigation sciences and engineering, vol. 37(2), 2012,
p. 51-59.
[22] Lai, Y.G., and Wu, K.A., “Three-dimensional flow and
sediment transport model for free surface open channel flow on
unstructured flexible meshes”, Fluids, vol. 4(1), 2019, p. 1-19.

[23] Nayebzadeh, B., Lotfollahi yaghin, M.A., and Daneshfaraz,
R., “Numerical investigation of hydraulic characteristics of vertical
drops with screens and gradually wall expanding”, Amirkabir
journal of civil engineering, 2020 (In Persian).
[24] Nurouzi, R., Daneshfaraz, R., and Bazyar, A., “The study of
energy dissipation due to the use of vertical screen in the
downstream of inclined drop by adaptive Neuro-Fuzzy inference
system (ANFIS)”, AUT journal of civil engineering, 2019, (In
Persian).
[25] Ohtsu, I., and Yasuda, Y., “Hydraulic jump in sloping
channel”, Journal of hydraulic engineering, vol. 117(7), 1991, p.
905-921.
[26] Olsen, L., Abraham, J.P., Cheng, L.K., Gorman, J.M., and
Sparrow, E.M., “Summary of forced-convection fluid flow and
heat transfer for square cylinders of different aspect ratios ranging
from the cube to a two-dimensional cylinder”, Advances in Heat
Transfer, Vol. 51, 2019, p. 351-457.
[27] Pagliara, S., Das, R., and Palermo, M., “Energy dissipation on
submerged block ramps”, Journal of irrigation and drainage
engineering, vol. 134(4), 2008, p.527-532.
[28] Pagliara, S., and Palermo, M., “Effect of stilling basin
geometry on the dissipative process in the presence of block
ramps”, Journal of irrigation and drainage engineering, vol.
138(11), 2012, p. 1027-1031.
[29] Simsek, O., Akoz, M.S, and Soydan, N.G., “Numerical
validation of open channel flow over a curvilinear broad-creasted
weir”, Progress in computational fluid dynamics an international
journal, vol. 16(6), 2016, p. 364-378.
[30] Sharif, N., and Rostami, A., “Experimental and numerical
study of the effect of flow sepration on dissipating energy in
compound bucket”, APCBEE procedia, vol. 9, 2014, p. 334-338.
[31] Sparrow, E.M., Tong, J.C.K., and Abraham, J.P., “Fluid flow
in a system with separate laminar and turbulent zones”, Numerical
Heat Transfer A, vol. 53(4), 2008, p. 341-353.
[32] Sparrow, E.M., Gorman, J.M., Abraham, J.P., and
Minkowycz, W.J., “Validation of turbulence models for numerical
simulation of fluid flow and convective heat transfers”, Advances
in Heat Transfer, vol. 49, 2017, p. 397-421.
[33] Wagner, W.E., “Hydraulic model studies of the check intake
structure-potholes East canal”, Bureau of reclamation hydraulic
laboratory report hyd, 1956, 411.

FLOW-3D AM

flow3d AM-product
FLOW-3D AM-product

와이어 파우더 기반 DED | Wire Powder Based DED

일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.

와이어 기반 DED | Wire Based DED

와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.

FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

Melting | 파우더 베드 용해

DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

Multilayer | 다층 적층 제조

용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.

해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

LPBF의 키홀 링 | Keyholing in LPBF

키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

Scan Strategy | 스캔 전략

스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.

Beam Shaping | 빔 형성

레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.

이 영역에서 수행 된 일부 작업에 대해 자세히 알아 보려면 “The Next Frontier of Metal AM”웨비나를 시청하십시오.

Multi-material Powder Bed Fusion | 다중 재료 분말 베드 융합

이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.

다중 재료 용접 사례 연구

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사

GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).

Numerical analysis of water flow around a bridge pier in a sand mined channel

모래 채굴 수로에서 교각 주변의 물 흐름에 대한 수치 해석

Oscar HERRERA-GRANADOS1,, Abhijit LADE2, , Bimlesh KUMAR3
1 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
email: Oscar.Herrera-Granados@pwr.edu.pl
2 3Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
email: lade176104013@iitg.ac.in
email: bimk@iitg.ac.in

ABSTRACT

Extraction of sand from river beds has a variety of effects on the hydraulic and morphological characteristicsof the fluvial systems. Recent studies on mining pit have revealed that downstream reaches of the mining pitare more prone to erosion due to increased bed shear stresses. Bridge piers in the vicinity of such mining pitsare also prone to streambed instabilities due to turbulence alterations as suggested by a few recent studies.Thus, a numerical study was carried out to study the effects of a mining pit on the hydrodynamics around acircular pier. The numerical experiments were conducted with the Computational Fluid Dynamics (CFD) codeFlow-3D, which can run several turbulence model closures. In this contribution, the authors applied theclassical RANS equations with the volume of fluid (VOF) method (Savage and Johnson, 2001).

강바닥에서 모래를 추출하는 것은 하강 시스템의 수력 학적 및 형태 학적 특성에 다양한 영향을 미칩니다. 광산 구덩이에 대한 최근 연구에 따르면 광산 구덩이의 하류 도달은 베드 전단 응력 증가로 인해 침식되기 쉽습니다. 이러한 광산 구덩이 근처의 교각은 최근 몇 가지 연구에서 제안한 바와 같이 난류 변화로 인해 유동 불안정성이 발생하기 쉽습니다. 따라서 원형 부두 주변의 유체 역학에 대한 광산 구덩이의 영향을 연구하기 위해 수치 연구가 수행되었습니다. 수치 실험은 CFD (Computational Fluid Dynamics) 코드 Flow-3D로 수행되었으며, 여러 난류 모델 폐쇄를 실행할 수 있습니다. 이 공헌에서 저자는 VOF (volume of fluid) 방법 (Savage and Johnson, 2001)과 함께 고전적인 RANS 방정식을 적용했습니다.

1. Set-up and boundary conditions

두 번의 수치 실행 결과가 이 기여도에서 비교됩니다. 첫 번째 실험에서 0.044 [m3-s-1]의 정상 유량이 원통 부두가 있는 1.0 [m] 폭의 채널을 따라 흐르는 상류 경계 조건으로 설정되었습니다. 계산 영역은 IIT Guwahati 수력학 실험실 (Lade et al., 2019b)의 틸팅 유체 크기를 기반으로 정의됩니다. 두 번째 실행에서는 동일한 배출물이 실린더의 상류에 있는 준설 사다리꼴 구덩이와 함께 실린더 주위로 통과되었습니다. 구덩이의 깊이는 0.1 [m]이고 수로 전체에 걸쳐 확장되었습니다. 수로의 길이 방향을 따라 피트의 상단 너비는 0.67 [m], 하단 너비는 0.33 [m]였습니다.

이 연구의 주요 초점은 채굴 구덩이 (그림 1의 PF2)가있을 때 구덩이 하류 (그림 1의 PF1)와 실린더 하류의 흐름 특성의 변화를 조사하는 것이 었습니다. 따라서 채널 베드는 고정 베드 모델을 사용하여 시뮬레이션 되었습니다. 두 실험의 수압 조건은 CFD 경계 조건으로 설정된 표 1에 나와 있습니다. 배출구 (하류 경계 조건)는 실험실 기록 중에 측정된 수심을 사용하여 설정되었습니다 (Lade et al., 2019a).

Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).
Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).
Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).
Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).
Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2
Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2

References

Herrera-Granados O (2018) Turbulence flow modeling of one-sharp-groyne field. In Free surface flows and transport processes :
36th International School of Hydraulics. Geoplanet: Earth and Planetary Series. Springer IP AG, 207-218.
Lade AD, Deshpande V, Kumar B (2019a) Study of flow turbulence around a circular bridge pier in sand-mined stream channel.
Proceedings of the Institution of Civil Engineers – Water Management,https://doi.org/10.1680/jwama.19.00041
Lade AD, A, DT, Kumar B (2019b) Randomness in flow turbulence around a bridge pier in a sand
mined channel..Physica A 535 122426
Savage, BM, Johnson, M.C (2001). Flow over ogee spillway: Physical and numerical model case study. J. Hydraulic Eng.,
127(8), 640–649.

Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

Abstract

This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD software) is an effective tool for studying droplet dynamics and mixing in microfluidic devices. The first example studied is a T-junction where flow patterns for both droplet generation and passive mixing are analyzed. The second example studied is a co-flowing device where the formation and breakup of bubbles is simulated. The effect of viscosity on bubble formation is also analyzed. For a T-junction the bubble size is corroborated with experimental data. Both the bubble size and frequency are studied and corroborated with experimental data for a co-flowing device. The third example studied is the electrowetting phenomenon observed in a small water droplet resting on a dielectric material. The steady-state contact angle is plotted against the voltage applied. The results are compared with both the Young-Lippmann curve and experimental results. 

이 논문은 FLOW-3D (범용 CFD 소프트웨어)의 유체 부피 (TruVOF) 방법이 미세 유체 장치에서 액적 역학 및 혼합을 연구하는데 효과적인 도구임을 보여줍니다.

연구된 첫 번째 예는 액적 생성 및 수동 혼합에 대한 흐름 패턴이 분석되는 T- 접합입니다. 연구된 두 번째 예는 기포의 형성 및 분해가 시뮬레이션 되는 동시 유동 장치입니다.

기포 형성에 대한 점도의 영향도 분석됩니다. T 접합의 경우 기포 크기는 실험 데이터로 확증됩니다. 기포 크기와 빈도 모두 공동 유동 장치에 대한 실험 데이터로 연구되고 확증됩니다.

연구된 세 번째 예는 유전 물질 위에 놓인 작은 물방울에서 관찰 된 전기 습윤 현상입니다. 정상 상태 접촉각은 적용된 전압에 대해 플롯됩니다. 결과는 Young-Lippmann 곡선 및 실험 결과와 비교됩니다.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2

References

Formation of bubbles in a simple co-flowing micro-channel

SaveAlertResearch FeedFormation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.

SaveAlertResearch FeedCreating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,

SaveAlertResearch FeedFLOW DEVELOPMENT OF CO-FLOWING STREAMS IN RECTANGULAR MICRO-CHANNELS

SaveAlertResearch FeedA microfluidic system for controlling reaction networks in time.

SaveAlertResearch FeedElectrowetting: from basics to applications

SaveAlertResearch FeedVolume of fluid (VOF) method for the dynamics of free boundaries

Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링

Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, point-of-care (POC) and home care systems. The design of such systems usually involves fluid being transported by capillary forces. Capillarity can enhance fluid transport for small volumes of fluid and can provide a reliable alternative to micro-scale pumping mechanisms. Advantages of capillary systems include:

  • Low cost due to easy and fast fabrication
  • User friendliness due to the simplicity of their design
  • Increased portability ensured by the capillary actuation of fluids
  • Enhanced accessibility caused by the open-surface nature of their design
  • Complete elimination of air bubbles guaranteed by the uniformly moving fluid front

For these reasons, open capillary systems are the preferred design option for various POC systems.

개방형 표면 미세 유체 시스템은 생물학, 생명 공학, 의학, POC (Point-of-Care) 및 홈 케어 시스템 분야에서 점점 인기를 얻고 있습니다. 이러한 시스템의 설계에는 일반적으로 모세관 힘에 의해 유체가 운반됩니다. 모세관은 소량의 유체에 대한 유체 수송을 향상시킬 수 있으며 마이크로 규모 펌핑 메커니즘에 대한 신뢰할 수있는 대안을 제공 할 수 있습니다. 모세관 시스템의 장점은 다음과 같습니다.

  • 쉽고 빠른 제작으로 인한 저렴한 비용
  • 디자인의 단순성으로 인한 사용자 편의성
  • 유체의 모세관 작동으로 인한 휴대 성 향상
  • 디자인의 개방형 특성으로 인한 접근성 향상
  • 균일하게 움직이는 유체 전면으로 보장되는 기포의 완전한 제거

이러한 이유로 개방형 모세관 시스템은 다양한 POC 시스템에서 선호되는 설계 옵션입니다.

모세관 흐름의 시작 조건

V 홈 치수
그림 1. V 홈 채널의 단면 치수 : W = 150 μm, h1 = 300 μm, h2 = 1200 μm, α = 14.5ο.

University at Buffalo와 University of Grenoble의 연구원들의 최근 논문에서 마이크로 그루브가 잠재적으로 모세관 효과를 향상시킬 수있는 방법을 보여주었습니다 [1]. 이 논문의 결과를 바탕으로, FLOW-3D를 사용하여 평행 한 플레이트로 대체 된 좁은 V- 홈 마이크로 채널 내부 유체의 자발적 모세관 흐름 (SCF)에 대한 사례 연구를 논의 할 것  입니다. 모세관 흐름의 시작에 대한 특정 조건이 충족되면 혈류를 모니터링하기위한 POC 시스템의 설계를 위해 전혈과 같은 점성 유체를 사용해도 큰 유체 속도를 얻을 수 있습니다.

모세관 흐름의 조건은 Gibbs 자유 에너지의 최소화를 기반으로 한 정적 접근 방식을 사용하여 이론적으로 설정할 수 있습니다. 보다 구체적으로, 입구 압력이 0 일 때 모세관 흐름이 시작되는 조건은 다음과 같습니다.

(수식 1)           pF/pW < cos⁡ θ

여기서  θ  는 영 접촉각이고  F  및  W  는 각각 유동의 임의 단면에서 자유 및 습식 둘레입니다. 그림 1에 표시된 것과 같은 반각 α 를 갖는 V- 홈 마이크로 채널의  경우 몇 가지 수학적 조작 후 eq. 1은 다음과 같이 다시 작성할 수 있습니다.

(수식 2)         sin α = cos⁡ θ

우리의 경우  α  ≈ 14.5 ο 가 있으므로 모세관 흐름의 조건은  θ  <75.5 o 입니다.

FLOW-3D 에서 시뮬레이션

정적 접근 방식이 SCF의 시작에 관한 중요한 정보를 제공하지만 수치 접근 방식은 현장 진료 장치에서 유동 역학을 연구하는 데 더 적합합니다. 접촉각이 37 °  이고 전혈의 유체 특성 을 갖는 V- 홈 마이크로 채널에 대해 CFD 분석을 수행했습니다 . 혈액의 점도는 거의 일정하기 때문에 흐름 체제는 뉴턴으로 간주됩니다 [1]. 유체 운동이 모세관 효과에 의해서만 발생하도록 모든 경계와 계산 영역 전체에 균일 한 주변 압력이 적용되었습니다. 시뮬레이션은 처음 4mm의 유체 이동을 포함하는 초기 시뮬레이션과 4mm에서 8mm의 유체 이동을 예측하는 재시작 시뮬레이션의 두 부분으로 나뉩니다.

결과 및 검증

처음 8mm 이동에 대한 유동 역학은 그림 2에 나와 있습니다.이 그림은 세 가지 다른 시간에 슬롯에서 전진 인터페이스의 모양을 보여줍니다. 필라멘트 (Concus-Finn 필라멘트)의 점진적인 확장은 주 흐름보다 앞서 볼 수 있습니다.

모세관 흐름 시뮬레이션
그림 2. 세 가지 다른 시간에서 FLOW-3D를 사용하여 진행하는 모세관 흐름의 동적 계산 : (a) 0.04, (b) 0.07 및 (c) 0.11 초와 삽입물 (i1), (i2) 및 (i3) Concus-Finn 필라멘트의 진화 [1].

분석, 수치 및 실험 결과 간의 비교는 그림 3에 나와 있습니다. 수치 예측과 실험 간에는 탁월한 일치가 있습니다. 분석 솔루션도 플롯되었지만 채널 하단에있는 Concus – Finn 필라멘트의 효과가 고려되지 않았기 때문에 수치 및 실험 결과에 대한 유효한 비교를 나타내지 않을 수 있습니다.

모세관 흐름 검증
그림 3. (A) 시간의 함수로서 채널의 속도. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도. (B) 시간의 함수로서 액체 전면의 원점으로부터의 거리. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도 [1].

전혈 이외에도 식용 색소로 착색 한 물과 점성이 높은 알기 네이트 용액을 포함하여 장치가 고점도 유체를 이동시킬 수있는 가능성을 테스트하는 등 다양한 유체를 연구했습니다. 혈액과 같은 고점도 액체는 1 초 이내에 이동할 수 있습니다 (아래 애니메이션 참조).https://www.youtube.com/embed/v4OYoHStJ1w?controls=1&rel=0&playsinline=0&modestbranding=0&autoplay=0&enablejsapi=1&origin=https%3A%2F%2Fwww.flow3d.com&widgetid=1

사례 연구는 상대적으로 큰 점도 (물의 4 배)를 갖는 전혈의 경우 최대 7.5cm / s의 속도를 달성했음을 보여줍니다. 실험 결과 및  FLOW-3D  예측에 따라 전체 채널은 0.2 초 이내에 혈액으로 채워졌습니다. FLOW-3D  시뮬레이션 결과는 실험 관찰 결과와 매우 일치하며, V-groove 내부의 거리에 따라 속도가 감소하지만 장치의 전체 길이에 걸쳐 중요 함을 나타냅니다.

참고 문헌

  1. Berthier, J., K. Brakke, E. P. Furlani, I. H. Karampelas, and G. Delapierre. “Open-surface microfluidics.” In Proceedings of the Nanotech International Conference, pp. 15-19. 2014.
  2. Hirt, Cyril W., and Billy D. Nichols. “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of computational physics 39, no. 1 (1981): 201-225.
  3. Rajaratnam, N., and M. R. Chamani. “Energy loss at drops.” Journal of Hydraulic Research 33, no. 3 (1995): 373-384.
Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션

ZhenyanXiaa YangZhaoa ZhenYangabc ChengjuanYangab LinanLia ShibinWanga MengWangab
aSchool of Mechanical Engineering, Tianjin University, Tianjin, 300054, China
bKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin, 300072, Chinac
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Received 23 September 2020, Revised 17 November 2020, Accepted 26 November 2020, Available online 11 December 2020.

Abstract

Super-hydrophobicity is one of the significant natural phenomena, which has inspired researchers to fabricate artificial smart materials using advanced manufacturing techniques. In this study, a super-hydrophobic aluminum surface was prepared by nanosecond laser texturing and FAS modification in sequence. The surface wettability turned from original hydrophilicity to super-hydrophilicity immediately after laser treatment. Then it changed to super-hydrophobicity showing a WCA of 157.6 ± 1.2° with a SA of 1.7 ± 0.7° when the laser-induced rough surface being coated with a layer of FAS molecules. The transforming mechanism was further explored from physical and chemical aspects based on the analyses of surface morphology and surface chemistry. Besides, the motion process of droplet impacting super-hydrophobic surface was systematically analyzed via the optimization of simulation calculation grid and the simulation method of volume of fluid (VOF). Based on this simulation method, the morphological changes, the inside pressure distribution and velocity of the droplet were further investigated. And the motion mechanism of the droplet on super-hydrophobic surface was clearly revealed in this paper. The simulation results and the images captured by high-speed camera were highly consistent, which indicated that the computational fluid dynamics (CFD) is an effective method to predict the droplet motion on super- hydrophobic surfaces. This paper can provide an explicit guidance for the selection of suitable methods for functional surfaces with different requirements in the industry.

Korea Abstract

초 소수성은 연구원들이 첨단 제조 기술을 사용하여 인공 스마트 재료를 제작하도록 영감을 준 중요한 자연 현상 중 하나 입니다. 이 연구에서 초 소수성 알루미늄 표면은 나노초 레이저 텍스처링과 FAS 수정에 의해 순서대로 준비되었습니다.

레이저 처리 직후 표면 습윤성은 원래의 친수성에서 초 친수성으로 바뀌 었습니다. 그런 다음 레이저 유도 거친 표면을 FAS 분자 층으로 코팅했을 때 WCA가 157.6 ± 1.2 °이고 SA가 1.7 ± 0.7 ° 인 초 소수성으로 변경되었습니다.

변형 메커니즘은 표면 형태 및 표면 화학 분석을 기반으로 물리적 및 화학적 측면에서 추가로 탐구 되었습니다. 또한, 초 소수성 표면에 영향을 미치는 물방울의 운동 과정은 시뮬레이션 계산 그리드의 최적화와 유체 부피 (VOF) 시뮬레이션 방법을 통해 체계적으로 분석되었습니다.

이 시뮬레이션 방법을 바탕으로 형태학적 변화, 내부 압력 분포 및 액 적의 속도를 추가로 조사했습니다. 그리고 초 소수성 표면에 있는 물방울의 운동 메커니즘이 이 논문에서 분명하게 드러났습니다.

시뮬레이션 결과와 고속 카메라로 캡처한 이미지는 매우 일관적 이었습니다. 이는 전산 유체 역학 (CFD)이 초 소수성 표면에서 액적 움직임을 예측하는 효과적인 방법임을 나타냅니다.

이 백서는 업계의 다양한 요구 사항을 가진 기능 표면에 적합한 방법을 선택하기 위한 명시적인 지침을 제공 할 수 있습니다.

Keywords: Laser irradiation; Wettability; Droplet impact; Simulation; VOF

Introduction

서식지에 적응하기 위해 많은 자연 식물과 동물에서 특별한 습윤 표면이 진화되었습니다 [1-3]. 연잎은 먼지에 의한 오염으로부터 스스로를 보호하기 위해 우수한 자가 청소 특성을 나타냅니다 [4]. 사막 딱정벌레는 공기에서 물을 수확할 수 있는 기능적 표면 때문에 건조한 사막에서 생존 할 수 있습니다 [5].

자연 세계에서 영감을 받아 고체 기질의 표면 습윤성을 수정하는데 더 많은 관심이 집중되었습니다 [6-7]. 기능성 표면의 우수한 성능은 고유 한 표면 습윤성에 기인하며, 이는 고체 표면에서 액체의 확산 능력을 반영하는 중요한 특성 중 하나입니다 [8].

일반적으로 물 접촉각 (WCA) 값에 따라 90 °는 친수성과 소수성의 경계로 간주됩니다. WCA가 90 ° 이상인 소수성 표면, WCA가 90 ° 미만인 친수성 표면 [9 ]. 특히 고체 표면은 WCA가 10 ° 미만의 슬라이딩 각도 (SA)에서 150 °를 초과 할 때 특별한 초 소수성을 나타냅니다 [10-11].

<내용 중략> ……

 The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

References

[1] H.W. Chen, P.F. Zhang, L.W. Zhang, Y. Jiang, H.L. Liu, D.Y. Zhang, Z.W. Han, L.
Jiang, Continuous directional water transport on the peristome surface of Nepenthes
alata, Nature 532 (2016) 85-89.
[2] Y. Liu, K.T. Zhang, W.G. Yao, J.A. Liu, Z.W. Han, L.Q. Ren, Bioinspired
structured superhydrophobic and superoleophilic stainless steel mesh for efficient oilwater separation, Colloids Surf., A 500 (2016) 54-63.
[3] Y.X. Liu, W.L. Liu, G.L. Wang, J.C. Hou, H. Kong, W.L. Wang, A facile one-step
approach to superhydrophilic silica film with hierarchical structure using
fluoroalkylsilane, Colloids Surf., A 539 (2018) 109-115.
[4] F.P. Wang, S. Li, L. Wang, Fabrication of artificial super-hydrophobic lotus-leaflike bamboo surfaces through soft lithography, Colloids Surf., A 513 (2017) 389-395.
[5] W. Huang, X.Y. Tang, Z. Qiu, W.X. Zhu, Y.G. Wang, Y.L. Zhu, Z.F. Xiao, H.G.
Wang, D.X. Liang, Jian, L. Y.J Xie, Cellulose-based Superhydrophobic Surface
Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate
Water Harvesting, ACS Appl. Mater. Interfaces DOI: 10.1021/acsami.0c12504.
[6] M.Y. Zhang, L.J. Ma, Q. Wang, P. Hao, X. Zheng, Wettability behavior of
nanodroplets on copper surfaces with hierarchical nanostructures, Colloids Surf., A
604 (2020) 125291.
[7] A.F. Pan, W.J. Wang, X.S. Mei, K.D. Wang, X.B. Yang, Rutile TiO2 flocculent
ripples with high antireflectivity and superhydrophobicity on the surface of titanium
under 10 ns laser irradiation without focusing, Langmuir 33 (2017) 9530-9538.
[8] M. Li, X.H. Liu, N. Liu, Z.H. Guo, P.K. Singh, S.Y. Fu, Effect of surface
wettability on the antibacterial activity of nanocellulose-based material with
quaternary ammonium groups, Colloids Surf., A 554 (2018) 122-128.
[9] T.C. Chen, H.T. Liu, H.F. Yang, W. Yan, W. Zhu, H. Liu, Biomimetic fabrication
of robust self-assembly superhydrophobic surfaces with corrosion resistance
properties on stainless steel substrate, RSC Adv. 6 (2016) 43937-43949.
[10] P. Zhang, F.Y. Lv, A review of the recent advances in superhydrophobic surfaces
and the emerging energy-related applications, Energy 82 (2015) 1068-1087.
[11] Z. Yang, X.P. Liu, Y.L. Tian, Novel metal-organic super-hydrophobic surface
fabricated by nanosecond laser irradiation in solution, Colloids Surf., A 587 (2020)
124343.
[12] J.Y. Peng, X.J. Zhao, W.F. Wang, X. Gong, Durable Self-Cleaning Surfaces with
Superhydrophobic and Highly Oleophobic Properties, Langmuir, 35 (2019) 8404-
8412.
[13] Z. Yang, X.P. Liu, Y.L. Tian, A contrastive investigation on anticorrosive
performance of laser-induced super-hydrophobic and oil-infused slippery coatings,
Prog. Org. Coat. 138 (2020) 105313.
[14] J.L. Yong, F. Chen, Q. Yang, J.L. Huo, X. Hou, Superoleophobic Surfaces,
Chem. Soc. Rev. 46 (2017) 4168-4217.
[15] D.W. Li, H.Y. Wang, Y. Liu, D.S. Wei, Z.X. Zhao, Large-Scale Fabrication of
Durable and Robust Super-Hydrophobic Spray Coatings with Excellent Repairable
and Anti-Corrosion Performance, Chem. Eng. J. 367 (2019) 169-179.
[16] R.J. Liao, Z.P. Zuo, C. Guo, Y. Yuan, A.Y. Zhuang, Fabrication of
superhydrophobic surface on aluminum by continuous chemical etching and its antiicing property, Appl. Surf. Sci. 317 (2014) 701-709.
[17] Z. Yang. X.P. Liu, Y.L. Tian, Hybrid laser ablation and chemical modification for
fast fabrication of bio-inspired super-hydrophobic surface with excellent selfcleaning, stability and corrosion resistance, J Bionic Eng 16 (2019) 13-26.
[18] Z. Yang, Y.L. Tian, Y.C. Zhao, C.J. Yang, Study on the fabrication of superhydrophobic surface on Inconel alloy via nanosecond laser ablation, Materials 12
(2019) 278.
[19] Y. Wang, X. Gong, Superhydrophobic Coatings with Periodic Ring Structured
Patterns for Self-Cleaning and Oil-Water Separation, Adv. Mater. Interfaces 4 (2017)
1700190.
[20] N. Chik, W.S.W.M. Zain, A.J. Mohamad, M.Z. Sidek, W.H.W. Ibrahim, A. Reif,
J.H. Rakebrandt, W. Pfleging, X. Liu, Bacterial adhesion on the titanium and
stainless-steel surfaces undergone two different treatment methods: Polishing and ultrafast laser treatment, IOP Conf. Ser.: Mater. Sci. Eng.358 (2018) 012034.
[21] N.K.K. Win, P. Jitareerat, S. Kanlayanarat, S. Sangchote, Effects of cinnamon
extract, chitosan coating, hot water treatment and their combinations on crown rot
disease and quality of banana fruit, Postharvest Biol. Technol. 45 (2007) 333–340.
[22] A. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu.
Rev. Fluid Mech. 38 (2006) 159–192.
[23] N. Wang, L.L. Tang, Y.F. Cai, W. Tong, D.S. Xiong, Scalable superhydrophobic
coating with controllable wettability and investigations of its drag reduction, Colloids
Surf. A 555 (2018) 290–295.
[24] R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning
properties of artificial superhydrophobic surfaces, Langmuir 21 (2005) 956–61.
[25] U. Trdan, M. Hočevar, P. Gregorčič, Transition from superhydrophilic to
superhydrophobic state of laser textured stainless steel surface and its effect on
corrosion resistance, Corros. Sci. 123 (2017) 21–44.
[26] A.L. Biance, C. Clanet, D. Quere, First steps in the spreading of a liquid droplet,
Phys. Rev. E 69 (2004) 016301.
[27] S. Kulju, L. Riegger, P. Koltay et al, Fluid flow simulations meet high-speed
video: computer vision comparison of droplet dynamics, J. Colloid Interface Sci. 522
(2018) 48.
[28] C.J. Yong, B. Bhushan, Dynamic effects of bouncing water droplets on
superhydrophobic surfaces, Langmuir 24.12 (2008) 6262–6269.
[29] G. Karapetsas, N.T. Chamakos, A.G. Papathanasiou, Efficient modelling of
droplet dynamics on complex surfaces, J. Phys.: Condens. Matter 28.8 (2016) 085101.
[30] D. Khojasteh, N.M. Kazerooni, S. Salarian et al, Droplet impact on
superhydrophobic surfaces: a review of recent developments, J. Ind. Eng. Chem. 42
(2016) 1–14.
[31] S.H. Kim, Y. Jiang, H. Kim, Droplet impact and LFP on wettability and
nanostructured surface, Exp. Therm. Fluid Sci. 99 (2018) 85–93.
[32] M. Rudman, Volume‐Tracking Methods for Interfacial Flow Calculations, Int.
J. Numer. Methods Fluids 24.7 (1997) 671-691.

Dam-Break Flows: Comparison between Flow-3D, MIKE 3 FM, and Analytical Solutions with Experimental Data

Dam-Break Flows: Comparison between Flow-3D, MIKE 3 FM, and Analytical Solutions with Experimental Data

by Hui Hu,Jianfeng Zhang andTao Li *
State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, School of Water Resources and Hydropower, Xi’an University of Technology, Xi’an 710048, China
*Author to whom correspondence should be addressed.
Appl. Sci.20188(12), 2456; https://doi.org/10.3390/app8122456Received: 14 October 2018 /
Revised: 20 November 2018 / Accepted: 29 November 2018 / Published: 2 December 2018

Abstract

The objective of this study was to evaluate the applicability of a flow model with different numbers of spatial dimensions in a hydraulic features solution, with parameters such a free surface profile, water depth variations, and averaged velocity evolution in a dam-break under dry and wet bed conditions with different tailwater depths. Two similar three-dimensional (3D) hydrodynamic models (Flow-3D and MIKE 3 FM) were studied in a dam-break simulation by performing a comparison with published experimental data and the one-dimensional (1D) analytical solution. The results indicate that the Flow-3D model better captures the free surface profile of wavefronts for dry and wet beds than other methods. The MIKE 3 FM model also replicated the free surface profiles well, but it underestimated them during the initial stage under wet-bed conditions. However, it provided a better approach to the measurements over time. Measured and simulated water depth variations and velocity variations demonstrate that both of the 3D models predict the dam-break flow with a reasonable estimation and a root mean square error (RMSE) lower than 0.04, while the MIKE 3 FM had a small memory footprint and the computational time of this model was 24 times faster than that of the Flow-3D. Therefore, the MIKE 3 FM model is recommended for computations involving real-life dam-break problems in large domains, leaving the Flow-3D model for fine calculations in which knowledge of the 3D flow structure is required. The 1D analytical solution was only effective for the dam-break wave propagations along the initially dry bed, and its applicability was fairly limited. 

Keywords: dam breakFlow-3DMIKE 3 FM1D Ritter’s analytical solution

이 연구의 목적은 자유 표면 프로파일, 수심 변화 및 건식 및 댐 파괴에서 평균 속도 변화와 같은 매개 변수를 사용하여 유압 기능 솔루션에서 서로 다른 수의 공간 치수를 가진 유동 모델의 적용 가능성을 평가하는 것이었습니다.

테일 워터 깊이가 다른 습식베드 조건. 2 개의 유사한 3 차원 (3D) 유체 역학 모델 (Flow-3D 및 MIKE 3 FM)이 게시된 실험 데이터와 1 차원 (1D) 분석 솔루션과의 비교를 수행하여 댐 브레이크 시뮬레이션에서 연구되었습니다.

결과는 FLOW-3D 모델이 다른 방법보다 건식 및 습식 베드에 대한 파면의 자유 표면 프로파일을 더 잘 포착함을 나타냅니다. MIKE 3 FM 모델도 자유 표면 프로파일을 잘 복제했지만, 습식 조건에서 초기 단계에서 과소 평가했습니다. 그러나 시간이 지남에 따라 측정에 더 나은 접근 방식을 제공했습니다.

측정 및 시뮬레이션 된 수심 변화와 속도 변화는 두 3D 모델 모두 합리적인 추정치와 0.04보다 낮은 RMSE (root mean square error)로 댐 브레이크 흐름을 예측하는 반면 MIKE 3 FM은 메모리 공간이 적고 이 모델의 계산 시간은 Flow-3D보다 24 배 더 빠릅니다.

따라서 MIKE 3 FM 모델은 대규모 도메인의 실제 댐 브레이크 문제와 관련된 계산에 권장되며 3D 흐름 구조에 대한 지식이 필요한 미세 계산을 위해 Flow-3D 모델을 남겨 둡니다. 1D 분석 솔루션은 초기 건조 층을 따라 전파되는 댐 파괴에만 효과적이었으며 그 적용 가능성은 상당히 제한적이었습니다.

1. Introduction

저수지에 저장된 물의 통제되지 않은 방류[1]로 인해 댐 붕괴와 그로 인해 하류에서 발생할 수 있는 잠재적 홍수로 인해 큰 자연 위험이 발생한다. 이러한 영향을 최대한 완화하기 위해서는 홍수[2]로 인한 위험을 관리하고 감소시키기 위해 홍수의 시간적 및 공간적 진화를 모두 포착하여 댐 붕괴 파동의 움직임을 예측하고 댐 붕괴 파동의 전파 과정 효과를 다운스트림[3]으로 예측하는 것이 중요하다. 

그러나 이러한 수량을 예측하는 것은 어려운 일이며, 댐 붕괴 홍수의 움직임을 정확하게 시뮬레이션하고 유동장에 대한 유용한 정보를 제공하기 위한 적절한 모델을 선택하는 것은 그러므로 필수적인 단계[4]이다.

적절한 수학적 및 수치적 모델의 선택은 댐 붕괴 홍수 분석에서 매우 중요한 것으로 나타났다.분석적 해결책에서 행해진 댐 붕괴 흐름에 대한 연구는 100여 년 전에 시작되었다. 

리터[5]는 먼저 건조한 침대 위에 1D de 생베넌트 방정식의 초기 분석 솔루션을 도출했고, 드레슬러[6,7]와 휘담[8]은 마찰저항의 영향을 받은 파동학을 연구했으며, 스토커[9]는 젖은 침대를 위한 1D 댐 붕괴 문제에 리터의 솔루션을 확장했다. 

마샬과 멩데즈[10]는 고두노프가 가스 역학의 오일러 방정식을 위해 개발한 방법론[11]을 적용하여 젖은 침대 조건에서 리만 문제를 해결하기 위한 일반적인 절차를 고안했다. Toro [12]는 습식 및 건식 침대 조건을 모두 해결하기 위해 완전한 1D 정밀 리만 용해제를 실시했다. 

Chanson [13]은 특성 방법을 사용하여 갑작스러운 댐 붕괴로 인한 홍수에 대한 간단한 분석 솔루션을 연구했다. 그러나 이러한 분석 솔루션은 특히 댐 붕괴 초기 단계에서 젖은 침대의 정확한 결과를 도출하지 못했다[14,15].과거 연구의 발전은 이른바 댐 붕괴 홍수 문제 해결을 위한 여러 수치 모델[16]을 제공했으며, 헥-라스, DAMBRK, MIK 11 등과 같은 1차원 모델을 댐 붕괴 홍수를 모델링하는 데 사용하였다.

[17 2차원(2D) 깊이 평균 방정식도 댐 붕괴 흐름 문제를 시뮬레이션하는 데 널리 사용되어 왔으며[18,19,20,21,22] 그 결과 얕은 물 방정식(SWE)이 유체 흐름을 나타내는 데 적합하다는 것을 알 수 있다. 그러나, 경우에 따라 2D 수치해결기가 제공하는 해결책이 특히 근거리 분야에서 실험과 일관되지 않을 수 있다[23,24]. 더욱이, 1차원 및 2차원 모델은 3차원 현상에 대한 일부 세부사항을 포착하는 데 한계가 있다.

[25]. RANS(Reynolds-averageed Navier-Stok크스 방정식)에 기초한 여러 3차원(3D) 모델이 얕은 물 모델의 일부 단점을 극복하기 위해 적용되었으며, 댐 붕괴 초기 단계에서의 복잡한 흐름의 실제 동작을 이해하기 위해 사용되었다 [26,27,28]장애물이나 바닥 실에 대한 파장의 충격으로 인한 튜디 댐 붕괴 흐름 [19,29] 및 근거리 영역의 난류 댐 붕괴 흐름 거동 [4] 최근 상용화된 수치 모델 중 잘 알려진 유체 방식(VOF) 기반 CFD 모델링 소프트웨어 FLOW-3D는 컴퓨터 기술의 진보에 따른 계산력 증가로 인해 불안정한 자유 표면 흐름을 분석하는 데 널리 사용되고 있다. 

이 소프트웨어는 유한 차이 근사치를 사용하여 RANS 방정식에 대한 수치 해결책을 계산하며, 자유 표면을 추적하기 위해 VOF를 사용한다 [30,31]; 댐 붕괴 흐름을 모델링하는 데 성공적으로 사용되었다 [32,33].그러나, 2D 얕은 물 모델을 사용하여 포착할 수 없는 공간과 시간에 걸친 댐 붕괴 흐름의 특정한 유압적 특성이 있다. 

실생활 현장 척도 시뮬레이션을 위한 완전한 3D Navier-Stokes 방정식의 적용은 더 높은 계산 비용[34]을 가지고 있으며, 원하는 결과는 얕은 물 모델[35]보다 더 정확한 결과를 산출하지 못할 수 있다. 따라서, 본 논문은 3D 모델의 기능과 그 계산 효율을 평가하기 위해 댐 붕괴 흐름 시뮬레이션을 위한 단순화된 3D 모델-MIKE 3 FM을 시도한다. 

MIK 3 모델은 자연 용수 분지의 여러 유체 역학 시뮬레이션 조사에 적용되었다. 보치 외 연구진이 사용해 왔다. [36], 니콜라오스 및 게오르기오스 [37], 고얄과 라토드[38] 등 현장 연구에서 유체역학 시뮬레이션을 위한 것이다. 이러한 저자들의 상당한 연구에도 불구하고, MIK 3 FM을 이용한 댐 붕괴의 모델링에 관한 연구는 거의 없었다. 

또한 댐 붕괴 홍수 전파 문제를 해결하기 위한 3D 얕은 물과 완전한 3D RANS 모델의 성능을 비교한 연구도 아직 보고되지 않았다. 이 공백을 메우기 위해 현재 연구의 주요 목표는 댐 붕괴 흐름을 시뮬레이션하기 위한 단순화된 3D SWE, 상세 RANS 모델 및 분석 솔루션을 평가하여 댐 붕괴 문제에 대한 정확도와 적용 가능성을 평가하는 것이다.실제 댐 붕괴 문제를 해결하기 위해 유체역학 시뮬레이션을 시도하기 전에 수치 모델을 검증할 필요가 있다. 

일련의 실험 벤치마크를 사용하여 수치 모델을 확인하는 것은 용인된 관행이다. 현장 데이터 확보가 어려워 최근 몇 년 동안 제한된 측정 데이터를 취득했다. 

본 논문은 Ozmen-Cagatay와 Kocaman[30] 및 Khankandi 외 연구진이 제안한 두 가지 테스트 사례에 의해 제안된 검증에서 인용한 것이다. [39] 오즈멘-카가테이와 코카만[30]이 수행한 첫 번째 실험에서, 다른 미숫물 수위에 걸쳐 초기 단계 동안 댐 붕괴 홍수파가 발생했으며, 자유 지표면 프로파일의 측정치를 제공했다. Ozmen-Cagatay와 Kocaman[30]은 초기 단계에서 Flow-3D 소프트웨어가 포함된 2D SWE와 3D RANS의 숫자 솔루션에 의해 계산된 자유 표면 프로필만 비교했다. 

Khankandi 등이 고안한 두 번째 실험 동안. [39], 이 실험의 측정은 홍수 전파를 시뮬레이션하고 측정된 데이터를 제공하는 것을 목적으로 하는 수치 모델을 검증하기 위해 사용되었으며, 말기 동안의 자유 표면 프로필, 수위의 시간 진화 및 속도 변화를 포함한다. Khankandi 등의 연구. [39] 주로 실험 조사에 초점을 맞추었으며, 초기 단계에서는 리터의 솔루션과의 수위만을 언급하고 있다.

경계 조건(상류 및 하류 모두 무한 채널 길이를 갖는 1D 분석 솔루션에서는 실험 결과를 리터와 비교하는 것이 타당하지 않기 때문이다(건조 be)d) 또는 스토커(웨트 베드) 솔루션은 벽의 반사가 깊이 프로파일에 영향을 미쳤을 때, 그리고 참조 [39]의 실험에 대한 수치 시뮬레이션과의 추가 비교가 불량할 때. 이 논문은 이러한 문제를 직접 겨냥하여 전체 댐 붕괴 과정에서의 자유 표면 프로필, 수심 변화 및 속도 변화에 대한 완전한 비교 연구를 제시한다. 

여기서 댐 붕괴파의 수치 시뮬레이션은 초기에 건조하고 습한 직사각형 채널을 가진 유한 저장소의 순간 댐 붕괴에 대해 두 개의 3D 모델을 사용하여 개발된다.본 논문은 다음과 같이 정리되어 있다. 두 모델에 대한 통치 방정식은 숫자 체계를 설명하기 전에 먼저 도입된다. 

일반적인 단순화된 시험 사례는 3D 수치 모델과 1D 분석 솔루션을 사용하여 시뮬레이션했다. 모델 결과와 이들이 실험실 실험과 비교하는 방법이 논의되고, 서로 다른 수심비에서 시간에 따른 유압 요소의 변동에 대한 시뮬레이션 결과가 결론을 도출하기 전에 제시된다.

2. Materials and Methods

2.1. Data

첫째, 수평 건조 및 습식 침상에 대한 초기 댐 붕괴 단계 동안의 자유 표면 프로필 측정은 Ozmen-Cagatay와 Kocaman에 의해 수행되었다[30]. 이 시험 동안, 매끄럽고 직사각형의 수평 채널은 그림 1에서 표시한 대로 너비 0.30m, 높이 0.30m, 길이 8.9m이었다. 

채널은 채널 입구에서 4.65m 떨어진 수직 플레이트(담) 즉, 저장소의 길이 L0=4.65mL0에 의해 분리되었다., 및 다운스트림 채널 L1=4.25 mL1. m저수지는 댐의 좌측에 위치하고 처음에는 침수된 것으로 간주되었다; 저수지의 초기 상류 수심 h0 0.25m로 일정했다.

오른쪽의 초기 수심 h1h1 건식침대의 경우 0m, 습식침대의 경우 0.025m, 0.1m이므로 수심비 α=h1/h0α으로 세 가지 상황이 있었다. 0, 0.1, 0.4의 습식침대 조건은 플룸 끝에 낮은 보를 사용함으로써 만들어졌다. 물 표면 프로필은 3개의 고속 디지털 카메라(50프레임/s)를 사용하여 초기에 관찰되었으며, 계측 측정의 정확도는 참고문헌 [30]에서 입증되었다. In the following section, the corresponding numerical results refer to positions x = −1 m (P1), −0.5 m (P2), −0.2 m (P3), +0.2 m (P4), +0.5 m (P5), +1 m (P6), +2 m (P7), and +2.85 m (P8), where the origin of the coordinate system x = 0 is at the dam site. 3수심비 ααα 0, 0.1, 0.4의 경우 x,yx의 경우 좌표는 h0.으로 정규화된다.

<중략> ……

Figure 1. Schematic view of the experimental conditions by Ozmen-Cagatay and Kocaman [30]: (a) α = 0; (b) α = 0.1; and (c) α = 0.4.
Figure 1. Schematic view of the experimental conditions by Ozmen-Cagatay and Kocaman [30]: (a) α = 0; (b) α = 0.1; and (c) α = 0.4.

Figure 2. Schematic view of the experimental conditions by Khankandi et al. [39]: (a) α = 0 and (b) α = 0.2.
Figure 2. Schematic view of the experimental conditions by Khankandi et al. [39]: (a) α = 0 and (b) α = 0.2.
Figure 3. Typical profiles of the dam-break flow regimes for Stoker’s analytical solution [9]: Wet-bed downstream
Figure 3. Typical profiles of the dam-break flow regimes for Stoker’s analytical solution [9]: Wet-bed downstream
Figure 4. Sensitivity analysis of the numerical simulation using Flow-3D for the different mesh sizes of the experiments in Reference [30].
Figure 4. Sensitivity analysis of the numerical simulation using Flow-3D for the different mesh sizes of the experiments in Reference [30].
Figure 5. Sensitivity analysis of the numerical simulation using MIKE 3 FM for the different mesh sizes of the experiments in Reference [30].
Figure 5. Sensitivity analysis of the numerical simulation using MIKE 3 FM for the different mesh sizes of the experiments in Reference [30].
Figure 6. Comparison between observed and simulated free surface profiles at dimensionless times T = t(g/h0)1/2 and for dry-bed (α=0). The experimental data are from Reference [30].
Figure 6. Comparison between observed and simulated free surface profiles at dimensionless times T = t(g/h0)1/2 and for dry-bed (α=0). The experimental data are from Reference [30].
Figure 7. Comparison between observed and simulated free surface profiles at dimensionless times T = t(g/h0)1/2 and for a wet-bed (α = 0.1). The experimental data are from Reference [30].
Figure 7. Comparison between observed and simulated free surface profiles at dimensionless times T = t(g/h0)1/2 and for a wet-bed (α = 0.1). The experimental data are from Reference [30].
Figure 8. Comparison between observed and simulated free surface profiles at dimensionless times T = t(g/h0)1/2 and for the wet-bed (α = 0.4). The experimental data are from Reference [30].
Figure 8. Comparison between observed and simulated free surface profiles at dimensionless times T = t(g/h0)1/2 and for the wet-bed (α = 0.4). The experimental data are from Reference [30].
Figure 9. Experimental and numerical comparison of free surface profiles h/h0(x/h0) during late stages at various dimensionless times T after the failure in the dry-bed by Khankandi et al. [39].
Figure 9. Experimental and numerical comparison of free surface profiles h/h0(x/h0) during late stages at various dimensionless times T after the failure in the dry-bed by Khankandi et al. [39].

Table 2. RMSE values for the free surface profiles observed by Khankandi et al. [39].

Table 2. RMSE values for the free surface profiles observed by Khankandi et al. [39].
Table 2. RMSE values for the free surface profiles observed by Khankandi et al. [39].
Figure 10. Measured and computed water level hydrograph at various positions for dry-bed by Khankandi et al. [39]: (a) G1 (−0.5 m); (b) G2 (−0.1 m); (c) G3 (0.1 m); (d) G4 (0.8 m); (e) G6 (1.2 m); (f) G8 (5.5 m).
Figure 10. Measured and computed water level hydrograph at various positions for dry-bed by Khankandi et al. [39]: (a) G1 (−0.5 m); (b) G2 (−0.1 m); (c) G3 (0.1 m); (d) G4 (0.8 m); (e) G6 (1.2 m); (f) G8 (5.5 m).
Figure 11. Measured and computed water level hydrographs at various positions for the wet-bed by Khankandi et al. [39]: (a) G1 (−0.5 m); (b) G2 (−0.1 m); (c) G4 (0.8 m); and (d) G5 (1.0 m).
Figure 11. Measured and computed water level hydrographs at various positions for the wet-bed by Khankandi et al. [39]: (a) G1 (−0.5 m); (b) G2 (−0.1 m); (c) G4 (0.8 m); and (d) G5 (1.0 m).

Table 3. RMSE values for the water depth variations observed by Khankandi et al. [39] at the late stage.

Table 3. RMSE values for the water depth variations observed by Khankandi et al. [39] at the late stage.
Table 3. RMSE values for the water depth variations observed by Khankandi et al. [39] at the late stage.
Figure 13. Comparison of simulated velocity profiles at various locations upstream and downstream of the dam at t = 0.8 s, 2 s, and 5 s for water depth ratios α = 0.1 by Ozmen-Cagatay and Kocaman [30]: (a) P1(−1 m); (b) P3 (+0.2 m); (c) P5 (+1 m); and (d) P6 (+2 m).
Figure 13. Comparison of simulated velocity profiles at various locations upstream and downstream of the dam at t = 0.8 s, 2 s, and 5 s for water depth ratios α = 0.1 by Ozmen-Cagatay and Kocaman [30]: (a) P1(−1 m); (b) P3 (+0.2 m); (c) P5 (+1 m); and (d) P6 (+2 m).
Table 5. The required computational time for the two models to address dam break flows in all cases
Table 5. The required computational time for the two models to address dam break flows in all cases

References

  1. Gallegos, H.A.; Schubert, J.E.; Sanders, B.F. Two-dimensional high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Adv. Water Resour. 200932, 1323–1335. [Google Scholar] [CrossRef]
  2. Kim, K.S. A Mesh-Free Particle Method for Simulation of Mobile-Bed Behavior Induced by Dam Break. Appl. Sci. 20188, 1070. [Google Scholar] [CrossRef]
  3. Robb, D.M.; Vasquez, J.A. Numerical simulation of dam-break flows using depth-averaged hydrodynamic and three-dimensional CFD models. In Proceedings of the Canadian Society for Civil Engineering Hydrotechnical Conference, Québec, QC, Canada, 21–24 July 2015. [Google Scholar]
  4. LaRocque, L.A.; Imran, J.; Chaudhry, M.H. 3D numerical simulation of partial breach dam-break flow using the LES and k-ε. J. Hydraul. Res. 201351, 145–157. [Google Scholar] [CrossRef]
  5. Ritter, A. Die Fortpflanzung der Wasserwellen (The propagation of water waves). Z. Ver. Dtsch. Ing. 189236, 947–954. [Google Scholar]
  6. Dressler, R.F. Hydraulic resistance effect upon the dam-break functions. J. Res. Nat. Bur. Stand. 195249, 217–225. [Google Scholar] [CrossRef]
  7. Dressler, R.F. Comparison of theories and experiments for the hydraulic dam-break wave. Int. Assoc. Sci. Hydrol. 195438, 319–328. [Google Scholar]
  8. Whitham, G.B. The effects of hydraulic resistance in the dam-break problem. Proc. R. Soc. Lond. 1955227A, 399–407. [Google Scholar] [CrossRef]
  9. Stoker, J.J. Water Waves: The Mathematical Theory with Applications; Wiley and Sons: New York, NY, USA, 1957; ISBN 0-471-57034-6. [Google Scholar]
  10. Marshall, G.; Méndez, R. Computational Aspects of the Random Choice Method for Shallow Water Equations. J. Comput. Phys. 198139, 1–21. [Google Scholar] [CrossRef]
  11. Godunov, S.K. Finite Difference Methods for the Computation of Discontinuous Solutions of the Equations of Fluid Dynamics. Math. Sb. 195947, 271–306. [Google Scholar]
  12. Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; Wiley and Sons Ltd.: New York, NY, USA, 2001. [Google Scholar]
  13. Chanson, H. Application of the method of characteristics to the dam break wave problem. J. Hydraul. Res. 200947, 41–49. [Google Scholar] [CrossRef][Green Version]
  14. Cagatay, H.; Kocaman, S. Experimental Study of Tail Water Level Effects on Dam-Break Flood Wave Propagation; 2008 Kubaba Congress Department and Travel Services: Ankara, Turkey, 2008; pp. 635–644. [Google Scholar]
  15. Stansby, P.K.; Chegini, A.; Barnes, T.C.D. The initial stages of dam-break flow. J. Fluid Mech. 1998374, 407–424. [Google Scholar] [CrossRef]
  16. Soares-Frazao, S.; Zech, Y. Dam Break in Channels with 90° Bend. J. Hydraul. Eng. 2002128, 956–968. [Google Scholar] [CrossRef]
  17. Zolghadr, M.; Hashemi, M.R.; Zomorodian, S.M.A. Assessment of MIKE21 model in dam and dike-break simulation. IJST-Trans. Mech. Eng. 201135, 247–262. [Google Scholar]
  18. Bukreev, V.I.; Gusev, A.V. Initial stage of the generation of dam-break waves. Dokl. Phys. 200550, 200–203. [Google Scholar] [CrossRef]
  19. Soares-Frazao, S.; Noel, B.; Zech, Y. Experiments of dam-break flow in the presence of obstacles. Proc. River Flow 20042, 911–918. [Google Scholar]
  20. Aureli, F.; Maranzoni, A.; Mignosa, P.; Ziveri, C. Dambreak flows: Acquisition of experimental data through an imaging technique and 2D numerical modelling. J. Hydraul. Eng. 2008134, 1089–1101. [Google Scholar] [CrossRef]
  21. Rehman, K.; Cho, Y.S. Bed Evolution under Rapidly Varying Flows by a New Method for Wave Speed Estimation. Water 20168, 212. [Google Scholar] [CrossRef]
  22. Wu, G.F.; Yang, Z.H.; Zhang, K.F.; Dong, P.; Lin, Y.T. A Non-Equilibrium Sediment Transport Model for Dam Break Flow over Moveable Bed Based on Non-Uniform Rectangular Mesh. Water 201810, 616. [Google Scholar] [CrossRef]
  23. Ferrari, A.; Fraccarollo, L.; Dumbser, M.; Toro, E.F.; Armanini, A. Three-dimensional flow evolution after a dam break. J. Fluid Mech. 2010663, 456–477. [Google Scholar] [CrossRef]
  24. Liang, D. Evaluating shallow water assumptions in dam-break flows. Proc. Inst. Civ. Eng. Water Manag. 2010163, 227–237. [Google Scholar] [CrossRef]
  25. Biscarini, C.; Francesco, S.D.; Manciola, P. CFD modelling approach for dam break flow studies. Hydrol. Earth Syst. Sci. 201014, 705–718. [Google Scholar] [CrossRef][Green Version]
  26. Oertel, M.; Bung, D.B. Initial stage of two-dimensional dam-break waves: Laboratory versus VOF. J. Hydraul. Res. 201250, 89–97. [Google Scholar] [CrossRef]
  27. Quecedo, M.; Pastor, M.; Herreros, M.I.; Merodo, J.A.F.; Zhang, Q. Comparison of two mathematical models for solving the dam break problem using the FEM method. Comput. Method Appl. Mech. Eng. 2005194, 3984–4005. [Google Scholar] [CrossRef]
  28. Shigematsu, T.; Liu, P.L.F.; Oda, K. Numerical modeling of the initial stages of dam-break waves. J. Hydraul. Res. 200442, 183–195. [Google Scholar] [CrossRef]
  29. Soares-Frazao, S. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res. 200745, 19–26. [Google Scholar] [CrossRef]
  30. Ozmen-Cagatay, H.; Kocaman, S. Dam-break flows during initial stage using SWE and RANS approaches. J. Hydraul. Res. 201048, 603–611. [Google Scholar] [CrossRef]
  31. Vasquez, J.; Roncal, J. Testing River2D and FLOW-3D for Sudden Dam-Break Flow Simulations. In Proceedings of the Canadian Dam Association’s 2009 Annual Conference: Protecting People, Property and the Environment, Whistler, BC, Canada, 3–8 October 2009. [Google Scholar]
  32. Ozmen-Cagatay, H.; Kocaman, S. Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Eng. Appl. Comput. Fluid 20115, 541–552. [Google Scholar] [CrossRef]
  33. Ozmen-Cagatay, H.; Kocaman, S.; Guzel, H. Investigation of dam-break flood waves in a dry channel with a hump. J. Hydro-Environ. Res. 20148, 304–315. [Google Scholar] [CrossRef]
  34. Gu, S.L.; Zheng, S.P.; Ren, L.Q.; Xie, H.W.; Huang, Y.F.; Wei, J.H.; Shao, S.D. SWE-SPHysics Simulation of Dam Break Flows at South-Gate Gorges Reservoir. Water 20179, 387. [Google Scholar] [CrossRef]
  35. Evangelista, S. Experiments and Numerical Simulations of Dike Erosion due to a Wave Impact. Water 20157, 5831–5848. [Google Scholar] [CrossRef][Green Version]
  36. Bocci, M.; Chiarlo, R.; De Nat, L.; Fanelli, A.; Petersen, O.; Sorensen, J.T.; Friss-Christensen, A. Modelling of impacts from a long sea outfall outside of the Venice Lagoon (Italy). In Proceedings of the MWWD—IEMES 2006 Conference, Antalya, Turkey, 6–10 November 2006; MWWD Organization: Antalya, Turkey, 2006. [Google Scholar]
  37. Nikolaos, T.F.; Georgios, M.H. Three-dimensional numerical simulation of wind-induced barotropic circulation in the Gulf of Patras. Ocean Eng. 201037, 355–364. [Google Scholar]
  38. Goyal, R.; Rathod, P. Hydrodynamic Modelling for Salinity of Singapore Strait and Johor Strait using MIKE 3FM. In Proceedings of the 2011 2nd International Conference on Environmental Science and Development, Singapore, 26–28 February 2011. [Google Scholar]
  39. Khankandi, A.F.; Tahershamsi, A.; Soares-Frazão, S. Experimental investigation of reservoir geometry effect on dam-break flow. J. Hydraul. Res. 201250, 376–387. [Google Scholar] [CrossRef]
  40. Flow Science Inc. FLOW-3D User’s Manuals; Flow Science Inc.: Santa Fe, NM, USA, 2007. [Google Scholar]
  41. Danish Hydraulic Institute (DHI). MIKE 3 Flow Model FM. Hydrodynamic Module-User Guide; DHI: Horsholm, Denmark, 2014. [Google Scholar]
  42. Pilotti, M.; Tomirotti, M.; Valerio, G. Simplified Method for the Characterization of the Hydrograph following a Sudden Partial Dam Break. J. Hydraul. Eng. 2010136, 693–704. [Google Scholar] [CrossRef]
  43. Hooshyaripor, F.; Tahershamsi, A.; Razi, S. Dam break flood wave under different reservoir’s capacities and lengths. Sādhanā 201742, 1557–1569. [Google Scholar] [CrossRef]
  44. Kocaman, S.; Ozmen-Cagatay, H. Investigation of dam-break induced shock waves impact on a vertical Wall. J. Hydrol. 2015525, 1–12. [Google Scholar] [CrossRef]
  45. Liu, H.; Liu, H.J.; Guo, L.H.; Lu, S.X. Experimental Study on the Dam-Break Hydrographs at the Gate Location. J. Ocean Univ. China 201716, 697–702. [Google Scholar] [CrossRef]
  46. Marra, D.; Earl, T.; Ancey, C. Experimental Investigations of Dam Break Flows down an Inclined Channel. In Proceedings of the 34th World Congress of the International Association for Hydro- Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Brisbane, Australia, 26 June–1 July 2011. [Google Scholar]
  47. Wang, J.; Liang, D.F.; Zhang, J.X.; Xiao, Y. Comparison between shallow water and Boussinesq models for predicting cascading dam-break flows. Nat. Hazards 201683, 327–343. [Google Scholar] [CrossRef]
  48. Yang, C.; Lin, B.L.; Jiang, C.B.; Liu, Y. Predicting near-field dam-break flow and impact force using a 3D model. J. Hydraul. Res. 201048, 784–792. [Google Scholar] [CrossRef]
The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Numerical investigation of flow characteristics over stepped spillways

Güven, Aytaç
Mahmood, Ahmed Hussein
Water Supply (2021) 21 (3): 1344–1355.
https://doi.org/10.2166/ws.2020.283Article history

Abstract

Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

HIGHLIGHTS

ListenReadSpeaker webReader: Listen

  • A numerical model was developed for stepped spillways.
  • The turbulent flow was simulated by the Renormalized Group (RNG) model.
  • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

Keyword

CFDnumerical modellingslope changestepped spillwayturbulent flow

INTRODUCTION

댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

METHODOLOGY

ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

formula

(1)

formula

(2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

formula

(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

formula

(4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

formula

(5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

formula

(6)where ⁠: the turbulent length scale.

VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

formula

(7)

formula

(8)

formula

(9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

Case study

ListenReadSpeaker webReader: Listen

In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1

Location of pressure sensors on horizontal step faces

Θ(°)L(m)x/l (–)
50.0 0.050 0.35 0.64 – – – 
30.0 0.104 0.17 0.50 0.84 – – 
18.6 0.178 0.10 0.30 0.50 0.7 0.88 
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Numerical model set-up

ListenReadSpeaker webReader: Listen

A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2

Variables used in test runs

Test no.Θ1 (°)Θ2 (°)h(m)d0q (m3s1)dc/h (–)
50 18.6 0.06 0.045 0.1 2.6 
50 18.6 0.06 0.082 0.235 4.6 
50 30.0 0.06 0.045 0.1 2.6 
50 30.0 0.06 0.082 0.235 4.6 
Table 2 Variables used in test runs

For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.

The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.

Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Figure 3VIEW LARGEDOWNLOAD SLIDE

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.

There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).

The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.

RESULTS AND DISCUSSION

ListenReadSpeaker webReader: Listen

The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.

Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure 4VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 5VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 6VIEW LARGEDOWNLOAD SLIDE

Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

Figure 7VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.

The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.

Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.

Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 8VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.

Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.

Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.

Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

CONCLUSION

ListenReadSpeaker webReader: Listen

In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.

Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.

The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.

이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.

Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.

Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.

DATA AVAILABILITY STATEMENT

ListenReadSpeaker webReader: Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Boes R. M. Hager W. H. 2003a Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
Google Scholar
Boes R. M. Hager W. H. 2003b Two-Phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering 129 (9), 661–670.
Google Scholar
Chanson H. 1994 Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research 32 (3), 445–460.
Google Scholar
Chanson H. 1997 Air Bubble Entrainment in Free Surface Turbulent Shear Flows. Academic Press, London.
Google Scholar
Chanson H. 2002 The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands.
Google Scholar
Felder S. Chanson H. 2011 Energy dissipation down a stepped spillway with nonuniform step heights. Journal of Hydraulic Engineering 137 (11), 1543–1548.
Google Scholar
Flow Science, Inc. 2012 FLOW-3D v10-1 User Manual. Flow Science, Inc., Santa Fe, CA.
Ghaderi A. Daneshfaraz R. Torabi M. Abraham J. Azamathulla H. M. 2020a Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply 20 (5), 1988–1998.
Google Scholar
Ghaderi A. Abbasi S. Abraham J. Azamathulla H. M. 2020b Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation 72, 101711.
Google Scholar
Gonzalez C. A. Chanson H. 2008 Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research 46 (1), 65–72.
Google Scholar
Gunal M. 1996 Numerical and Experimental Investigation of Hydraulic Jumps. PhD Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK.
Hirt C. W. Nichols B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1), 201–225.
Google Scholar
Matos J. 2000 Hydraulic design of stepped spillways over RCC dams. In: Intl Workshop on Hydraulics of Stepped Spillways (H.-E. Minor & W. Hager, eds). Balkema Publ, Zurich, pp. 187–194.
Google Scholar
Mohammad Rezapour Tabari M. Tavakoli S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 41 (4), 1215–1224.
Google Scholar
Ostad Mirza M. J. 2016 Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics Over Stepped Spillways. Communications du Laboratoire de Constructions Hydrauliques, No. 64 (A. J. Schleiss, ed.). Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Roshan R. Azamathulla H. M. Marosi M. Sarkardeh H. Pahlavan H. Ab Ghani A. 2010 Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs 20 (3), 131–136.
Google Scholar
Shahheydari H. Nodoshan E. J. Barati R. Moghadam M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
Google Scholar
Takahashi M. Ohtsu I. 2012 Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research 50 (4), 427–434.
Google Scholar
Versteeg H. K. Malalasekera W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow.
Google Scholar
© 2021 The Authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.

Three-dimensional cellwise conservative unsplit geometric VOF schemes

3차원 셀별 보수 미분할 기하학적 VOF 체계

Raphaël Comminal, JonSpangenberg

Abstract

This work presents two unsplit geometric VOF schemes that extend the two-dimensional cellwise conservative unsplit (CCU) scheme [Comminal et al., J. Comput. Phys. 283 (2015) 582–608] to three dimensions. The novelty of the 3D-CCU schemes lies in the representation of the streaksurfaces of donating regions by polyhedral surfaces whose vertices are calculated with the 4th order Runge-Kutta scheme. Moreover, the advected liquid volumes are computed using a truncation algorithm [López et al., J. Comput. Phys. 392 (2019) 666–693] suited for arbitrary non-convex and self-intersecting polyhedra, which removes the need for tetrahedral decomposition. The 3D-CCU advection schemes were coupled to three interface reconstruction methods (Youngs’ method, the Mixed Youngs-Centered scheme, and the Least-Square Fit algorithm). The resulting VOF methods were tested in classical benchmark advection tests, including translation, rigid-body rotation, shear and deformation flows. The proposed 3D-CCU schemes conserve the liquid volume and maintain the physical boundedness of liquid volume fractions to the machine precision. The 3D-CCU schemes perform favorably compared to other unsplit geometric VOF schemes when coupled to Youngs’ interface reconstruction method. Moreover, the 3D-CCU schemes coupled to the Least-Square Fit algorithm are more accurate than most other VOF schemes that use a second-order accurate interface reconstruction, except those where a 3D extension of the Mosso-Swartz interface reconstruction is employed. The comparison of the different VOF schemes highlights the importance of coupling accurate interface reconstruction methods with accurate unsplit advection schemes.

이 연구는 2 차원 CCU (Cellwise Conservative Unsplit) 방식을 확장하는 두 가지 분할되지 않은 기하학적 VOF 방식을 제시합니다 [Comminal et al., J. Comput. Phys. 283 (2015) 582–608]을 3 차원으로 변경했습니다. 3D-CCU 체계의 참신함은 4 차 Runge-Kutta 체계로 정점이 계산되는 다면체 표면으로 기부 지역의 줄무늬 표면을 표현하는 데 있습니다.

더욱, 가변 액체 부피는 절단 알고리즘을 사용하여 계산됩니다 [López et al., J. Comput. Phys. 392 (2019) 666–693]은 임의의 볼록하지 않고 자기 교차하는 다면체에 적합하며, 이는 사면체 분해의 필요성을 제거합니다. 3D-CCU 이류 계획은 세 가지 인터페이스 재구성 방법 (Youngs의 방법, Mixed Youngs-Centered 계획 및 Least-Square Fit 알고리즘)과 결합되었습니다. 결과 VOF 방법은 평행 이동, 강체 회전, 전단 및 변형 흐름을 포함한 고전적인 벤치 마크 이류 테스트에서 테스트되었습니다.

제안된 3D-CCU 방식은 액체 부피를 보존하고 기계 정밀도에 대한 액체 부피 분율의 물리적 경계를 유지합니다. 3D-CCU 방식은 Youngs의 인터페이스 재구성 방식과 결합 할 때 다른 분할되지 않은 기하학적 VOF 방식에 비해 우수한 성능을 발휘합니다.

또한 Least-Square Fit 알고리즘과 결합 된 3D-CCU 체계는 Mosso-Swartz 인터페이스 재구성의 3D 확장이 사용되는 경우를 제외하고 2 차 정확한 인터페이스 재구성을 사용하는 대부분의 다른 VOF 체계보다 더 정확합니다. 서로 다른 VOF 체계의 비교는 정확한 인터페이스 재구성 방법과 정확한 분할되지 않은 이류 체계를 결합하는 것의 중요성을 강조합니다.

Keywords

Volume-of-fluid methodUnsplit geometric schemeCellwise advectionSemi-Lagrangian trackingVolume conservation

Fig. 1. Eulerian fluxwise advection. (a) Positive donating region with respect to the left cell; (b) Negative donating region; (c) Intersection of a donating region with the cell's face, yielding a positive and a negative region; (d) Temporally-consistent donating regions equivalent to a cellwise advection; (e) Temporal inconsistency of adjacent donating regions.
Fig. 1. Eulerian fluxwise advection. (a) Positive donating region with respect to the left cell; (b) Negative donating region; (c) Intersection of a donating region with the cell’s face, yielding a positive and a negative region; (d) Temporally-consistent donating regions equivalent to a cellwise advection; (e) Temporal inconsistency of adjacent donating regions.
Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.
Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.
Fig. 3. (a) Cartesian grid cell. (b) Images of the cell's vertices with ruled surfaces. (c) Polyhedral cell's image with triangulated faces.
Fig. 3. (a) Cartesian grid cell. (b) Images of the cell’s vertices with ruled surfaces. (c) Polyhedral cell’s image with triangulated faces.
Fig. 4. Construction of donating regions. (a) Streakline of a cell's vertex P0 represented by the 2-segment polygonal line P0–P1/2–P1. (b) Triangulated streaksurface of a cell's edge P0Q0. (c) Streaktube of a cell's face P0Q0R0S0. (d) Pyramidal volume flux correction  ⁎  capping the donating region of the face P0Q0R0S0.
Fig. 4. Construction of donating regions. (a) Streakline of a cell’s vertex P0 represented by the 2-segment polygonal line P0–P1/2–P1. (b) Triangulated streaksurface of a cell’s edge P0Q0. (c) Streaktube of a cell’s face P0Q0R0S0. (d) Pyramidal volume flux correction ⁎ capping the donating region of the face P0Q0R0S0.
Fig. 5. Interface reconstruction. (a) PLIC polygon in the grid cell, (b) Non-planar image of the PLIC polygon inside the cell's image by isomorphism, (c) Planar PLIC inside the cell's image by computation of the average normal vector. (Triangulation of the cell's image faces are omitted for clarity.)
Fig. 5. Interface reconstruction. (a) PLIC polygon in the grid cell, (b) Non-planar image of the PLIC polygon inside the cell’s image by isomorphism, (c) Planar PLIC inside the cell’s image by computation of the average normal vector. (Triangulation of the cell’s image faces are omitted for clarity.)
Fig. 6. Convergence of the geometric errors in the translation tests.
Fig. 6. Convergence of the geometric errors in the translation tests.
Fig. 7. Reconstructed PLIC polygons (in light blue) superimposed to the exact sphere position (in dark blue) at the end of the rotation tests for the LSF method and CFL = 1.
Fig. 7. Reconstructed PLIC polygons (in light blue) superimposed to the exact sphere position (in dark blue) at the end of the rotation tests for the LSF method and CFL = 1.
Fig. 8. Reconstructed PLIC polygons in the shear tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs' method.
Fig. 8. Reconstructed PLIC polygons in the shear tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs’ method.
Fig. 9. Reconstructed PLIC polygons in the deformation tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs' method.
Fig. 9. Reconstructed PLIC polygons in the deformation tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs’ method.

References
[1]
C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981) 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
Google Scholar
[2]
F.H. Harlow, J.E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, The Physics of Fluids 8 (1965) 2182–2189. https://doi.org/10.1063/1.1761178.
Google Scholar
[3]
S. McKee, M.F. Tomé, V.G. Ferreira, J.A. Cuminato, A. Castelo, F.S. Sousa, N. Mangiavacchi, The MAC method, Computers & Fluids 37 (2008) 907–930. https://doi.org/10.1016/j.compfluid.2007.10.006.
Google Scholar
[4]
G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A front-tracking method for the computations of multiphase flow, Journal of Computational Physics 169 (2001) 708–759. https://doi.org/10.1006/jcph.2001.6726.
Google Scholar
[5]
S. Shin, D. Juric, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, Journal of Computational Physics 180 (2002) 427–470. https://doi.org/10.1006/jcph.2002.7086.
Google Scholar
[6]
M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics 114 (1994) 146–159. https://doi.org/10.1006/jcph.1994.1155.
Google Scholar
[7]
E. Olsson, G. Kreiss, A conservative level set method for two phase flow, Journal of Computational Physics 210 (2005) 225–246. https://doi.org/10.1016/j.jcp.2005.04.007.
Google Scholar
[8]
D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, Journal of Computational Physics 155 (1999) 96–127. https://doi.org/10.1006/jcph.1999.6332.
Google Scholar
[9]
M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, Journal of Computational Physics 162 (2000) 301–337. https://doi.org/10.1006/jcph.2000.6537.
Google Scholar
[10]
M. Sussman, A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, Journal of Computational Physics 187 (2003) 110–136. https://doi.org/10.1016/S0021-9991(03)00087-1.
Google Scholar
[11]
N. Balcázar, O. Lehmkuhl, L. Jofre, J. Rigola, A. Oliva, A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes, Computers & Fluids 124 (2016) 12–29. https://doi.org/10.1016/j.compfluid.2015.10.005.
Google Scholar
[12]
Y. Liu, X. Yu, A coupled phase–field and volume-of-fluid method for accurate representation of limiting water wave deformation, Journal of Computational Physics 321 (2016) 459–475. https://doi.org/10.1016/j.jcp.2016.05.059.
Google Scholar
[13]
E. Aulisa, S. Manservisi, R. Scardovelli, A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking, Journal of Computational Physics 197 (2004) 555–584. https://doi.org/10.1016/j.jcp.2003.12.009.
Google Scholar
[14]
D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, Journal of Computational Physics 183 (2002) 83–116. https://doi.org/10.1006/jcph.2002.7166.
Google Scholar
[15]
T. Marić, H. Marschall, D. Bothe, lentFoam – A hybrid Level Set/Front Tracking method on unstructured meshes, Computers & Fluids 113 (2015) 20–31. https://doi.org/10.1016/j.compfluid.2014.12.019.
Google Scholar
[16]
S. Mirjalili, S.S. Jain, M. Dodd, Interface-capturing methods for two-phase flows: An overview and recent developments, In: Center for Turbulence Research Annual Research Briefs (2017) 117–135.
Google Scholar
[17]
D. Fuster, A. Bagué, T. Boeck, L. Le Moyne, A. Leboissetier, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, International Journal of Multiphase Flow 35 (2009) 550–565. https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.014.
Google Scholar
[18]
X. Chen, D. Ma, V. Yang, S. Popinet, High-fidelity simulations of impinging jet atomization, Atomization and Sprays 23 (2013) 1079–1101. https://doi.org/10.1615/AtomizSpr.2013007619.
Google Scholar
[19]
J. Delteil, S. Vincent, A. Erriguible, P. Subra-Paternault, Numerical investigations in Rayleigh breakup of round liquid jets with VOF methods, Computers & Fluids 50 (2011) 10–23. https://doi.org/10.1016/j.compfluid.2011.05.010.
Google Scholar
[20]
Agbaglah, S. Delaux, D. Fuster, J. Hoepffner, C. Josserand, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method, Comptes Rendus Mecanique 339 (2011) 194–207. https://doi.org/10.1016/j.crme.2010.12.006.
Google Scholar
[21]
H. Grosshans, A. Movaghar, L. Cao, M. Oevermann, R.Z. Szász, L. Fuchs, Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters, Computers & Fluids 136 (2016) 312–323. https://doi.org/10.1016/j.compfluid.2016.06.018.
Google Scholar
[22]
D. Lörstad, L. Fuchs, High-order surface tension VOF-model for 3D bubble flows with high density ratio, Journal of Computational Physics 200 (2004) 153–176. https://doi.org/10.1016/j.jcp.2004.04.001.
Google Scholar
[23]
D. Fuster, S. Popinet, An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension, Journal of Computational Physics 374 (2018) 752–768. https://doi.org/10.1016/j.jcp.2018.07.055.
Google Scholar
[24]
N. Nikolopoulos, K.S. Nikas, G. Bergeles, A numerical investigation of central binary collision of droplets, Computers & Fluids 38 (2009) 1191–1202. https://doi.org/10.1016/j.compfluid.2008.11.007.
Google Scholar
[25]
G. Strotos, I. Malgarinos, N. Nikolopoulos, M. Gavaises, Predicting droplet deformation and breakup for moderate Weber numbers, International Journal of Multiphase Flow 85 (2016) 96–109. https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.001.
Google Scholar
[26]
D. Jiao, K. Jiao, F. Zhang, Q. Du, Direct numerical simulation of droplet deformation in turbulent flows with different velocity profiles, Fuel 247 (2019) 302–314. https://doi.org/10.1016/j.fuel.2019.03.010.
Google Scholar
[27]
F. Giussani, F. Piscaglia, G. Saez-Mischlich, J. Hèlie, A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization, Journal of Computational Physics 406 (2020) 109068. https://doi.org/10.1016/j.jcp.2019.109068.
Google Scholar
[28]
M.R. Pendar, E. Roohi, Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models, Ocean Engineering 112 (2016) 287–306. https://doi.org/10.1016/j.oceaneng.2015.12.010.
Google Scholar
[29]
Flow Science, Inc., Santa Fe, NM, USA. FLOW-3D® Version 12.0 (2019). https://www.flow3d.com.
Google Scholar
[30]
O. Ubbink, R.I. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, Journal of Computational Physics 153 (1999) 26–50. https://doi.org/10.1006/jcph.1999.6276.
Google Scholar
[31]
S. Muzaferija, A two-fluid Navier-Stokes solver to simulate water entry, In: Proceedings of 22nd Symposium on Naval Architecture (1999) 638–651.
Google Scholar
[32]
M. Darwish, F. Moukalled, Convective schemes for capturing interfaces of free-surface flows on unstructured grids, Numerical Heat Transfer, Part B: Fundamentals 49 (2006) 19–42. https://doi.org/10.1080/10407790500272137.
Google Scholar
[33]
S.S. Deshpande, L. Anumolu, M.F. Trujillo, Evaluating the performance of the two-phase flow solver interFoam, Computational Science & Discovery 5 (2012) 014016. https://doi.org/10.1088/1749-4699/5/1/014016.
Google Scholar
[34]
J.A. Heyns, A.G. Malan, T.M. Harms, O.F. Oxtoby, Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach, International Journal for Numerical Methods in Fluids 71 (2013) 788–804. https://doi.org/10.1002/fld.3694.
Google Scholar
[35]
S. Ii, K. Sugiyama, S. Takeuchi, S. Takagi, Y. Matsumoto, F. Xiao, An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction, Journal of Computational Physics 231 (2012) 2328–2358. https://doi.org/10.1016/j.jcp.2011.11.038.
Google Scholar
[36]
B. Xie, S. Ii, F. Xiao, An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: The THINC method with quadratic surface representation, International Journal for Numerical Methods in Fluids 76 (2014) 1025–1042. https://doi.org/10.1016/j.jcp.2013.11.034.
Google Scholar
[37]
Q. Zhang, On Donating Regions: Lagrangian Flux through a Fixed Curve, SIAM Review 55 (2013) 443–461. https://doi.org/10.1137/100796406.
Google Scholar
[38]
E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, Journal of Computational Physics 225 (2007) 2301–2319. https://doi.org/10.1016/j.jcp.2007.03.015.
Google Scholar
[39]
G.D. Weymouth, D.K.-P. Yue, Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids, Journal of Computational Physics 229 (2010) 2853–2865. https://doi.org/10.1016/j.jcp.2009.12.018.
Google Scholar
[40]
C.S. Wu, D.L. Young, H.C. Wu, Simulations of multidimensional interfacial flows by an improved volume-of-fluid method, International Journal of Heat and Mass Transfer 60 (2013) 739–755. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.049.
Google Scholar
[41]
T. Marić, D.B. Kothe, D. Bothe, Unstructured un-split geometrical Volume-of-Fluid methods – A review, Journal of Computational Physics 420 (2020) 109695. https://doi.org/10.1016/j.jcp.2020.109695.
Google Scholar
[42]
Q. Zhang, On a Family of Unsplit Advection Algorithms for Volume-of-Fluid Methods, SIAM Journal on Numerical Analysis 51 (2013) 2822–2850. https://doi.org/10.1137/120897882.
Google Scholar
[43]
W.J. Rider, D.B. Kothe, Reconstructing Volume Tracking, Journal of Computational Physics 141 (1998) 112–152. https://doi.org/10.1006/jcph.1998.5906.
Google Scholar
[44]
J. López, J. Hernández, P. Gómez, F. Faura, A volume of fluid method based on multidimensional advection and spline interface reconstruction, Journal of Computational Physics 195 (2004) 718–742. https://doi.org/10.1016/j.jcp.2003.10.030.
Google Scholar
[45]
D.J.E. Harvie, D.F. Fletcher, A new volume of fluid advection algorithm: the defined donating region scheme, International Journal for Numerical Methods in Fluids 35 (2001) 151–172. https://doi.org/10.1002/1097-0363(20010130)35:2<151::AID-FLD87>3.0.CO;2-4.
Google Scholar
[46]
D.J.E. Harvie, D.F. Fletcher, A New Volume of Fluid Advection Algorithm: The Stream Scheme, Journal of Computational Physics 162 (2000) 1–32. https://doi.org/10.1006/jcph.2000.6510.
Google Scholar
[47]
J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, Journal of Computational Physics 199 (2004) 465–502. https://doi.org/10.1016/j.jcp.2003.12.023.
Google Scholar
[48]
A. Cervone, S. Manservisi, R. Scardovelli, S. Zaleski, A geometrical predictor–corrector advection scheme and its application to the volume fraction function, Journal of Computational Physics 228 (2009) 406–419. https://doi.org/10.1016/j.jcp.2008.09.016.
Google Scholar
[49]
R. Comminal, J. Spangenberg, J.H. Hattel, Cellwise conservative unsplit advection for the volume of fluid method, Journal of Computational Physics 283 (2015) 582–608. https://doi.org/10.1016/j.jcp.2014.12.003.
Google Scholar
[50]
J. Mencinger, I. Žun, A PLIC–VOF method suited for adaptive moving grids, Journal of Computational Physics 230 (2011) 644–663. https://doi.org/10.1016/j.jcp.2010.10.010.
Google Scholar
[51]
P. Liovic, M. Rudman, J.-L. Liow, D. Lakehal, D. Kothe, A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction, Computers & Fluids 35 (2006) 1011–1032. https://doi.org/10.1016/j.compfluid.2005.09.003.
Google Scholar
[52]
J. Hernández, J. López, P. Gómez, C. Zanzi, F. Faura, A new volume of fluid method in three dimensions—Part I: Multidimensional advection method with face-matched flux polyhedra, International Journal for Numerical Methods in Fluids 58 (2008) 897–921. https://doi.org/10.1002/fld.1776.
Google Scholar
[53]
V. Le Chenadec, H. Pitsch, A 3D Unsplit Forward/Backward Volume-of-Fluid Approach and Coupling to the Level Set Method, Journal of Computational Physics 233 (2013) 10–33. https://doi.org/10.1016/j.jcp.2012.07.019.
Google Scholar
[54]
M. Owkes, O. Desjardins, A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method, Journal of Computational Physics 270 (2014) 587–612. https://doi.org/10.1016/j.jcp.2014.04.022.
Google Scholar
[55]
L. Jofre, O. Lehmkuhl, J. Castro, A. Oliva, A 3-D Volume-of-Fluid advection method based on cell-vertex velocities for unstructured meshes, Computers & Fluids 94 (2014) 14–29. https://doi.org/10.1016/j.compfluid.2014.02.001.
Google Scholar
[56]
T. Marić, H. Marschall, D. Bothe, voFoam – A geometrical Volume of Fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using OpenFOAM, arXiv preprint (2013) arXiv:1305.3417.
Google Scholar
[57]
T. Marić, H. Marschall, D. Bothe, An enhanced un-split face-vertex flux-based VoF method, Journal of Computational Physics 371 (2018) 967–993. https://doi.org/10.1016/j.jcp.2018.03.048.
Google Scholar
[58]
C.B. Ivey, P. Moin, Conservative volume of fluid advection method on unstructured grids in three dimensions, In: Center for Turbulence Research Annual Research Briefs (2012) 179–192.
Google Scholar
[59]
C.B. Ivey, P. Moin, Conservative and bounded volume-of-fluid advection on unstructured grids, Journal of Computational Physics 350 (2017) 387–419. https://doi.org/10.1016/j.jcp.2017.08.054.
Google Scholar
[60]
J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, Royal Society Open Science 3 (2016) 160405. https://doi.org/10.1098/rsos.160405.
Google Scholar
[61]
J. López, P. Gómez, C. Zanzi, F. Faura, H. Hernández, Application of Non-Convex Analytic and Geometric Tools to a PLIC-VOF Method. In: ASME International Mechanical Engineering Congress and Exposition (2016) V007T09A005. https://doi.org/10.1115/IMECE2016-67409.
Google Scholar
[62]
J. López, J. Hernández, P. Gómez, F. Faura, Non-convex analytical and geometrical tools for volume truncation, initialization and conservation enforcement in VOF methods, Journal of Computational Physics 392 (2019) 666–693. https://doi.org/10.1016/j.jcp.2019.04.055.
Google Scholar
[63]
J. López, J. Hernández, P. Gómez, C. Zanzi, R. Zamora, VOFTools 5: An extension to non-convex geometries of calculation tools for volume of fluid methods, Computer Physics Communications (2020) 107277. https://doi.org/10.1016/j.cpc.2020.107277.
Google Scholar
[64]
D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, In: Numerical Methods for Fluid Dynamics, Eds: K.W. Morton, M.J. Baines, Academic Press New York, 1982, pp. 273–285.
Google Scholar
[65]
R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection, International Journal for Numerical Methods in Fluids 41 (2003) 251–274. https://doi.org/10.1002/fld.431.
Google Scholar
[66]
R. Scardovelli, S. Zaleski, Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids, Journal of Computational Physics 164 (2000) 228–237. https://doi.org/10.1006/jcph.2000.6567.
Google Scholar
[67]
D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, Journal of Computational Physics 152 (1999) 423–456. https://doi.org/10.1006/jcph.1998.6168.
Google Scholar
[68]
V. Dyadechko, M. Shashkov, Moment-of-fluid interface reconstruction, Los Alamos Report LA-UR-07-1537 (2007).
Google Scholar
[69]
F. Tampieri, Newell’s method for computing the plane equation of a polygon, In: Graphics Gems III (1992) 231–232. https://doi.org/10.1016/B978-0-08-050755-2.50052-X.
Google Scholar
[70]
J. López, J. Hernández, P. Gómez, F. Faura, A new volume conservation enforcement method for PLIC reconstruction in general convex grids, Journal of Computational Physics 316 (2016) 338–359. https://doi.org/10.1016/j.jcp.2016.04.018.
Google Scholar
[71]
C.W.S. Bruner, Geometric Properties of Arbitrary Polyhedra in Terms of Face Geometry, AIAA Journal 33 (1995) 1350–1350. https://doi.org/10.2514/3.12556.
Google Scholar
[72]
R.N. Goldman, Area of planar polygons and volume of polyhedra, In: Graphics Gems II (1991) 170–171. https://doi.org/10.1016/B978-0-08-050754-5.50043-8.
Google Scholar
[73]
B. Freireich, M. Kodam, C. Wassgren, An exact method for determining local solid fractions in discrete element method simulations, AIChE Journal 56 (2010) 3036–3048. https://doi.org/10.1002/aic.12223.
Google Scholar
[74]
J. López, C. Zanzi, P. Gómez, F. Faura, J. Hernández, A new volume of fluid method in three dimensions—Part II: Piecewise-planar interface reconstruction with cubic-Bézier fit, International Journal for Numerical Methods in Fluids 58 (2008) 923–944. https://doi.org/10.1002/fld.1775.
Google Scholar
[75]
P. Cifani, W.R. Michalek, G.J.M. Priems, J.G. Kuerten, C.W.M. van der Geld, B.J. Geurts, A comparison between the surface compression method and an interface reconstruction method for the VOF approach, Computers & Fluids 136 (2016) 421–435. https://doi.org/10.1016/j.compfluid.2016.06.026.
Google Scholar
[76]
A. Asuri Mukundan, T. Ménard, J.C. Brändle de Motta, A. Berlemont, A 3D Moment of Fluid method for simulating complex turbulent multiphase flows, Computers & Fluids 198 (2020) 104364. https://doi.org/10.1016/j.compfluid.2019.104364.
Google Scholar
[77]
C.B. Ivey, P. Moin, Accurate interface normal and curvature estimates on three-dimensional unstructured non-convex polyhedral meshes, Journal of Computational Physics 300 (2015) 365–386. https://doi.org/10.1016/j.jcp.2015.07.055.
Google Scholar
[78]
H.T. Ahn, M. Shashkov, Multi-material interface reconstruction on generalized polyhedral meshes, Journal of Computational Physics 226 (2007) 2096–2132. https://doi.org/10.1016/j.jcp.2007.06.033.
Google Scholar
[79]
G. Černe, S. Petelin, I. Tiselj, Numerical errors of the volume-of-fluid interface tracking algorithm, International Journal for Numerical Methods in Fluids 38 (2002) 329–350. https://doi.org/10.1002/fld.228.
Google Scholar
[80]
S.J. Mosso, B.K. Swartz, D.B. Kothe, R.C. Ferrell, A parallel, volume-tracking algorithm for unstructured meshes, In: Parallel Computational Fluid Dynamics 1996: Algorithms and Results Using Advanced Computers, 1997, pp. 368–375. https://doi.org/10.1016/B978-044482327-4/50113-3.
Google Scholar
1
This definition of the CFL number is different from the usual definition used in multi-dimensional algebraic advection schemes. However, the component-wise definition is more meaningful in the context of geometric VOF schemes, because it determines the number of layers of cells around the interfacial cells where the liquid volume fractions need to be updated.

Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

통합 관성 펌프를 사용하여 마이크로 채널에서 비접촉식 기포-기포 상호 작용 모델링

Physics of Fluids 33, 042002 (2021); https://doi.org/10.1063/5.0041924 B. Hayesa) G. L. Whitingb), and  R. MacCurdyc)

ABSTRACT

In this study, the nonlinear effect of contactless bubble–bubble interactions in inertial micropumps is characterized via reduced parameter one-dimensional and three-dimensional computational fluid dynamics (3D CFD) modeling. A one-dimensional pump model is developed to account for contactless bubble-bubble interactions, and the accuracy of the developed one-dimensional model is assessed via the commercial volume of fluid CFD software, FLOW-3D. The FLOW-3D CFD model is validated against experimental bubble dynamics images as well as experimental pump data. Precollapse and postcollapse bubble and flow dynamics for two resistors in a channel have been successfully explained by the modified one-dimensional model. The net pumping effect design space is characterized as a function of resistor placement and firing time delay. The one-dimensional model accurately predicts cumulative flow for simultaneous resistor firing with inner-channel resistor placements (0.2L < x < 0.8L where L is the channel length) as well as delayed resistor firing with inner-channel resistor placements when the time delay is greater than the time required for the vapor bubble to fill the channel cross section. In general, one-dimensional model accuracy suffers at near-reservoir resistor placements and short time delays which we propose is a result of 3D bubble-reservoir interactions and transverse bubble growth interactions, respectively, that are not captured by the one-dimensional model. We find that the one-dimensional model accuracy improves for smaller channel heights. We envision the developed one-dimensional model as a first-order rapid design tool for inertial pump-based microfluidic systems operating in the contactless bubble–bubble interaction nonlinear regime

이 연구에서 관성 마이크로 펌프에서 비접촉 기포-기포 상호 작용의 비선형 효과는 감소 된 매개 변수 1 차원 및 3 차원 전산 유체 역학 (3D CFD) 모델링을 통해 특성화됩니다. 비접촉식 기포-버블 상호 작용을 설명하기 위해 1 차원 펌프 모델이 개발되었으며, 개발 된 1 차원 모델의 정확도는 유체 CFD 소프트웨어 인 FLOW-3D의 상용 볼륨을 통해 평가됩니다.

FLOW-3D CFD 모델은 실험적인 거품 역학 이미지와 실험적인 펌프 데이터에 대해 검증되었습니다. 채널에 있는 두 저항기의 붕괴 전 및 붕괴 후 기포 및 유동 역학은 수정 된 1 차원 모델에 의해 성공적으로 설명되었습니다. 순 펌핑 효과 설계 공간은 저항 배치 및 발사 시간 지연의 기능으로 특징 지어집니다.

1 차원 모델은 내부 채널 저항 배치 (0.2L <x <0.8L, 여기서 L은 채널 길이)로 동시 저항 발생에 대한 누적 흐름과 시간 지연시 내부 채널 저항 배치로 지연된 저항 발생을 정확하게 예측합니다. 증기 방울이 채널 단면을 채우는 데 필요한 시간보다 큽니다.

일반적으로 1 차원 모델 정확도는 저수지 근처의 저항 배치와 1 차원 모델에 의해 포착되지 않는 3D 기포-저수지 상호 작용 및 가로 기포 성장 상호 작용의 결과 인 짧은 시간 지연에서 어려움을 겪습니다. 채널 높이가 작을수록 1 차원 모델 정확도가 향상됩니다. 우리는 개발 된 1 차원 모델을 비접촉 기포-기포 상호 작용 비선형 영역에서 작동하는 관성 펌프 기반 미세 유체 시스템을 위한 1 차 빠른 설계 도구로 생각합니다.

REFERENCES

1.S. Hassan and X. Zhang, “ Design and fabrication of capillary-driven flow device for point-of-care diagnostics,” Biosensors 10, 39 (2020). https://doi.org/10.3390/bios10040039, Google ScholarCrossref
2.Q. Shizhi and H. Bau, “ Magneto-hydrodynamics based microfluidics,” Mech. Res. Commun. 36, 10 (2009). https://doi.org/10.1016/j.mechrescom.2008.06.013, Google ScholarCrossref
3.N. Mishchuk, T. Heldal, T. Volden, J. Auerswald, and H. Knapp, “ Micropump based on electroosmosis of the second kind,” Electrophoresis 30, 3499 (2009). https://doi.org/10.1002/elps.200900271, Google ScholarCrossref
4.J. Snyder, J. Getpreecharsawas, D. Fang, T. Gaborski, C. Striemer, P. Fauchet, D. Borkholder, and J. McGrath, “ High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes,” Proc. Nat. Acad. Sci. U. S. A. 110, 18425–18430 (2013). https://doi.org/10.1073/pnas.1308109110, Google ScholarCrossref
5.K. Vinayakumar, G. Nadiger, V. Shetty, S. Dinesh, M. Nayak, and K. Rajanna, “ Packaged peristaltic micropump for controlled drug delivery application,” Rev. Sci. Instrum. 88, 015102 (2017). https://doi.org/10.1063/1.4973513, Google ScholarScitation, ISI
6.D. Duffy, H. Gillis, J. Lin, N. Sheppard, and G. Kellogg, “ Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays,” Anal. Chem. 71, 4669 (1999). https://doi.org/10.1021/ac990682c, Google ScholarCrossref
7.V. Gnyawali, M. Saremi, M. Kolios, and S. Tsai, “ Stable microfluidic flow focusing using hydrostatics,” Biomicrofluidics 11, 034104 (2017). https://doi.org/10.1063/1.4983147, Google ScholarScitation, ISI
8.J. Lake, K. Heyde, and W. Ruder, “ Low-cost feedback-controlled syringe pressure pumps for microfluidics applications,” PLoS One 12, e0175089 (2017). https://doi.org/10.1371/journal.pone.0175089, Google ScholarCrossref
9.M. I. Mohammed, S. Haswell, and I. Gibson, “ Lab-on-a-chip or chip-in-a-lab: Challenges of commercialization lost in translation,” Procedia Technology 20, 54–59 (2015), proceedings of The 1st International Design Technology Conference, DESTECH2015, Geelong. Google ScholarCrossref
10.E. Torniainen, A. Govyadinov, D. Markel, and P. Kornilovitch, “ Bubble-driven inertial micropump,” Phys. Fluids 24, 122003 (2012). https://doi.org/10.1063/1.4769755, Google ScholarScitation, ISI
11.H. Hoefemann, S. Wadle, N. Bakhtina, V. Kondrashov, N. Wangler, and R. Zengerle, “ Sorting and lysis of single cells by bubblejet technology,” Sens. Actuators, B 168, 442–445 (2012). https://doi.org/10.1016/j.snb.2012.04.005, Google ScholarCrossref
12.B. Hayes, A. Hayes, M. Rolleston, A. Ferreira, and J. Kirsher, “ Pulsatory mixing of laminar flow using bubble-driven micro-pumps,” in Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition (2018), Vol. 7. Google ScholarCrossref
13.E. Ory, H. Yuan, A. Prosperetti, S. Popinet, and S. Zaleski, “ Growth and collapse of a vapor bubble in a narrow tube,” Phys. Fluids 12, 1268 (2000). https://doi.org/10.1063/1.870381, Google ScholarScitation, ISI
14.Z. Yin and A. Prosperetti, “‘ Blinking bubble’ micropump with microfabricated heaters,” J. Micromech. Microeng. 15, 1683 (2005). https://doi.org/10.1088/0960-1317/15/9/010, Google ScholarCrossref
15.M. Einat and M. Grajower, “ Microboiling measurements of thermal-inkjet heaters,” J. Microelectromech. Syst. 19, 391 (2010). https://doi.org/10.1109/JMEMS.2010.2040946, Google ScholarCrossref
16.A. Govyadinov, P. Kornilovitch, D. Markel, and E. Torniainen, “ Single-pulse dynamics and flow rates of inertial micropumps,” Microfluid. Nanofluid. 20, 73 (2016). https://doi.org/10.1007/s10404-016-1738-x, Google ScholarCrossref
17.E. Sourtiji and Y. Peles, “ A micro-synthetic jet in a microchannel using bubble growth and collapse,” Appl. Therm. Eng. 160, 114084 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114084, Google ScholarCrossref
18.B. Hayes, A. Govyadinov, and P. Kornilovitch, “ Microfluidic switchboards with integrated inertial pumps,” Microfluid. Nanofluid. 22, 15 (2018). https://doi.org/10.1007/s10404-017-2032-2, Google ScholarCrossref
19.P. Kornilovitch, A. Govyadinov, D. Markel, and E. Torniainen, “ One-dimensional model of inertial pumping,” Phys. Rev. E 87, 023012 (2013). https://doi.org/10.1103/PhysRevE.87.023012, Google ScholarCrossref
20.H. Yuan and A. Prosperetti, “ The pumping effect of growing and collapsing bubbles in a tube,” J. Micromech. Microeng. 9, 402–413 (1999). https://doi.org/10.1088/0960-1317/9/4/318, Google ScholarCrossref
21.J. Zou, B. Li, and C. Ji, “ Interactions between two oscillating bubbles in a rigid tube,” Exp. Therm. Fluid Sci. 61, 105 (2015). https://doi.org/10.1016/j.expthermflusci.2014.10.021, Google ScholarCrossref
22.C. Hirt and B. Nichols, “ Volume of fluid (vof) method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5, Google ScholarCrossref
23.C. Borgnakke and R. E. Sonntag, Fundamentals of Thermodynamics, 8th ed. ( Wiley, 1999). Google Scholar
24.O. E. Ruiz, “ CFD model of the thermal inkjet droplet ejection process,” in Proceeding of Heat Transfer Summer Conference (2007), Vol. 3. Google ScholarCrossref
25.T. Theofanous, L. Biasi, H. Isbin, and H. Fauske, “ A theoretical study on bubble growth in constant and time-dependent pressure fields,” Chem. Eng. Sci. 24, 885–897 (1969). https://doi.org/10.1016/0009-2509(69)85008-6, Google ScholarCrossref
26.S. Timoshenko and J. Goodier, Theory of Elasticity, 3rd ed. ( McGaw-Hill, Inc., 1970). Google Scholar

Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea

Jae-Seol Shim†, Jinah Kim†, Dong-Chul Kim‡, Kiyoung Heo†, Kideok Do†, Sun-Jung Park ‡
† Coastal Disaster Research Center,
Korea Institute of Ocean Science &
Technology, 426-744, Ansan, Gyeonggi,
Korea
jsshim@kiost.ac
jakim@kiost.ac
kyheo21@kiost.ac
kddo@kiost.ac
‡ Technology R&D Institute
Hyein E&C Co., Ltd., Seoul 157-861,
Korea
skkkdc@chol.com
Nayana_sj@nate.com

ABSTRACT

Shim, J., Kim, J., Kim, D., Heo, K., Do, K., Park, S., 2013. Storm surge inundation simulations comparing threedimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea. In:
Conley, D.C., Masselink, G., Russell, P.E. and O’Hare, T.J. (eds.), Proceedings 12th International Coastal Symposium
(Plymouth, England), Journal of Coastal Research, Special Issue No. 65, pp. 392-397, ISSN 0749-0208.
Severe storm surge inundation was caused by the typhoon Maemi in Masan Bay, South Korea in September 2003. To
investigate the differences in the storm surge inundation simulated by three-dimensional (3D) and two-dimensional
models, we used the ADvanced CIRCulation model (ADCIRC) and 3D computational fluid dynamics (CFD) model
(FLOW3D). The simulation results were compared to the flood plain map of Masan Bay following the typhoon Maemi.
To improve the accuracy of FLOW3D, we used a high-resolution digital surface model with a few tens of centimeterresolution, produced by aerial LIDAR survey. Comparison of the results between ADCRIC and FLOW3D simulations shows that the inclusion of detailed information on buildings and topography has an impact, delaying seawater propagation and resulting in a reduced inundation depth and flooding area. Furthermore, we simulated the effect of the installation of a storm surge barrier on the storm surge inundation. The barrier acted to decrease the water volume of the inundation and delayed the arrival time of the storm surge, implying that the storm surge barrier provides more time for residents’ evacuation.

Keywords: Typhoon Maemi, digital surface elevation model, Reynolds-Averaged NavierStokes equations.

2003 년 9 월 대한민국 마산만 태풍 매미에 의해 심한 폭풍 해일 침수가 발생했습니다. 3 차원 (3D) 및 2 차원 모델로 시뮬레이션 한 폭풍 해일 침수의 차이를 조사하기 위해 ADvanced CIRCulation 모델 ( ADCIRC) 및 3D 전산 유체 역학 (CFD) 모델 (FLOW3D).

시뮬레이션 결과는 태풍 매미 이후 마산만 범람원 지도와 비교되었다. FLOW-3D의 정확도를 높이기 위해 우리는 항공 LIDAR 측량으로 생성된 수십 센티미터 해상도의 고해상도 디지털 표면 모델을 사용했습니다.

ADCRIC과 FLOW3D 시뮬레이션의 결과를 비교하면 건물과 지형에 대한 자세한 정보를 포함하면 해수 전파가 지연되고 침수 깊이와 침수 면적이 감소하는 것으로 나타났습니다.

또한, 폭풍 해일 침수에 대한 폭풍 해일 장벽 설치의 효과를 시뮬레이션했습니다. 이 장벽은 침수 물량을 줄이고 폭풍 해일 도착 시간을 지연시키는 역할을 하여 폭풍 해일 장벽이 주민들의 대피에 더 많은 시간을 제공한다는 것을 의미합니다.

INTRODUCTION

2003 년 9 월 12 일 태풍 매미로 인한 강한 폭풍 해일이 남해안을 강타했습니다. 마산 만 일대는 심한 폭풍우 침수로 인해 최악의 피해를 입었고 광범위한 홍수를 겪었습니다. 따라서 마산 만에 예방 체계를 구축하기 위해 폭풍 해일에 의한 침수에 대한 수치 예측을 시도하는 선행 연구가 수행되었다 (Park et al. 2011).

그러나 일반적인 2 차원 (2D) 또는 3 차원 (3D) 수압 가정을 사용할 때 지형의 해상도는 복잡한 해안 구조를 표현하기에 충분하지 않습니다. 따라서 우리는 마산 만의 고해상도 지형도를 통해 전산 유체 역학 (CFD)의 침수 시뮬레이션을 제시한다.

태풍 매미는 2003 년 9 월 12 일 12시 (UTC)에 한반도에 상륙하여 남동부 해안을 따라 추적했습니다 (그림 1). 2003 년 9 월 13 일 6시 (UTC)에 동 일본해로 이동하여 온대 저기압이되었습니다.

풍속과 기압면에서 한국을 강타한 가장 강력한 태풍 중 하나입니다. 특히 마산 만에 접해있는 마산시는 폭풍 해일 홍수로 최악의 피해를 입어 32 명이 사망하고 심각한 해안 피해를 입었다. 태풍이 지나가는 동안 중앙 기압은 950hPa, 진행 속도는 45kmh-1로 마산항의 조 위계를 통해 최대 약 2.3m의 서지 높이를 기록했다.

마산 만에 접한 주거 및 상업 지역은 홍수가 심했고 지하 시설은 폭풍 해일로 침수로 어려움을 겪었습니다 (Yasuda et al. 2005). 이 논문에서는 3D CFD 모델 (FLOW 3D)과 2D ADvanced CIRCulation 모델 (ADCIRC)을 사용하여 기록 된 마산 만에서 가장 큰 폭풍 해일 중 하나에 의해 생성 된 해안 침수를 시뮬레이션했습니다.

건물의 높이와 공간 정보를 포함하는 디지털 표면 모델 (DSM)은 LiDAR (Airborne Light Detection and Ranging)에 의해 만들어졌으며, 폭풍 해일 침수 모델, 즉 3D CFD 모델 (FLOW 3D)의 입력 데이터로 사용되었습니다. ). 또한 ADCIRC의 시뮬레이션 결과는 FLOW3D의 경계 조건으로 사용됩니다.

본 연구의 목적은 극심한 침수 높이와 해안 육지로의 범람을 포함하여 마산 만에서 태풍 매미로 인한 폭풍 해일 침수를 재현하는 것이다.

<중략>………………

Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

LITERATURE CITED

Bunya S, Kubatko EJ, Westerink JJ, Dawson C.,2010. A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Computer Methods in Applied Mechanics and Engineering, Oceanography and Coastal Research, 198, 1548-1562.
Chan, J.C.L. & Shi, J.,1996. Long term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophysical Research Letters 23, 2765-2767.
Choi, B.H., Kim, D.C., Pelinovsky, E. and Woo, S.B., 2007. Threedimensional simulation of tsunami run-up around conical island. Coastal Engineering, 54, 618-629.
Choi, B.H., Pelinovsky, E., Kim, D.C., Didenkulova, I. and Woo, S.B., Two- and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Processes in Geophysics, 15, 489-502.
Choi B.H., Pelinovsky E., Kim D.C., Lee H.J., Min B.I. and Kim K.H., Three-dimensional simulation of 1983 central East (Japan) Sea earthquake tsunami at the Imwon Port (Korea). Ocean Engineering, 35, 1545-1559.
Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. & Shim, J.S., 2004. Wave-tide-surge coupled simulation for typhoon Maemi, Workshop on waves and storm surges around Korean peninsula, 121-144.
Choi, K.S., & Kim, B.J., 2007. Climatological characteristics of tropical cyclone making landfall over the Korean Peninsula. Journal of the Korean Meteorological Society 43, 97-109.
Clark, J.D. & Chu, P., 2002. Interannual variation of tropical cyclone activity over the central North Pacific. Journal of the Meteorological Society of Japan, 80, 403-418.
Davies, A.M. & Flather, R.A., 1978. Application of numerical models of the North West European continental shelf and the North Sea to the computation of the storm surges of November to December 1973.
Deutsche Hydrographische Zeitschrift Ergänzungsheft Reihe A, 14, 72. Flow Science, 2010. FLOW-3D User’s Manual. Fujita, T., 1952. Pressure distribution in a typhoon. Geophysical Magazine 23.
Garratt, J.R., 1977. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105, 915-929.
Gary Padgett, 2004. Gary Padgett September 2003 Tropical Weather Summary. Typhoon 2000.
Goda Y., Kishira Y. and Kamiyama Y., 1975. Laboratory investigation on the overtopping rate of seawalls by irregular waves, Report of Port and Harbour Research Inst.,14(4), 3-44.
Heaps, N.S., 1965. Storm surges on a continental shelf. Philos. Trans. R. Soc. London, Ser. 257, 351-383.
Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225.
Holland, G.J., 1980. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, 108, 1212-1218.
Independent Levee Investigation Team, 2006. Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina on August 29, 2005
Klotzbach, P. J. , 2006. Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophysical Research Letters, 33.
Large, W.G. & Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11, 324-336.
Landsea, C.W., Nicholls, N., Gray, W.M. & Avila, L.A., 1996. Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophysical Research Letters, 23, 1697-1700.
Lighthill, J., Holland, G., Gray, W., Landsea, C., Creig, G., Evans, J., Kurikara, Y. and Guard, C., 1994. Global climate change and tropical cyclones. Bulletin of the American Meteorological Society, 75, 2147- 2157.
Luettich, R.A. & Westerink, J.J., 2004. Formulation and Numerical Implementation of the 2D/3D ADCIRC finite element model version 44.XX.
Matsumoto, K., Takanezawa, T. & Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, Journal of Oceanography, 56(5) 567-581.
Mitsuyasu, H. and Kusaba, T., 1984. Drag Coefficient over Water Surface Under the Action of Strong Wind. Natural Disaster Science, 6, 43-50.
Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda and K. Rikiishi, 1980. Observation of the power spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 10, 286- 296.
Multiple Lines of Defense Assessment Team, 2007. Comprehensive Recommendations Supporting the Use of the Multiple Lines of Defense Strategy to Sustain Coastal Louisiana.
Myers, V.A. and Malkin, W., 1961. Some Properties of Hurricane Wind Fields as Deduced from Trajectories. U.S. Weather Bureau, National Hurricane Research Project, Report 49.
Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito and Y. Yamazaki, 2006. The operational JMA Nonhydrostatic Mesoscale Model. Monthly Weather Review, 134, 1266-1298.
Shibaki H., Nakai K., Suzuyama K. and Watanabe A., 2004. Multi-level storm surge model incorporating density stratification and wave-setup. Proc. of 29th Int. Conf. on Coastal Eng., ASCE, 1539-1551.JSCE (1999). Hydraulic formulas, page 245 (in Japanese).
Shibaki, H., Suzuyama, K., Kim, J.I., & Sun, L., 2007. Numerical simulation of storm surge inundation induced by overflow, overtopping and dike breach. Asian and Pacific Coasts 2007, Nanjing, China.
Smagorinsky J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91, 99- 164.
Smith, S.D. & Banke, E.G., 1975. Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101, 665-673.
Versteeg, H.K., Malalasekera, W., 1995.An introduction to computational fluid dynamics. The Finite Volume Method. Prentice Hall, 257p.
Wang Xinian, Yin Qingjiang, Zhang Baoming, 1991. Research and Applications of a Forecasting Model of Typhoon Surges in China Seas. Advances In Water Science.
Wu, J., 1982. Wind-Stress Coefficients over Sea Surface from Breeze to Hurricane. Journal of Geophysical Research, 87, 9704-9706.
Yeh, H., Liu, P., Synolakis, C., 1996. Long-wave Runup Models. World Scientific.
Yakhot, V. and Orszag, S.A., 1986. Renormalization group analysis of turbulence, I. Basic theory. Journal of Scientific Computing, 1, 1-51.
Yakhot, V. and Smith, L.M., 1992. The renormalization group, the expansion and derivation of turbulence models, Journal of Scientific Computing, 7, 35-61
Yasuda, T., T. Hiraishi, H. Kawai, K. Nagase, S.W. Kang, and W.M. Jeong, 2005. Field survey and computation analysis of storm surge disaster in Masan due to Typhoon Maemi, Proceedings of Asian and Pacific Coasts 2005, Jeju, Korea.

Figure 4. Structure of artificial neural network [37]

Turbulent Flow Modeling at Tunnel Spillway Concave Bends and Prediction of Pressure using Artificial Neural Network

터널 배수로 오목 굴곡에서 난류 유동 모델링 인공 신경망을 이용한 압력 예측 및 예측

Zeinab Bashari Moghaddam 1
Hossein Mohammad Vali Samani2
Seyed Habib Mousavi Jahromi 3

Abstract

터널 배수로는 높은 자유 표면 유속이 설정되는 배수로 유형 중 하나입니다. 회전 가속과 난류 흐름의 불규칙성으로 인해 오목한 수직 굽힘에서 압력이 증가합니다. 물리적 모델은 이 현상을 분석하는 가장 좋은 도구입니다.

모든 실제 프로토 타입 상태 분석을 포괄하는 데 필요한 물리적 모델의 수가 너무 많아 배치 및 비용 측면에서 비실용적입니다. 따라서 FLOW-3D 소프트웨어는 가능한 모든 실제 대안을 포괄하는 오목한 굴곡 터널의 난류 흐름 데이터베이스를 분석하고 생성하기 위해 선택되었습니다.

이 소프트웨어는 방전과 형상이 다른 다양한 터널을 시뮬레이션했습니다. 수치 결과는 Alborz Dam 터널 배수로의 건설 된 물리적 모델의 실험 결과로 검증되었으며 만족스러운 동의를 얻었습니다. 차원 분석은 문제의 관련 변수를 차원 없는 매개 변수로 그룹화하는 데 사용됩니다.

이러한 매개 변수는 인공 신경망 시뮬레이션에 사용됩니다. 결과는 Flow-3D 소프트웨어로 얻은 무 차원 매개 변수와 신경망에 의해 예측된 변수 사이의 상관 계수 R2 = 0.95를 보여 주었으며, 이와 관련하여 난류 모델링을 통해 얻은 데이터베이스를 기반으로 한 인공 신경망이 결론을 내릴 수있었습니다. 압력 예측을 위한 강력한 도구입니다.

Keywords: Flow-3D, Tunnel spillway concave bend, Numerical simulation, Turbulent flow,
Artificial neural network

본문 내용 생략 : 본문 내용은 내용 하단부에 첨부된 본문 링크를 참조하시기 바랍니다.

Figure 1. Flow in a concave curvature
Figure 1. Flow in a concave curvature
Figure 2. Flow in the curvature of the flip bucket
Figure 2. Flow in the curvature of the flip bucket
Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
Figure 3. The location of piezometers on the bed of the concave curvature of tunnel spillway in Alborz Dam
Figure 4. Structure of artificial neural network [37]
Figure 4. Structure of artificial neural network [37]
Figure 5. Correlation coefficient of the Neural Network simulation and Flow-3D in the training
stage
Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
Figure 6. Correlation coefficient of the Neural Network simulation and Flow-3D in the validation stage
Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
Figure 7. Comparison 0f the Simulated Neural Network and Flow-3D Results of the validation stage
Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
Figure 8. Correlation coefficient of the Flow-3D numerical results and Equation (1)
Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
Figure 9. Correlation coefficient of the Flow-3D numerical results and Equation (2)
Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)
Figure 10. Correlation coefficient of the Flow-3D numerical results and Equation (3)

현재 연구에서 FLOW-3D 소프트웨어는 처음에 다양한 크기와 배출의 터널 배수로에서 난류 흐름을 시뮬레이션하는데 사용되었습니다. 결과는 이란 에너지부 물 연구소에서 제공한 Alborz 저장 댐에서 얻은 실제 데이터와 비교하여 검증되었습니다.

시뮬레이션에는 다양한 난류 모델이 사용되었으며 RNG 방법이 관찰된 실제 결과와 가장 잘 일치하는 것으로 나타났습니다. 직경이 3 ~ 15m 인 다양한 터널 배수로, 곡률 반경 3 개, 거의 모든 실제 사례를 포괄하는 3개의 배출이 시뮬레이션에 사용되었습니다.

차원 분석을 사용하여 무 차원 매개 변수를 생성하고 문제의 변수 수를 줄였으며 마지막으로 두 개의 주요 무 차원 그룹이 결정되었습니다. 이러한 무 차원 변수 간의 관계를 얻기 위해 신경망을 사용하고 터널 배수로의 오목한 굴곡에서 압력 예측 단계에서 0.95의 상관 계수를 얻었습니다.

압력 계산 결과는 다른 일반적인 방법으로 얻은 결과와 비교되었습니다. 비교는 신경망 결과가 훨씬 더 정확하고 배수로 터널의 오목한 곡률에서 압력을 예측하는 강력한 도구로 간주 될 수 있음을 나타냅니다.

References

  1. Kim, D. G., & Park, J. H. (2005). Analysis of flow structure over ogee-spillway in
    consideration of scale and roughness effects by using CFD model. KSCE Journal of Civil
    Engineering, 9(2), 161-169.
  2. Sabbagh-Yazdi, S. R., Rostami, F., & Mastorakis, N. E. (2008, March). Simulation of selfaeration at steep chute spillway flow using VOF technique in a 3D finite volume software. In
    Am. Conf. on Appl. Maths. Harvard, Mass, 24-28.
  1. Nohani, E. (2015). Numerical simulation of the flow pattern on morning glory spillways.
    International Journal of Life Sciences, 9(4): 28-31.
  2. Parsaie, A., Dehdar-Behbahani, S., & Haghiabi, A. H. (2016). Numerical modeling of
    cavitation on spillway’s flip bucket. Frontiers of Structural and Civil Engineering, 10(4),
    438-444.
  3. Teuber, K., Broecker, T., Bay´on, A., N¨utzmann, G. and Hinkelmann, R. (2019) ‘CFDmodelling of free surface flows in closed conduits’, Progress in Computational Fluid
    Dynamics, 19(6), 368–380.
  4. Ghazanfari-Hashemi, R.S., Namin, M.M., Ghaeini-Hessaroeyeh, M. and Fadaei-Kermani,
    E., 2020. A Numerical Study on Three-Dimensionality and Turbulence in Supercritical Bend
    Flow. International Journal of Civil Engineering, 18(3), 381-391.
  5. Sha, H. F., Wu, S. Q., & Zhou, H. (2009). Flow characteristics in a circular-section bend of
    high head spillway tunnel. Advances in Water Science, (6), 14.
  6. Liu, Z., Zhang, D., Zhang, H., & Wu, Y. (2011). Hydraulic characteristics of converse
    curvature section and aerator in high-head and large discharge spillway tunnel. Science
    China Technological Sciences, 54(1), 33-39.
  7. Zheng, Q. W., Luo, S. J., & Zhang, F. X. (2012). The Effect of Concave Types on the
    Hydraulic Characteristics in Spillway Tunnels with High-Speed Velocity. China Rural
    Water and Hydropower, 4.
  8. Hongmin, G. U. O., Jiang, L. I., Shan, Q. I. N., & Yang, X. I. E. (2014). Three-Dimensional
    Numerical Simulation on Spillway Tunnel of Pankou Hydropower Station. Water Resources
    and Power, (4), 22.
  9. Wan, W., Liu, B., & Raza, A. (2018). Numerical Prediction and Risk Analysis of Hydraulic
    Cavitation Damage in a High-Speed-Flow Spillway. Shock and Vibration, 2018.
  10. Wei, W., Deng, J. and Xu, W. (2020). Numerical investigation of air demand by the free
    surface tunnel flows. Journal of Hydraulic Research, 1-8.
  11. Xu, W., Dang, Y., Li, G., Shao, J. and Chen, G. (2007) ‘Three-dimensional numerical
    simulation of the bi-tunnel spillway flow [J] ‘, Journal of Hydroelectric Engineering, 1, 56-
    60.
  12. Huang, H.Y., Gong, A.M., Qiu, Y. and Wangliang, Z.A. (2015) ‘ 3D Numerical Simulation
    and Experimental Analysis of Spillway Tunnel’ In Applied Mechanics and Materials. Trans
    Tech Publications Ltd. 723, 171-175.
  13. Li, S., Zhang, J. M., Xu, W. L., Chen, J. G., Peng, Y., Li, J. N., & He, X. L. (2016).
    Simulation and experiments of aerated flow in curve-connective tunnel with high head and
    large discharge. International Journal of Civil Engineering, 14(1), 23-33.
  14. Shilpakar, R., Hua, Z., Manandhar, B., Shrestha, N., Zafar, M. R., Iqbal, T., & Hussain, Z.
    (2017, August). Numerical simulation on tunnel spillway of Jingping-I hydropower project
    with four aerators. In IOP Conference Series: Earth and Environmental Science. 82, 012013.
  15. Song, C. C., & Zhou, F. (1999). Simulation of free surface flow over spillway. Journal of
    Hydraulic Engineering, 125(9), 959-967.
  16. Fais, L.M.C.F., Filho, J.G.D., Genovez, A.I.B. (2015). Geometry influence and discharge
    curve correction in morning glory spillways. Proceedings of the 36th IAHR World
    Congress.
  17. Falvey, H. T. (1990). Cavitation in chutes and spillways. Denver: US Department of the
    Interior, Bureau of Reclamation. 49-57.
  18. Chaudhry, M. H. (2007). Open-channel flow. Springer Science & Business Media.
  1. Novak, P., Moffat, A. I. B., Nalluri, C., & Narayanan, R. (2007). Hydraulic structures.
    Fourth Edition, Taylor & Francis, New York , 246–265.
  2. Jorabloo, M., Maghsoodi, R., Sarkardeh, H., & Branch, G. (2011). 3D simulation of flow
    over flip buckets at dams. Journal of American Science, 7(6), 931-936.
  3. Khani, S., Moghadam, M. A., & Nikookar, M. (2017). Pressure Fluctuations Investigation
    on the Curve of Flip Buckets Using Analytical and Numerical Methods. Vol. 03(04), 165-
    171.
  4. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
    activity. The bulletin of mathematical biophysics, 5(4), 115-133.
  5. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
    computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
  6. Wu,C.L. Huang, B. Xie, C.B. (2008) . Comparison of calculation methods for irrigation
    district water inlet, China Rural Water and Hydropower ,5 (71) ,74–77.
  7. Qiu,J. Huang, B.S. . Lai, G.W. (2002). Research and application of discharge coefficient of
    wide crest weir, China Rural Water and Hydropower ,9 ,41–42.
  8. Xiang, H.Q .Ba,D.D. Liu, J.J. (2012) . Acquiring of curved practical weir flow coefficient by
    curve-fitting based on Matlab, Hydropower Energy Sci. 3 ,97–99.
  9. Ye,Y.T. He,J.J.(2013).Experimental study on hydraulic calculation of discharge under plane
    gate on broad-crested weir, J. Water Resour. Archit. Eng. 11 (2), 138–141.
  10. Salmasi, F., Yıldırım, G., Masoodi, A., & Parsamehr, P. (2013). Predicting discharge
    coefficient of compound broad-crested weir by using genetic programming (GP) and
    artificial neural network (ANN) techniques. Arabian Journal of Geosciences, 6(7), 2709-
    2717.
  11. Noori, R.; Hooshyaripor, F. (2014). Effective prediction of scour downstream of ski-jump
    buckets using artificial neural networks. Water Resour. 41, 8–18.
  12. Flow-Science. (2014). FLOW-3D user manual. version11. In: Flow Science Santa Fe, NM.
  13. Yakhot, V. S. A. S. T. B. C. G., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G.
    (1992). Development of turbulence models for shear flows by a double expansion technique.
    Physics of Fluids A: Fluid Dynamics, 4(7), 1510-1520.
  14. Report on the hydraulic model of Alborz dam reservoir. (2001). Iran Water Research
    Institute
  15. Lippman, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine,
    4(2), pp.4-22.
  16. Baylar, A., Ozgur, K.I.S.I. and Emiroglu, M.E. (2009). Modeling air entrainment rate and
    aeration efficiency of weirs using ANN approach. Gazi University Journal of Science, 22(2),
    107-116.
  17. Maureen, C. and Caudill, M. (1989). Neural network primer: Part I. AI Expert, 2(12),
    p.1987.
Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan

Velocity distribution and discharge calculation at a sharp-crested weir

Shun-Chung Tsung • Jihn-Sung Lai •
Der-Liang Young

sharp-crested weir에서 속도 분포 및 배출 계산

개방 수로의 harp-crested 위어는 수두-방류 관계를 통해 방류를 계산하는데 유용한 장치입니다. 그러나 수위 측정 사이트와 배출 계수는 배출 계산 정확도에 큰 영향을 미칩니다. 따라서 본 연구는 각각 16MHz MicroADV와 FLOW-3D를 사용하여 위어 부분의 속도 분포를 측정하고 시뮬레이션합니다. 감마 확률 밀도 함수를 사용하여 속도 분포를 특성화하기 위해 위어 섹션의 수심 및 표면 속도가 선택됩니다. 본 연구에서는 측정된 수심과 수면 속도에서 도출된 속도 분포를 기반으로 속도-면적 통합 방법으로 정확한 배출을 계산합니다. 이 연구의 주요 기여는 정확한 측정 사이트를 제공하고, 속도 분포와 방류를 연결하고, 방류 계수 영향을 피하고, 방류 계산 정확도를 향상시키는 것입니다.

A sharp-crested weir in open channel is a useful device to calculate discharge via head-discharge relationship. However, water stage measurement site and discharge coefficient significantly influence discharge calculation accuracy. Therefore, this study measures and simulates velocity distribution at the weir section using 16-MHz MicroADV and FLOW-3D, respectively. The water depth and surface velocity at the weir section are selected to characterize velocity distribution using gamma probability density function. In this study, accurate discharge is calculated by velocity–area integration method based on velocity distribution derived from measured water depth and surface velocity. The main contributions of this study are to give an exact measurement site, link velocity distribution and discharge, avoid discharge coefficient influence, and improve discharge calculation accuracy.

Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan
Fig. 1 Fixed staff gauge for head measurement at the upstream side of the Yuanshanzi Flood Diversion Work in the Keelung River, Taiwan

References

  • Ackers P, White WR, Perkins JA, Harrison AJM (1978) Weirs and flumes for flow measurement. Wiley, New York
  • Bagheri S, Heidarpour M (2010) Application of free vortex theory to estimating discharge coefficient for sharp-crested weirs. Biosyst Eng 105:423–427
  • Chanson H, Montes JS (1998) Overflow characteristics of circular weirs: effects of inflow conditions. J Irrig Drain Eng 124(3):152–162
  • Costa JE, Cheng RT, Haeni FP, Melcher N, Spicer KR, Hayes E, Plant W, Hayes K, Teague C, Barrick D (2006) Use of radars to monitor stream discharge by noncontact methods. Water Resour Res 42:1–14
  • Ferrari A (2010) SPH simulation of free surface flow over a sharpcrested weir. Adv Water Resour 33:270–276
  • Ghodsian M (2003) Supercritical flow over a rectangular side weir. Can J Civ Eng 30:596–600
  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225
  • Hirt CW, Sicilian JM (1985) A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int. Conf. Ship Hydrodynamics, National Academy of Science, Washington, DChttp://www.flow3d.com/. Accessed 20 Nov 2012
  • Kindsvater CE, Carter R (1957) Discharge characteristics of rectangular thin-plate weirs. J Hydraul Div 83(3):1–36
  • Lai JS, Tsorng SC, Tan YC, Hwang CY (2008) Measurements and analysis of flow field over sharp-crested weir. Taiwan Water Conservancy 56(1):49–59 (in Chinese)
  • Lin C, Huang WY, Suen HF, Hsieh SC (2002) Study on the characteristics of velocity field of free overfalls over a vertical drop. In: Proc. Hydraul Meas Exp Methods Conf, Estes Park, CO, USA
  • Muson BR, Young DF, Okiishi TH (1990) Fundamentals of fluid mechanics. Wiley, New York
  • Qu J, Ramamurthy AS, Tadayon R, Chen Z (2009) Numerical simulation of sharp-crested weir flows. Can J Civ Eng 36:1530–1534
  • Rajaratnam N, Muralidhar D (1971) Pressure and velocity distribution for sharp-crested weirs. J Hydraul Res 9(2):241–248
  • Ramamurthy AS, Tim US, Rao MV (1987) Flow over sharp-crested weirs. J Irrig Drain Eng 113(2):163–172
  • Rehbock T (1929) Discussion of ‘‘precise weir measurements’’ by Schoder EW and Turner KB Trans ASCE 93: 1143–1162
  • Rouse H (1936) Discharge characteristics of the free overfall. Civ Eng ASCE 6(4):257–260
  • Samani AK, Ansari A, Borghei SM (2010) Hydraulic behaviour of flow over an oblique weir. J Hydraul Res 48(5):669–673
  • Sargisonl JE, Percy A (2009) Hydraulics of broad-crested weirs with varying side slopes. J Irrig Drain Eng 135(1):115–118
  • Subramanya K (1986) Flow in open channels. Tata McGraw-Hill, New Delhi
  • Swamee PK (1988) Generalized rectangular weir equation. J Hydraul Eng 114(8):945–949
  • Tadayon R, Ramamurthy AS (2009) Turbulence modeling of flows over circular spillways. J Irrig Drain Eng 135(4):493–498
  • U.S. Bureau of Reclamation (1997) Water measurement manual. 3rd (ed.), U.S. Government Printing Office, Washington, DC
  • Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Longman Scientific & Technical, UK
  • Zhang X, Yuan L, Peng R, Chen Z (2010) Hydraulic relations for clinging flow of sharp-crested weir. J Hydraul Eng 136(6): 385–390
Figure 7. Formation of incident and reflected waves.

Investigate Impact Force of Dam-Break Flow against Structures by Both 2D and 3D Numerical Simulations

2D 및 3D 수치 시뮬레이션에 의한 댐 붕괴유동의 구조물 충격력 조사

1 Faculty of Water Resources Engineering, Thuyloi University, 175 Tay Son, Dong Da, Ha Noi 116705, Vietnam
2 Hydraulic Construction Institute, 3/95 Chua Boc, Dong Da, Ha Noi 116705, Vietnam
* Author to whom correspondence should be addressed.
Academic Editor: Costanza Aricò
Water 2021, 13(3), 344;

Abstract

본 논문의 목적은 일부 2D 및 3D 수치 모델이 침수 지역에 고립된 건물 또는 건물 배열이 있는 곳에서 홍수 파동을 시뮬레이션하는 능력을 조사하는 것이었습니다.

먼저, 제안된 2D 수치 모델은 구조화된 메시에서 2D 얕은 물 방정식(2D-SWEs)을 해결하기 위한 유한 볼륨 방법(FVM)을 기반으로 했습니다.

FDS (flux-difference splitting)은 정확한 질량 균형을 얻기 위해 사용되었고 Roe 체계는 Riemann 문제를 근사하기 위해 호출되었습니다.

둘째, 상업적으로 이용 가능한 3D CFD 소프트웨어 패키지가 선택되었으며, 여기에는 두 가지 난류 모델이 포함된 Flow 3D 모델이 포함되어 있습니다.

RNG(Renormalized Group) 및 LES(Large-eddy Simulation)를 사용하는 레이놀즈 평균 Navier-Stokes(RAN)입니다. 댐 붕괴 흐름으로 인한 장애물에 대한 충격력의 수치 결과는 3D 솔루션이 2D 솔루션보다 훨씬 낫다는 것을 보여주었습니다.

건물 배열에 작용하는 충격력의 3D 수치 힘 결과를 보유하고 있는 실험 데이터와 비교함으로써, 속도 유도력이 동적 힘에 미치는 영향은 Froude 숫자의 함수와 사고 파동의 수심 함수에 의해 정량화 되었습니다. 또한, 우리는 힘의 강도의 피크 값의 3D 계산 결과에 대한 초기 물 단계와 댐 붕괴 폭의 영향을 조사했습니다.

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.

Keywords: dam-break wave2D numerical modelFlow 3D modelstructuresimpact force

Introduction

홍수 위험 분석에 따른 도시 계획은 최근에 큰 연구 과제였습니다.

건물 또는 건물 그룹에 대한 홍수 파동의 영향에 대한 연구는 하류 지역에 대한 조기 경고 또는 안전 의식 향상에 중요한 역할을 했습니다. 기본적으로 댐 파괴 흐름에 대한 연구는 실험 측정이나 수치 시뮬레이션을 통해 추정 할 수 있습니다 [1,2,3,4,5,6].

컴퓨터 처리 능력의 증가로 인해 불연속 흐름에 대한 수치 연구가 비용 효율적이되었습니다. 지난 10 년 동안 얕은 물 솔버는 정확성과 계산 능력면에서 크게 향상되었습니다. 침수 가능 지역의 수심 및 속도 프로파일과 같은 유체 역학적 매개 변수에 많은주의를 기울였습니다 [1,2,3,4,5,6,7,8].

Migot et al. [9]는 도시 홍수의 실험적 모델링에 관한 많은 기사를 검토했습니다. 그 논문에 언급 된 45 개의 작품 중 단 4 개의 프로젝트 만이 장애물에 가해지는 일정한 또는 비정상적인 흐름의 힘 또는 압력을 측정했습니다.

또한 물리적 및 2D 수치 모델에서 건물 또는 건물 그룹에 돌발 홍수가 미치는 영향에 대한 연구는 거의 없었습니다. 얕은 물 모델은 [10,11]에서 고립된 장애물에 대한 충격의 힘을 예측하는데 사용되었습니다.

한편 Shige-eda [12]는 액체와 건물 배열 간의 상호 작용을 결정하기 위해 물리적 모델과 2D 수치 체계를 선택했습니다. Aureli와 Shige-eda는 수직 속도와 가속도를 무시하기 때문에 댐 파괴 흐름의 힘을 추정하기 위한 2D 얕은 물 방정식 (SWE)의 단점을 보여주었습니다 [10,12].

Migot [9]은 또한 장애물 주변의 시뮬레이션된 홍수 흐름에 대한 2D SWE에 대한 여러 출판물이 있었지만 이 주제에 대한 3D 수치 모델에 대한 연구는 거의 없다고 지적했습니다. 최근 전산 유체 역학 (CFD) 3D 시뮬레이션은 유체 흐름과 관련된 문제를 해결하기위한 광범위한 도구가되었습니다.

댐 파괴 파의 특성은 [13,14,15,16]에 의해 주목되었고 Issakhov [17]는 다양한 종류의 장애물이 압력 분포에 미치는 영향을 조사하기 위해 CFD 방법을 사용했습니다. 그들은 분포가 댐 표면에서 3 배 더 낮다는 것을 밝혔다.

Aureli [10]는 댐 파괴 파가 구조물에 미치는 영향의 정적 힘을 평가하기 위해 실험 테스트와 2D 및 3D 수치 모델을 사용했습니다. Mokarani [18]는 댐 브레이크 흐름 영향의 VOF 시뮬레이션에서 피크 압력 안정성 조건을 연구했습니다.

앞서 언급한 작품에서 구조물이나 구조물 군에 작용하는 힘은 압력에 의한 정 수력 또는 정력이었다. 한편, 급류에서 속도로 인한 힘은 압력 력보다 크거나 같았습니다 [19]. Armanini [20]는 정상 흐름에 대해이 항을 추정하기 위한 분석적 표현 만을 제시했습니다. 우리가 아는 한, 건물 그룹에 작용하는 비정상 흐름의 동적 힘을 생성하기 위해 2D 및 3D 수학적 모델을 모두 사용하는 작업은 없습니다.

따라서 본 연구에서는 제안된 2D 수치 모델과 3D 수학적 모델 모두에 의해 고립 된 장애물 또는 장애물 그룹에 대한 급격한 비정상 흐름의 테스트 사례를 재현했습니다. 수심 및 유속 수문 그래프와 같은 몇 가지 수력 학적 특성이 추정되었으며 측정 된 데이터와 매우 잘 일치했습니다.

특히 댐 브레이크 흐름이 서로 다른 건물에 가하는 동적인 힘도 시뮬레이션했습니다. 속도 유도 힘이 동적 힘에 미치는 영향 수준을 나타내는 매개 변수는 Froude 수와 입사 파동의 수심의 함수인 것으로 밝혀졌습니다. 또한 붕괴된 댐 사이트 폭 (b)과 초기 수위 (h0)는 충격력의 최대 값에 영향을 미치는 변수로 고려되었습니다.

Figure 1. (a) Configuration of experiment test (dimension in meters); (b) Gauges on the vertical front face of building.
Figure 1. (a) Configuration of experiment test (dimension in meters); (b) Gauges on the vertical front face of building.
Figure 2. (a) Distributed pressure profiles at centerline of front face of column; (b) Comparison of load-time histories simulated by different numerical models
Figure 2. (a) Distributed pressure profiles at centerline of front face of column; (b) Comparison of load-time histories simulated by different numerical models
Figure 3. Group of buildings in flooded area.
Figure 3. Group of buildings in flooded area.
Figure 4. Water depth and u-velocity profiles at gauge b.
Figure 4. Water depth and u-velocity profiles at gauge b.
Figure 5. Water hydrographs at gauges a and c.
Figure 5. Water hydrographs at gauges a and c.
Figure 6. Velocity component profiles at gauges a and c.
Figure 6. Velocity component profiles at gauges a and c.
Figure 7. Formation of incident and reflected waves.
Figure 7. Formation of incident and reflected waves.
Figure 8. Snapshots of streamlines of Froude number at different times: 1.0 s, 2.0 s, 5.0 s and 10 s.
Figure 8. Snapshots of streamlines of Froude number at different times: 1.0 s, 2.0 s, 5.0 s and 10 s.
Figure 9. Force in the flow direction exerted on 6 buildings.
Figure 9. Force in the flow direction exerted on 6 buildings.
Figure 10. The linear regression between forces per unit width (F) and q2b/h0.
Figure 10. The linear regression between forces per unit width (F) and q2b/h0.

Conclusions

댐 붕괴 흐름으로 인한 홍수 파도는 높은 속도 또는 큰 깊이가 관련되었을 때 건물에 큰 영향을 미칩니다. 본 논문에서는 2D 및 3D 수치 모델의 건물 및 건물 그룹에 대한 빠른 흐름에 의해 발생하는 유압 특성과 충격 부하를 추정할 수 있는 능력을 조사했습니다. 얕은 물 방정식에 기초한 2D 수학 모델은 FDS 방법으로 해결되었으며, FDS 방법은 최신 버전의 Flow 3D 유체 역학 모델과 함께 사용되었습니다. 연구의 주요 발견은 다음과 같습니다.
(1) 수심 또는 속도 프로파일을 공식화하기 위해 2D 및 3D 수치 솔루션은 모두 매우 유사합니다. 제안된 2D 수치 모델은 정적 힘의 최대 값 뿐만 아니라 수심 및 속도 구성 요소를 포함하는 유압 특성을 예측하는 데 적합합니다. 그러나 LES 및 RAN 난류 모듈이 포함된 3D 유체역학 모델은 2D 얕은 흐름 모델이 1개만 제공하는 동안 두 개의 최고 충격 부하를 잘 포착할 수 있습니다. 일반적으로 3D 결과는 실험 결과와 더 가깝습니다.
(2) 여러 건물에 대한 정적 및 동적 힘은 모두 LES 모듈을 사용하여 Flow 3D에 의해 계산되었습니다. 건물에서 속도에 의한 힘과 압력의 역할은 위치에 따라 다릅니다. 댐 현장 근처에서, 속도 유도 힘은 댐 파괴 파동의 주 방향에서 멀리 떨어져 있거나 두 번째 배열에서 압력 힘이 더 중요합니다. 속도 유도 힘의 영향은 매개 변수 α에 의해 정량화되며, 이는 사고파의 Froude 숫자와 수심 함수로 수행됩니다. q2b/h0과 정적 힘과 동적 힘의 피크 강도 사이의 선형 회귀 관계는 합리적인 R-제곱 양으로 해결됩니다.

추가 연구에서, 제시된 2D 수치 모델의 견고성과 효과는 더 명확하게 드러날 것입니다. 대규모 도메인에 대한 홍수 흐름을 시뮬레이션하는 데 쉽게 적용할 수 있습니다. 또한, α 매개변수의 제안된 방정식(21)은 실제 사례 연구에서 다운스트림 영역의 건물에 대한 속도 유도 힘의 영향을 정확하게 평가하기 위한 매우 의미가 있습니다. 이 매개 변수의 정확도 수준을 높이려면 서로 다른 조건에서 장애물에 작용하는 여러 가지 힘 실험이 구현되어야 합니다.

References

  1. Testa, G.; Zuccala, D.; Alcrudo, F.; Mulet, J.; Frazao, S.S. Flash flood flow experiment in a simplifed urban district. J. Hydraul. Res. 200745, 37–44. [Google Scholar] [CrossRef]
  2. Soares-Frazao, S.; Zech, Y. Dam-break flow through an idealized city. J. Hydraul. Res. 200846, 648–665. [Google Scholar] [CrossRef]
  3. Soares-Frazão, S.; Zech, Y. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res. 200745, 27–36. [Google Scholar] [CrossRef]
  4. Soares-Frazão, S. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res. 200745, 19–26. [Google Scholar] [CrossRef]
  5. di Cristo, C.; Evangelista, S.; Greco, M.; Iervolino, M.; Leopardi, A.; Vacca, A. Dam-break waves over an erodible embankment: Experiments and simulations. J. Hydraul. Res. 201856, 196–210. [Google Scholar] [CrossRef]
  6. Evangelista, S. Experiments and numerical simulations of dike erosion due to a wave impact. Water 20157, 5831–5848. [Google Scholar] [CrossRef]
  7. Li, Y.L.; Yu, C.H. Research on dam break flow induced front wave impacting a vertical wall based on the CLSVOF and level set methods. Ocean Eng. 2019178, 442–462. [Google Scholar] [CrossRef]
  8. Özgen, I.; Zhao, J.; Liang, D.; Hinkelmann, R. Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity. J. Hydrol. 2016541, 1165–1184. [Google Scholar] [CrossRef]
  9. Mignot, E.; Li, X.; Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol. 2019568, 334–342. [Google Scholar] [CrossRef]
  10. Aureli, F.; Dazzi, A.; Maranzoni, A.; Mignosa, P.; Vacondio, R. Experimental and numerical evaluation of the force due to the impact of a dam break wave on a structure. Adv. Water Resour. 201576, 29–42. [Google Scholar] [CrossRef]
  11. Milanesi, L.; Pilotti, M.; Belleri, A.; Marini, A.; Fuchs, S. Vulnerability to flash floods: A simplified structural model for masonry buldings. Water Resour. Res. 201854, 7177–7197. [Google Scholar] [CrossRef]
  12. Shige-eda, M.; Akiyama, J. Numerical and experimental study on two dimensional flood flows with and without structures. J. Hydraul. Eng. 2003129, 817–821. [Google Scholar] [CrossRef]
  13. Cagatay, H.O.; Kocaman, S. Dam break flows during initial stage using SWE and RANs approaches. J. Hydraul. Res. 201048, 603–611. [Google Scholar] [CrossRef]
  14. Yang, S.; Yang, W.; Qin, S.; Li, Q.; Yang, B. Numerical study on characteristics of dam break wave. Ocean Eng. 2018159, 358–371. [Google Scholar] [CrossRef]
  15. Robb., D.M.; Vasquez., J.A. Numerical simulation of dam break flows using depth averaged hydrodynamic and three dimensional CFD models. In Proceedings of the 22nd Canadian Hydrotechnical Conference, Ottawa, ON, Canada, 28–30 April 2015. [Google Scholar]
  16. Kocaman, S.; Evangelista, S.; Viccione, G.; Guzel, H. Experimental and Numerical analysis of 3D dam break waves in an enclosed domain with a single oriented obstacles. Environ. Sci. Proc. 20202, 35. [Google Scholar] [CrossRef]
  17. Issakhov, A.; Zhandaulet, Y.; Nogaeva, A. Numerical simulation of dambreak flow for various forms of the obstacle by VOF method. Int. J. Multiph. Flow 2018109, 191–206. [Google Scholar] [CrossRef]
  18. Mokarani, C.; Abadie, S. Conditions for peak pressure stability in VOF simulations of dam break flow impact. J. Fluids Struct. 201662, 86–103. [Google Scholar] [CrossRef]
  19. Liu, L.; Sun, J.; Lin, B.; Lu, L. Building performance in dam break flow—an experimental sudy. Urban Water J. 201815, 251–258. [Google Scholar] [CrossRef]
  20. Armanini, A.; Larcher, M.; Odorizzi, M. Dynamic impact of a debris flow front against a vertical wall. In Proceedings of the 5th international conference on debris-flow hazards mitigation: Mechanics, prediction and assessment, Padua, Italy, 14–17 June 2011. [Google Scholar] [CrossRef]
  21. Hubbard, M.E.; Garcia Navarro, P. Flux difference splitting and the balancing of source terms and flux gradients. J. Comput. Phys. 2000165, 89–125. [Google Scholar] [CrossRef]
  22. Roe, P.L. A basis for upwind differencing of the two-dimensional unsteady Euler equations. In Numerical Methods in Fluids Dynamics II; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
  23. Bradford, S.F.; Sander, B. Finite volume model for shallow water flooding of arbitrary topography. J. Hydraul. Eng. (ASCE) 2002128, 289–298. [Google Scholar] [CrossRef]
  24. Brufau, P.; Garica-Navarro, P. Two dimensional dam break flow simulation. Int. J. Numer. Meth. Fluids 200033, 35–57. [Google Scholar] [CrossRef]
  25. Hien, L.T.T. 2D Numerical Modeling of Dam-Break Flows with Application to Case Studies in Vietnam. Ph.D. Thesis, Brescia University, Brescia, Italy, 2014. [Google Scholar]
  26. Hien, L.T.T.; Tomirotti, M. Numerical modeling of dam break flows over complex topography. Case studies in Vietnam. In Proceedings of the 19th IAHR-APD Congress 2014, Hanoi, Vietnam, 21–24 September 2014; ISBN 978-604-82-1383-1. [Google Scholar]
  27. Flow-3D, Version 12.0; User Mannual; Flow Science Inc.: Santa Fe, NM, USA, 2020.
  28. Guney, M.S.; Tayfur, G.; Bombar, G.; Elci, S. Distorted physical model to study sudden partial dam break flow in an urban area. J. Hydraul. Eng. 2014140, 05014006. [Google Scholar] [CrossRef]
  29. Shige-eda, M.; Akiyama, J. Discussion and Closure to “Numerical and experimental study on two dimensional flood flows with and without structures” by Mirei Shige-eda and Juichiro Akiyama. J. Hydraul. Eng. 2005131, 336–337. [Google Scholar] [CrossRef]
  30. Ritter, A. Die Fortpflanzung der Wasserwelle (Generation of the water wave). Z. Ver. Dtsch. Ing. 189236, 947–954. [Google Scholar]
Figure 1. Geometries and bed topography settings of the nine computational fluid dynamics (CFD) simulations with channel curvature (C) changed from 0.77 to 0

The Straightening of a River Meander Leads to Extensive Losses in Flow Complexity and Ecosystem Services

Abstract

하천 복원 노력을 지원하기 위해 우리는 하천 파괴 속도를 늦출 필요가 있습니다. 이 연구는 하천 곡률 보호를 위해 구불 구불 한 하천이 곧게 펴질 때 수리적 복잡성 손실에 대한 자세한 설명을 제공합니다.

전산 유체 역학 (CFD) 모델링을 사용하여 채널 곡률 (C)이 잘 확립된 사행 굽힘 (C = 0.77)에서 곡률이 없는 직선 채널 (C = 0)로 저하되는 9 개의 시뮬레이션에서 유동 역학의 차이를 문서화했습니다.

공변량을 제어하고 수리적 복잡성에 대한 손실률을 늦추기 위해 각 9 개 채널 구현은 동등한 베드 형태 지형을 가졌습니다. 분석된 수력학적 변수에는 흐름 표면 고도, 흐름 방향 및 횡단 단위 배출, 흐름 방향, 가로 방향 및 수직 방향의 유속, 베드 전단 응력, 흐름 함수 및 채널 베드에서의 수직 저 유량 유속 비율이 포함되었습니다.

수력 복잡성의 손실은 처음에 수로를 C = 0.77에서 C = 0.33 (즉, 수로의 반경이 수로 폭의 3 배임) 할 때 점차적으로 발생했으며, 추가 직선화는 수력 복잡성에 대한 급속한 손실을 초래했습니다.

다른 연구에서는 수리적 복잡성이 중요한 하천 서식지를 제공하고 생물 다양성과 양의 상관 관계가 있음을 보여주었습니다. 이 연구는 강을 풀 때 수력학적 복잡성이 점진적으로 사라졌다가 빠르게 사라지는 방법을 보여줍니다.

To assist river restoration efforts we need to slow the rate of river degradation. This study provides a detailed explanation of the hydraulic complexity loss when a meandering river is straightened in order to motivate the protection of river channel curvature. We used computational fluid dynamics (CFD) modeling to document the difference in flow dynamics in nine simulations with channel curvature (C) degrading from a well-established tight meander bend (C = 0.77) to a straight channel without curvature (C = 0). To control for covariates and slow the rate of loss to hydraulic complexity, each of the nine-channel realizations had equivalent bedform topography. The analyzed hydraulic variables included the flow surface elevation, streamwise and transverse unit discharge, flow velocity at streamwise, transverse, and vertical directions, bed shear stress, stream function, and the vertical hyporheic flux rates at the channel bed. The loss of hydraulic complexity occurred gradually when initially straightening the channel from C = 0.77 to C = 0.33 (i.e., the radius of the channel is three-times the channel width), and additional straightening incurred rapid losses to hydraulic complexity. Other studies have shown hydraulic complexity provides important riverine habitat and is positively correlated with biodiversity. This study demonstrates how hydraulic complexity can be gradually and then rapidly lost when unwinding a river, and hopefully will serve as a cautionary tale.

Figure 1. Geometries and bed topography settings of the nine computational fluid dynamics (CFD) simulations with channel curvature (C) changed from 0.77 to 0
Figure 1. Geometries and bed topography settings of the nine computational fluid dynamics (CFD) simulations with channel curvature (C) changed from 0.77 to 0
Figure 2. Flow surface elevation (h) normalized by H at C = 0.77, C = 0.33, and C = 0 conditions. n denotes the lateral coordination with n = 0 at channel center and B denotes the channel width.
Figure 2. Flow surface elevation (h) normalized by H at C = 0.77, C = 0.33, and C = 0 conditions. n denotes the lateral coordination with n = 0 at channel center and B denotes the channel width.
Figure 3. Normalized flow surface profiles for the nine simulations at the point bar apex 1.5 s/B. The insert plot shows the second order derivative of normalized flow surface elevation in the transverse direction, Fh00(n/B), which gives the convexity or concavity of the surface profile curves.
Figure 3. Normalized flow surface profiles for the nine simulations at the point bar apex 1.5 s/B. The insert plot shows the second order derivative of normalized flow surface elevation in the transverse direction, Fh00(n/B), which gives the convexity or concavity of the surface profile curves.
Figure 4. Streamwise unit discharge qs/UH for channel curvature C = 0.77, 0.33, and 0 conditions.
Figure 4. Streamwise unit discharge qs/UH for channel curvature C = 0.77, 0.33, and 0 conditions.
Figure 5. Transverse unit discharge qn/UH for channel curvature C = 0.77, 0.33, and 0 conditions.
Figure 5. Transverse unit discharge qn/UH for channel curvature C = 0.77, 0.33, and 0 conditions.

Reference : https://www.mdpi.com/2073-4441/12/6/1680

Figure 6. Transverse unit discharge averaged over the transverse direction. The inset shows the R2 of transverse unit discharge < qn/UH > between each curvature, C, and the straight channel condition (C = 0, R2 = 1); a lower R2 suggests greater hydraulic complexity for transverse unit discharge.
Figure 6. Transverse unit discharge averaged over the transverse direction. The inset shows the R2 of transverse unit discharge < qn/UH > between each curvature, C, and the straight channel condition (C = 0, R2 = 1); a lower R2 suggests greater hydraulic complexity for transverse unit discharge.
Figure 7. Normalized depth averaged streamwise velocity <vs>/U for channel curvature C = 0.77, 0.33, and 0 conditions.
Figure 7. Normalized depth averaged streamwise velocity /U for channel curvature C = 0.77, 0.33, and 0 conditions.
Figure 8. The first moment of normalized depth averaged streamwise velocity <vs>/U, which represents center of gravity of the streamwise flow distribution, along the channel. The inset shows the R2 of the first moment of <vs>/U between each curvature and the straight channel condition (C = 0, R2 = 1); a lower R2 suggests greater hydraulic complexity for the first moment of depth averaged streamwise velocity.
Figure 8. The first moment of normalized depth averaged streamwise velocity /U, which represents center of gravity of the streamwise flow distribution, along the channel. The inset shows the R2 of the first moment of /U between each curvature and the straight channel condition (C = 0, R2 = 1); a lower R2 suggests greater hydraulic complexity for the first moment of depth averaged streamwise velocity.
Figure 9. Distribution of river channel bed shear Cf for channel curvature C = 0.77, 0.33, and 0 conditions.
Figure 9. Distribution of river channel bed shear Cf for channel curvature C = 0.77, 0.33, and 0 conditions.
Figure 10. Normalized vertical hyporheic flux vzbed/U at 2 mm below sediment surface for channel curvature C = 0.77, 0.33, and 0 conditions. Positive indicates upwelling of groundwater into the river channel.
Figure 10. Normalized vertical hyporheic flux vzbed/U at 2 mm below sediment surface for channel curvature C = 0.77, 0.33, and 0 conditions. Positive indicates upwelling of groundwater into the river channel.
Figure 11. Normalized vertical velocity <vz>/U for channel curvature C = 0.77, 0.33, and 0 conditions, with positive values upward flows, negative values downward flows.
Figure 11. Normalized vertical velocity /U for channel curvature C = 0.77, 0.33, and 0 conditions, with positive values upward flows, negative values downward flows.
Figure 12. Transverse stream function distribution ψ/UBH reveals the secondary circulation of transverse flow cells rotating at the meander apex 1.5 s/B for channel curvature C = 0.77 (A), C = 0.33 (B), and C = 0 (C), with positive values representing clockwise rotation direction when facing upstream, and negative values representing counter-clockwise rotation when facing upstream.
Figure 12. Transverse stream function distribution ψ/UBH reveals the secondary circulation of transverse flow cells rotating at the meander apex 1.5 s/B for channel curvature C = 0.77 (A), C = 0.33 (B), and C = 0 (C), with positive values representing clockwise rotation direction when facing upstream, and negative values representing counter-clockwise rotation when facing upstream.

References

  1. Paper 422-H); U.S. Government Printing Office: Washington, DC, USA, 1966.
  2. Leopold, L.B.; Wolman, M.G. River meanders. Bull. Geol. Soc. Am. 196071, 769–793. [Google Scholar] [CrossRef]
  3. Wohl, E. Rivers in the Landscape; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
  4. Dietrich, W.E.; Smith, J.D. Influence of the point bar on flow through curved channels. Water Resour. Res. 198319, 1173–1192. [Google Scholar] [CrossRef]
  5. Harvey, J.W.; Bencala, K. The effects of streambed topography on surface-subsurface water exchange in mountains catchments. Water Resour. Res. 199329, 89–98. [Google Scholar] [CrossRef]
  6. Bridge, J.S. Rivers and Floodplains: Forms, Processes, and Sedimentary Record; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
  7. Schumm, S.A. Patterns of alluvial rivers. Annu. Rev. Earth Planet. Sci. 198513, 5–27. [Google Scholar] [CrossRef]
  8. Vermeulen, B.; Hoitink, A.J.F.; Labeur, R.J. Flow structure caused by a local cross-sectional area increase and curvature in a sharp river bend. J. Geophys. Res. Earth Surf. 2015120, 1771–1783. [Google Scholar] [CrossRef]
  9. Konsoer, K.M.; Rhoads, B.L.; Best, J.L.; Langendoen, E.J.; Abad, J.D.; Parsons, D.R.; Garcia, M.H. Three-dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics. Water Resour. Res. 201652, 9621–9641. [Google Scholar] [CrossRef]
  10. Li, B.D.; Zhang, X.H.; Tang, H.S.; Tsubaki, R. Influence of deflection angles on flow behaviours in openchannel bends. J. Mt. Sci. 201815, 2292–2306. [Google Scholar] [CrossRef]
  11. Gualtieri, C.; Abdi, R.; Ianniruberto, M.; Filizola, N.; Endreny, T.A. A 3D analysis of spatial habitat metrics about the confluence of Negro and Solimões rivers, Brazil. Ecohydrology 202013, e2166. [Google Scholar] [CrossRef]
  12. Gualtieri, C.; Ianniruberto, M.; Filizola, N.; Santos, R.; Endreny, T. Hydraulic complexity at a large river confluence in the Amazon basin. Ecohydrology 201710, e1863. [Google Scholar] [CrossRef]
  13. Kozarek, J.; Hession, W.; Dolloff, C.; Diplas, P. Hydraulic complexity metrics for evaluating in-stream brook trout habitat. J. Hydraul. Eng. 2010136, 1067–1076. [Google Scholar] [CrossRef]
  14. McCoy, E.D.; Bell, S.S.; Mushinsky, H.R. Habitat structure: Synthesis and perspectives. In Habitat Structure; Springer: Berlin, Germany, 1991; pp. 427–430. [Google Scholar]
  15. Re-Engineering Britain’s Rivers. The Economist. 6 March 2020. Available online: https://www.latestnigeriannews.com/news/8279579/reengineering-britains-rivers.html (accessed on 12 April 2020).
  16. Palmer, M.A.; Bernhardt, E.; Allan, J.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 200542, 208–217. [Google Scholar] [CrossRef]
  17. Abad, J.D.; Rhoads, B.L.; Güneralp, İ.; García, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008134, 1052–1063. [Google Scholar] [CrossRef]
  18. Blanckaert, K.; Schnauder, I.; Sukhodolov, A.; van Balen, W.; Uijttewaal, W. Meandering: Field Experiments, Laboratory Experiments and Numerical Modeling. Technical Report. 2009. Available online: https://infoscience.epfl.ch/record/146621/files/2009-695-Blanckaert_et_al-Meandering_field_experiments_laboratory_experiments_and_numerical.pdf (accessed on 12 April 2020).
  19. Constantinescu, G.; Koken, M.; Zeng, J. The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation. Water Resour. Res. 201147. [Google Scholar] [CrossRef]
  20. Sawyer, A.H.; Bayani Cardenas, M.; Buttles, J. Hyporheic exchange due to channel-spanning logs. Water Resour. Res. 201147. [Google Scholar] [CrossRef]
  21. Zhou, T.; Endreny, T. Meander hydrodynamics initiated by river restoration deflectors. Hydrol. Process. 201226, 3378–3392. [Google Scholar] [CrossRef]
  22. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139, 201–225. [Google Scholar] [CrossRef]
  23. Van Balen, W.; Uijttewaal, W.; Blanckaert, K. Large-eddy simulation of a curved open-channel flow over topography. Phys. Fluids 201022, 075108. [Google Scholar] [CrossRef]
  24. Blanckaert, K. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour. Res. 201046. [Google Scholar] [CrossRef]
  25. Zeng, J.; Constantinescu, G.; Blanckaert, K.; Weber, L. Flow and bathymetry in sharp open-channel bends: Experiments and predictions. Water Resour. Res. 200844. [Google Scholar] [CrossRef]
  26. Elliott, A.H.; Brooks, N.H. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resour. Res. 199733, 137–151. [Google Scholar] [CrossRef]
  27. Zhou, T.; Endreny, T.A. Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments. Water Resour. Res. 201349, 5009–5020. [Google Scholar] [CrossRef]
  28. Lane, S.; Bradbrook, K.; Richards, K.; Biron, P.; Roy, A. The application of computational fluid dynamics to natural river channels: Three-dimensional versus two-dimensional approaches. Geomorphology 199929, 1–20. [Google Scholar] [CrossRef]
  29. Vardy, A. Fluid Principles; McGraw-Hill International Series in Civil Engineering; McGraw-Hill: London, UK, 1990. [Google Scholar]
  30. Rozovskii, I.L. Flow of Water in Bends of Open Channels; Academy of Sciences of the Ukrainian SSR: Kiev, Ukraine, 1957. [Google Scholar]
  31. Blanckaert, K.; De Vriend, H.J. Secondary flow in sharp open-channel bends. J. Fluid Mech. 2004498, 353–380. [Google Scholar] [CrossRef]
  32. Johannesson, H.; Parker, G. Linear theory of river meanders. River Meand. 198912, 181–213. [Google Scholar] [CrossRef]
  33. Camporeale, C.; Perona, P.; Porporato, A.; Ridolfi, L. Hierarchy of models for meandering rivers and related morphodynamic processes. Rev. Geophys. 200745. [Google Scholar] [CrossRef]
  34. He, L. Distribution of primary and secondary currents in sine-generated bends. Water SA 201844, 118–129. [Google Scholar] [CrossRef]
  35. Liao, J.C.; Beal, D.N.; Lauder, G.V.; Triantafyllou, M.S. Fish exploiting vortices decrease muscle activity. Science 2003302, 1566–1569. [Google Scholar] [CrossRef]
  36. Crispell, J.K.; Endreny, T.A. Hyporheic exchange flow around constructed in-channel structures and implications for restoration design. Hydrol. Process. 20091168, 1158–1168. [Google Scholar] [CrossRef]
  37. Hester, E.T.; Gooseff, M.N. Moving Beyond the Banks: Hyporheic Restoration Is Fundamental to Restoring Ecological Services and Functions of Streams. Environ. Sci. Technol. 201044, 1521–1525. [Google Scholar] [CrossRef]
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.

Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment

by Ana L. Quaresma *OrcID andAntónio N. PinheiroOrcID
CERIS—Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal*
Author to whom correspondence should be addressed.
Academic Editor: Bommanna Krishnappan
Water 2021, 13(6), 851; https://doi.org/10.3390/w13060851
Received: 16 January 2021 / Revised: 8 March 2021 / Accepted: 18 March 2021 / Published: 20 March 2021
(This article belongs to the Special Issue Ecohydraulics of Pool-Type Fishways)

Abstract

이 연구에서는 전산 유체 역학 (CFD) 소프트웨어 (FLOW-3D®)를 사용하여 바닥 오리피스가 있는 풀형 어로에서 흐름의 3D 수치 모델링을 수행했습니다. 수치 결과는 음향 도플러 속도계 (ADV) 및 입자 이미지 속도계 (PIV) 측정에서 얻은 실험 데이터와 비교되었습니다.

흐름 깊이, 흐름 패턴, 수속, 난류 운동 에너지, Reynolds 수직 응력 및 바닥 구성 요소에 평행한 Reynolds 전단 응력과 같이 어로 효율에 영향을 미치는 여러 유체 역학적 변수를 정성 및 정량적으로 비교했습니다.

수치 모델은 복잡한 유동장을 정확하게 재현하여 수치 모델 예측과 분석 된 변수에 대한 실험 데이터 사이에 전반적으로 좋은 일치를 보여줍니다. 분석중인 모든 매개 변수에 대한 수치 모델 검증 수행의 중요성이 강조되었습니다.

또한 프로토 타입 어로의 업 스케일 된 수치 모델을 실행하여 스케일링 효과를 분석했습니다. 스케일 효과의 증거없이 실제 모델과 프로토 타입 치수 모두에 대해 유사한 정확도로 모델을 수행했습니다.

현재 연구는 CFD 모델 (즉, FLOW-3D®)이 새로운 수영장 유형 어로 형상을 위한 적절하고 효율적인 설계 및 분석 도구로 사용될 수 있으며 물리적 모델 테스트를 줄이고 보완 할 수 있다고 결론지었습니다.

In this study, the 3D numerical modelling of flow in a pool-type fishway with bottom orifices was performed using computational fluid dynamics (CFD) software (FLOW-3D®). Numerical results were compared with experimental data obtained from acoustic Doppler velocimetry (ADV) and particle image velocimetry (PIV) measurements. Several hydrodynamic variables that influence fishways efficiencies, such as flow depths, flow patterns, water velocity, turbulent kinetic energy, Reynolds normal stresses, and Reynolds shear stress parallel to the bottom component, were qualitatively and quantitatively compared. The numerical model accurately reproduced the complex flow field, showing an overall good agreement between the numerical model predictions and the experimental data for the analysed variables. The importance of performing a numerical model validation for all the parameters under analyses was highlighted. Additionally, scaling effects were analysed by running an upscaled numerical model of the prototype fishway. The model performed with similar accuracy for both physical model and prototype dimensions with no evidence of scale effects. The present study concludes that CFD models (namely FLOW-3D®) may be used as an adequate and efficient design and analysis tool for new pool-type fishways geometries, reducing and complementing physical model testing.Keywords: pool-type fishways3D numerical modellingLESscale effectsflow patternsCFD model assessment

Introduction

강의 종단 연결성을 복원하는 것은 담수 생태계의 회복에있어 여전히 중요한 문제입니다 [1,2]. 잘 설계되고 건설된 경우 어로는 물고기가 댐과 둑을 지나 계속 이동할 수 있는 경로를 제공합니다.

물고기 통과 효율성에 대한 검토에서 Noonan et al. [3]은 기존의 많은 어로의 설계 특성이 어종의 요구를 적절하게 충족시키지 못했지만, 풀형 어로가 모든 어류 그룹에 대해 가장 높은 효율성을 보여 주었다는 것을 발견했습니다.
여러 어종에 적합한 수영 조건을 제공하는 것은 어항의 흐름과 난류 패턴이 성공에 중요한 역할을 하기 때문에 다소 어려운 일입니다 [2,4,5,6,7,8,9,10,11,12].

물리적 모델링은 풀형 유형 어로의 유체 역학을 연구하기 위한 주요 접근 방식이었습니다 (예 : [13,14,15,16,17,18,19,20,21,22]). 그러나 물리적 실험은 비용과 시간이 많이 소요됩니다. 따라서 컴퓨터 기술의 발전으로 인해 물리적 모델 테스트를 줄이기 위해 복잡한 기하학적 구조를 가진 유압 구조의 흐름 패턴을 분석하는 데 전산 유체 역학 (CFD) 3 차원 (3D) 모델이 점점 더 많이 사용되고 있습니다 [23,24].

따라서 이러한 모델은 어로 유체 역학 연구 및 효율적인 어로 설계에 필수적인 역할을 할 수 있습니다.
어로에 대한 수치 모델링 연구는 주로 수직 슬롯 어로에 초점을 맞추고 있습니다 [12,25,26,27,28,29,30,31,32,33,34,35,36,37]. 수영장의 주요 부분에서 수직 슬롯 어로 흐름은 거의 2 차원 (2D)이고 수직 속도 구성 요소가 수평 요소 [26]보다 훨씬 작기 때문에 이러한 연구의 대부분은 2D 모델을 사용했습니다.

바닥 오리피스가있는 수영장 유형 어로에서는 흐름이 매우 복잡하고 3D이므로 정확한 유동장 특성화를 얻기 위해 3D 모델을 사용해야합니다. 이 어로 구성을 모델링하는 것은 높은 속도 구배, 높은 와도 및 높은 전단 영역을 포함하기 때문에 다소 어렵습니다.

이 연구에서는 FLOW-3D® (Flow Science, Inc., Santa Fe, NM, USA)를 사용하여 바닥 오리피스가 있는 수영장 유형 어로의 3D 수치 시뮬레이션을 수행하여 흐름 깊이, 속도 및 난류 패턴을 예측하는 능력을 평가했습니다. .

최근 몇 년 동안 실내에 가까운 프로토 타입 수영장 형 어로가 사이프 린드 종의 행동과 움직임을 연구하는데 사용되었습니다 [1,7,8,11,38,39,40,41,42,43]. Silva et al. [38]은 노치, 급락 및 스트리밍에 대한 두 가지 다른 유동 체제와 관련하여 조정 가능한 치수를 가진 침수된 오리피스와 표면 노치의 동시 존재에 대한 Iberian barbel Luciobarbus bocagei (Steindachner, 1864)의 반응을 평가했습니다.

이 연구의 결과는 이베리아 바벨이 어로를 협상하기 위해 오리피스 (76 %)를 선호했으며 어로에 들어가는 데 걸리는 시간도 오리피스에 비해 훨씬 적다는 것을 보여주었습니다.

Silva et al. [39] 오프셋 및 직선 오리피스가있는 수영장 유형 어로의 이베리아 바벨에 대한 적합성을 테스트했습니다. 이 연구는 오프셋 구성이 직선 오리피스 레이아웃 (28 %)에 비해 물고기 통과 성공률 (68 %)이 훨씬 더 높음을 발견했습니다. 어로를 성공적으로 협상하는 데 걸리는 시간도 오프셋 구성, 특히 작은 성인의 경우 훨씬 더 낮았습니다.

이 연구에서는 유속과 난류 매개 변수가 물고기 수영 성능에 미치는 영향을 분석했습니다. 수영장의 유동장을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다.

이 연구의 결과에 따르면 레이놀즈 전단 응력은 어로 내 이베리아 미늘의 움직임에 가장 큰 영향을 미치는 매개 변수임이 입증되었습니다. Branco et al. [40] 두 가지 다른 흐름을 가진 오리피스와 노치가 있는 풀형 유형 어로에서 형태 학적 및 생태학적 특성이 다른 두 종, 바닥 지향 이베리아 바벨 Luciobarbus bocagei 및 물기둥 수영 자 Iberian chub Squalius pyrenaicus의 거동과 성능을 평가했습니다.

풀의 유체 역학을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다. 결과는 두 종 모두 흐름 흐름이있는 노치를 선호했으며 이 흐름 체제로 상류로 이동하는데 더 성공적이었습니다.
이 연구에서는 이 시설의 1 : 2.5 스케일 어로 모델을 사용하여 Silva et al.에 의해 테스트된 바닥 오리피스 구성이 있는 풀형 유형 어로의 속도와 난류를 측정했습니다.

[7,38] 효과가 입증된 바벨 사용. 2D 입자 이미지 속도계 (PIV) 시스템 및 음향 도플러 속도계 (ADV)를 사용하여 순간 속도의 광범위한 측정을 수행하고, 후 처리하고, 수치 모델 정확도를 평가하는 데 사용했습니다.

Haque et al. [44] 대부분의 경우 수치 모델의 검증에 사용할 수있는 실험 데이터 세트에 높은 측정 오류가 있고 / 또는 측정 메시가 너무 거칠어 서 이들의 예측 기능을 올바르게 평가할 수없는 문제를 언급했습니다.

모델. Blocken과 Gualtieri [23]는 검증 및 검증 연구가 필수적이며 CFD 연구를 검증하기위한 데이터를 제공하기 위해 고품질 실험이 필요하다고 언급합니다.

Fuentes-Pérez et al. [35]는 특히 난류 메트릭에 대한 어로 연구에서 수치 모델 검증 데이터를 찾는 데 어려움을 언급합니다. 두 가지 측정 기술을 사용하고 상당한 양의 실험 데이터를 얻었기 때문에 이 연구에서는 이러한 문제를 극복했습니다.

물리적 모델은 종종 Froude 수 유사성을 기반으로하며, 두 유사성 법칙을 모두 충족하는 데 어려움이있어 무시되는 레이놀즈 수 유사성입니다. 프로토 타입 레이놀즈 수가 일반적으로 훨씬 더 크기 때문에 레이놀즈 수 관련 스케일 효과가 도입될 수 있습니다.

레이놀즈 수 증가는 속도 분포와 경계층 속성에 영향을 미칠 수 있습니다 [45]. 척도 효과를 평가하기 위해 수치 시뮬레이션을 사용할 수 있습니다 [46,47]. 따라서 본 연구에서는 바닥 오리피스 흐름이있는 풀형어도에 대한 스케일 효과를 분석하기 위해 두 가지 크기의 수치 모델을 개발했습니다.

프로토 타입 치수의 대형 모델과 물리적 모델 치수의 스케일 된 소형 모델입니다. .
바닥 오리피스가있는 수영장 형 어로의 유동장은 수직 슬롯 어로 (VSF)의 유동장보다 매우 3 차원 적이며 훨씬 더 복잡합니다. 이는 어로 수치 모델 검증에 대한 이전 연구에서 더 자주 고려 된 설계입니다 [26, 27,28,29,35].

저자가 아는 한, 이것은 바닥 오리피스가있는 풀형 어로에 대한 최초의 CFD 연구이며, 여기에는 실험 속도 데이터와 풀형 어로에 대한 3 차원 수치 모델링 결과 간의 가장 광범위한 비교도 포함됩니다. 두 가지 다른 측정 기술 (PIV 및 ADV)이 사용되어 자세한 비교가 가능하고 이러한 유형의 유동장에 대한 CFD 시뮬레이션 결과에 대한 확신을 제공합니다.

이 연구는 다른 어로 유형의 이전 수치 모델 연구에서 제시되지 않았던 난류 매개 변수를 포함하여 수치 모델 결과와 측정 간의 일치에 대한 통계적 테스트를 통해 정성적 비교 뿐만 아니라 상세한 정량적 비교도 제공합니다. 스케일 효과도 다룹니다.

따라서 이 연구는 전 세계적으로 가장 많이 사용되는 풀 유형 어로의 CFD 모델 검증을 원활하게 할 것이며 [10] 설계자들의 사용을 장려 할 것입니다.
또한 새로운 풀 유형 어로 형상을 위한 설계 도구로 CFD 모델 (즉, FLOW 3D®)을 사용하는 방법에 대해 설명합니다.

Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).

References

  1. Santos, J.M.; Branco, P.J.; Silva, A.T.; Katopodis, C.; Pinheiro, A.N.; Viseu, T.; Ferreira, M.T. Effect of two flow regimes on the upstream movements of the Iberian barbel (Luciobarbus bocagei) in an experimental pool-type fishway. J. Appl. Ichthyol. 2012, 29, 425–430. [CrossRef]
  2. Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thinking like a fish: A key ingredient for development of
    effective fish passage facilities at river obstructions. River Res. Appl. 2012, 28, 407–417. [CrossRef]
  3. Noonan, M.J.; Grand, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [CrossRef]
  4. Haro, A.; Kynard, B. Video Evaluation of Passage Efficiency of American Shad and Sea Lamprey in a Modified Ice Harbor Fishway. N. Am. J. Fish. Manag. 1997, 17, 981–987. [CrossRef]
  5. Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish; Contract no. 00000022, Project no. 200005700 (BPA Report DOE/BP-00000022-1); Report to the Bonneville Power
    Administration: Portland, Oregon, 2002.
  6. Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juveniles of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [CrossRef]
  7. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [CrossRef]
  8. Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [CrossRef]
  9. Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The IPOS framework: Linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res. Appl. 2012, 28, 429–443. [CrossRef]
  10. Santos, J.M.; Silva, A.T.; Katopodis, C.; Pinheiro, P.J.; Pinheiro, A.N.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: Getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [CrossRef]
  11. Branco, P.J.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Ferreira, M.T. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 2013, 714,
    145–154. [CrossRef]
  12. Gao, Z.; Andersson, H.I.; Dai, H.; Jiang, F.; Zhao, L. A new Eulerian-Lagrangian agent method to model fish paths in a vertical slot fishways. Ecol. Eng. 2016, 88, 217–225. [CrossRef]
  13. Rajaratnam, N.; Katopodis, C.; Mainali, M. Pool-orifice and pool-orifice-weir fishways. Can. J. Civ. Eng. 1989, 16, 774–777. [CrossRef]
  14. Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng. 1999, 125, 351–360. [CrossRef]
  15. Kim, J.H. Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 2001, 16, 425–433. [CrossRef]
  16. Ead, S.A.; Katopodis, C.; Sikora, G.J.; Rajaratnam, N. Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 2004, 3, 379–390. [CrossRef]
  17. Puertas, J.; Pena, L.; Teijeiro, T. Experimental approach to the hydraulics of vertical slot fishways. J. Hydraul. Eng. 2004, 130,10–23. [CrossRef]
  18. Liu, M.; Rajaratnam, N.; Zhu, D.D. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132,765–777. [CrossRef]
  19. Yagci, O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 2010, 36, 36–46. [CrossRef]
  20. Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [CrossRef]
  21. Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [CrossRef]
  22. Ballu, A.; Calluaud, D.; Pineau, G.; David, L. Experimental study of the influence of macro-roughnesses on vertical slot fishway flows. La Houille Blanche 2017, 2, 9–14. [CrossRef]
  23. Blocken, B.; Gualtieri, C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for
    environmental fluid mechanics. Environ. Model. Softw. 2012, 33, 1–22. [CrossRef]
  24. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection
    technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58, 71–85. [CrossRef]
  25. Khan, L.A. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics and Fish Passage Energetics in a Vertical-Slot Fishway. N. Am. J. Fish. Manag. 2006, 26, 255–267. [CrossRef]
  26. Cea, L.; Pena, L.; Puertas, J.; Vazquez-Cendon, M.E.; Peña, E. Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 2007, 133, 160–172. [CrossRef]
  27. Barton, A.F.; Keller, R.J.; Katopodis, C. Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics. Aust. J. Water Res. 2009, 13, 53–60. [CrossRef]
  28. Chorda, J.; Maubourguet, M.M.; Roux, H.; George, J.; Larinier, M.; Tarrade, L.; David, L. Two-dimensional free surface flow numerical model for vertical slot fishways. J. Hydraul. Res. 2010, 48, 141–151. [CrossRef]
  29. Bombaˇc, M.; Novak, G.; Rodiˇc, P.; Cetina, M. Numerical and physical model study of a vertical slot fishway. ˇ J. Hydrol. Hydromech.
    2014, 62, 150–159. [CrossRef]
  30. Bombaˇc, M.; Novak, G.; Mlacnik, J.; Cetina, M. Extensive field measurements of flow in vertical slot fishway as data for validation ˇ of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [CrossRef]
  31. Bombaˇc, M.; Cetina, M.; Novak, G. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. ˇ Ecol.
    Eng. 2017, 107, 126–136. [CrossRef]
  32. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [CrossRef]
  33. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Cooke, S.J.; Katopodis, C. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol. Eng. 2016, 90, 190–202. [CrossRef]
  34. Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Res. Appl. 2017, 33, 1295–1305. [CrossRef]
  35. Fuentes-Pérez, J.F.; Silva, A.T.; Tuhtan, J.A.; García-Vega, A.; Carbonell-Baeza, R.; Musall, M.; Kruusmaa, M. 3D modelling of
    non-uniform and turbulent flow in vertical slot fishways. Environ. Model. Softw. 2018, 99, 156–169. [CrossRef]
  36. Stamou, A.; Mitsopoulos, G.; Rutschmann, P.; Bui, M. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid
    Mech. 2018, 18, 1435–1461. [CrossRef]
  37. Sanagiotto, D.; Rossi, J.; Bravo, J. Applications of computational fluid dynamics in the design and rehabilitation of nonstandard
    vertical slot fishways. Water 2019, 11, 199. [CrossRef]
  38. Silva, A.T.; Santos, J.M.; Franco, A.C.; Ferreira, M.T.; Pinheiro, A.N. Selection of Iberian barbel Barbus bocagei (Steindachner, 1864)
    for orifices and notches upon different hydraulic configurations in an experimental pool-type fishway. J. Appl. Ichthyol. 2009, 25,
    173–177. [CrossRef]
  39. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Passage efficiency of offset and straight orifices for upstream movements of Iberian barbel in a pool-type fishway. River Res. Appl. 2012, 28, 529–542. [CrossRef]
  40. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows. PLoS ONE 2013, 8, e65089. [CrossRef]
  41. Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage performance
    of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [CrossRef]
  42. Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [CrossRef]
  43. Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N. Cyprinid passage performance in an experimental multislot fishway across distinct seasons. Mar. Freshw. Res. 2019, 70, 881–890. [CrossRef]
  44. Haque, M.M.; Constantinescu, G.; Weber, L. Validation of a 3D RANS model to predict flow and stratification effects related to fish passage at hydropower dams. J. Hydraul. Res. 2007, 45, 787–796. [CrossRef]
  45. Dargahi, B. Flow characteristics of bottom outlets with moving gates. J. Hydraul. Res. 2010, 48, 476–482. [CrossRef]
  46. Huang, W.; Yang, Q.; Xiao, H. CFD modelling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluids 2009, 38, 1050–1058. [CrossRef]
  47. Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [CrossRef]
  48. Larinier, M. Pool fishways, pre-barrages and natural bypass channels. Bull. Français de la Pêche et de la Piscic. 2002, 364, 54–82. [CrossRef]
  49. Quaresma, A.L.; Ferreira, R.M.L.; Pinheiro, A.N. Comparative analysis of particle image velocimetry and acoustic Doppler
    velocimetry in relation to a pool-type fishway flow. J. Hydraul. Res. 2017, 55, 582–591. [CrossRef]
  50. Flow Science, Inc. Flow-3D Version 11.2 User Manual; Flow Science, Inc.: Los Alamos, NM, USA, 2016.
  51. Hirt, C.W.; Sicilian, J.M. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the International Conference on Numerical Ship Hydrodynamics, Washington, DC, USA, 4 September 1985.
  52. Savage, B.M.; Johnson, M.C. Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 2001, 127, 640–649. [CrossRef]
  53. Abad, J.D.; Rhoads, B.L.; Güneralp, I.; García, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063. [CrossRef]
  54. Bombardelli, F.A.; Meireles, I.; Matos, J. Laboratory measurements and multi-block numerical simulations of the mean flow and
    turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11, 263–288. [CrossRef]
  55. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
  56. Duguay, J.M.; Lacey, R.W.J.; Gaucher, J. A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol. Eng. 2017, 103, 31–42. [CrossRef]
  1. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 1981, 39, 201–225. [CrossRef]
  2. Van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comp. Phys. 1977, 23, 276–299. [CrossRef]
  3. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due
    to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001 (4pages). [CrossRef]
  4. Smagorinsky, J. General circulation experiments with the primitive equations: I. The Basic Experiment. Mon. Weather Rev. 1963,
    91, 99–164. [CrossRef]
  5. Meyers, J.; Geurts, B.J.; Baelmans, M. Database analysis of errors in large-eddy simulation. Phys. Fluids 2003, 15, 2740–2755.[CrossRef]
  6. Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of Resolution Quality for Large Eddy Simulations. J. Fluids Eng. 2005, 127, 949–958. [CrossRef]
  7. Freitag, M.; Klein, M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering. J. Turbul. 2006, 7, 1–11. [CrossRef]
  8. Gousseau, P.; Blocken, B.; van Heijst, G.J.F. Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Comput. Fluids 2013, 79, 120–133. [CrossRef]
  9. Celik, I.; Li, J.; Hu, G.; Shaffer, C. Limitations of Richardson Extrapolation and Some Possible Remedies. J. Fluids Eng. 2005, 127, 795–805. [CrossRef]
  10. Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
  11. Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]
  12. Bennett, N.D.; Crok, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newhama, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [CrossRef]
  13. Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [CrossRef]
  14. Lane, S.N.; Richards, K.S. The “validation” of hydrodynamic models: Some critical perspectives. In Model Validation for Hydrological
    and Hydraulic Research; Bates, P.D., Anderson, M.G., Eds.; John Wiley: Hoboken, NJ, USA, 2001; pp. 413–438.
  15. Bradbrook, K.F.; Biron, P.M.; Lane, S.N.; Richards, K.S.; Roy, A.G. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol. Process. 1998, 12, 1371–1396. [CrossRef]
  16. Bradbrook, K.F.; Lane, S.N.; Richards, K.S.; Biron, P.M.; Roy, A.G. Role of bed discordance at asymmetrical river confluences. J. Hydraul. Eng. 2001, 127, 351–368. [CrossRef]
  17. Ferguson, R.I.; Parsons, D.R.; Lane, S.N.; Hardy, R.J. Flow in meander bends with recirculation at the inner bank. Water Resour. Res. 2003, 39, 1322–1334. [CrossRef]
  18. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Predicting equilibrium scour-hole geometry near angled stream deflectors using a three-dimensional numerical flow model. J. Hydraul. Eng. 2007, 133, 983–988. [CrossRef]
  19. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Three-dimensional numerical simulation of flow around stream deflectors: The effects of obstruction angle and length. J. Hydraul. Res. 2007, 45, 227–238. [CrossRef]
  20. Han, S.S.; Biron, P.M.; Ramamurthy, A.S. Three-dimensional modelling of flow in sharp open-channel bends with vanes. J. Hydraulic Res. 2011, 49, 64–72. [CrossRef]
  21. Klein, M. An Attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 2005, 75, 131–147. [CrossRef]
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.

Numerical Study of Fluctuating Pressure on Stilling Basin Slab with Sudden Lateral Enlargement and Bottom Drop

급격한 측면 확대 및 바닥 낙하에 따른 정류지(stilling basin) 슬래브의 변동 압력에 대한 수치 연구

by Yangliang Lu,Jinbu Yin *OrcID,Zhou Yang,Kebang Wei andZhiming Liu
College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road, Yangling 712100, China*
Author to whom correspondence should be addressed.
Water 2021, 13(2), 238; https://doi.org/10.3390/w13020238
Received: 6 November 2020 / Revised: 7 January 2021 / Accepted: 11 January 2021 / Published: 19 January 2021
(This article belongs to the Special Issue Physical Modelling in Hydraulics Engineering)

Abstract

갑작스런 확장 및 바닥 낙하가 있는 고요한 정류지(stilling basin) 유역은 복잡한 수력 특성, 특히 3D 공간 수력 점프 아래에서 변동하는 압력 분포로 이어집니다.

이 논문은 FLOW-3D 소프트웨어를 기반으로 한 LES (Large Eddy Simulation) 모델과 TruVOF 방법을 사용하여 시간 평균 압력, 변동 압력의 RMS (Root Mean Square), 정물(stilling basin) 조 슬래브의 최대 및 최소 압력을 시뮬레이션했습니다.

실제 모델 결과와 비교하여 시뮬레이션 결과는 LES 모델이 정물 유역의 변동하는 수류 압력을 안정적으로 시뮬레이션 할 수 있음을 보여줍니다. 변동 압력의 RMS의 최대 값은 정수조 전면과 측벽의 연장선 부근에 나타납니다.

이 논문은 변동 압력의 생성 메커니즘과 Navier-Stokes 방정식에서 파생된 Poisson 방정식을 기반으로 영향 요인 (변동 속도, 속도 구배, 변동 와도)의 정량 분석과 특성의 정성 분석을 결합하는 연구 방법을 제공합니다.

변동하는 압력의. 정류 지의 소용돌이 영역과 벽에 부착 된 제트 영역의 변동 압력 분포는 주로 각각 와류 및 변동 유속의 영향을 받으며 충돌 영역의 분포는 변동 속도, 속도 구배 및 변동에 의해 발생합니다.

A stilling basin with sudden enlargement and bottom drop leads to complicated hydraulic characteristics, especially a fluctuating pressure distribution beneath 3D spatial hydraulic jumps. This paper used the large eddy simulation (LES) model and the TruVOF method based on FLOW-3D software to simulate the time-average pressure, root mean square (RMS) of fluctuating pressure, maximum and minimum pressure of a stilling basin slab. Compared with physical model results, the simulation results show that the LES model can simulate the fluctuating water flow pressure in a stilling basin reliably. The maximum value of RMS of fluctuating pressure appears in the vicinity of the front of the stilling basin and the extension line of the side wall. Based on the generating mechanism of fluctuating pressure and the Poisson Equation derived from the Navier–Stokes Equation, this paper provides a research method of combining quantitative analysis of influencing factors (fluctuating velocity, velocity gradient, and fluctuating vorticity) and qualitative analysis of the characteristics of fluctuating pressure. The distribution of fluctuating pressure in the swirling zone of the stilling basin and the wall-attached jet zone is mainly affected by the vortex and fluctuating flow velocity, respectively, and the distribution in the impinging zone is caused by fluctuating velocity, velocity gradient and fluctuating vorticity. 

Keywords: submerged jumpsudden lateral enlargement and bottom droplarge eddy simulationvortexfluctuating pressure

Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.

Table 1. Operating conditions.

ConditionFlow Discharge
(m3/s)
Inflow Froude NumberInflow Velocity (m/s)Inflow Water Depth (m)
10.9425.2955.6110.114
20.6434.5454.4890.097
30.2324.2273.0180.052
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.

Table 2. Grid independence test.

GridContaining Block Cell Size (m)Nested Block Cell Size (m)Discharge
(m3/s)
Relative Error (%)
10.0500.0250.9905.10
20.0400.0200.9692.70
30.0300.0150.9561.49
40.0200.0100.9521.06
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 7. Comparison of bottom velocity.
Figure 7. Comparison of bottom velocity.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 13. Variance of fluctuating pressure coefficient (Cp′).
Figure 13. Variance of fluctuating pressure coefficient (Cp′).

References

  1. Liu, P.Q.; Dong, J.R.; Yu, C. Experimental investigation of fluctuation uplift on rock blocks at the bottom of the scour pool downstream of Three-Gorges spillway. J. Hydraul. Res. 199836, 55–68. [Google Scholar] [CrossRef]
  2. Liu, P.Q.; Li, A.H. Model discussion of pressure fluctuations propagation within lining slab joints in stilling basins. J. Hydraul. Eng. 2007133, 618–624. [Google Scholar] [CrossRef]
  3. Mousavi, S.N.; Júnior, R.S.; Teixeira, E.D.; Bocchiola, D.; Nabipour, N.; Mosavi, A.; Shamshirband, S. Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods. Mathematics 20208, 323. [Google Scholar] [CrossRef]
  4. Sun, S.-K.; Liu, H.-T.; Xia, Q.-F.; Wang, X.-S. Study on stilling basin with step down floor for energy dissipation of hydraulic jump in high dams. J. Hydraul. Eng. 200536, 1188–1193. (In Chinese) [Google Scholar]
  5. Li, Q.; Li, L.; Liao, H. Study on the Best Depth of Stilling Basin with Shallow-Water Cushion. Water 201810, 1801. [Google Scholar] [CrossRef]
  6. Luo, Y.-Q.; He, D.-M.; Zhang, S.-C.; Bai, S. Experimental Study on Stilling Basin with Step-down for Floor Slab Stability Characteristics. J. Basic Sci. Eng. 201220, 228–236. (In Chinese) [Google Scholar]
  7. Zhang, J.; Zhang, Q.; Wang, T.; Li, S.; Diao, Y.; Cheng, M.; Baruch, J. Experimental Study on the Effect of an Expanding Conjunction Between a Spilling Basin and the Downstream Channel on the Height After Jump. Arab. J. Sci. Eng. 201742, 4069–4078. [Google Scholar] [CrossRef]
  8. Ram, K.V.S.; Prasad, R. Spatial B-jump at sudden channel enlargements with abrupt drop. J. Hydraul. Eng. -Asce 1998124, 643–646. [Google Scholar] [CrossRef]
  9. Hassanpour, N.; Hosseinzadeh Dalir, A.; Farsadizadeh, D.; Gualtieri, C. An Experimental Study of Hydraulic Jump in a Gradually Expanding Rectangular Stilling Basin with Roughened Bed. Water 20179, 945. [Google Scholar] [CrossRef]
  10. Siuta, T. The impact of deepening the stilling basin on the characteristics of hydraulic jump. Czas. Tech. 2018. [Google Scholar] [CrossRef]
  11. Babaali, H.; Shamsai, A.; Vosoughifar, H. Computational Modeling of the Hydraulic Jump in the Stilling Basin with Convergence Walls Using CFD Codes. Arab. J. Sci. Eng. 201440, 381–395. [Google Scholar] [CrossRef]
  12. Dehdar-behbahani, S.; Parsaie, A. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alex. Eng. J. 201655, 467–473. [Google Scholar] [CrossRef]
  13. Macián-Pérez, J.F.; García-Bartual, R.; Huber, B.; Bayon, A.; Vallés-Morán, F.J. Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water 202012, 227. [Google Scholar] [CrossRef]
  14. Tajabadi, F.; Jabbari, E.; Sarkardeh, H. Effect of the end sill angle on the hydrodynamic parameters of a stilling basin. Eur. Phys. J. Plus 2018133. [Google Scholar] [CrossRef]
  15. Valero, D.; Bung, D.B.; Crookston, B.M. Energy Dissipation of a Type III Basin under Design and Adverse Conditions for Stepped and Smooth Spillways. J. Hydraul. Eng. 2018144. [Google Scholar] [CrossRef]
  16. Liu, D.; Fei, W.; Wang, X.; Chen, H.; Qi, L. Establishment and application of three-dimensional realistic river terrain in the numerical modeling of flow over spillways. Water Supply 201818, 119–129. [Google Scholar] [CrossRef]
  17. Epely-Chauvin, G.; De Cesare, G.; Schwindt, S. Numerical Modelling of Plunge Pool Scour Evolution In Non-Cohesive Sediments. Eng. Appl. Comput. Fluid Mech. 20158, 477–487. [Google Scholar] [CrossRef]
  18. Zhang, J.-M.; Chen, J.-G.; Xu, W.-L.; Peng, Y. Characteristics of vortex structure in multi-horizontal submerged jets stilling basin. Proc. Inst. Civ. Eng. Water Manag. 2014167, 322–333. [Google Scholar] [CrossRef]
  19. Li, L.-X.; Liao, H.-S.; Liu, D.; Jiang, S.-Y. Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrodyn. 201527, 522–529. [Google Scholar] [CrossRef]
  20. Ferreri, G.B.; Nasello, C. Hydraulic jumps at drop and abrupt enlargement in rectangular channel. J. Hydraul. Res. 201040, 491–505. [Google Scholar] [CrossRef]
  21. Naseri, F.; Sarkardeh, H.; Jabbari, E. Effect of inlet flow condition on hydrodynamic parameters of stilling basins. Acta Mech. 2017229, 1415–1428. [Google Scholar] [CrossRef]
  22. Zhou, Z.; Wang, J.-X. Numerical Modeling of 3D Flow Field among a Compound Stilling Basin. Math. Probl. Eng. 2019, 5934274. [Google Scholar] [CrossRef]
  23. Qian, Z.; Hu, X.; Huai, W.; Amador, A. Numerical simulation and analysis of water flow over stepped spillways. Sci. China Ser. E Technol. Sci. 200952, 1958–1965. [Google Scholar] [CrossRef]
  24. Liu, F. Study on Characteristics of Fluctuating Wall-Pressure and Its Similarity Law. Ph.D. Thesis, Tianjin University, Tianjin, China, May 2007. (In Chinese). [Google Scholar]
  25. Yan, Z.-M.; Zhou, C.-T.; Lu, S.-Q. Pressure fluctuations beneath spatial hydraulic jumps. J. Hydrodyn. 200618, 723–726. [Google Scholar] [CrossRef]
  26. Moin, P.; Kim, J. Numerical investigation of turbulent channel flow. J. Fluid Mech. 2006118. [Google Scholar] [CrossRef]
  27. Rezaeiravesh, S.; Liefvendahl, M. Effect of grid resolution on large eddy simulation of wall-bounded turbulence. Phys. Fluids 201830. [Google Scholar] [CrossRef]
  28. Stamou, A.I.; Chapsas, D.G.; Christodoulou, G.C. 3-D numerical modeling of supercritical flow in gradual expansions. J. Hydraul. Res. 201046, 402–409. [Google Scholar] [CrossRef]
  29. Savage, B.M.; Crookston, B.M.; Paxson, G.S. Physical and Numerical Modeling of Large Headwater Ratios for a 15 degrees Labyrinth Spillway. J. Hydraul. Eng. 2016142. [Google Scholar] [CrossRef]
  30. Aydin, M.C.; Ozturk, M. Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators. Can. J. Civ. Eng. 200936, 826–836. [Google Scholar] [CrossRef]
  31. Ma, B.; Liang, S.; Liang, C.; Li, Y. Experimental Research on an Improved Slope Protection Structure in the Plunge Pool of a High Dam. Water 20179, 671. [Google Scholar] [CrossRef]
  32. Bai, L.; Zhou, L.; Han, C.; Zhu, Y.; Shi, W.D. Numerical Study of Pressure Fluctuation and Unsteady Flow in a Centrifugal Pump. Processes 20197, 354. [Google Scholar] [CrossRef]
  33. Guven, A. A predictive model for pressure fluctuations on sloping channels using support vector machine. Int. J. Numer. Methods Fluids 201166, 1371–1382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
FLOW-3D skimming upstream view

계단식 여수로의 흐름 시뮬레이션

FLOW-3D 는 매끄러운 여수로에서 유량 매개 변수를 결정하는데 널리 사용됩니다. 일반적으로 여수로에서 에너지 손실을 찾는 것이 목적인데, 이는 stilling basins 및 other energy dissipaters 를 설계하는 데 사용됩니다.

계단식 여수로에서 에너지 손실을 계산하기 위해 FLOW-3D 를 사용하는 것에 대한 관심이 증가하고 있습니다. 계단식 여수로 모델링 프로세스는 다음 지침에 따라 도움이 될 수 있습니다.

igure 1. Typical geometric representation of a smooth and a stepped spillway.
igure 1. Typical geometric representation of a smooth and a stepped spillway.

소개

계단식 여수로의 흐름은 네 가지 일반 범주로 나뉩니다. 낮잠 흐름, 과도 흐름, 비 공기 스키밍 흐름 및 폭기 스키밍 흐름. 다음 팁은 경사면에서 최대 45도까지 환기되지 않는 계단식 여수로의 Nappe 흐름, 과도기 흐름 및 비 통기성 skimming flow Model에서 개발되었습니다. 추가 비 통기성 skimming 결과는 Bombardelli et al 에서 찾을 수 있습니다. (2010, FloSci-Bib33-10)  및 Meireles et al (2010, FloSci-Bib61-10), 폭기 스키밍 흐름 모델 결과는  Sarfaraz 및 Attari (2011, FloSci-Bib34-11)에서 확인할 수 있습니다.

FLOW-3D skimming upstream view
FLOW-3D skimming upstream view
FLOW-3D skimming downstream view
FLOW-3D skimming downstream view

2 차원으로 시작하고 VOF 방법 선택

지오메트리 또는 흐름에 3D 불일치가없는 한(일반적으로 사실임) 여수로 시뮬레이션을 먼저 2D 사례로 실행합니다. 에너지 손실에 대한 결과는 2D에서 3D로 크게 변하지 않습니다. 이것은 메쉬 크기를 상당히 절약하고 훨씬 더 빠른 시뮬레이션 실행을 가능하게 합니다. 

스키밍 및 전환 흐름의 경우 기본 VOF (Volume-of-Fluid-Advection) 방법이 적절해 보입니다 (IFVOF = 4). Nappe 흐름의 경우 분할 Lagrangian VOF 방법 (IFVOF = 6)을 사용하여 제트 곡률을 해결하는 것이 좋습니다. 흐름 체제가 미리 알려지지 않은 경우 Split Lagrangian 방법을 사용합니다.

메시 해상도

계단식 여수로 Weir 흐름은 상류 속도와 여수로의 형상에 따라 다른 영역을 나타냅니다. 이러한 서로 다른 정권을 스키밍, 과도기 및 Nappe 흐름이라고합니다. 흐름 영역을 정확하게 예측하려면 메쉬 셀이 흐름 매개 변수를 캡처할 수 있을만큼 충분히 작은지 확인해야 합니다. 

스키밍 및 과도적 흐름의 경우 상대적으로 낮은 해상도가 허용될 수 있습니다. 계단의 가장 짧은 길이 / 높이를 분석하기 위한 4 ~ 5 개의 셀이 여러 테스트를 기반으로 충분 해 보이지만 여수로 경사가 45도 이상 더 클 때 메시가 상당히 미세해야 합니다. 에너지 손실 계산을 크게 향상시키는 추가 해상도는 발견되지 않았습니다. 반면에 Nappe 흐름은 떨어지는 제트를 해결하기 위해 매우 미세한 메쉬가 필요합니다.

Figure 2.6 ESI apparatus for offline analysis with microscope imaging.

MODELING AND CHARACTERIZATION OF MICROFABRICATED EMITTERS: IN PURSUIT OF IMPROVED ESI-MS PERFORMANCE

미세 가공 방사체의 모델링 및 특성화 : 개선된 ESI-MS 성능 추구

by XINYUN WU

A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada December, 2011 Copyright © Xinyun Wu, 2011

Abstract

ESI (Electrospray ionization)는 특히 탁월한 감도, 견고성 및 단순성으로 대형 생체 분자를 분석하는 데있어 질량 분석 (MS)에 매우 귀중한 기술이었습니다. ESI 기술 개발에 많은 노력을 기울였습니다. 그 형태와 기하학적 구조가 전기 분무 성능과 추가 MS 감지에 중추적 인 것으로 입증 되었기 때문입니다.

막힘 및 낮은 처리량을 포함하여 전통적인 단일 홀 이미터의 본질적인 문제는 기술의 적용 가능성을 제한합니다. 이 문제를 해결하기 위해 현재 프로젝트는 향상된 ESI-MS 분석을위한 다중 전자 분무(MES) 방출기를 개발하는데 초점을 맞추고 있습니다.

이 논문에서는 스프레이 전류 측정을 위한 전기 분무와 오프라인 전기 분무 실험을 위한 전산 유체 역학 (CFD) 시뮬레이션의 공동 작업이 수행되었습니다. 전기 분무 성능에 대한 다양한 이미터 설계의 영향을 테스트하기 위해 수치 시뮬레이션이 사용되었으며 실험실 결과는 가이드 및 검증으로 사용되었습니다.

CFD 코드는 Taylor-Melcher 누설 유전체 모델(LDM)을 기반으로 하며 과도 전기 분무 공정이 성공적으로 시뮬레이션되었습니다.

이 방법은 750 μm 내경 (i.d.) 이미 터를 통해 먼저 검증되었으며 20 μm i.d.에 추가로 적용되었습니다. 모델. 전기 분무 공정의 여러 단계가 시각적으로 시연되었으며 다양한 적용 전기장 및 유속에서 분무 전류의 변화에 ​​대한 정량적 조사는 이전 시뮬레이션 및 측정과 잘 일치합니다.

단일 조리개 프로토 타입을 기반으로 2 홀 및 3 홀 이미터로 MES 시뮬레이션을 수행했습니다. 시뮬레이션 예측은 실험 결과와 유사하게 비교되었습니다. 이 작업의 증거는 CFD 시뮬레이션이 MES의 이미 터 설계를 테스트하는 효과적인 수치 도구로 사용될 수 있음을 입증했습니다.

이 작업에서 달성 된 마이크로 스케일 에미 터 전기 분무의 성공적인 시뮬레이션에 대한 벤치마킹 결과는 현재까지 발표 된 전기 분무에 대한 동적 시뮬레이션의 가장 작은 규모로 여겨집니다.

Co-Authorship

공동 저자: 이 논문에 대한 모든 연구는 Natalie M. Cann 박사와 Richard D. Oleschuk 박사의 지도하에 완료되었습니다. 다중 전자 분무에 관한 4 장에서 제시된 연구 작업의 일부는 Ramin Wright가 공동 저술했으며, 이 작업은 press에서 다음 논문에서 인용되었습니다.

ibson,G.T.T.; Wright, R.D.; Oleschuk, R.D. Multiple electrosprays generated from a single poly carbonate microstructured fibre. Journal of Mass Spectrometry, 2011, in press.

Chapter 1 Introduction

소프트 이온화 방법으로 ESI (electrospray ionization)의 도입은 질량 분석법 (MS)의 적용 가능성에 혁명을 일으켰습니다. 이 기술의 부드러운 특징은 상대적으로 높은 전하를 가진 이온을 생성하는 고유한 이점으로 인해 액상에서 직접 펩티드 및 단백질과 같은 큰 생체 분자를 분석 할 수 있게했습니다 [1].

지난 10 년 동안 ESI-MS는 놀라운 성장을 보였으며 현재는 단백질 체학, 대사 체학, 글리코 믹스, 합성 화학자를 위한 식별 도구 등 다양한 생화학 분야에서 광범위하게 채택되고 있습니다 [2-3].

ESI-MS는 겔 전기 영동과 같은 생물학적 분자에 대한 기존의 질량 측정 기술보다 훨씬 빠르고 민감하며 정확합니다. 또한, 액체상에서 직접 분석 할 수 있는 큰 비 휘발성 분자의 능력은 고성능 액체 크로마토 그래피 (HPLC) 및 모세관 전기 영동 (CE)과 같은 업스트림 분리 기술과의 결합을 가능하게합니다 [4].

일반적인 ESI 공정은 일반적으로 액적 형성, 액적 수축 및 기상 이온의 최종 형성을 포함합니다. 일렉트로 스프레이의 성능에 영향을 미치는 많은 요소 중에서 스프레이를 위한 이미터의 구조 (즉, 기하학, 모양 등)가 중요한 요소입니다.

전통적인 전기 분무 이미터는 일반적으로 풀링 또는 에칭 기술로 제작 된 단일 채널 테이퍼 형 또는 비 테이퍼 형입니다. 그러나 이러한 이미터는 종종 막힘, 부적절한 처리량 등과 같은 문제로 어려움을 겪습니다. [5]

향상된 감도 및 샘플 활용을 위해 다중 스프레이를 생성하는 새로운 이미터 설계 개발로 분명한 발전이 있었습니다. 새로운 ESI 이미터 설계에 대한 연구는 실험적으로나 이론적으로 큰 관심을 불러 일으켰습니다 [3]. 그러나 ESI의 복잡한 물리적 과정은 팁 형상 외에도 많은 다른 변수에 의존하기 때문에 연구간 직접 비교의 어려움은 장애물이 됩니다.

또한 새로운 나노 이미터 제조 및 테스트 비용이 상당히 높을 수 있습니다. 이 논문은 CFD 시뮬레이션 도구를 활용하여 가상 랩을 설정함으로써 이러한 문제를 해결합니다. 다른 매개 변수로 인해 상호 연결된 변경 없이 다양한 이미터 설계를 비교할 수 있도록 이상적으로 균일한 물리적 조건을 제공합니다.

맞춤 제작된 프로토 타입의 실험 측정 값도 수집되어 더 나은 계산 체계를 형성하는 데 도움이 되는 지침과 검증을 모두 제공합니다. 특히 이 분야의 주요 미래 플랫폼으로 여겨지는 다중 노즐 이미 터 설계에 중점을 둘 것입니다.

전기 분무 거동에 영향을 미치는 요인에 대한 추가 기본 연구는 다양한 기하학적 및 작동 매개 변수와 관련하여 수행됩니다. 이는 보다 효율적이고 견고한 이미터의 개발을 가능하게 할 뿐만 아니라 더 넓은 영역에서 ESI의 적용을 향상시킬 수 있습니다.

Figure 1.1Schematic setup for ESI-MS technique
Figure 1.1Schematic setup for ESI-MS technique
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.4 (A)Externally tapered emitter  (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.4 (A)Externally tapered emitter (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times    (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).

Omit below: Please refer to the original text for the full content.

Bibliography

1. Mclafferty, F.W., Tandem Fourier-Transform Mass-Spectrometry of Large Molecules.Abstracts of Papers of the American Chemical Society, 1986. 192: p. 21-Anyl. 2. Griffiths, W.J. and Y.Q. Wang, Mass spectrometry: from proteomics to metabolomics and lipidomics. Chemical Society Reviews, 2009. 38(7): p. 1882-1896. 3. Gibson, G.T.T., S.M. Mugo, and R.D. Oleschuk, Nanoelectrospray Emitters: Trends and Perspective. Mass Spectrometry Reviews, 2009. 28(6): p. 918-936. 4. Cech, N.B. and C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews, 2001. 20(6): p. 362-387. 5. Su, S., Development and Application of Non-tapered Electrospray Emitters for Nano-ESI Mass Spectrometry, in Chemistry. 2008, Queen’s University: Kingston. p. 185. 6. Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914. 3(2): p. 69-91. 7. Dole, M., L.L. Mack, and R.L. Hines, Molecular Beams of Macroions. Journal of Chemical Physics, 1968. 49(5): p. 2240-&. 8. Yamashita, M. and J.B. Fenn, Negative-Ion Production with the Electrospray Ion-Source.Journal of Physical Chemistry, 1984. 88(20): p. 4671-4675. 9. Kebarle, P. and U.H. Verkerk, Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrometry Reviews, 2009. 28(6): p. 898-917. 10. Taylor, G., Disintegration of Water Drops in Electric Field. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1964. 280(138): p. 383. 11. Cole, R.B., Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2000. 35(7): p. 763-772. 12. Rayleigh, L., On the equilibrium of liquid conducting masses charged with electricity.Philos. Mag., 1882. 14: p. 184-186. 13. Mack, L.L., et al., Molecular Beams of Macroions .2. Journal of Chemical Physics, 1970. 52(10): p. 4977-&. 14. Gamero-Castano, M. and J.F. de la Mora, Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. Journal of Mass Spectrometry, 2000. 35(7): p. 790-803. 15. Gamero-Castano, M. and J.F. de la Mora, Modulations in the abundance of salt clusters in electrosprays. Analytical Chemistry, 2000. 72(7): p. 1426-1429. 16. Loscertales, I.G. and J.F. Delamora, Experiments on the Kinetics of Field Evaporation of Small Ions from Droplets. Journal of Chemical Physics, 1995. 103(12): p. 5041-5060. 17. Rohner, T.C., N. Lion, and H.H. Girault, Electrochemical and theoretical aspects of electrospray ionisation. Physical Chemistry Chemical Physics, 2004. 6(12): p. 3056-3068.

18. Iribarne, J.V. and B.A. Thomson, Evaporation of Small Ions from Charged Droplets.Journal of Chemical Physics, 1976. 64(6): p. 2287-2294. 19. Meng, C.K. and J.B. Fenn, Formation of Charged Clusters during Electrospray Ionization of Organic Solute Species. Organic Mass Spectrometry, 1991. 26(6): p. 542-549. 20. Nohmi, T. and J.B. Fenn, Electrospray Mass-Spectrometry of Poly(Ethylene Glycols) with Molecular-Weights up to 5 Million. Journal of the American Chemical Society, 1992. 114(9): p. 3241-3246. 21. de la Mora, J.F., Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chimica Acta, 2000. 406(1): p. 93-104. 22. Iavarone, A.T., J.C. Jurchen, and E.R. Williams, Supercharged protein and peptide lone formed by electrospray ionization. Analytical Chemistry, 2001. 73(7): p. 1455-1460. 23. Hogan, C.J., et al., Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization. Journal of the American Chemical Society, 2008. 130(22): p. 6926-+. 24. Nguyen, S. and J.B. Fenn, Gas-phase ions of solute species from charged droplets of solutions. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(4): p. 1111-1117. 25. Luedtke, W.D., et al., Nanojets, electrospray, and ion field evaporation: Molecular dynamics simulations and laboratory experiments. Journal of Physical Chemistry A, 2008. 112(40): p. 9628-9649. 26. Enke, C.G., A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Analytical Chemistry, 1997. 69(23): p. 4885-4893. 27. Maze, J.T., T.C. Jones, and M.F. Jarrold, Negative droplets from positive electrospray.Journal of Physical Chemistry A, 2006. 110(46): p. 12607-12612. 28. Kebarle, P. and M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analytica Chimica Acta, 2000. 406(1): p. 11-35. 29. Loeb, L.B., A.F. Kip, and G.G. Hudson, Pulses in negative point-to-plane corona.Physical Review, 1941. 60(10): p. 714-722. 30. Cole, R.B., Electrospray ionization mass spectrometry : fundamentals, instrumentation, and applications. 1997, New York: Wiley. xix, 577 p. 31. Smith, D.P.H., The Electrohydrodynamic Atomization of Liquids. Ieee Transactions on Industry Applications, 1986. 22(3): p. 527-535. 32. Taylor, G.I. and A.D. Mcewan, Stability of a Horizontal Fluid Interface in a Vertical Electric Field. Journal of Fluid Mechanics, 1965. 22: p. 1-&. 33. Ikonomou, M.G., A.T. Blades, and P. Kebarle, Electrospray Mass-Spectrometry of Methanol and Water Solutions Suppression of Electric-Discharge with Sf6 Gas. Journal of the American Society for Mass Spectrometry, 1991. 2(6): p. 497-505.

34. Wampler, F.M., A.T. Blades, and P. Kebarle, Negative-Ion Electrospray Mass-Spectrometry of Nucleotides – Ionization from Water Solution with Sf6 Discharge Suppression. Journal of the American Society for Mass Spectrometry, 1993. 4(4): p. 289-295. 35. Marginean, I., P. Nemes, and A. Vertes, Order-chaos-order transitions in electrosprays: The electrified dripping faucet. Physical Review Letters, 2006. 97(6): p. -. 36. Marginean, I., P. Nemes, and A. Vertes, Astable regime in electrosprays. Physical Review E, 2007. 76(2): p. -. 37. Nemes, P., I. Marginean, and A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays. Analytical Chemistry, 2007. 79(8): p. 3105-3116. 38. Marginean, I., et al., Electrospray characteristic curves: In pursuit of improved performance in the nanoflow regime. Analytical Chemistry, 2007. 79(21): p. 8030-8036. 39. Page, J.S., et al., Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Analytical Chemistry, 2008. 80(5): p. 1800-1805. 40. Delamora, J.F. and I.G. Loscertales, The Current Emitted by Highly Conducting Taylor Cones. Journal of Fluid Mechanics, 1994. 260: p. 155-184. 41. Ganan-Calvo, A.M., On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 2004. 507: p. 203-212. 42. Smith, D.R., G. Sagerman, and T.D. Wood, Design and development of an interchangeable nanomicroelectrospray source for a quadrupole mass spectrometer.Review of Scientific Instruments, 2003. 74(10): p. 4474-4477. 43. Barnidge, D.R., S. Nilsson, and K.E. Markides, A design for low-flow sheathless electrospray emitters. Analytical Chemistry, 1999. 71(19): p. 4115-4118. 44. Guzzetta, A.W., R.A. Thakur, and I.C. Mylchreest, A robust micro-electrospray ionization technique for high-throughput liquid chromatography/mass spectrometry proteomics using a sanded metal needle as an emitter. Rapid Communications in Mass Spectrometry, 2002. 16(21): p. 2067-2072. 45. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source.Analytical Chemistry, 1996. 68(1): p. 1-8. 46. Covey, T.R. and D. Pinto, Practical Spectroscopy. Vol. 32. 2002. 47. Kelly, R.T., et al., Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Analytical Chemistry, 2008. 80(14): p. 5660-5665. 48. Choi, Y.S. and T.D. Wood, Polyaniline-coated nanoelectrospray emitters treated with hydrophobic polymers at the tip. Rapid Communications in Mass Spectrometry, 2007. 21(13): p. 2101-2108. 49. Tojo, H., Properties of an electrospray emitter coated with material of low surface energy. Journal of Chromatography A, 2004. 1056(1-2): p. 223-228.

50. Liu, J., et al., Electrospray ionization with a pointed carbon fiber emitter. Analytical Chemistry, 2004. 76(13): p. 3599-3606. 51. Sen, A.K., et al., Modeling and characterization of a carbon fiber emitter for electrospray ionization. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 620-630. 52. Tang, K.Q., et al., Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Analytical Chemistry, 2001. 73(8): p. 1658-1663. 53. Deng, W. and A. Gomez, Influence of space charge on the scale-up of multiplexed electrosprays. Journal of Aerosol Science, 2007. 38(10): p. 1062-1078. 54. Su, S.Q., et al., Microstructured Photonic Fibers as Multichannel Electrospray Emitters.Analytical Chemistry, 2009. 81(17): p. 7281-7287. 55. Sen, A.K., J. Darabi, and D.R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI-MS applications. Microfluidics and Nanofluidics, 2007. 3(3): p. 283-298. 56. Hayati, I., A. Bailey, and T.F. Tadros, Investigations into the Mechanism of Electrohydrodynamic Spraying of Liquids .2. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. Journal of Colloid and Interface Science, 1987. 117(1): p. 222-230. 57. Glonti, G.A., On the Theory of the Stability of Liquid Jets in an Electric Field. Soviet Physics Jetp-Ussr, 1958. 7(5): p. 917-918. 58. Nayyar, N.K. and G.S. Murty, The Stability of a Dielectric Liquid Jet in the Presence of a Longitudinal Electric Field. Proceedings of the Physical Society of London, 1960. 75(483): p. 369-373. 59. Allan, R.S. and S.G. Mason, Particle Behaviour in Shear and Electric Fields .1. Deformation and Burst of Fluid Drops. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1962. 267(1328): p. 45-&. 60. Melcher, J.R. and G.I. Taylor, Electrohydrodynamics – a Review of Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1969. 1: p. 111-&. 61. Saville, D.A., Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 1997. 29: p. 27-64. 62. Carretero Benignos, J.A. and Massachusetts Institute of Technology. Dept. of Mechanical Engineering., Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode. 2005. p. 117 leaves. 63. Hartman, R.P.A., et al., The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. Journal of Electrostatics, 1999. 47(3): p. 143-170. 64. Hartman, R.P.A., et al., Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 1999. 30(7): p. 823-849.

65. Yoon, S.S., et al., Modeling multi-jet mode electrostatic atomization using boundary element methods. Journal of Electrostatics, 2001. 50(2): p. 91-108. 66. Zeng, J., D. Sobek, and T. Korsmeyer, Electro-hydrodynamic modeling of electrospray ionization: Cad for a mu fluidic device – Mass spectrometer interface. Boston Transducers’03: Digest of Technical Papers, Vols 1 and 2, 2003: p. 1275-1278, 1938. 67. Lastow, O. and W. Balachandran, Numerical simulation of electrohydrodynamic (EHD) atomization. Journal of Electrostatics, 2006. 64(12): p. 850-859. 68. http://www.flow3d.com. 69. Valaskovic, G.A., et al., Attomole-Sensitivity Electrospray Source for Large-Molecule Mass-Spectrometry. Analytical Chemistry, 1995. 67(20): p. 3802-3805. 70. Kriger, M.S., K.D. Cook, and R.S. Ramsey, Durable Gold-Coated Fused-Silica Capillaries for Use in Electrospray Mass-Spectrometry. Analytical Chemistry, 1995. 67(2): p. 385-389. 71. Fang, L.L., et al., Online Time-of-Flight Mass-Spectrometric Analysis of Peptides Separated by Capillary Electrophoresis. Analytical Chemistry, 1994. 66(21): p. 3696-3701. 72. Cao, P. and M. Moini, A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. Journal of the American Society for Mass Spectrometry, 1997. 8(5): p. 561-564. 73. Fong, K.W.Y. and T.W.D. Chan, A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. Journal of the American Society for Mass Spectrometry, 1999. 10(1): p. 72-75. 74. Emmett, M.R. and R.M. Caprioli, Micro-Electrospray Mass-Spectrometry – Ultra-High-Sensitivity Analysis of Peptides and Proteins. Journal of the American Society for Mass Spectrometry, 1994. 5(7): p. 605-613. 75. Gatlin, C.L., et al., Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Analytical Biochemistry, 1998. 263(1): p. 93-101. 76. Aturki, Z., et al., On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis, 2006. 27(23): p. 4666-4673. 77. Edwards, J.L., et al., Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 2006. 1106(1-2): p. 80-88. 78. http://www.kiriama.com/kiriama%20single-mode%20polymer%20fibers_009.htm. 79. Wilm, M.S. and M. Mann, Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last. International Journal of Mass Spectrometry, 1994. 136(2-3): p. 167-180.

80. Hirt, C.W. and B.D. Nichols, Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 1981. 39(1): p. 201-225. 81. Melcher, J.R., Continuum electromechanics. 1981, Cambridge, Mass.: MIT Press. 1 v. (various pagings). 82. http://www.flow3d.com/cfd-101/cfd-101-FAVOR.html. 83. http://www.flow3d.com/cfd-101/cfd-101-FAVOR-no-loss.html. 84. Savage, B.M. and M.C. Johnson, Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering-Asce, 2001. 127(8): p. 640-649. 85. http://www.flow3d.com/cfd-101/cfd-101-free-surface-fluid-flow.html. 86. Graham T. T. Gibson, R.D.W.a.R.D.O., Multiple electrosprays generated from a single poly carbonate microstructured fibre. Mass Spectrometry, 2011. 87. Smith, R.D., et al., Analytical characterization of the electrospray ion source in the nanoflow regime. Analytical Chemistry, 2008. 80(17): p. 6573-6579. 88. Hirt, C.W., Electro-hydrodynamics of semi-conductive fluids: with application to electro-spraying. Flow Science Technical Note, 2004. 70(FSI–04–TN70): p. 1-7. 89. de la Mora, J.F., The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 2007. 39: p. 217-243. 90. Cloupeau, M. and B. Prunetfoch, Electrostatic Spraying of Liquids in Cone-Jet Mode.Journal of Electrostatics, 1989. 22(2): p. 135-159. 91. Hayati, I., A.I. Bailey, and T.F. Tadros, Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids .1. Effect of Electric-Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization. Journal of Colloid and Interface Science, 1987. 117(1): p. 205-221. 92. FLOW-3D User Manual, Ver. 9.4. 93. Sen, A.K., J. Darabi, and D.R. Knapp, Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter. Journal of Fluids Engineering-Transactions of the Asme, 2011. 133(7).

Cad2Stl

FLOW-3D 유틸리티 프로그램 안내

이 문서에서는 FLOW-3D에서 사용할 수 있는 일부 Utility Program에 대해 설명합니다. 유틸리티 프로그램의 목적은 시뮬레이션을 수행할 때 반드시 필요한 것은 아니지만 특정 작업을 쉽게 수행할 수 있도록 돕는 것입니다. 각 개별 유틸리티의 사용법은 다음과 같습니다.

  1. 파일 변환 및 STL 품질 검사 도구

FLOW-3D는 중립 형식인 STL파일 형식만 지원하며 대부분의 CAD 패키지에서 STL형식을 지원하지만 형상을 STL형식으로 만들 수 없는 이유가 있을 수 있습니다. 이로 인해 FLOW-3D 사용자는 여러 파일 변환 유틸리티를 사용할 필요가 있을 수 있습니다. 또한 STL 파일 품질을 확인하는데 사용할 수 있는 여러 유틸리티도 사용할 수 있습니다. 아래 나열된 이러한 유틸리티는 다음 섹션에서 자세히 설명합니다.

  • Cad2Stl : 다양한 CAD 형식에서 변환 파일을 사용하는.STL파일
  • Topo2STL : 파일을topo형식에서.STL파일로 변환하는 데 사용
  • MiniMagics :.STL파일의 오류를 확인하는 데 사용
  • qAdmesh :.STL파일의 오류를 확인하고 사소한 문제를 해결하는데 사용

Cad2Stl

Cad2Stl 은 다른 CAD 파일 형식을 FLOW-3D에서 사용되는 STL 파일 형식으로 변환하기 위한 파일 변환 도구입니다. Cad2Stl 은 다음 파일 형식을 STL 형식으로 변환합니다.

  • Autodesk 3D Max :.3ds
  • Autodesk 별명 :.obj
  • IGES: .igs,.iges
  • BREP :.brep
  • 단계 : .stp,.step
  • 아바쿠스 6.2+ :.inp
  • NASTRAN :.blk
  • Marc Mentat : 고정 형식과 쉼표로 구분.dat

Cad2Stl 은 파일에서 역 법선 벡터를 보정하는 기능도 있습니다. 이 유틸리티는 유지 보수 계약이 유효한 모든 FLOW-3D 고객에게 무료로 제공되며 FLOW-3D Usre Site의 유틸리티 페이지에서 다운로드 할 수 있습니다.

Cad2Stl 은 Flow Science Japan에서 FLOW-3D 사용자를 위해 개발되었습니다 .

Cad2Stl Program
  1. 변환 목록에 변환할 파일 추가
    • 추가 -변환 목록에 파일을 추가합니다.
    • 제거 -변환 목록에서 파일을 제거합니다. 제거하려면 변환 목록에서 파일을 강조 표시하고 제거를 선택하십시오.
    • 기본적으로 파일 이름은 import file 이름과 일치하는 CAD파일을 STL파일 이름으로 지정하는데 변경이 필요하면 더블 클릭하고 이름을 바꾸면 변경할 수 있습니다.
  2. 구체화 옵션을 사용하여 STL 파일의 품질을 선택하십시오. 선택하고 볼 수 있는 네 가지 수준의 정확도가 있습니다. 파일이 변환될 때마다 STL로 작성된 파일이 표시되므로 사용자가 만족스럽거나 더 높은 수준의 세분화가 필요한지 여부를 결정할 수 있습니다. 정확성이 향상되면 파일 크기는 증가하지만 처리 시간은 크게 증가하지 않습니다. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다. 이것은 BREP, IGES및 STEP 파일 형식에만 적용됩니다.
  3. 원하는 작업을 선택하십시오. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다.
    • 변환 -파일을 변환합니다. 한 파일을 변환하려면 로드할 파일 목록에서 해당 파일을 강조 표시하여 변환하십시오.
    • 모두 변환 -모든 파일을 변환
    • 표시 -변환된 파일을 강조 표시합니다
    • 면 방향 수정 -일반 수정 루틴
    • 변환 목록 숨기기 -더 나은 부품 표시를 위해 보기 화면을 증가 시킵니다.
    • 와이어 프레임 오버레이 -각 STL 패싯의 패싯 모서리를 오버레이 합니다. 이것은 오른쪽 하단의 확인란입니다.
    • 로그 지우기 – 변환 로그 텍스트 상자에 대한 모든 데이터 출력을 지웁니다.
  4. 종료 -프로그램을 닫습니다

qAdmesh

qAdmesh는 .STL파일에 오류 가 있는지 확인하는 도구이며 연결이 끊어진 패싯, 반전된 법선, 연결이 끊어진 패싯 및 누락된 패싯과 같은 사소한 문제를 해결하는 데 사용할 수 있습니다. qAdmesh를 시작하려면:

  • GUI에서: Model Setup 탭의 Tools ‣ qAdmesh로 이동하십시오.
  • Windows: 바탕 화면 아이콘을 클릭하거나 시작 메뉴에서 FLOW-3D v12.0 폴더의 형상 도구 하위 디렉토리에 있는 Admesh 항목으로 이동하십시오.
  • Linux의 경우: $F3D_HOME/utilities/qAdmesh을 실행하십시오.

명령: qAdmesh를 열고 찾아보기 버튼을 사용하여 지오메트리 파일을 로드 하십시오. 문제를 해결하고 수정 사항으로 새 형상 파일을 생성하려면 기본 옵션을 그대로 두고 출력 유형을 선택하고 새 형상 파일의 경로를 지정하십시오. 이진 STL 은 ASCII STL 옵션 보다 작은 파일을 생성하므로 권장됩니다 (이진 및 ASCII 형식 만 FLOW-3D 로 인식됨). 그런 다음 적용을 클릭하여 파일을 확인하고 수정하십시오.

qAdmesh program
qAdmesh program

qAdmesh의 출력은 인터페이스의 메시지 섹션에 표시됩니다. 출력에는 감지된 오류와 출력 옵션이 선택된 경우 이러한 문제점을 해결하기 위해 수행할 조치가 표시됩니다.

사용자 정의 검사 옵션은 파일을 고정할 때 프로그램이 어떤 작업을 수행하는지에 대한 자세한 제어를 제공할 수 있습니다. 또한 변형 및 공차 탭에는 .STL 파일의 회전, 미러링, 크기 조정, 변환 및 병합 기능을 제공하는 옵션이 있습니다.

qAdmesh는 무료 유틸리티입니다만 FSI에서 지원하지 않습니다. qAdmesh가 문제를 해결하는 능력은 심각도에 따라 다릅니다. 문제의 수가 증가함에 따라 qAdmesh 가 문제를 해결할 수 있는 가능성이 줄어 듭니다. 문제를 해결할 수 없는 경우 CAD 패키지를 사용하여  .STL 파일을 재생성 하는 것이 좋습니다.

MiniMagics 

MiniMagics 는 무료 STL파일 시각화 및 복구 유틸리티입니다. 설치는 FLOW-3D 홈 디렉토리 의 Utilites 폴더에서 찾을 수 있으며 파일 분석 및 복구를 위한 유용한 도구로 qAdmesh에서 수행된 수정 사항을 시각화하거나 qAdmesh의 대안으로 사용할 수 있습니다.

$F3D_HOME/UtilitiesSTL

  • Topo2STL

FLOW-3D가 지원하는 유일한 CAD 파일 형식은 .STL이지만 형식을 포함하여 다른 형식의 지형 데이터를 갖는 것은 드문 일이 아닙니다. Topo2STL의 유틸리티로 변환할 수 있습니다. Topo2STL 은 Windows 시스템에서만 사용 가능하며 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다.

명령

  1. 지형 파일은 다음 형식의 ASCII 파일입니다. 각 선은 점을 나타내며 동일한 단위 시스템에서 3 개의 좌표 (일반적으로 피트 또는 미터)를 포함합니다. 좌표는 공백으로 구분됩니다. 선의 좌표 순서는 XYZ 여야 합니다. 여기서 Z는 표고입니다. 두 좌표는 동일한 XY 점을 공유할 수 없습니다. 포인트의 순서 (파일의 줄)는 중요하지 않습니다. 좌표를 포함하지 않는 머리글 줄이나 꼬리 줄이 없어야 합니다.
  2. Topo2stl.exe유틸리티가 추출된 위치에 있는 파일을 실행하여 Topo2STL에 액세스 할 수 있습니다.
  3. 유틸리티를 시작하면 변환할 파일을 선택하라는 topo 파일 찾아보기 창이 나타납니다. 파일 찾아보기 창을 이용하여 파일을 선택합니다.
  4. topo파일이 선택되면, Topo2STL의 창이 나타나고, X, Y의 범위와 Z 계산할 topo데이터 익스텐트가 계산되면 Topo 데이터 익스텐트 및 데이터의 총 포인트 수에 대한 정보가 Information: Topo data extents 아래에 표시됩니다.
Topo2STL
Topo2STL
Topo2STL
Topo2STL
  1. 변환에 필요한 사용자 입력은 공간 분해능 및 STL 최소 Z 좌표입니다. 기본적으로 공간 해상도는 0.002 * min (X 범위, Y 범위)이고 STL 최소 Z 좌표는 ZMIN-(ZMAX-ZMIN)입니다. 여기서 ZMIN 및 ZMAX는 Topo 데이터의 범위입니다.
    • 공간 해상도는 STL 파일을 생성하는 동안 Topo 데이터가 얼마나 정밀하게 분석되는지 제어합니다.
    • STL 최소 Z 좌표는 Topo 데이터의 ZMAX보다 작은 값이어야 합니다. 이것은 STL파일의 최소 ​​Z 두께를 효과적으로 설정합니다.
  2. Browse 버튼은 파일 출력 위치를 설정하는 데 사용할 수 있습니다.
  3. 변환을 클릭하면 변환 프로세스가 시작됩니다. 이 시점에서 변환 취소를 사용하여 변환이 완료되거나 종료될 때까지 Topo2STL 창을 닫을 수 없습니다.
Topo2STL
Topo2STL
  1. 변환이 완료 (또는 종료)되면 변환 단추가 변환 추가로 변경되어 사용자가 변환할 다른 Topo 파일을 선택할 수 있습니다.
Topo2STL
  1. FSAI를 사용한 유한 요소 메쉬 파일 형식 변환

FSAI의 도구에서 유한 요소 메시를 변환하는 유틸리티입니다 Abaqus6.2 이후 형식과 NASTRAN 벌크 형식에 사용되는 형식을 변환하는 FSAI는 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다. FSAI를 사용하려면 다음을 수행하십시오. EXODUS II

  • 적절한 모드에서 유틸리티를 엽니다 (초기 메쉬의 Abaqus 형식인지 NASTRAN 형식인지 여부에 따라 다름 )
  • 파일에서 생성 필드에서 입력 유한 요소 메쉬를 찾습니다.
  • 생성된 파일 위치 필드에서 원하는 출력 위치를 찾으십시오.
  • 생성된 파일 이름 필드에서 원하는 출력 파일 이름을 설정하십시오.
  • 생성을 누릅니다.

 노트

이 FSAI 프로그램을 사용하려면 FLOW-3D 와 별개의 라이센스가 필요합니다. 자세한 내용은 FLOW-3D 영업 담당자에게 문의하십시오.

  1. 계산기

유틸리티 드롭 다운 메뉴에 여러 계산기가 추가되어 알려진 매개 변수 (예: 유체 속성 등)를 기반으로 입력 수량을 추정할 수 있습니다. 사용 가능한 계산기는 다음을 계산합니다.

  • 냉각 채널의 열전달 계수
  • 재료 특성 및 시뮬레이션 시간에 따른 열 침투 깊이
  • 샷 슬리브의 유체 높이
  • 고압 다이캐스팅을 위한 피스톤 속도
  • 밸브 압력 계수
  1. MPDB (Material Properties Database) 확장

MPDB (Material Properties Database)는 FLOW-3D 와 별도로 Flow Science, Inc 에서 구입할 수 있는 타사 데이터베이스입니다. 여기에는 문헌의 다양한 온도 의존성 고체 재료 특성이 포함되어 있습니다. FLOW-3D 용 MPDB는 사용자가 FLOW-3D의 기본 데이터베이스와 호환되는 파일 형식을 내보낼 수 있도록 하여 데이터를 FLOW-3D 로 편리하게 가져올 수 있는 MPDB 독점 버전입니다. MPDB의 재료 특성은 대부분 고체상입니다. 따라서 FLOW-3D 모든 모델 고체 특성을 요구하는 데이터, 특히 유체 구조 상호 작용, 응고 및 열 응력 진화 모델을 활용할 수 있습니다.

MPDB는 다양한 형식으로 데이터를 내보낼 수 있는 독립형 데이터베이스로 사용될 수 있습니다. MPDB에 대한 일반적인 지침은 JAHM Software, Inc.를 방문하십시오. 여기에서는 FLOW-3D 와 함께 MPDB를 사용하는 방법에 대한 지침을 제공합니다. FLOW-3D 와 제대로 통합하려면 MPDB 용 실행 파일이 Windows와 Linux에 있어야 합니다. 실행 파일은 FLOW-3D GUI에 의해 감지되며 재료 메뉴 아래 MPDB에서 재료 가져오기 메뉴 항목 이 활성화됩니다. 이러한 조건 중 하나라도 충족되지 않으면 FLOW-3D GUI를 통해 액세스 할 수 없습니다. MPDB%F3D_HOME%\Utilities$F3D_HOME/UtilitiesMPDB_for_FLOW-3D

FLOW-3D MPDB
FLOW-3D MPDB

material를 클릭 MPDB에서 가져오기 및 사용자 인터페이스 MPDB는 별도의 창에서 열립니다. 재료는 주요 요소로 분류되었습니다. Materials 탭, 테이블에서 요소를 마우스 오른쪽 버튼으로 클릭하여, 사용자는 해당 요소를 포함하는 물질의 목록을 볼 수 있습니다.

(Material Properties Database)
(Material Properties Database)

예를 들어 다음 그림은 철 (Fe)이 포함된 데이터베이스의 재료 목록을 보여줍니다.

FLOW-3D MPDB(Fe)
FLOW-3D MPDB(Fe)

사용자는 다른 합금, 세라믹, 유리 또는 기타 분류되지 않은 재료를 분류하는 다른 탭으로 전환할 수도 있습니다. 다음 그림은 Al & Cu 합금 목록을 보여줍니다.

FLOW-3D MPDB(Al & Cu)
FLOW-3D MPDB(Al & Cu)
FLOW-3D MPDB(Fe,Ni - 1006 (UNS G10060))
FLOW-3D MPDB(Fe,Ni – 1006 (UNS G10060))

재료가 식별되면 재료를 두 번 클릭하면 해당 재료에 사용할 수 있는 속성 목록이 있는 별도의 창이 나타납니다. 예를 들어 Fe 및 Ni 합금에서 1006 (UNS G10060)을 엽니다. 이러한 속성이 모두 FLOW-3D에 사용되는 것은 아닙니다.

FLOW-3D MPDB(1006(UNS G10060))
FLOW-3D MPDB(1006(UNS G10060))

각 속성은 이 창의 오른쪽에서 선택할 수 있는 다른 형식으로 파일에 표시, 플로팅 또는 저장할 수 있습니다. 그러나 이러한 속성 중 일부가 FLOW-3D 로 인식되는 것은 아닙니다. 

FLOW-3D 와 호환되는 파일 형식을 생성하려면 재료 창을 닫고 FLOW-3D/SolidWorks/ANSYS 메뉴에서 시작하십시오. 재료의 특성으로 FLOW-3D로 가져올 수 있는 세 가지 파일 형식이 있습니다.  유체 데이터베이스 형식(.f3d_dbf 확장), 고체 데이터베이스 형식 (.f3d_dbs 확장), 일반 쉼표로 구분된 값(CSV형식)으로 부터 시뮬레이션에 적합한 FLOW-3D 호환 형식을 선택하십시오. MPDB의 재료는 대부분 고체이지만 사용자가 응고된 유체의 특성을 가져오려면 FLOW-3D에서 응고된 유체 특성이 유체 특성의 일부이므로 Fluids 데이터베이스 형식을 선택해야 합니다. 솔리드 및 유체 데이터베이스 파일 형식과 파일은 현재 사용자의 문서 폴더와 Windows 및 Linux에 저장됩니다.

CSV<My Documents>\FLOW-3D\gui\MaterialsDatabase/home/<user>/FLOW-3D/gui/MaterialsDatabase

이러한 위치는 FLOW-3D의 데이터베이스가 사용자 정의 재료를 찾는 곳입니다. MPDB에서 이러한 위치로 내보낸 모든 자료는 FLOW-3D의 기본 데이터베이스에 의해 선택됩니다.

1006 (UNS G10060) 철 합금을 선택하십시오.

FLOW-3D MPDB(UNS G10060)
FLOW-3D MPDB(UNS G10060)

이전에 사용 가능했던 일부 특성은 FLOW-3D 와 관련이 없기 때문에 사용 불가능 합니다. 각 속성이 처리되자 마자 플롯 되거나 해당 데이터가 표시되면 참조 및 메모 섹션이 활성화됩니다. 참조 탭 속성에서 찍은 위치를 나타내는 참고 섹션은 일반적으로 데이터의 구성과 정확성에 관한 사항이 포함되어 있습니다. 

온도에 따른 특성의 동작을 이해하는 데 도움이 되도록 각 특성을 플롯 할 수 있습니다. 또한 데이터의 유효성에 대한 경고가 있을 수 있습니다. 

예를 들어 열전도도를 먼저 플로팅하면 저온 경고가 표시됩니다. 온도의 함수로 플롯을 표시하기 전에 .f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 

재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Temperature Plot)
FLOW-3D MPDB(Temperature Plot)

.f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

경우에 따라 재료에 사용자에게 필요한 속성이 없습니다. 데이터베이스에 사용 가능한 속성을 추가한 후 이러한 상황에서 누락된 속성은 유사한 속성을 가진 합금 (사용자의 위험 부담)에서 얻을 수 있습니다. 데이터베이스가 열려있는 동안 FLOW-3D에서 사용될 하나의 재료에 대해 속성을 혼합하고 일치시킬 수 있습니다.

FLOW-3D MPDB(Select properties to write to file)
FLOW-3D MPDB(Select properties to write to file)

데이터베이스를 닫은 후 파일 이름을 묻는 메시지가 사용자에게 표시됩니다. 기본값은 MPDB 가 재료에 지정하는 것입니다. FLOW-3D 가 재료를 사용자 정의 재료로 인식하도록 파일의 위치와 확장자가 미리 설정되어 있습니다.

FLOW-3D MPDB(File locate position)
FLOW-3D MPDB(File locate position)

CSV파일을 선택한 경우에도 동일한 프로세스가 적용됩니다. 데이터가 파일에 기록되면 각 테이블 형식 속성 창의 값 가져오기 버튼에서 데이터를 검색할 수 있습니다.

첫 번째 열은 항상 온도입니다.

FLOW-3D MPDB(csv file)
FLOW-3D MPDB(csv file)
  1. grfedit를 사용하여 flsgrf 파일 편집

명령 줄 유틸리티이므로 runscript와 같은 적절한 환경에서 실행해야 합니다 ( Runscripts 사용 참조 ).


Runscripts 사용

실행 스크립트는 작업 문제 디렉토리에서 실행되도록 설계되었습니다. 스크립트는 $F3D_HOME/local디렉토리에 있습니다. 스크립트를 사용하려면 다음 환경 변수를 설정해야합니다.

  • F3D_HOMEFLOW-3D 설치 디렉터리 의 경로를 지정합니다 .
  • F3DTKNUX_LICENSE_FILEFLOW-3D 라이선스 서버 의 위치를 ​​지정 합니다.
  • PATHPATH포함하도록 환경 변수를 수정해야합니다. $F3D_HOME/local그렇지 않으면 실행 스크립트를 찾을 수 없습니다.
  • F3D_VERSION: 사용할 솔버 버전을 지정합니다. 유효한 옵션은 double배정 밀도 버전 및 prehyd사용자 지정 배정 밀도 솔버입니다.

명령 줄에서 실행하려면 :

  1. 명령 프롬프트 또는 터미널을 엽니 다.
  2. 필요한 환경 변수를 설정하십시오.
    • Windows : FLOW-3D 를 시작하는 데 사용되는 배치 파일에서 환경을 복사하여 수행 할 수 있습니다 . 배치 파일의 내용은 FLOW-3D 아이콘 을 마우스 오른쪽 버튼으로 클릭 하고 편집을 선택 하여 액세스 할 수 있습니다 .
    • Linux : 설치 디렉토리 에서 파일을 flow3dvars.sh가져옵니다 local.
  3. 솔버가 실행중인 디렉토리로 변경하십시오.
  4. 원하는 runscript 명령을 입력하십시오. runhyd <ext2>

  • grfedit를 연 후 사용자에게 소스 파일 (flsgrf.*데이터가 복사될 파일)의 경로를 묻는 메시지가 표시됩니다. 파일의 전체 경로 (예 c:\users\username\FLOW-3D\simulation\flsgrf.simulation:)를 입력하고 <enter>를 누르십시오.
  • 이제, 파일 입력 확장의 목표 예를 들어, (데이터를 기록할 위치로 파일) 파일을 new_output. 데이터가 파일에 기록됩니다 c:\users\username\FLOW-3D\simulation\flsgrf.new_output. 대상 파일이 존재하면 파일을 덮어쓰거나 대상 파일에 데이터를 추가하라는 메시지가 표시됩니다. 대상 파일의 시간보다 늦게 시뮬레이션 시간을 가진 소스 파일 편집 만 추가됩니다.
  • 이 시점에서 프로그램은 어떤 히스토리 데이터 편집, 데이터 편집 재시작 및 대상 파일에 쓰기 위해 선택된 데이터 편집을 묻습니다. 프롬프트에 따라 작성할 데이터 편집을 선택하십시오.
  • 대상 파일을 작성한 후 프로그램이 닫히고 다른 flsgrf.*파일처럼 사용할 수 있습니다.

 노트

  • grfedit는 FLOW-3D v11.1 이상에서 작성된 결과 파일에서만 작동합니다.
  • 소스 flsgrf.*파일은 grfedit에 의해 수정되지 않습니다
  • FLOW-3D/MP의 출력 파일로 작업할 때는 flsgrf1의 위로 flsgrf 교체 하십시오 .
  • 소스 및 대상 파일 모두에 허용되는 유일한 이름은 flsgrf및 flsgrf1입니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

FLOW-3D 용어 사전 테이블

FLOW-3D Glossary | FLOW-3D 용어 사전

FLOW-3D 용어 사전 / 용어 설명

FLOW-3D 용어 사전 테이블
FLOW-3D 용어 사전 테이블

FLOW-3D 용어 사전 / 용어 설명

Drift Flux

드리프트 모델은 밀도가 서로 다른 두 혼합 유체 구성 요소의 상대적 흐름을 설명합니다. 구성 요소는 상이 다를 수도 있고, 상이 같지만(불가침) 유체가 다를 수도 있습니다. 분산된 위상 입자 크기가 클 경우 드리프트 모델의 적용성에 대한 제한이 존재할 수 있습니다. 이러한 제한은 일반적으로 메쉬 셀 크기의 10% 미만으로 분산된 위상 입자 크기를 유지함으로써 방지할 수 있습니다.

배플

얇은 형상 조각을 나타내는데 사용되는 2 차원 개체입니다. 이들은 전처리기에 의해 셀면으로 이동되고 유체의 흐름을 부분적으로 또는 완전히 차단하는 역할을 합니다. 배플은 지정된 열 전달 계수를 가질 수 있으며 배플을 통과하는 양(플럭스 표면)을 측정하는 데 사용할 수 있습니다.

Two-dimensional objects that are used to represent thin pieces of geometry. They are moved by the preprocessor to cell faces and act to partially, or completely block the flow of fluid. Baffles can have heat transfer coefficients specified and can be used to measure quantities that pass through them (a flux surface).

경계 조건

도메인의 범위에서 솔루션을 정의합니다. 경계 위치에서 흐름의 실제 상태를 나타내는 경계 조건을 선택하는 것이 중요합니다.

Defines the solution at the extents of the domain. It is important to choose boundary conditions that represent the true condition of the flow at the boundary location.

CFD

CFD (Computational Fluid Dynamics)는 수치 솔루션을 통해 컴퓨터의 유체 흐름을 시뮬레이션 하는 유체 역학의 한 분야입니다.

Computational Fluid Dynamics (CFD), the branch of fluid mechanics dedicated to simulating the flow of fluid on a computer via numerical solutions.

Complements

Complements를 정의합니다. 예를 들어, 솔리드 구의 complements는 솔리드 재료로 둘러싸인 구형 구멍입니다.

The inverse of a shape defines the complement. For example, the complement of a solid sphere is a spherical hole surrounded by solid material.

Client

클라이언트 컴퓨터는 자신이 FLOW-3D를 실행하고 있지만, FLOW-3D 소프트웨어 라이선스는 다른 컴퓨터 (서버 컴퓨터)에서 획득하는 컴퓨터를 의미합니다.

A client machine is a computer that runs FLOW-3D  but acquires the software license from a different machine (the server machine)

Components

Components는 공간의 개체를 정의하며 하위 구성 요소로 구성됩니다. 구성 요소는 열 전도율, 비열 및 표면 거칠기와 같은 재료 특성을 가질 수 있습니다.

Components define objects in space and are comprised of subcomponents. A component can have material properties such as thermal conductivity, specific heat and surface roughness.

Custom result

시뮬레이션 중 또는 완료 후 사용자가 생성한 데이터를 그래픽으로 표시합니다. 생성하려면 사용자가 flsgrf결과 파일을 연 다음 플로팅 매개 변수(예 : 플로팅 할 도메인 부분, 플로팅 할 수량 등)를 선택해야 합니다.

Graphical displays of data generated by the user during the simulation or after it has completed. To generate, the user must open an flsgrf results file and then select the plotting parameter (e.g., portion of domain to plot, quantity to plot, etc.).

Domain

지배 방정식을 풀 영역입니다. 이것은 메쉬의 범위에 의해 정의됩니다.

The region in which the governing equations are to be solved. This is defined by the extents of the mesh.

Diagnostics

전 처리기 및 솔버의 진행 상황과 오류 및 경고에 대한 정보가 포함된 파일 세트입니다.

A suite of files that contain information on the progress of the preprocessor and solver as well as errors and warnings.

EPSI

압력/연속 반복이 어느 지점에서 수렴되는지를 결정하는데 사용된 수렴 기준입니다. 기본 숫자 설정을 사용하면 이 값은 FLOW-3D에 의해 자동으로 계산되며 시간 단계가 증가함에 따라 작아집니다.

The convergence criterion that was used to determine at what point the pressure/continuity iterations have converged. With the default numerical settings, this value is automatically computed by FLOW-3D  and becomes smaller as the time step increases.

Existing result

prpplt.* 또는 flsplt.* 파일은 전처리 종료 솔버 실행 종료시 또는 자동으로 생성되는 플롯 파일입니다.

A plot file that is automatically created, either at the end of preprocessing or the end of the solver run- prpplt.* or flsplt.*.

F3D_HOME

FLOW-3D 프로그램 파일이 있는 디렉토리를 정의하는 환경 변수.

Environment variable that defines the directory where the FLOW-3D  program files are located.

Floating license

FLOW-3D는 서버 시스템에 라이센스를 액세스하는 각 클라이언트 컴퓨터와 컴퓨터 네트워크에서 실행합니다. 허용하는 라이센스 최대 동시 시뮬레이션 수는 구매한 솔버 토큰 수에 의해 제한됩니다.

A license that allows FLOW-3D  to be run on a network of computers with each client machine accessing the license on a server machine. The maximum number of concurrent simulations is limited by the number of solver tokens purchased.

Flsgrf file

솔버가 생성한 결과 파일. 이 파일은 사전에 정의된 시간 간격으로 생성된 정보를 포함하며 그래픽 디스플레이를 생성하는 데 사용됩니다. 사용자 정의 플로팅 중에 포스트 프로세서에서 사용합니다.

Results file produced by the solver. This file contains information produced at predefined time intervals and is used to produce graphical displays. Used by the postprocessor during custom plotting.

Flsplt file

솔버가 자동으로 생성한 플롯 파일입니다. 이 파일에는 시뮬레이션의 히스토리 데이터, 메시 등에 대한 기본 정보와의 $GRAFIC 이름 목록에 사전 정의된 그래픽 요청이 포함되어 prepin.* 파일 안에 있습니다.

Plot file produced automatically by the solver. This file contains basic information on history data, mesh, etc. from the simulation as well as any pre-defined graphics requests in the $GRAFIC namelist in prepin.*.

Fluid #1 surface area

선택한 길이 단위의 자유 표면 영역을 제곱 됩니다. 인터페이스가 예리한 문제에만 해당됩니다.

The free-surface area in the chosen length units squared. This is only relevant for problems with a sharp interface.

Fluid thermal energy

영역에 존재하는 모든 유체에 포함된 총 열 에너지 (에너지 전송이 켜져 있는 시뮬레이션에만 해당).

The total thermal energy contained by all the fluid present in the domain (relevant only for simulations with energy transport turned on).

Free surface

유체와 유체 사이의 인터페이스. FLOW-3D에서 이 인터페이스는 전단이 없는 것으로 가정되며, 이는 빈 공간에 있는 가스가 유체에 무시할 수 있는 트랙션을 발휘함을 의미한다.

The interface between fluid and void. In FLOW-3D , this interface is assumed to be shear-free, meaning that any gas in the void space exerted negligible traction on the fluid.

GUI

” Graphical User Interface”.  GUI는 사용자가 FLOW-3D를 제어할 수 있는 그래픽 패널, 대화 상자 및 창을 제공합니다.

“Graphical User Interface”. The GUI presents the graphical panels, dialog boxes and windows that allow the user to control FLOW-3D .

Iteration count

각 시간 단계에서 필요한 압력/연속 반복 횟수입니다. 압력/연속성 반복은 유체 볼륨이 유지되도록 하고 유체 전체에서 올바른 압력을 계산하는 데 필요합니다.

The number of pressure/continuity iterations required at each time step. The pressure/continuity iterations are necessary to ensure that the fluid volume is maintained and to compute the correct pressure throughout the fluid.

License file

사용자가 FLOW-3D 를 실행할 수 있도록 암호화된 정보가 포함된 Flow Science에서 제공하는 전자 파일 입니다.

Electronic file provided by Flow Science that contains encrypted information enabling the user to run FLOW-3D .

License server

플로팅 라이센스 시스템의 작동을 활성화하기 위해 FLEXlm 라이센스 소프트웨어가 설치된 시스템. FLOW-3D는 License Server에 설치할 필요가 없습니다.

Computer on which the FLEXlm licensing software is installed to enable the operation of a floating license system. FLOW-3D  does not need to be installed on the license server.

Licensing

FLOW-3D 실행을 제어하는 ​​FLEXlm 소프트웨어.

FLEXlm software that controls the running of FLOW-3D .

Max. residual

압력/연속성 반복의 최종 반복에서 연속성 방정식의 실제 발산. 이 값은 메시지가 나타나지 않는 한 일반적으로 epsi보다 작습니다 .

The actual divergence of the continuity equation on the final iteration of the pressure/continuity iterations. This value is usually smaller than epsi unless the message, pressure iteration did not converge in xxxx iterations appears.

Mean kinetic energy

모든 계산 셀의 운동 에너지의 합을 도메인에 존재하는 총 유체 질량으로 나눈 값입니다. 이 양이 시간이 지남에 따라 변하지 않으면 정상 상태에 도달했음을 나타내는 좋은 지표입니다.

The sum of kinetic energy of all the computational cells, divided by the total mass of fluid present in the domain. When this quantity ceases to change over time, it is a good indicator that steady-state has been reached.

Node-locked license

특정 컴퓨터에 고정된 라이센스. 노드 잠금 라이센스는 네트워크를 통해 액세스 할 수 없으므로 일반적으로 모든 작업을 한 컴퓨터에서 수행해야하는 경우에만 사용됩니다.

A license that is locked to a particular computer. A node-locked license cannot be accessed across a network, and so is typically only used when all work is to be done on one computer.

Non-inertial reference frame

가속화되는 참조 프레임. 비 관성 참조 프레임은 움직이는 컨테이너를 모방하는 데 사용할 수 있습니다.

A frame of reference that is accelerating. A non-inertial reference frame can be used to mimic a moving container.

Pltfsi

1D 및 2D 플롯을 생성하는 FLOW-3D에 포함된 그래픽 디스플레이 프로그램.

Graphics display program included with FLOW-3D  that produces 1D and 2D plots.

Postprocessor

FLOW-3D 내의 Postprocessor 프로그램은 FLOW-3D 또는 타사 시각화 프로그램에서 읽을 수 있는 데이터 파일을 생성하거나 타사 소프트웨어 프로그램에서 읽을 텍스트 데이터를 생성하는 솔버 출력 데이터를 처리하는 프로그램입니다.

The program within FLOW-3D  that processes the solver output data to produce data files that can be read by FLOW-3D ’s or third-party’s visualization programs, or produce text data to be read by third party software programs.

Prepin file

FLOW-3D 시뮬레이션을 실행하는데 필요한 모든 정보가 포함된 텍스트 파일 입니다. GUI를 사용하거나 텍스트 편집기를 사용하여 수동으로 작성할 수 있습니다.

Text file that contains all of the information necessary to create a FLOW-3D  simulation. It can be created using the GUI or manually with a text editor.

Preprocessor

솔버의 실행을 준비하기 위해 입력 파일을 기반으로 메쉬 및 초기 조건을 생성하는 FLOW-3D 내의 프로그램 입니다.

The program within FLOW-3D  that generates the mesh and initial conditions based on the input file in preparation for the running of the solver.

Prpgrf file

전처리기에 의해 생성된 결과 파일로 전 처리기의 정보를 포함하며 후 처리기에서 사용자 플롯을 생성하는 데 사용할 수 있습니다. 이 파일은 미리보기 버튼을 선택하거나 시뮬레이션에서 사전 프로세서(runpre 사용)를 실행하는 경우에만 실행됩니다.

Results file produced by the preprocessor. Contains information from the preprocessor and can be used by the postprocessor to create custom plots. This file is produced only when the Preview button is selected or if only the pre-processor is run on the simulation (using runpre).

Prpplt file

전처리기에 의해 자동으로 생성된 파일을 플롯 합니다. 메시, 구성 요소, 초기 조건 및 재료 특성에 대한 정보가 포함되어 있습니다.

Plot file produced automatically by the preprocessor. Contains information on meshing, components, initial conditions and material properties.

Restart simulation

이전 시뮬레이션에서 계속되는 시뮬레이션입니다. 이전 시뮬레이션의 결과는 다시 시작 시뮬레이션을 위한 초기 조건 및 (선택적으로) 경계 조건을 생성하는 데 사용됩니다.

A simulation which continues from a previous simulation. The results from the previous simulation are used to generate the initial conditions and (optionally) boundary conditions for the restart simulation.

Server

라이센스 서버를 호스팅하는 시스템

The machine that hosts the license server.

Stability limit

각 시간 단계에서 사용할 수 있는 최대 시간 단계. 더 큰 시간 단계는 수치적 불안정성과 비물리적 결과로 이어질 것이다.

The maximum time step that can be used during each time step. A larger time step will lead to numerical instabilities and nonphysical results.

STL (Stereolithography) File

.STL 파일 형식은 일련의 삼각형이 있는 솔리드 모델의 표면에 근접한 표준 데이터 전송 형식이다. 삼각형은 가장자리에서 결합해야 하며 일관된 방향을 가리키는 정규식이 있어야 한다.

The .STL file format is a standard data transmission format that approximates the surfaces of a solid model with a series of triangles. The triangles must join at the edges and must have normals that point in a consistent direction.

Solid fraction

응고된 영역의 유체 분율 (응고 모델이 켜져 있는 시뮬레이션에만 해당).

The fraction of fluid in the domain that has become solidified (relevant only for simulations where the solidification model has been turned on).

Solver

입력 파일에 정의된 흐름 문제를 시뮬레이션하는 방정식을 계산하는 FLOW-3D 내의 솔버 프로그램 입니다.

The program within FLOW-3D  that solves the system of equations that simulate the flow problem defined in the input file.

STL Viewer

스테레오리소그래피(STL) 파일을 표시하는 특수 유틸리티입니다. STL 파일은 CAD 소프트웨어로 제작되며 3 차원 객체의 표면을 형성하는 많은 삼각형으로 구성됩니다. 의 STL 뷰어 FLOW-3D는 메인 메뉴에서 유틸리티/STL 뷰어를 클릭하여 GUI를 통해 액세스 할 수 있습니다. 그러면 뷰어가 별도의 창에서 열립니다. 메쉬 및 형상 탭에서 STL 파일을 열고 볼 수도 있습니다.

A special utility that displays stereolithography (STL) files. STL files are produced by CAD software and are composed of many triangles that form the surface of a three-dimensional object. The STL Viewer in FLOW-3D  is accessible via the GUI by clicking Utilities/STL Viewer in the main menu. This causes the viewer to open in a separate window. STL files can also be opened and viewed in the Meshing and Geometry tab.

Subcomponents

하위 구성 요소는 구성 요소라고하는 더 큰 모양을 형성하기 위해 결합할 수 있는 기하학적 모양입니다. 하위 구성 요소는 재료를 추가하거나 (고체로) 다른 하위 구성 요소에서 재료를 제거하거나 (구멍으로) 또는 모양 외부에 재료를 추가하도록 정의할 수 있습니다.

Subcomponents are geometric shapes that can be combined to form larger shapes, called components. A subcomponent can be defined to add material (as solids), remove material from other subcomponents (as holes), or add material outside of the shape (as a complement).

Time-step size

계산에 사용된 실제 시간 단계. 이 값은 안정성 한계와 같거나 작을 수 있습니다.

The actual time step used in the computation. This value can be equal to or less than the stability limit.

Units

Units are based upon the values set for the physical properties. Items such as mesh block extents and cell lengths automatically conform to the units used for setting these physical properties.

단위는 물리적 특성에 설정된 값을 기반으로 합니다. 메쉬 블록 범위 및 셀 길이와 같은 항목은 이러한 물리적 속성을 설정하는 데 사용되는 단위를 자동으로 따릅니다.

Volume error (%)

주어진 시간에 도메인에 존재하는 총 유체의 백분율로 설명되지 않은 유체 부피의 백분율을 의미합니다. 따라서 단순히 총 부피가 작기 때문에 유체가 시스템 밖으로 배출되는 시뮬레이션에서 큰 비율의 부피 오류가 발생할 수 있습니다.

The percentage of fluid volume not accounted for as a percentage of the total fluid present in the domain at a given time. Therefore, a large percentage volume error can occur for simulations where fluid is draining out of the system simply because the total volume present is small.

Volume of fluid #1

선택한 길이 단위로 입방체에 존재하는 유체 #1의 총 부피입니다. 2 유체 문제의 경우, 유체 #2의 부피는 항상 도메인 부피에서 유체 #1의 부피를 뺀 값입니다.

The total volume of fluid #1 present in the system, in the chosen length units cubed. For two-fluid problems, the volume of fluid #2 is always the domain volume minus the volume of fluid #1.

Wall shear stress

FLOW-3D 옵션은 벽면 및 객체 인터페이스에서 전단 응력 계산을 켜거나 끌 수 있도록 해줍니다. “no-slip” 인터페이스의 효과를 모델링 하려면 벽면 전단 응력을 켜야 합니다.

The FLOW-3D  option that allows the user to turn on or off the computation of shear stress at wall and object interfaces. Wall shear stress must be turned on to model the effect of “no-slip” interfaces.

Workspace

작업 공간은 시뮬레이션 프로젝트를 위한 파일 컨테이너입니다. 작업 공간은 사용자가 FLOW-3D 뿐만 아니라 하드 드라이브에서도 작업을 구성하는 데 도움이 됩니다.

A workspace is a file container for simulation projects. Workspaces help the user organize their work, not only within FLOW-3D , but also on their hard drive.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

FLOW-3D 기술자료로 이동

Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles: Modeling and Experiments

International Thermal Spray Conference – ITSC-2006
Seattle, Washington, U.S.A., May 2006

M. Ivosevic, V. Gupta, R. A. Cairncross, T. E. Twardowski, R. Knight,
Drexel University, Philadelphia, Pennsylvania, USA
J. A. Baldoni
Duke University, North Carolina, USA

Abstract

거친 표면에 대한 입자 충격 및 변형의 3 차원 모델이 HVOF 스프레이 폴리머 입자에 대해 개발되었습니다. 유체 흐름 및 입자 변형은 FLOW-3D® 소프트웨어를 사용하는 유체 부피 (VoF) 방법으로 예측되었습니다. 스플래팅(splatting) 및 최종 스플랫 모양(splat shapes)의 역학에 대한 거칠기의 영향은 몇 가지 프로토타입 거친 표면을 사용하여 탐색 되었습니다 (예: 단계와 그루브)

또한 실제 그릿 블라스팅(grit blasted)된 강철 표면의 광학 간섭 측정에 의해 생성된 보다 사실적인 거친 표면의 수치 표현도 모델에 통합되었습니다. 예측된 스플랫 모양을 그릿 블라스팅 된 강철 기판에 증착된 나일론 11 스플랫의 SEM 이미지와 비교했습니다. 거친 기판은 부드러운 기판의 스플래팅 시뮬레이션에서 거의 관찰되지 않는 손가락 및 기타 비대칭 3 차원 불안정성을 생성했습니다.

Introduction

기판 거칠기가 용사 코팅의 접착력과 접착력을 향상 시킨다는 사실은 잘 알려져 있으며 일반적으로 받아 들여지고 있습니다 [1]. 스프레이하기 전에 기판 표면은 일반적으로 알루미나 또는 SiC와 같은 50 – 300 µm 각 세라믹 입자로 그릿 블라스팅으로 거칠게 처리됩니다.

기판 표면에 증착된 초기 스플랫의 형태는 코팅 / 기판 인터페이스의 무결성과 결과 코팅의 접착 강도에 중요한 역할을합니다. 단단하고 불규칙한 표면에 대한 열 스프레이 액적의 충격 및 변형은 액적 표면의 복잡한 대규모 3 차원 변형이 특징입니다.

충돌하는 물방울의 “스플래싱”이 발생하는 경우, 운지법 또는 위성 입자 생성 및 분리 중 새로운 표면 생성은 일반적으로 축 대칭이 아니므로 사실적인 splat 예측을 위해 3 차원 모델이 필요합니다. 이것은 정확한 3 차원 스플래팅 모델의 개발에 많은 수치적 도전을 야기합니다.

Fauchais et al. [2]는 스플랫 형성 과정과 관련하여 발표 된 논문의 대부분 (~ 98 %)이 매끄러운 표면에 대한 정상적인 액적 충격을 설명한다고보고했습니다. 게시된 작업의 2 % 미만은 매끄러운 표면에 대한 비정상적인 입자 영향과 관련이 있으며 ~ 0.1 %만이 거친 기판과 관련됩니다.

여러 저자 [3, 4]는 2 차원 모델을 사용하여 비평면 표면과 물방울의 상호 작용을 연구했거나 평행 그루브가 있는 표면에 대한 3 차원 충격 [5]을 연구했습니다. 그러나 이 접근법의 주요 단점은 거친 표면에 스플래팅의 비축 대칭 측면을 연구합니다.

최근 Raessi et al. [6] 이전에 개발된 VoF 모델 [7]을 확장하여 평평한 기판에 액적 스플래팅을 프로토 타입 거친 표면과 액적 상호 작용으로 확장했습니다. 표면 거칠기는 규칙적으로 정렬 된 정사각형 블록으로 근사화 되었습니다. Feng et al. [8]은 평평한 표면의 마찰 조건에 의해 표면 거칠기가 근사된 3 차원 Lagrangian 유한 요소 모델을 사용했습니다.

이 접근 방식은 소규모 점성 및 축 대칭 자유 표면 흐름과 관련하여 매우 정확할 수 있지만 fingering 생성 또는 satellites 생성 및 breakups 중 새로운 표면 생성과 관련된 물방울이 튀기는 경계 맞춤 기술에 적합하지 않습니다.

또한, 열 분무에 사용되는 그릿 블라스팅 표면의 평균 표면 거칠기 (Ra)는 일반적으로 50μm의 평균 액적 크기에 비해 ~ 5 ~ 30 % (~ 2 ~ 15μm)입니다. 평평한 표면에 간단한 마찰 흐름.

본 연구의 목표는 임의의 거친 기질에 영향을 미치는 HVOF 분무 중합체 입자의 모델을 개발하는 것이다. 매끄럽지 않은 표면에 대한 입자 분할 모델은 표면의 기하학적 불규칙성이 분할 거동과 최종 분할 형태에 어떻게 영향을 미치는지 더 잘 이해할 수 있게 해줄 것입니다.

HVOF 제트에서 미크론 크기의 공급 원료 입자로의 강제 대류는 높은 대류 열 전달 계수 (h ~ 5000 – 17,000 W / (m2 K))를 특징으로 합니다. 이로 인해 입자 표면 온도가 급격히 증가하지만 폴리머 입자의 높은 내부 열 저항 (높은 Bi 수)은 입자 내부가 동일한 속도로 가열되는 것을 방지합니다. 결과적으로 더 큰 (예 : 90 µm 직경) 나일론 11 입자는 기판에 충격을 주기 전에 코어와 표면 사이에 급격한 온도 구배를 나타냅니다 (그림 1) [9, 10, 11].

Figure 1: Temperature of a 90 µm diameter Nylon 11 particle with respect to normalized particle radius (r/R) [10].
Figure 1: Temperature of a 90 µm diameter Nylon 11 particle with respect to normalized particle radius (r/R) [10].
Figure 2: (a) Velocity field within a spreading 90 µm diameter particle; (Left): velocity magnitude, (Right): velocity vectors, (b) example Nylon 11 splat deposited via swipe test onto a room temperature glass slide.
Figure 2: (a) Velocity field within a spreading 90 µm diameter particle; (Left): velocity magnitude, (Right): velocity vectors, (b) example Nylon 11 splat deposited via swipe test onto a room temperature glass slide.

또한 가파른 내부 온도 구배를 가진 HVOF 스프레이 폴리머 입자가 얇은 디스크 중앙에 크고 거의 반구형 인 코어가있는 특징적인 “튀김 달걀”모양으로 퍼졌다고 보고되었습니다 [10]. 이 모양은 저온, 고점도 코어와 고온, 저점도 표면의 유동 특성 간에 큰 방사형 차이가 있음을 나타냅니다.

변형된 입자의 예측 된 모양 (그림 2a)은 유리 슬라이드에 증착된 실험적으로 관찰 된 스플랫과 좋은 질적 일치를 나타 냈습니다 (그림 2b). 액적의 오른쪽에 표시된 속도 장 벡터 (그림 2a)는 저점도 “피부”가 고점도 코어 주위를 흐르면서 특징적인 “튀김 달걀” splat 모양이 형성되었음을 나타냅니다.

이 작업에서 보고된 실험 중에 사용된 HVOF 스프레이 매개 변수는 나일론 11을 증착하는데 사용할 수 있는 일반적인 HVOF 스프레이 매개 변수를 나타냅니다. 그러나 실험 기준 매개 변수를 중심으로 개발된 수치 모델은 개별 스플랫의 흐름 거동을 더 잘 이해하는 데 사용할 수 있습니다. 증착 효율 향상을 위한 공정 최적화를 지원합니다.

Figure 3: Boundary conditions, initial conditions and crosssection of a typical mesh used in Flow-3D
Figure 3: Boundary conditions, initial conditions and crosssection of a typical mesh used in Flow-3D
Figure 5: Cross section of four steel substrates: (a) polished with ~1 Pm alumina suspension, (b) grit blasted with #120 grit, (c) grit blasted with #50 grit, (d) grit blasted with #12 grit. Top image shows optical interferometry scan of # 120 grit blasted surface.
Figure 5: Cross section of four steel substrates: (a) polished with ~1 Pm alumina suspension, (b) grit blasted with #120 grit, (c) grit blasted with #50 grit, (d) grit blasted with #12 grit. Top image shows optical interferometry scan of # 120 grit blasted surface.
Figure 6: Nylon-11 splats deposited during a single run over steel substrates with roughnesses as per Figure 5.
Figure 6: Nylon-11 splats deposited during a single run over steel substrates with roughnesses as per Figure 5.
Figure 7: Nylon-11 splat on a grit blasted steel substrate, (a) close up of a peripheral splat finger.
Figure 7: Nylon-11 splat on a grit blasted steel substrate, (a) close up of a peripheral splat finger.
Figure 8: Cross-sections of predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 particle on four different surface roughnesses (dimensionless time t* = t/(D/v o (p))).
Figure 8: Cross-sections of predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 particle on four different surface roughnesses (dimensionless time t* = t/(D/v o (p))).
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.
Figure 9: Predicted three-dimensional spreading splats for a 90 µm diameter Nylon-11 droplet.

중략…….

References

  1. Davis, J. R., (Ed.) et al, Handbook of Thermal Spray Technology, ASM International®, 1st Ed., Materials Park,
    OH, (2004).
  2. Fauchais, P., Fukomoto, M., Vardelle, A. and Vardelle, M., Knowledge Concerning Splat Formation: An Invited
    Review, Journal of Thermal Spray Technology, 13 (3), pp. 337 – 360, (2004).
  3. Liu, H., Lavernia, E. J. and Rangel, R. H., Modeling of Molten Droplet Impingement on a Non-flat Surface, Acta
    Metall. Mater, 43(5), pp. 2053 – 2072, (1995).
  4. Sobolev, V. V., Guilemany, J. M. and Martin, A. J., Influence of Surface Roughness on the Flattening of
    Powder Particles during Thermal Spraying, Journal of Thermal Spray Technology 5(2), pp. 207 – 214, (1996).
    5 Patanker, N. A. and Chen, Y., Numerical Simulation of Droplet Shapes on Rough Surfaces, Proc. Int. Conference
    on Modeling and Simulations of Microsystems – MSM 2002, pp. 116 – 119, (2002)
    6 Raessi, M., Mostaghimi, J. and Bussmann, M., “Droplet Impact during the Plasma Spray Coating Process-Effect of
    Surface Roughness on Splat Shapes,” Proc. 17th Int. Symposium on Plasma Chemistry – ISPC 17, Toronto,
    Canada, (2005)
    7 Pasandideh-Fard, M., Chandra, S. and Mostaghimi, J., A Three-dimensional Model of Droplet Impact and
    Solidification, Int. J. Heat and Mass Transfer, 45, pp. 2229 – 2242, (2002).
    8 Feng, Z. G., Domaszewski, M., Montavon, G. and Coddet, C., Finite Element Analysis of Effect of Substrate Surface
    Roughness on Liquid Droplet Impact and Flattening Process, J. of Thermal Spray Technology, 11(1), pp. 62-68,
    (2002).
    9 Petrovicova, E., “Structure and Properties of Polymer Nanocomposite Coatings Applied by the HVOF Process,”
    Ph.D. Dissertation, Drexel University, (1999).
    10 Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc.
    ITSC-2005 International Thermal Spray Conference, DVS/IIW/ASM-TSS, Basel, Switzerland, (2005).
    11 Bao, Y., Gawne, D. T. and Zhang, T., The Effect of Feedstock Particle Size on the Heat transfer Rates and
    Properties of Thermally Sprayed Polymer Coatings, Trans. I. M. F., 73(4), pp 119 – 124, (1998).
    12 Ivosevic, M., Cairncross, R. A. and Knight, R., “Heating and Impact Modeling of HVOF Sprayed Polymer
    Particles,” Proc. 2004 International Thermal Spray Conference (ITSC-2004), DVS/IIW/ASM-TSS, Osaka,
    Japan, (2004).
    13 Hirt, C. W. and Nichols, B. D., Volume of Fluid (VoF) Method for the Dynamics of Free Boundaries, Journal of
    Computational Physics, 39, pp. 201 – 225, (1981).
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

Modeling and characterization of a carbon fiber emitter for electrospray ionization

A K Sen1, J Darabi1, D R Knapp2 and J Liu2
1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering,
University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
2 Department of Pharmacology, Medical University of South Carolina, 173 Ashley Avenue,
Charleston, SC 29425, USA
E-mail: darabi@engr.sc.edu

뾰족한 탄소 섬유(CF)를 사용하는 새로운 마이크로 스케일 이미터는 질량 분석 (MS) 분석에서 전기 분무에 사용할 수 있습니다. 탄소 섬유는 360 µm OD 및 75 µm ID의 용융 실리카 모세관과 동축에 위치하며 날카로운 팁은 튜브 말단에서 30 µm 연장됩니다.

Abstract

전기 분무 이온화 (ESI) 프로세스는 전기 유체 역학을 해결하기 위한 Taylor–Melcher 누설 유전체 유체 모델 및 액체-가스 인터페이스 추적을 위한 유체 부피 (VOF) 접근 방식을 기반으로 하는 전산 유체 역학 (CFD) 코드를 사용하여 시뮬레이션 됩니다. CFD 코드는 먼저 기존 지오메트리에 대해 검증한 다음 CF 이미터 기반 ESI 모델을 시뮬레이션하는데 사용됩니다.

시뮬레이션된 전류 흐름 및 전류 전압 결과는 CF 이미터의 실험 결과와 잘 일치합니다. 이미터 형상, 전위차, 유속 및 액체의 물리적 특성이 CF 이미터의 전기 분무 거동에 미치는 영향을 철저히 조사합니다.

스프레이 전류와 제트 직경은 액체의 유속, 전위차 및 물리적 특성과 상관 관계가 있으며 상관 결과는 문헌에 보고된 결과와 정량적으로 비교됩니다. (이 기사의 일부 그림은 전자 버전에서만 색상입니다)

Introduction

1980 년대 후반부터 매트릭스 보조 레이저 탈착 이온화 (MALDI)와 전기 분무 이온화 (ESI)의 두 가지 이온화 기술을 구현하여 감도, 속도 및 구조 정보 수준 측면에서 MS 분석이 엄청나게 성장했습니다. 1980 년대 초까지 전자 충격 (EI) 또는 화학 이온화 (CI) 방법은 가스 크로마토 그래피에 적합한 작은 생체 분자를 이온화 하는 데 사용되었습니다.

그러나 크고 열에 민감한 비 휘발성 샘플은 적절한 사전 처리 없이 EI 또는 CI-MS 기술로 분석 할 수 없습니다 [1]. ESI 기술을 사용하면 액체상에서 직접 이러한 큰 분자를 분석 할 수 있습니다 [2]. Zeleny [3, 4]는 출구에 높은 전위를 적용하여 모세관에서 액체 용액을 분사 할 수 있음을 보여주었습니다.

Dole [5, 6] 및 Fenn [7]의 선구적인 연구는 ESI를 고분자 및 생체 분자와 같은 대형 화합물의 이온화 방법으로 표시했습니다. 이에 이어이 기술에 의한 기상 이온 발생에 관련된 과정과 메커니즘이 널리 조사되고 있습니다.

ESI 방법에서 기체 이온화 된 분자는 강한 전계가 있는 상태에서 미세한 물방울을 생성하여 액체 용액에서 생성됩니다. ESI 프로세스의 이러한 능력은 단백질 및 기타 생체 분자 연구에 자연적으로 적용됨을 발견했습니다. ESI 방법과 관련된 다양한 프로세스가 그림 1에 나와 있습니다.

Figure 1. Schematic of an ESI process.
Figure 1. Schematic of an ESI process.

ESI 전위는 일반적으로 전도성 물질로 코팅 된 이미 터 튜브를 통해 외부에서 샘플 액체에 적용되지만 액체 샘플 내부에 적용될 수도 있습니다. Herring과 Qin [8]은 이미 터 팁에 삽입된 팔라듐 와이어를 통해 전기 분무 전위가 적용되는 모세관 전기 영동 (CE)을위한 ESI 인터페이스를 보여주었습니다.

Chiou의 설계 [9]에서는 작은 PDMS 칩에 있는 샘플 저장소, 마이크로 채널 및 실리카 모세관 노즐과 통합 된 내장 전극을 통해 전기 분무를 위한 고전압이 적용되었습니다.

Cao and Moini [10]는 ESI 전압이 모세관 내부에 위치한 전극을 통해인가되고 전기적 접촉이 출구 근처 모세관 벽의 작은 구멍을 통해 유지되는 전기 분무 방출기를 설계했습니다. 작은 모세관 직경 (~ 10 µm)을 가진 이미 터를 사용하여 낮은 전압에서 전기 분무가 가능하지만, 더 작은 구멍은 과도한 배압으로 인해 쉽게 막힐 수 있습니다.

직경이 더 큰 (> 50µm) 이미 터를 처리하는 것이 더 쉽습니다. 그러나 그들은 더 작은 직경의 이미 터만큼 효율적이지 않습니다 [11]. 일반적으로 ESI 전압을 적용하기 위해 유리 또는 용융 실리카와 같은 절연 재료로 제작 된 저 유량 이미 터의 외주에 전도성 코팅이 적용됩니다.

용융 실리카 모세관의 끝 부분에있는 스퍼터 코팅 된 귀금속 층은 내구성에 빠르게 영향을 미치는 것으로 관찰되었습니다. 코팅의 빠른 열화는 방전, 전기 화학적 반응 및 층과 용융 실리카 표면 사이의 불량한 기계적 결합으로 인해 발생할 수 있습니다.

이러한 에미 터의 수명은 스퍼터 코팅 후에 금을 전기 도금하거나 [12] 스퍼터 코팅 된 금 위에 SiOx를 코팅하여 증가시킬 수 있습니다 [13]. 크롬 또는 니켈 합금의 접착층 위에 금으로 코팅 된 이미 터는 우수한 결합력을 제공 할 수 있으며 음극으로 작동 할 때 내구성이 있습니다.

그러나 양극으로 작동하는 동안 접착층은 금 막을 통해 화학적으로 용해됩니다. 이미 터의 안정성과 내구성을 향상시키기 위해 대체 전도성 코팅이 평가되었습니다.

안정적인 ESI 작동을 위해 콜로이드 흑연 코팅 이미 터가 사용되었으며 수명이 길었습니다 [14]. 폴리아닐린 (PANI) 코팅 이미 터는 두꺼운 코팅으로 인해 높은 내구성을 보여주고 방전에 강합니다. PANIcoated와 gold-coated nanospray emitter의 electrospray ionization 거동을 비교 한 결과 PANIcoated emitter는 goldcoated emitter와 비슷한 향상된 감도를 제공합니다 [15].

그라파이트-폴리이 미드 혼합물은 또한 무 접착 전기 분무 방출기의 경우 전도성 코팅으로 사용되었습니다. 전도성 코팅의 안정성은 산화 스트레스 동안 좋은 성능을 나타내는 전기 화학적 방법에 의해 조사되었습니다 [16].

탄소 코팅 이미 터의 기능은 마이크로 스프레이 및 시스리스 CE 및 ESI 응용 분야에서 입증되었습니다. 이 이미 터는 견고하지는 않지만 방수가 되지 않는 CE 또는 ESI 애플리케이션에 충분히 내구성이있었습니다 [17].

우리는 막힘 문제를 제거하고 시료 액체와 금층 사이의 접촉 문제를 피할 수있는 뾰족한 탄소 섬유 기반의 새로운 ESI 방출기를 도입하여 ESI 시스템의 적용 성, 신뢰성 및 내구성을 향상 시켰습니다 [18]. 이 작업에서 탄소 섬유 기반 ESI 이미 터는 전산 유체 역학 (CFD) 소프트웨어 패키지 FLOW-3D [19]를 사용하여 시뮬레이션됩니다.

실험은 새로운 CF 이미 터를 사용하여 수행됩니다. 모델 예측은 실험 결과와 비교됩니다. 새로운 이미 터의 ESI 성능은 이미 터의 기하학적 구조, 유속, 액체의 물리적 특성과 같은 다양한 매개 변수에 대한 반응을 연구하여 평가됩니다.

스프레이 전류 및 제트 직경은 유량 및 액체의 특성과 상관 관계가 있으며 상관 결과는 문헌에보고 된 결과와 정량적으로 비교됩니다. 다음 섹션에서 ESI 공정을 지배하는 전기 유체 역학 이론은 Taylor–Melcher 누설 유전체 모델 [20]을 참조하여 설명됩니다.

그런 다음 Hartman 등이 사용하는 ESI 구성을 고려하여 CFD 코드의 유효성을 확인합니다 [21]. 또한 CF 기반 ESI 모델에 대한 시뮬레이션 및 실험 결과가 제시되고 논의됩니다. 마지막으로 모수 연구 결과와 상관 관계를 제시하고 논의합니다.

Figure 2. Forces in the liquid cone.
Figure 2. Forces in the liquid cone.
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 15. Electric field contours at various time steps
Figure 15. Electric field contours at various time steps
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

References

[1] Siuzdak M 1996 Mass Spectrometry for Biotechnology (New York: Academic)
[2] Cole R B (ed) 1997 Electrospray Ionization Mass Spectrometry (New York: Wiley-Interscience)
[3] Zeleny J 1914 Phys. Rev. 3 69–91
[4] Zeleny J 1917 Phys. Rev. 10 1–6
[5] Dole M, Mack L L, Hines R L, Mobley R C, Ferguson L D and Alice M B 1968 Molecular beams of macroions
J. Chem. Phys. 49 2240–9
[6] Clegg G A and Dole M 1971 Molecular beams of macroions: III. Zein and polyvinylpyrrolidone Biopolymers
10 821–6
[7] Fenn J B, Mann M, Meng C K, Wong S F and Whitehouse C M 1989 Electrospray ionization for mass
spectrometry of large biomolecules Science 246 64–71
[8] Herring C J and Qin J 1999 An on-line preconcentrator and the evaluation of electrospray interfaces for the capillary
electrophoresis/mass spectrometry of peptides Rapid Commun. Mass Spectr. 13 1–7
[9] Chiou C H, Lee G B, Hsu H T, Chen P W and Liao P C B 2002 Microscale Tools for Sample Preparation, Separation
and Detection of Neuropeptides Sensors Actuators B 86 280–6
[10] Cao P and Moini M 1997 A novel sheathless interface for capillary electrophoresis/electrospray ionization mass
spectrometry using an in-capillary electrode J. Am. Soc. Mass Spectrom 8 561–4
[11] Janini G M, Conards T P, Wilkens K L, Issaq H J and Veenstra T D 2003 A sheathless nanoflow electrospray
interface for on-line capillary electrophoresis mass spectrometry Anal. Chem 75 1615–9
[12] Barroso M B de Jong and Ad P 1999 Sheathless preconcentration-capillary zone electrophoresis-mass
spectrometry applied to peptide analysis J. Am. Soc. Mass Spectrom 10 1271–8
[13] Valaskovic G A and McLafferty F W 1996 Long-lived metallized tips for nanoliter electrospray mass spectrometry
J. Am. Soc. Mass Spectrom. 7 1270–2
[14] Zhu X, Thiam S, Valle B C and Warner I M 2002 A colloidal graphite coated emitter for seathless capillary
electrophoresis/nanoelectrospray ionization mass spectrometry Anal. Chem 74 5405–9
[15] Maziarz E P I II, Lorenz S A, White T P and Wood T D 2000 Polyaniline: a conductive polymer coating for durable
nanospray emitters J. Am. Soc. Mass. Spectrom 11 659–63
[16] Nilsson S, Wetterhall M, Bergquist J, Nyholm L and Markides K E 2001 A simple and robust conductive
graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry Rapid
Commun. Mass Spectr. 15 1997–2000
[17] Chang Y Z and Her G R 2000 Sheathless capillary electrophoresis/electospray mass spectrometry using a
carbon-coated tapered fused silica capillary with a beveled edge Anal. Chem. 72 626–30
[18] Liu J, Ro K W, Busman M and Knapp D R 2004 Electrospray ionization with a pointed carbon fiber emitter Anal. Chem. 76 3599–606
[19] Hirt C W 2004 Electro-hydrodynamics of semi–conductive fluids: with application to electro–spraying Flow Science
Technical Note 70 FSI–04–TN70 1–7
[20] Saville D A 1997 Electrohydrodynamcis: the Taylor–Melcher leaky dielectric model Annu. Rev. Fluid Mech. 29 27–64
[21] Hartman R P A, Brunner D J, Camelot D M A, Marijnissen J C M and Scarlett B 1999
Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet J. Aerosol Sci.
30 823–49
[22] Castellanos A 1998 Basic Concepts and Equations in Electrohydrodynamics Electrohydrodynamics
ed A Castellanos (Berlin: Springer)
[23] Melcher J R 1981 Continuum Electromechanics (Cambridge, MA: MIT Press)
[24] Hirt C W and Nichols B D 1981 Volume of fluid (VOF) method for the dynamics of free boundaries J. Comp. Phys.
39 201–25
[25] De la Mora F J and Loscertales I G 1994 The current emitted by highly conducting Taylor cones J. Fluid Mech. 260
155–84
[26] Ganan-Calvo A M 1997 Cone–jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal
scaling laws in electrospraying Phys. Rev. Lett. 79 217–20
[27] Higuera F J 2004 Current/flow–rate characteristic of an electrospray with a small meniscus J. Fluid Mech.
513 239–46
[28] Zeng J, Sobek D and Korsmeyer T Electro-hydrodynamic modeling of electrospray ionization: cad for a microfluidic
device-mass spectrometer interface Transducers ’03: 12th Int. Conf. on Solid State Sensors, Actuators and
Microsystems 2 1275–8
[29] Ganan–Calvo A M, Davila J and Barrero A 1997 Current and droplet size in the electrospraying of liquids. Scaling laws J. Aerosol Sci. 28 249–75
[30] Cloupeau M and Prunet-Foch B 1989 Electrostatic spraying of liquids in cone–jet mode J. Electrost. 22 135–59

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem

3-D transient simulation of viscoelastic coating flows

점탄성 코팅 흐름의 3-D 과도 시뮬레이션

James M. Brethour
Flow Science, Inc.
Santa Fe, New Mexico USA 87505
Presented at the 13th International Coating Science and Technology Symposium, September 10-
13, 2006, Denver, Colorado1

일시적인 프로세스의 3 차원 시뮬레이션은 자유 표면 이동 중에 왜곡을 방지하기 위해 시뮬레이션 중에 업데이트 해야 하는 복잡한 메시를 생성하기 때문에 일반적으로 사용자와 컴퓨터 모두에게 매우 어렵고 지루합니다.

고정된 규칙적인 메시를 통해 유체 운동을 추적하는 Eulerian 기술을 사용하면 이러한 어려움이 제거됩니다. 이러한 방식으로, 큰 유체 변형과 심지어 분열을 계산할 수 있습니다.

이 작업에 사용된 계산 소프트웨어인 FLOW-3D® [1]는 지속적으로 변화하는 유체 영역의 자유 표면을 추적하기 위해 Volume-of-Fluid 기반 기술의 독창적이고 진정한 형태 인 TruVOF®를 사용합니다.

이 모델에 추가 된 것은 점탄성 흐름의 시뮬레이션을 가능하게 하는 사용자 정의입니다. 점탄성 모델은 형태 텐서 [2]를 사용하여 각 유체 요소의 변형 및 회전 이력을 추적합니다. 이러한 계산은 이미 흐름 모델에 존재하는 질량 보존 및 운동량 방정식과 함께 해결됩니다. 필요한 추가 매개 변수는 탄성 계수와 이완 시간입니다.

계산 결과는 슬롯 코팅 [3]에서 하류 접촉 라인이 불안정해질 때까지 코팅액의 공급이 점차 감소하는 저 유량 한계의 실험 결과와 비교됩니다. 계산 결과는 모세관 수의 변화와 유체의 탄성 모두에 대한 실험과 잘 연관되어 있습니다.

Figure 1: Two-dimensional slice of slot coating process; in the experiments, the coating gap was maintained at 100 μm, the slot gap was 125 μm, and the vacuum pressure and web speed were continously varied.
Figure 1: Two-dimensional slice of slot coating process; in the experiments, the coating gap was maintained at 100 μm, the slot gap was 125 μm, and the vacuum pressure and web speed were continously varied.
Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem
Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem
Figure 3: Plot of low flow limits in slot coating as a function of capillary number and fluid elasticity. The solid markers indicate simulation results while the open markers indicate experimental results [3]. The lines represent best-fit power-law curves.
Figure 3: Plot of low flow limits in slot coating as a function of capillary number and fluid elasticity. The solid markers indicate simulation results while the open markers indicate experimental results [3]. The lines represent best-fit power-law curves.
Fig. 3. Nylon 11 impact sequence onto a preheated substrate

Impact Modeling of Thermally Sprayed Polymer Particles

Ivosevic, M., Cairncross, R. A., Knight, R., Philadelphia / USA

열 스프레이는 전통적으로 금속, 카바이드 및 세라믹 코팅을 증착하는 데 사용되어 왔지만 최근에는 HVOF (High Velocity Oxy-Fuel) 열 스프레이 공정의 높은 운동 에너지로 인해 용융 점도가 높은 폴리머의 무용제 처리도 가능하다는 사실이 밝혀졌습니다. , 유해한 휘발성 유기 용매가 필요하지 않습니다. 이 작업의 주된 목표는 지식 기반을 개발하고 HVOF 연소 스프레이 공정에 의해 분사되는 폴리머 입자의 충격 거동에 대한 질적 이해를 개선하는 것이 었습니다. 고분자 입자의 HVOF 분사 중 입자 가속, 가열 및 충격 변형의 수치 모델이 개발되었습니다. Volume-of-Fluid (VoF) 전산 유체 역학 패키지 인 Flow3D®는 입자가 강철 기판과 충돌하는 동안 유체 역학 및 열 전달을 모델링하는 데 사용되었습니다. 입자 가속 및 열 전달 모델을 사용하여 예측 된 방사형 온도 프로파일은 저온, 고점도 코어 및 고온, 저점도 표면을 가진 폴리머 입자를 시뮬레이션하기 위해 온도 의존 점도 모델과 함께 Flow3D®의 초기 조건으로 사용되었습니다. 이 접근법은 얇은 디스크 내에서 크고 거의 반구형 인 코어를 나타내는 변형 된 입자를 예측했으며 광학 현미경을 사용하여 만든 열 스프레이 스 플랫의 실험 관찰과 일치했습니다.

폴리머 증착에 열 분무 공정을 사용하는 주요 이점은 다음과 같습니다. (i) 휘발성 유기 화합물 (VOCs)을 사용하지 않는 무용제 코팅; (ii) 거의 모든 환경 조건에서 큰 물체를 코팅 할 수있는 능력; (iii) 용융 점도가 높은 폴리머 코팅을 적용하는 능력; 및 (iv) 일반적으로 정전기 분말 코팅 및 용제 기반 페인트에 필요한 오븐 건조 또는 경화와 같은 증착 후 처리없이 “즉시 사용 가능한”코팅을 생산할 수있는 능력. 이러한 공정에 비해 주요 단점은 다음과 같습니다. (i) 낮은 증착 효율, (ii) 낮은 품질의 표면 마감 및 (iii) 높은 공정 복잡성 (종종 폴리머 용융 및 분해 온도에 의해 정의되는 좁은 공정 창). 폴리머 증착에 세 가지 열 스프레이 공정이 사용 된 것으로 알려졌습니다 [1].

  • 기존의 화염 분사.
  • HVOF 연소 스프레이.
  • 플라즈마 스프레이.

HVOF 및 플라즈마 스프레이 공정에 의해 분사되는 폴리머의 수는 제한되어 있으며 HVOF 및 플라즈마 스프레이 폴리머 코팅의 상업적 응용은 아직 개발 단계에 있습니다 [1]. 폴리머의 HVOF 스프레이는 화염 스프레이 [최대 ~ 100m / s]에 비해 상당히 높은 입자 속도 [최대 1,000m / s]로 인해 주로 주목을 받았습니다. 이는 특히 고 분자량 폴리머 및 높은 (> 5 vol. %) 세라믹 강화 함량을 갖는 폴리머 / 세라믹 복합재를 포함하여 용융 점도가 높은 코팅의 증착에있어 중요한 이점입니다.

Fig. 1. Nylon 11 splats deposited onto a room temperature glass slide.
Fig. 1. Nylon 11 splats deposited onto a room temperature glass slide.
Fig. 2. Nylon 11 splats deposited onto a preheated glass slide (200 °C).
Fig. 2. Nylon 11 splats deposited onto a preheated glass slide (200 °C).
Fig. 3. Nylon 11 impact sequence onto a preheated substrate
Fig. 3. Nylon 11 impact sequence onto a preheated substrate, (I) partially melted particle before impact, (II) “fried-egg” shaped splat, (III) post-deposition flow of a fully molten droplet, (IV) droplet shrinkage during cooling.
Fig. 5. Predicted velocities of Nylon 11 particles in an HVOF jet (total O2 + H2 gas flow rate of 1.86 g/s at Φ = 0.83).
Fig. 5. Predicted velocities of Nylon 11 particles in an HVOF jet (total O2 + H2 gas flow rate of 1.86 g/s at Φ = 0.83).
Fig. 7. Simulated deformation of a Nylon 11 droplet with a radial temperature gradient and temperaturedependent viscosity during impact.
Fig. 7. Simulated deformation of a Nylon 11 droplet with a radial temperature gradient and temperaturedependent viscosity during impact.
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.

Coupled CFD-Response Surface Method (RSM) Methodology for Optimizing Jettability Operating Conditions

분사성 작동 조건을 최적화하기 위한 결합된 CFD-Response Surface Method(RSM)

Nuno Couto 1, Valter Silva 1,2,* , João Cardoso 2, Leo M. González-Gutiérrez 3 and Antonio Souto-Iglesias 41
INEGI-FEUP, Faculty of Engineering, Porto University, 4200-465 Porto, Portugal;
nunodiniscouto@hotmail.com
2 VALORIZA, Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal; jps.cardoso@ipportalegre.pt
3 CEHINAV, DMFPA, ETSIN, Universidad Politécnica de Madrid, 28040 Madrid, Spain; leo.gonzalez@upm.es
4 CEHINAV, DACSON, ETSIN, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
antonio.souto@upm.es

  • Correspondence: valter.silva@ipportalegre.pt; Tel.: +351-245-301-592

소개

물방울 생성에 대한 이해는 여러 산업 응용 분야에서 매우 중요합니다 [ 1 ]. 잉크젯 프린팅 프로세스는 일반적으로 10 ~ 100 μm [ 1 ] 범위의 독특하고 작은 액적 크기를 특징으로 하며 연속적 또는 충동적 흐름을 사용하여 얻을 수 있습니다 (마지막 방식은 주문형 드롭 (DoD)이라고도 함). 잉크젯).

여러 장점 덕분에 DoD 방법은 산업 환경에서 상당한 수용을 얻고 있습니다 [ 2 ].DoD는 복잡한 프로세스이며 유체 속성, 노즐 형상 및 구동 파형 [ 1 , 3 ]의 세 가지 주요 범주로 분류되는 여러 매개 변수에 따라 달라집니다 .그러나 길이와 시간 척도가 모두 마이크로 오더 [ 4 ] 이기 때문에 실험을하기가 어렵습니다 .

결과적으로 실험 설정은 항상 비용이 많이 들고 복잡하며 CFD (전산 유체 역학)와 같은 고급 수치 접근 방식이 엄격한 요구 사항입니다 [ 5 , 6 ]. VOF (volume-of-fluid) 접근 방식은 액체 분해 및 액적 생성에 대한 다상 공정을 시뮬레이션하기위한 적절한 대안으로 밝혀졌으며 과거 연구에서 그대로 사용되었습니다 [ 7 , 8], 인쇄 프로세스의 맥락에서 전자는 여전히 현재 연구의 주제입니다. 

또한 VOF 체계를 사용하면 단일 운동량 방정식 세트를 해결하고 도메인 전체에 걸쳐 각 유체의 체적 분율을 추적하여 명확하게 정의된 인터페이스로 둘 이상의 혼합 불가능한 유체를 효과적으로 시뮬레이션 할 수 있습니다. Feng [ 9 ]는 VOF 접근 방식을 사용하여 일시적인 유체 인터페이스 변형 및 중단을 효과적으로 추적하는 패키지 FLOW-3D를 사용하여 낙하 배출 중 복잡한 유체 역학 프로세스를 시뮬레이션하는 선구자 작업 중 하나를 수행했습니다.

주요 목표는 볼륨 및 속도와 같은 민감한 변수를 더 잘 이해하면서 장치 개발에서 일반적인 설계 규칙을 구현하는 것이 었습니다. 이러한 종류의 공정과 관련된 주요 질문 중 하나는 안정적인 액적 형성을 위한 작동 범위의 정의입니다.

Fromm [ 10 ]은 Reynolds 수와 Weber 수의 제곱근 비율이 2보다 작으면 안정적인 방울을 생성 할 수 없다는 것을 확인했습니다. 이 무차원 값은 나중에 Z 번호로 알려졌으며 분사 가능성 범위 [ 11 ]를 정의합니다 . 문헌에서 분사 가능성을 위한 Z 간격은 1 ~ 10 [ 12 ], 4 ~ 14 [ 13 ] 또는 0.67 ~ 50 [ 14]을 찾을 수 있습니다. 

이것은 Z 값 만으로는 분사 가능성 조건을 나타낼 수 없음을 분명히 의미합니다. 실제로, 다른 속성을 가진 유체는 다른 인쇄 품질을 나타내면서 동일한 Z 값을 나타낼 수 있습니다. 액적 생성 공정과 해당 분사 성은 주로 전체 공정 품질에 큰 영향을 미치는 매개 변수 세트에 의해 결정됩니다. 

토대 메커니즘을 더 잘 이해하려면 확장 된 작동 조건 및 매개 변수 세트를 고려하여 여러 실험 또는 수치 실행을 수행해야 합니다. DoE (design-of-experiment) 접근 방식과 같은 체계적인 접근 방식이 없으면 이것은 달성하기 매우 어려운 작업이 될 수 있습니다. 최적화 문제를 해결하기 위해 반응 표면 방법을 사용하여 처음으로 체계화된 접근 방식이 개발된 Box and Wilson [ 15 ] 의 선구자 기사 이후 ,이 입증된 방법론은 많은 화학 및 산업 공정[ 16 ] 및 기타 관련 학계에 성공적으로 적용되었습니다.

예를 들어 Silva와 Rouboa [ 17 ]는 직접 메탄올 연료 전지의 출력 밀도에 영향을 미치는 관련 매개 변수를 식별하기 위해 반응 표면 방법론 (RSM)을 사용했습니다. 많은 실제 산업 응용 분야에서 실험 연구는 작동 매개 변수를 조절하기 어렵 기 때문에 제한적이지만 주로 설정을 개발하거나 실험을 실행하는 데 드는 비용이 높기 때문입니다. 

따라서 솔루션은 주요 시스템 응답을 시뮬레이션하고 예측할 수 있는 효과적인 수학적 모델의 개발에 의존합니다. DoE와 같은 최적화 방법론을 수치 모델과 결합하면 비용이 많이 들고 시간이 많이 걸리는 실험을 피하고 다양한 입력 조합을 사용하여 최적의 조건을 얻을 수 있습니다 [ 16 ]. 

실바와 루 보아 [ 18] CFD 프레임 워크 하에서 개발 된 2D Eulerian-Eulerian 바이오 매스 가스화 모델에서 얻은 결과를 RSM과 결합하여 다양한 응용 분야에서 합성 가스를 생성하기 위한 최적의 작동 조건을 찾습니다. 

저자는 입력 요인으로 인한 최상의 응답과 최소한의 변동을 모두 보장하는 작동 조건을 찾을 수 있었습니다. Frawley et al. [ 19 ] CFD 및 DoE 기술 (특히 RSM)을 결합하여 파이프의 팔꿈치에서 고체 입자 침식에 대한 다양한 주요 요인의 영향을 조사하여 침식 예측 모델을 개발할 수 있습니다.우리가 아는 한, DoD 잉크젯 프로세스의 개선 및 더 나은 이해에 적용되는 DoE 접근법 (실험적으로 또는 모든 종류의 수치 모델과 결합)을 구현하는 연구는 없습니다. 선도 기업이 이러한 접근 방식을 적용 할 가능성이 있지만 관련 결과는 민감할 수 있으므로 더 넓은 커뮤니티에서 사용할 수 없습니다. 이 사실은 DoD 잉크젯 공정에서 액적 생성에 대한 여러 매개 변수의 영향을 평가하기 위한 이러한 종류의 연구로서 현재 논문의 영향을 증가 시킬 수 있습니다.

CFD 프레임 워크 내에서 VOF 접근 방식을 사용하여 여러 컴퓨터 실험의 설계를 개발하고 RSM을 분석 도구로 사용했습니다. 충분한 수치 정확도와 수용 가능한 시간 계산 시뮬레이션의 균형을 맞추기 위해 메쉬 수렴 연구가 수행되었습니다. 설계 목적을 위해 점도, 표면 장력, 입구 속도 및 노즐 직경이 입력 요인으로 선택되었습니다. 응답은 break-up 시간과 break-up 길이였습니다.

Figure 1. Schematic of the computational domain
Figure 1. Schematic of the computational domain
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.
Figure 3. Comparison between surface tensions at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 3. Comparison between surface tensions at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 4. Comparison between viscosity values at the following four time steps: (a) 6 μs, (b) 12 μs, (c) 18 μs, and (d) 24 μs.
Figure 4. Comparison between viscosity values at the following four time steps: (a) 6 μs, (b) 12 μs, (c) 18 μs, and (d) 24 μs.
Figure 5. Comparison between different nozzle diameters at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 5. Comparison between different nozzle diameters at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 6. Comparison between different inlet velocities at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 6. Comparison between different inlet velocities at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 8. Contour response plots for break-up time as a function of (a) surface tension and viscosity, (b) nozzle diameter and viscosity, (c) inlet velocity and viscosity, (d) nozzle diameter and surface tension, (e) inlet velocity and surface tension, and (f) inlet velocity and nozzle diameter.
Figure 8. Contour response plots for break-up time as a function of (a) surface tension and viscosity, (b) nozzle diameter and viscosity, (c) inlet velocity and viscosity, (d) nozzle diameter and surface tension, (e) inlet velocity and surface tension, and (f) inlet velocity and nozzle diameter.
Figure 12. Break-up length as a function of the We–Ca space (obtained from the 25 runs).
Figure 12. Break-up length as a function of the We–Ca space (obtained from the 25 runs).

References

  1. Hutchings, I.M.; Martin, G.D. Inkjet Technology for Digital Fabrication; John Wiley & Sons Ltd.: Hoboken, NJ,
    USA, 2013.
  2. Waasdorp, R.; Heuvel, O.; Versluis, F.; Hajee, B.; GhatKesar, M. Acessing individual 75-micron diameter
    nozzles of a desktop inkjet printer to dispense picoliter droplets on demand. RSC Adv. 2018, 8, 14765.
  3. Zhang, H.; Wang, J.; Lu, G. Numerical investigation of the influence of companion drops on drop-ondemand ink jetting. Appl. Phys. Eng. 2012, 13, 584–595.
  4. Dong, H.; Carr, W. An experimental study of drop-on-demand drop formation. Phys. Fluids 2006, 18,
    072102.
  5. Patel, M.; Pericleous, K.; Cross, M. Numerical Modelling of Circulating Fluidized beds. Int. J. Comput.
  6. Fluid Dyn. 1993, 1, 161–176. [CrossRef]
  7. Zhao, X.; Glenn, C.; Xiao, Z.; Zhang, S. CFD development for macro particle simulations. Int. J. Comput.
  8. Fluid Dyn. 2014, 28, 232–249. [CrossRef]
  9. Hasan, M.N.; Chandy, A.; Choi, J.W. Numerical analysis of post-impact droplet deformation for direct-print.
  10. Eng. Appl. Comput. Fluid Mech. 2015, 9, 543–555. [CrossRef]
  11. Ghafouri-Azar, R.; Mostaghimi, J.; Chandra, S. Numerical study of impact and solidification of a droplet
  12. over a deposited frozen splat. Int. J. Comput. Fluid Dyn. 2004, 18, 133–138. [CrossRef]
  13. Feng, J. A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices. J. Imaging
  14. Sci. Technol. 2002, 46, 398–408.
  15. Fromm, J. Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets. IBM J. Res. Dev. 1984, 28,
  16. 322–333. [CrossRef]
  17. Nallan, H.; Sadie, J.; Kitsomboonloha, R.; Volkman, S.; Subramanian, V. Systematic Design of Jettable
  18. Nanoparticle-Based Inkjet Inks: Rheology, Acoustics and Jettability. Langmuir 2014, 30, 13470–13477.
  19. [CrossRef] [PubMed]
  20. Reis, N.; Derby, B. Ink Jet Deposition of Ceramic Suspensions: Modelling and Experiments of Droplet Formation;
  21. Chapter in MRS Online Proceeding Library Archive; Cambridge University Press: Cambridge, UK, 2000;
  22. Volume 624, pp. 117–122.
  23. Jang, D.; Kim, D.; Moon, J. Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 2009, 25,
  24. 2629–2635. [CrossRef] [PubMed]
  25. Tai, J.; Gan, H.Y.; Liang, Y.N.; Lok, B.K. Control of Droplet Formation in Inkjet Printing Using Ohnesorge
  26. Number Category: Materials and Processes. In Proceedings of the 10th Electronics Packaging Technology
  27. Conference, EPTC, Singapore, 9–12 December 2008; pp. 761–766.
  28. Box, G.; Wilson, K. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13,
  29. 1–45.
  30. Silva, V.; Rouboa, A. Optimizing the gasification operating conditions of forest residues by coupling a
  31. two-stage equilibrium model with a response surface methodology. Fuel Process. Technol. 2014, 122, 163–169.
  32. [CrossRef]
  33. Silva, V.; Rouboa, A. Optimizing the DMFC Operating Conditions using a Response Surface Method.
  34. Appl. Math. Comput. 2012, 218, 6733–6743. [CrossRef]
  35. Silva, V.; Rouboa, A. Combining a 2-D multiphase CFD model with a Response Surface Methodology to
  36. optimize the gasification of Portuguese biomasses. Energy Convers. Manag. 2015, 99, 28–40. [CrossRef]
  37. Frawley, P.; Corish, J.; Niven, A.; Geron, M. Combination of CFD and DOE to analyse solid particle erosion
  38. in elbows. Int. J. Comput. Fluid Dyn. 2009, 23, 411–426. [CrossRef]
  39. Morrison, N.F.; Harlen, O.G. Viscoelasticity in inkjet printing. Rheol. Acta 2010, 49, 619–632. [CrossRef]
  40. ANSYS Inc. ANSYS Fluent Tutorial Guide; Release 15.0; ANSYS Inc.: Canonsburg, PA, USA, November 2013.
  41. ANSYS Inc. ANSYS Fluent Theory Guide; Release 17.0; ANSYS Inc.: Canonsburg, PA, USA, January 2016.
  42. Dinsenmeyer, R.; Fourmigué, J.F.; Caney, N.; Marty, P. Volume of fluid approach of boiling flows in
  43. concentrated solar plants. Int. J. Heat Fluid Flow 2017, 65, 177–191. [CrossRef]
  44. Das, S.; Weerasiri, L.D.; Yang, W. Influence of surface tension on bubble nucleation, formation and onset of
  45. sliding. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 23–31. [CrossRef]
  46. Du, W.; Zhang, J.; Lu, P.; Xu, J.; Wei, W.; He, G.; Zhang, L. Advanced understanding of local wetting
  47. behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method. Chem. Eng. Sci.
  48. 2017, 170, 378–392. [CrossRef]
  49. Shrestha, S.; Chou, K. A build surface study of Powder-Bed electron beam additive manufacturing by
  50. 3D thermo-fluid simulation and white-light interferometry. Int. J. Mach. Tools Manuf. 2017, 121, 37–49.
  51. [CrossRef]
  52. Zhong, Y.; Fang, H.; Ma, Q.; Dong, X. Analysis of droplet stability after ejection from an inkjet nozzle. J. Fluid
  53. Mech. 2018, 845, 378–391. [CrossRef]
  54. Zhang, X. Dynamics of drop formation in viscous flows. Chem. Eng. Sci. 1999, 54, 1759–1774. [CrossRef]
  55. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 2001, 13, 3299–3305. [CrossRef]
  56. Kim, C.S.; Park, S.; Sim, W.; Kim, Y.; Yoo, Y. Modelling and characterization of an industrial inkjet head for
  57. micro-patterning on printed circuit boards. Comput. Fluids 2009, 38, 602–612. [CrossRef]
  58. ChemEngineering 2018, 2, 51 19 of 19
  59. Wang, P. Numerical Analysis of Droplet Formation and Transport of a Highly Viscous Liquid. Master’s Thesis,
  60. University of Kentucky, Lexington, KY, USA, 2014.
  61. Zhang, Z.; Xiong, R.; Corr, D.; Huang, Y. Study of Impingement Types and Printing Quality during Laser
  62. Printing of Viscoelastic Alginate Solutions. Langmuir 2016, 32, 3004–3014. [CrossRef] [PubMed]
  63. Derby, B. Inkjet Printing Ceramics: From Drops to Solid. J. Eur. Ceram. Soc. 2011, 31, 2543–2550. [CrossRef]
  64. Kim, E.; Baek, J. Numerical Study on the Effects of Non Dimensional Parameters on Drop-on-Demand
  65. Droplet Formation Dynamics and Printability Range in the up-Scaled Model. Phys. Fluids 2012, 24, 082103.
  66. [CrossRef]
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.

Effect of the surface morphology of solidified droplet on remelting
between neighboring aluminum droplets

Abstract

인접한 물방울 사이의 좋은 야금학적 결합은 droplet 기반 3D 프린팅에서 필수적입니다. 그러나 재용해 메커니즘이 명확하게 마스터되었지만, 콜드 랩은 균일한 알루미늄 액적 증착 제조에서 형성된 부품의 일반적인 내부 결함이며, 이는 응고된 액 적의 표면 형태를 간과하기 때문입니다.

여기에서 처음으로 물방울 사이의 융합에 대한 잔물결과 응고각의 차단 효과가 드러났습니다. 재용해의 자세한 과정을 조사하기 위해 VOF (체적 부피) 방법을 기반으로 3D 수치 모델을 개발했습니다. 실험과 시뮬레이션을 통해 인접한 액적 간의 재 용융 공정은 두 번째 액 적과 기판 사이의 과도 접촉에 따라 두 단계로 나눌 수 있음을 보여줍니다.

첫 번째 단계에서는 재용해 조건이 이론적으로 충족 되더라도 콜드 랩이 형성 될 수 있다는 직관적이지 않은 결과가 관찰됩니다. 이전에 증착된 액적 표면의 잔물결은 새로운 액적과의 직접 접촉을 차단합니다. 두 번째 단계에서는 응고 각도가 90 °보다 클 때 액체 금속이 불완전하게 채워져 바닥 표면에 콜드랩이 형성됩니다. 또한 이러한 콜드 랩은 온도 매개 변수를 개선하여 완전히 피하는 것이 어렵습니다.

이 문제를 해결하기 위해 기판의 열전도 계수를 감소시키는 새로운 전략이 제안 되었습니다. 이 방법은 잔물결을 제거하고 응고 각도를 줄임으로써 물방울 사이의 재용해를 효과적으로 촉진합니다.

Keywords: 3D printing; aluminum droplets; metallurgical bonding; ripples; solidification angle.

Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.

References

[1] D. Zhang, L. Qi, J. Luo, H. Yi, X. Hou, Direct fabrication of unsupported inclined aluminum pillars
based on uniform micro droplets deposition, International Journal of Machine Tools and Manufacture,
116 (2017) 18-24.
[2] H. Yi, L. Qi, J. Luo, Y. Jiang, W. Deng, Pinhole formation from liquid metal microdroplets impact
on solid surfaces, Applied Physics Letters, 108 (2016) 041601.
[3] T. Zhang, X. Wang, T. Li, Q. Guo, J. Yang, Fabrication of flexible copper-based electronics with
high-resolution and high-conductivity on paper via inkjet printing, Journal of Materials Chemistry C, 2
(2014) 286-294.
[4] T. Zhang, M. Hu, Y. Liu, Q. Guo, X. Wang, W. Zhang, W. Lau, J. Yang, A laser printing based
approach for printed electronics, Applied Physics Letters, 108 (2016) 103501.
[5] H. Gorter, M. Coenen, M. Slaats, M. Ren, W. Lu, C. Kuijpers, W. Groen, Toward inkjet printing of
small molecule organic light emitting diodes, Thin Solid Films, 532 (2013) 11-15.
[6] R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, High performance supercapacitor
for efficient energy storage under extreme environmental temperatures, Nano Energy, 8 (2014) 231-237.
[7] C.W. Visser, R. Pohl, C. Sun, G.W. Römer, B. Hu is in‘t Veld, D. Lohse, Toward 3D printing of
pure metals by laser‐induced forward transfer, Advanced materials, 27 (2015) 4087-4092.
[8] M. Fang, S. Chandra, C. Park, Heat transfer during deposition of molten aluminum alloy droplets to
build vertical columns, Journal of Heat Transfer, 131 (2009) 112101.
[9] Q. Xu, V. Gupta, E. Lavernia, Thermal behavior during droplet-based deposition, Acta materialia,
48 (2000) 835-849.
[10] W. Liu, G. Wang, E. Matthys, Thermal analysis and measurements for a molten metal drop
impacting on a substrate: cooling, solidification and heat transfer coefficient, International Journal of
Heat and Mass Transfer, 38 (1995) 1387-1395.
[11] R. Rangel, X. Bian, Metal-droplet deposition model including liquid deformation and substrate
remelting, International journal of heat and mass transfer, 40 (1997) 2549-2564.
[12] B. Kang, Z. Zhao, D. Poulikakos, Solidification of liquid metal droplets impacting sequentially on
a solid surface, TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS
JOURNAL OF HEAT TRANSFER, 116 (1994) 436-436.

Deep 코팅 검증계산

The Coating Application Using the Excellent Flow Modeling Software FLOW-3D

우수한 플로우 모델링 소프트웨어 FLOW-3D를 이용한 코팅 적용 연구

FLOW-3D는 미국 Flow Science Inc.에 의해 개발된 고유한 계산 유체 동적 프로그램입니다. FORE-3D는 FORDR(장애물 표현의 단편 영역 볼륨) 유한 차이 체계를 기반으로 Navier-Stokes 전체 솔버를 가지고 있습니다.

실제 VOF(Volume of Fluid) 알고리즘은 FLOW-3D에 통합되어 신뢰할 수 있는 자유 표면 흐름 분석을 제공합니다. FLOW-3D에는 다양한 물리적 모델이 있습니다. 따라서 FLOW-3D는 잉크젯 또는 코팅 등 광범위한 산업 영역에 사용됩니다.

본 논문에서는 FLOW-3D의 특징과 동적 접촉선의 직접 연산, 코팅 적용 예제를 설명합니다.

확대한 구형 방울
확대한 구형 방울
표면 파를 수반하는 세류의 시트 모양 흐름/세류가 축퇴하여 액적을 형성하는 예
표면 파를 수반하는 세류의 시트 모양 흐름/세류가 축퇴하여 액적을 형성하는 예
Deep 코팅 검증계산
Deep 코팅 검증계산
롤 코팅 검증계산
롤 코팅 검증계산
2層 コー テ ィング計算 例/ゆ っ くりした ウェ ブ接 近
2層 コー テ ィング計算 例/ゆ っ くりした ウェ ブ接 近
カー テ ン塗 布 のエ ッジ近 傍 にお け る塗 液流 れ解 析
カー テ ン塗 布 のエ ッジ近 傍 にお け る塗 液流 れ解 析
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids

Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method

낙하 형성 및 분리는 표면 장력 구동 흐름으로 인해 가늘어지는 유체 목의 형성을 포함하여 큰 위상 변화를 수반하며, 목의 pinch-off에서 Laplace pressure와 같은 속성은 유한한 시간 특이성을 나타냅니다. 드롭 형성 중에 발생하는 큰 위상 변형과 비선형성을 정확하게 시뮬레이션하는 것은 일반적으로 pinch-off 순간에 가까운 작은 특징을 해결하기 위해서는 고해상도 및 정확도가 필요하기 때문에 수치 시뮬레이션이 계산적으로 요구됩니다.

필요한 질량 및 계산 시간을 보존하고 인터페이스를 추적하는 데 내재된 이점에도 불구하고, 초기 실무자들이 물 점도가 10배 이상인 유체에 대한 수렴 문제를 보고했기 때문에 낙하 형성 연구에 VOF(Volume-of-fluid) 방법을 활용하는 연구는 거의 없습니다.

이 기여에서, 우리는 FLOW-3D에 구현된 VOF 방법을 사용하여 물 점도보다 4배 더 높은 점도 값을 포함하여 뉴턴 유체에 대한 드리프트의 원형 자유 표면 흐름을 시뮬레이션합니다. 우리는 이 연구의 일부로 수행된 실험에 대해 시뮬레이션된 목 모양, 목 진화 속도 및 헤어짐 길이를 벤치마킹합니다.

핀치오프 역학은 관성, 점성 및 모세관 응력의 복잡한 상호 작용에 의해 결정되며, 여기서 실험과 시뮬레이션 모두에서 대조되는 자기 유사 스케일링 법칙은 종종 역학에 대해 설명합니다. 우리는 시뮬레이션된 반지름 진화 프로파일이 축 대칭 흐름에 대한 뉴턴 유체에 대해 실험적으로 관찰되고 이론적으로 예측되는 핀치오프 역학과 일치함을 보여준다. 또한, 우리는 가는 목 안에서 법칙, 속도 및 변형 필드의 스케일링에 대한 사전 요인을 결정하고, 우리는 실험과 비교할 수 있는 중단 시간과 길이뿐만 아니라 사전 요인을 VOF 방법을 사용하여 시뮬레이션할 수 있음을 보여줍니다.

experimental setup, as shown schematically in Fig. 1(a), includes a dispensing system
experimental setup, as shown schematically in Fig. 1(a), includes a dispensing system
 A numerical simulation of drop formation from a cylindrical nozzle at a constant flow rate is performed. (c) Graphical representation of the VOF approach
A numerical simulation of drop formation from a cylindrical nozzle at a constant flow rate is performed. (c) Graphical representation of the VOF approach
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids. (a) A sequence of simulated images of water (0 wt. % glycerol) shows neck formation and subsequent thinning and pinch-off dynamics including the formation of the satellite drop. (b) A sequence of images shows neck radius evolution and drop detachment for the low viscosity fluid composed of 50 wt. % glycerol in water. The time step between images is 500 µs, and the scale bar represents a length of 1 mm for the two cases shown. The color bar shows the velocity field in units of cm/s. The addition of glycerol seems to exercise a relatively minor influence on pinch-off dynamics despite a five-fold increase in viscosity.
FIG. 3. Computed evolution of the minimum radius of the water neck during the drop formation and detachment process
FIG. 3. Computed evolution of the minimum radius of the water neck during the drop formation and detachment process. The instantaneous neck radius of water and the inertio-capillary fit are shown. The inset shows a self-similar nature of neck thinning dynamics close to a pinch-off moment. The characteristic cone angle of 18.1◦ as predicted by Day et al.50 and visualized in experiments52 is captured well using the VOF method.
FIG. 5. Glycerol thinning image sequence and break-up length visualization for three cases
FIG. 5. Glycerol thinning image sequence and break-up length visualization for three cases. (a) Glycerol thinning is shown through a sequence of snapshots with a time step ∆t = 5 ms and reveals quite different dynamics compared to previously seen for low viscosity fluids. The length of a filament changes significantly when the glycerol content increases above 70 wt. %. (b) Final lengths of the simulated liquid filaments before pinch-off for three cases of glycerol + water mixtures (0 wt. %, 70 wt. %, and 100 wt. %).
FIG. 8. Comparison of experiments and simulations for the case of a drop formation for 80 wt. % glycerol and water mixture
FIG. 8. Comparison of experiments and simulations for the case of a drop formation for 80 wt. % glycerol and water mixture. (a) A set of images obtained from experiments (upper row) and simulations (bottom row) with a time step of 1 ms show good agreement. The simulated drop profiles shown in the bottom row are colored by the velocity magnitude [ranging from 0 (dark blue) to 100 cm/s (red) and colored online], and velocity vectors are shown in the images. (b) Radius evolution with time of liquid filament formed during the drop formation process is shown on a log-log plot for the two cases.
education_banner

FLOW-3Dv12.0 온라인 교육

FLOW-3 D v12.0 온라인 교육 과정은 미국 FSI에서 제공되는 컨텐츠로 FLOW-3D 사용자(구매/임차 및 기술지원 계약이 되어 있는 고객)에게 제공되는 교육 리소스입니다. 이 온라인 교육 과정은 FLOW-3D 기본 모델 사용법 전반에 대한 온라인 주문형 비디오를 제공합니다.

각 과정에서는 사용자가 스스로 시뮬레이션을 설정할 수 있도록 예제와 설명을 제공합니다. 모든 신규 FLOW3D사용자는 프로젝트별 시뮬레이션 작업을 시작하기 전에 기본 과정을 완료하는 것이 좋습니다.

또한 기존 사용자는 FLOW3D v12.0모델 설정 프로세스에서 사용할 수 있는 향상된 기능과 새로운 기능에 대해 배우고 기본 모델 설정 항목에 대한 리프레시로 배우는 데 유용한 새로운 교육 시리즈를 찾게 될 것입니다. 과정 비디오는 특정 주제 및 세그먼트를 쉽게 찾을 수 있도록 구성되어 있고, 즐겨 찾기에 추가될 수 있으며, 언제든지 참조할 수 있는 유용한 리소스를 제공합니다.

본 교육 과정은 미국 본사 정책에 따라 유지보수 계약이 체결된 고객 ID를 통해 미국의 Users Site 에서 제공됩니다.

FLOW-3D Training Modules

FLOW-3D GUI PART 1 OF THE FLOW-3D V12.0 TRAINING SERIES

FLOW-3D GUI

  • Introduction to FLOW-3D graphical user interface
  • Simulation Manager Tab
  • Portfolio
  • Running Simulations and the Queue
  • Runtime Diagnostics: Text Output
  • Runtime Diagnostics: Plots
  • Runtime Controls
  • FLOW-3D File Structure
    Review the important files that are created when running simulations in FLOW-3D. Access the simulation files through a link on the Simulation Manager Tab. Identify the important setup and solver outputs files
Model Setup Tab PART 2 OF THE FLOW-3D V12.0 TRAINING SERIES

모델 설정 탭

  • Introduction to the Model Setup TabIntroduction to the Model Setup Tab including an orientation to its layout and how to access model inputs though the dock widgets on the process toolbar. Options for customizing the layout of the process toolbar are also reviewed.
  • Navigating the 3D ViewportLearn the basic controls for navigating the 3D viewport. This includes mouse controls, toolbar shortcuts, saving views, and moving the pivot point.
  • Other Menu/Toolbar Navigation Options
  • Working with Dock Widget Inputs
  • Model DependenciesRecognize and understand dock widget input dependencies.
Global Settings PART 3 OF THE FLOW-3D V12.0 TRAINING SERIES

전역 설정

  • Global Dock Widget Overview
  • Pressure Type
  • Finish Time
  • Finish Options: Additional Finish Condition
  • Finish Options: Active Simulation ControlDefine a logical condition to stop the simulation using active simulation control.
  • Restart OptionsHow to manually define the Restart options to continue running a previously completed simulation.
  • Version OptionsDefine the Version options to specify the solver version and the number of processors used when starting a new simulation run.
Physics Models PART 4 OF THE FLOW-3D V12.0 TRAINING SERIES

물리 모델

  • Physics Dock Widget OverviewDescription of the available options in the Physics dock widget
  • Interface Tracking, Number of Fluids and Flow ModeBackground information on interface tracking methods and defining the number of fluids. Description of the Volume of Fluid (VOF) method for simulation of complex free surfaces, and how this affects the selection of the number of fluids. Examples are presented for one fluid and two fluid simulations.
  • Activating Physics ModelsDemonstration for how to activate physics models and how to limit the display of inactive physics models using the physics model filter.
Fluid Properties PART 5 OF THE FLOW-3D V12.0 TRAINING SERIES

유체 속성

  • Fluids Dock Widget OverviewIntroduction to the Fluids dock widget and how to define properties for fluids in the simulation.
  • Defining Fluid Properties ManuallyExample for how to manually define fluid properties.
  • Defining Fluid Properties from the Materials DatabaseExample for how to load fluid properties from the fluids database.
  • Managing the Materials Database
    How to add and edit entries in the materials database.
Geometry PART 6 OF THE FLOW-3D V12.0 TRAINING SERIES

지오메트리

  • Introduction
  • Component and Subcomponent Overview
  • Creating Subcomponents: Overview
  • Creating Subcomponents: STL
  • Creating Subcomponents: Primitives Manually
  • Creating Subcomponents: Primitives Interactively
  • Creating Subcomponents: Raster
  • Subcomponent Types
  • Subcomponent Order
  • Component Order
  • Component and Subcomponent Properties
  • Transformations
Meshing PART 7 OF THE FLOW-3D V12.0 TRAINING SERIES

Meshing

  • Meshing Introduction
  • Coordinate Systems
  • FAVOR™
  • Meshing Basics: Meshing Overview
  • Meshing Basics: Creating Mesh Blocks
  • Meshing Basics: Domain Extents
  • Meshing Basics: Global Controls
  • Meshing Basics: Local Controls
  • Reviewing Mesh Quality: FAVORize
  • Reviewing Mesh Quality: Preprocessing
  • Multi-block Meshing
  • Conforming Mesh Blocks
  • Meshing Best Practices
Boundary Conditions PART 8 OF THE FLOW-3D V12.0 TRAINING SERIES

Boundary Conditions

  • Introduction
    Introductory comments regarding how boundary conditions are applied and other considerations when defining BCs.
  • Boundaries Dock Widget Overview
  • Velocity
  • Volume Flow Rate
  • Wall
  • Symmetry
  • Grid Overlay
  • Pressure
  • Continuative
  • Outflow
    Description and example setup of the Outflow BC type.
Initial Conditions PART 9 OF THE FLOW-3D V12.0 TRAINING SERIES

Initial Conditions

  • Introduction
    Discussion of how the initial conditions and can affect simulation results and run times.
  • Options for Defining ICs
    Example: Global Settings
    Example: Fluid Regions
  • Example: Function Coefficients
    Description and example for defining spatially varying fluid properties with user defined functions.
  • Example: Pointers
    Description and example for defining an initial condition by filling contiguous cells with the Pointer object.
Output Options PART 10 OF THE FLOW-3D V12.0 TRAINING SERIES

Output Options

  • Output Dock Widget Overview
  • Spatial Data
  • Spatial Data: Restart Data
  • Spatial Data: Selected Data
  • History Data
  • Diagnostics: Short Print Data
  • Diagnostics: Long Print Data
  • Example Setup
  • Batch Post-processing
  • Batch Mode: Context File
  • Batch Mode: Manual
  • Batch Mode: Generate Reports
Baffles PART 11 OF THE FLOW-3D V12.0 TRAINING SERIES

Baffles

Introduction
An introduction to the available options for creating and defining baffle objects.
Creating Baffle Objects
Limitations
Force Outputs
Porosity
Scalar Reset Options
Summary
A summary of the important options for creating baffles and defining properties.

Measurement Devices PART 12 OF THE FLOW-3D V12.0 TRAINING SERIES

Measurement Devices

  • History Probes 
    History probes are point measurement devices and are used to record solver output at a specific location. Examples are provided for how to create these objects interactively and by defining a coordinate value.
  • Flux Surfaces 
    Flux surfaces are a special type of baffle object with a fixed porosity of 1, and are used to calculate flux quantities. Examples are provided for how to create flux surfaces and the types of data available from their output.
  • Sampling volumes 
    Sampling volumes are are three-dimensional data collection regions. Examples are provided for how to create sampling volumes and the types of data available from their output.
W&E Exercise: Ogee Weir

W&E Exercise: Ogee Weir

  • This exercise demonstrates the steps to setup a basic free surface or open channel flow simulation in FLOW-3D. It is intended to be a simple and fast running simulation that demonstrates the key setup steps that can be applied to a wide range of other common open channel flow applications. In this exercise, we will simulate flow over an ogee weir to predict the discharge capacity. Simulation results can be validated against discharge rating curves obtained from physical model measurements (USBR, 1996).  Special attention is given to the common types of boundary conditions used in open channel flow simulations and how to select them during the model setup. We also provide examples for common post-processing tasks using both FLOW-3D and FlowSight.
aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics

우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 배출, 가스 배출 및 가압과 같은 추진 기능에 영향을 미칩니다. 어떤 경우에는 추진체 운동에 의해 생성되는 힘도 알아야합니다. 이것은 액체 질량이 전체 우주선 질량의 상당 부분을 포함할 때 특히 그렇습니다.

FLOW-3D: Aircraft Fuel Tank Sloshing
FLOW-3D: Aircraft Fuel Tank Sloshing : 회전과 가속을 하는 동안 전투기의 연료 탱크 시뮬레이션

Visualizing Non-Inertial Reference Frame Motion

연료 탱크 슬로싱은 연료의 slosh 역학을 구성하며, 여기서 연료의 역학은 컨테이너와 상호 작용하여 시스템 역학을 변경할 수 있습니다. 일반적으로 연료에는 자유 표면이 있습니다. FLOW-3D는 TruVOF를 사용한 정확한 자유 표면 추적으로 인해 연료 슬로싱 역학을 시뮬레이션하는 데 탁월한 소프트웨어입니다. 또한 FLOW-3D의 NIRF (Non-Inertial Reference Frame) 모듈을 사용하면 고정된 참조 프레임에서 연료 및 움직이는 컨테이너 (연료 탱크)를 시각화하기 위한 쉽고 계산 효율적인 설정이 가능합니다.

FLOW-3D의 NIRF 모듈 기능을 강조하기 위해 우주 왕복선의 연료 슬로 싱을 보여주는 샘플 시뮬레이션이 설정됩니다. 우주 왕복선은 처음 25 초 동안 위쪽으로 가속한 다음, 다음 25 초 동안 같은 양만큼 감속합니다. 그 후 각 가속도를 사용하여 셔틀이 90도 회전한 다음 다시 선형 가속을 계속합니다. 이 복잡한 우주 왕복선 기동 중에 복잡한 자유 표면 유체 운동을 보는 것은 흥미롭습니다. RNG 난류 모델은 유체의 난류 운동 에너지를 추정하는데 사용됩니다.

애니메이션의 왼쪽 창에는 FlowSight에서 생성 된 NIRF 시각화가 표시되고 오른쪽 뷰포트에는 FlowSight를 사용하여 다시 생성된 비 NIRF 시각화가 표시됩니다. NIRF 시각화는 고정된 기준 프레임에서 유체와 탱크의 움직임을 이해하는데 도움이되므로 시스템의 전반적인 역학을 보다 관련성 있게 강조 할 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Numerical modelling of a two-degree-of-freedom Wave Energy Converter

Energy Presentations | 에너지 프레젠테이션

Energy Presentations | 에너지 프레젠테이션

 지난 사용자 컨퍼런스에서 에너지 산업을위한 FLOW-3D의 응용에 초점을 맞춘 사용자 프레젠테이션을 다운로드하십시오  .

2019 년

Numerical modelling of a two-degree-of-freedom Wave Energy Converter: Creation, validation and utilization of the model

2 자유도 파동 에너지 변환기의 수치 모델링 : 모델의 생성, 검증 및 활용

Eliseo Marchesi, Politecnico di Milano / Studio Frosio srl
Marco Negri 및 Stefano Malavasi, Politecnico di Milano
Filippo Palo, XC Engineering Srl

Numerical modelling of a two-degree-of-freedom Wave Energy Converter
Numerical modelling of a two-degree-of-freedom Wave Energy Converter

이 연구의 목적은 FLOW-3D를 통한 수치 모델링입니다., Politecnico di Milano에서 실험실 규모 테스트를 거친 특정 Wave Energy Converter (WEC) : 두 개의 자유도 진동 체 시스템 인 EDS (Energy Double System), 급증하는 패들. 두 본체는 서로 연결되어 있으며 각각은 지상에 반응하는 PTO (Power Take-Off)에 연결됩니다. 수치 모델은주기적인 파동으로 사용 가능한 실험 테스트에 대해 검증되었습니다. 첫 번째 시뮬레이션은 실험실 테스트의주기적인 파동을 재현하는 것을 목표로했습니다. 그런 다음 실험 시스템에 해당하는 EDS의 수치 모델을 생성하고 이전에 모델링 한주기 파를 적용했습니다. 수치 방법의 품질이 확인되면 EDS 시스템의 새로운 구성에 대한 시뮬레이션이 수행되었습니다. 첫 번째 시뮬레이션 시리즈에서는이 매개 변수가 실험 모델에서 최적화되지 않았기 때문에이를 최적화하기 위해 패들 PTO의 댐핑이 변경되었습니다. 그 후, EDS 동작은 이전에 시뮬레이션 된 주기적 파동과 에너지 적으로 동일한 임의 파동에서 조사되었습니다.

다운로드

2015 년

Numerical simulation of extreme wave loading on an axisymmetric point absorber wave energy converter in a survival sea state

생존 해상 상태에서 축 대칭 점 흡수 파 에너지 변환기에 대한 극한 파 하중의 수치 시뮬레이션

Peter Arnold, Minerva Dynamics Limited

생존 해상 상태에서 파력 에너지 변환기 (WEC)가 경험할 수있는 힘과 모멘트의 초기 평가는 개념 설계 단계에서 특히 중요합니다. 현재까지 WEC의 생존 가능성을 평가하는 데 사용되는 주요 방법은 모델 규모 탱크 테스트이지만 일반적으로 10m에서 15m 범위의 상당한 파도 높이를 갖는 생존 파도의 크기로 인해 탱크 테스트 프로그램은 소규모를 사용해야합니다. 관련 계측 및 물리적 확장 문제가있는 스케일 프로토 타입 또는 관련 비용이 더 큰 대형 프로토 타입에 의존합니다. 보다 최근에 CFD는 더 작은 계산 비용으로 인해 불규칙한 파동 스펙트럼과는 반대로, 단독 집중 또는“New Waves”를 사용하여 정적 및 부동 구조에 대한 비선형 파동 부하를 평가하는 데 사용되었습니다. 그러나 이러한 초기 연구는 WEC 설계 엔지니어가 결과 부하의 통계적 분포를 필요로하기 때문에 WEC 생존에 필요한 조건 만 제공하지만 충분하지는 않습니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다.

다운로드

Wave propagation and reflection at an inclined plane – simulations and experiments

경사면에서의 파동 전파 및 반사 – 시뮬레이션 및 실험

Boris Huber, 비엔나 기술 대학교

20m 길이의 수로에서 물리적 모델 테스트를 수행하여 수로 끝의 경사면에서 파동 전파 및 반사를 관찰했습니다. 웨이브 생성은 익스텐더 휠에 의해 앞뒤로 움직이는 바닥에 장착 된 패들로 이루어졌습니다. 파도의 전파는 수위 측정에 의해 여러 지점에서 기록되었습니다. 실험은 다양한 파동으로 실행 된 다음 FLOW-3D 로 시뮬레이션되었습니다  . 또한 CFD 시뮬레이션에서 적절한 경계 조건을 얻기 위해 돌과 천공 시트로 구성된 파동 흡수 경계를 사용한 실험을 수행하고 다른 경계 조건에서 시뮬레이션을 실행했습니다.

다운로드

2013 년

Flap type wave power device in near shore conditions

해안 근처에서 플랩 형 파력 장치

Ibis Group, Inc의 Stephen Saunders

FLOW-3D  v10.1을 솔루션 코드로 사용하여 단일 이동 플랩 파 전력 캡처 장치의 CFD 분석을 수행했습니다  . 이 작업의 목적은 프로토 타입을 제작하고 배치하기 전에 의도 한 작업 환경에서 플랩이 겪는 힘을 예측하는 것입니다. FLOW-3D  는 이동하는 공기 / 물 인터페이스의 역학을 캡처하는 데 필요한 강력한 VOF 모델 때문에 경쟁 업체보다이 프로젝트에 선택되었습니다. 또한  FLOW-3D움직이는 고체 물체를 표현하는 FAVOR ™ 방법은 움직이는 플랩을 시뮬레이션하는 데 중요합니다. 플랩 형상의 성능을 시뮬레이션하고 다가오는 파도가 플랩 표면에 수직 인 해안 근처 조건에서 평가되었습니다. 테스트 된 모델은 플랩 끝 주변의 흐름 특성을 평가하기 위해 3D로 구성됩니다. 현재까지 두 개의 바다 상태가 테스트되었습니다. 이들은 플랩에 도달하는 즉시 깨지는 깨지지 않는 팽창 및 파도입니다. 예상대로 깨지지 않는 팽창은 중립의 양쪽에서 동일한 플랩 편향과 거의 대칭 인 부드러운 플랩 동작을 유도합니다. 파동 사례를 깨는 결과는 비대칭 동작과 하중으로 훨씬 더 극적입니다.

다운로드

Ocean waves resonance analysis of an oscillating water column energy converter

진동 수주 에너지 변환기의 해양 파도 공명 분석

José Manuel Grases ; 센데 키아

SDK Marine은 진동하는 수주 챔버 내의 물에 잠긴 수력 터빈을 기반으로 파도에서 전기 에너지를 수집하는 새로운 방법을 개발하고 있습니다. FLOW-3D  는 챔버 내부와 외부의 흐름 동작을 이해하는 데 사용되었습니다. 이 프로젝트의 주요 목표는 내부 수위를 측정하고이를 외부 파 여기와 비교하여 장치의 응답을 얻는 것이 었습니다. 또한 장치의 수력을 계산하기 위해 서로 다른 수력 터빈의 거동을 시뮬레이션하기 위해 서로 다른 다공성 멤브레인을 구현했습니다.

다운로드

collapsed-raised-fluid-column-figure-1-1

Steady-State Accelerator for Free-Surface Flows

자유 표면 흐름을 위한 정상 상태 가속기

이 기사에서 Tony Hirt 박사는 다가오는 FLOW-3D  v12.0 릴리스에서 사용할 수있는 새로운 Steady-State Accelerator에 대해 설명합니다  .

일시적인 흐름의 점근 적 상태를 계산하는 것보다 안정된 자유 표면 흐름을 생성하는 더 빠른 방법이 자주 필요합니다. 상황은 압축성 흐름 솔버를 사용하여 비압축성 흐름을 해결하는 것과 유사합니다. 후자의 경우 압축 파는 붕괴하는 데 오랜 시간이 걸리고 결과적으로 비압축성 흐름을 남길 수 있습니다. 이에 따라 자유 표면 흐름에서 유체는 비압축성이지만 표면 파동은 안정된 자유 표면 구성을 생성하는 데 오랜 시간이 걸릴 수 있습니다.

비압축성 흐름의 경우, 압축 파를 심각하게 감쇠시키는 반복적 인 프로세스 (즉, 압력-속도 반복)를 사용합니다. 물리적으로 반복은 압력과 같은 파동이 국부적 인 영역에 영향을 미치는 짧은 거리를 이동하도록 허용하지만 압력 장에 상당한 노이즈를 유발할 수있는 장거리 전파 및 반사를 피할 수있을만큼 빠르게 감쇠됩니다.

이 노트에서 자유 표면 셀에 적용된 간단한 압력 조정은 표면 교란에 대한 감쇠력으로 작용합니다. 이 댐핑은 안정적인 자유 표면 구성에 대한 접근을 가속화합니다.

Steady-State Accelerator Idea

유체 인터페이스 또는 자유 표면은  VOF (Volume-of-Fluid) 기술을 사용하여 FLOW-3D 에서 추적됩니다 . 유체 변수 F의 비율은 유체가 차지하는 영역을 찾습니다. 유체에 고정 된 자유 표면이있는 경우 유체를 정의하는 F 값도 안정된 값을 유지해야합니다. F가 일정하려면 표면에 수직 인 유체 속도가 0이어야합니다. 물론 표면에서의 접선 유체 속도는 0 일 필요는 없습니다. 예를 들어, 위어 위의 흐름에는 일정한 흐름이 있지만 계단에서 나오는 흐름의 위치와 모양은 변하지 않습니다.

자유 표면 흐름에 대한 정상 상태 솔버를 사용하려면 흐름의 비압축성을 유지하면서 정상 표면 속도를 0으로 유도하는 방법을 찾아야합니다.

이를 수행하는 한 가지 방법은 정상 속도를 0으로 유도하는 방식으로 표면 압력을 조정하는 것입니다. 특히 정상 속도에 비례하는 총 표면 압력에 “댐핑”압력 기여를 추가하는 것입니다. 속도는 표면 밖으로 향하고 그렇지 않으면 음수입니다.

정상 속도가 0에 가까워지면 수정 압력도 0이되어야 표면이 고정 위치를 초과하지 않게됩니다. 물론 보정이 너무 크면 오버 슈트가 발생할 수 있습니다. 따라서 안정적인 보정 적용을 위해서는 몇 가지 제한 요소가 있어야합니다.

계수 약어 ssacc 을 나타내며, S는 teady- S 테이트 액세서리 elerator이 새로운 옵션을 활성화하는 프로그램 입력에 추가되었다. ssacc 의 값 은 편리한 상한 인 1.0보다 작거나 같아야합니다. 프로그램 내에서 댐핑 압력에 자동으로 적용되는 여러 제한 기가 불안정 해 지거나 일시적인 현상에 악영향을 미치는 것을 방지합니다.

안정성 및 댐핑 리미터에 대한 이전 문제는 강조되어야합니다. 정상 상태 가속기를 사용하면 자유 표면 흐름의 모든 과도 현상이 더 이상 완전히 사실적인 것으로 볼 수 없습니다. 댐핑 압력은 물리적 인 힘이 아니라 파동 전파와 반사를 줄이는 메커니즘입니다. 댐퍼는 큰 과도 현상의 발생을 방해하지 않도록 고안되었으며 흐름이 안정됨에 따라 안정된 결과를보다 빠르게 얻는 데에만 기여해야합니다. 그러나 사용자는 리미터가 예상하지 못한 초과 댐핑에 대해 주의를 기울여야 합니다. 이는 댐핑 계수 ssacc 의 입력 값을 줄임으로써 제거 할 수 있습니다 .

두 가지 예는 정상 상태 가속기의 댐핑 메커니즘이 어떻게 작동하는지 보여줍니다.

Steady-State Accelerator Examples

Collapse of Raised Fluid Column

첫 번째 예는 길이 100cm, 깊이 5cm의 2 차원 물 웅덩이로 구성됩니다. 물을 담은 탱크의 모든 경계는 대칭 경계입니다. 수영장 중앙에는 폭 10cm, 높이 3cm의 수영장 위에 물 블록이 있습니다. 이 블록은 중력으로 인해 물에 떨어지고 충돌 지점에서 멀리 이동 한 다음 탱크 끝에서 반사되는 파도를 생성합니다. 100 초 후에도 반복되는 반사 때문에 여전히 상당한 파동 작용이 있습니다 (그림 1).

새로운 정상 상태 가속기를 계수 ssacc = 1.0 과 함께 사용하면 모든 파동이 빠르게 감쇠되어 거의 평평한 표면이됩니다. 일부 잔류 흐름은 표면 아래에 남아 있지만 점도의 작용으로 서서히 감쇠됩니다 (그림 2). 이 예에서 추가 된 댐핑은 특히 인상적입니다.

Figure 1. Column collapse without damping. Times of flow plots are 0.0, 10.0, and 100.0s. Bottom figure is the mean kinetic energy vs. time.
Figure 2. Column collapse with damping coefficient ssacc=1.0 at times of 0.0, 10.0 and 100.0s. Bottom figure is the mean kinetic energy vs. time.

 

사각형 격자에서 45 °의 정사각형 채널에서 모세관 상승

수직 채널에서 유체의 모세관 상승은 간단한 분석할 수 있으며 솔루션이 있는 양호한 정상 상태 문제입니다. 중력에 대해 상승 된 유체의 양은 벽의 접착력, 즉 접촉각의 코사인에 표면 장력 곱하기 접촉 선 길이에 의해 결정됩니다. 이 예에서 유체는 물이며 표면 장력은 70 dynes / cm이고 접촉각은 30 °입니다. 채널은 단면이 정사각형이며 가장자리 길이가 0.707cm이고 직사각형 격자에서 45 ° 회전합니다. 문제가 x 및 y 방향으로 대칭을 이루기 때문에 그리드의 사분면 만 모델링됩니다. 그리드의 바닥에는 제로 게이지 압력의 물이 있으며 그리드의 가장자리 길이는 0.0125cm (41x41x80 셀)입니다. 상승시켜야하는 이론적 유체 량은 0.04373cc입니다. 그림 3a는 정상 상태 결과를 보여줍니다. 이는 감쇠 사용 여부와 비슷합니다. 댐핑없이 계산된 유체의 양은 이론 값보다 1.74 % 높습니다. 그림 3b와 같이 댐핑이 있는 경우에는 2.24 %가 너무 높습니다. 가속기를 사용하면 정상 상태는 약 0.15 초에 도달하는 반면 표준 솔버는 0.8 초 후에 만 ​​정상 상태 솔루션을 생성하므로 5 배 이상 더 오래 걸립니다.

Figure 3a. Capillary rise in square channel without damping pressures.
Figure 3b. Histories of fluid volume in the two simulations (blue is with damping).

ssacc가 1.0보다 작으면 댐핑이 적어 수렴에 더 빨리 도달합니다. 1.0을 포함한 모든 ssacc 값은 댐핑되지 않은 ssacc = 0.0 경우와 비교하여 이론과 밀접하게 일치하고 후면 벽에 적은 양의 유체를 나타내는 수렴된 솔루션을 만듭니다.

뒤쪽 벽에있는 작은 유체 조각은 평형 위치를 초과하는 유체의 오버 슈트에서 발생하며, 이는 점성력으로 인해 정착하는 데 오랜 시간이 필요한 소량의 유체를 벽에 남기고 뒤로 떨어집니다. 이 오버 슈트는 ssacc 가 0이 아닐 때 제거됩니다 .

Figure2 Outline of a flap gate

FLAP GATE TO PREVENT URBAN AREA FROM TSUNAMI

Osamu Kiyomiya 1, and Kazuya Kuroki 2

1 일본 도쿄 와세다 대학교 토목 공학과 교수
2일본 도쿄 와세다 대학교   토목 공학과 학생

요약

저자들은 쓰나미로부터 보호하기 위해 플랩 게이트를 제안하고 게이트의 특성과 디자인 및 유압에 대한 연구를 시작했습니다. 쓰나미의 위험이 예상되면 몇 분 안에 플랩이 일어 서서 쓰나미 침해로부터 해안 거주 지역을 보호합니다.

이 백서에서는 플랩 게이트 설계에 필요한 파압 및 게이트 동작을 확인하기 위해 보어 파 생성기를 사용하여 수로 탱크에서 2 차원 유압 모델 테스트를 논의합니다. 또한, 모델 테스트 결과를 비교하기 위해 VOF 방법을 사용하여 쓰나미로 인한 수력 특성을 시뮬레이션했습니다.

수치 해석의 결과는 일반적으로 모델 테스트에서 얻은 결과를 추적했습니다. 그러나 수치 해석에서의 파압은 파단 조건에서 모델 시험 결과와 일치하지 않았습니다. Flow 3D에 의한 3 차원 FEM은 또한 플랩 게이트가 포트 입구에 설치된 포트 영역에서 쓰나미의 런업 동작을 시뮬레이션했습니다.

테스트와 계산을 통해 쓰나미 플랩 게이트는 항구 거주 지역에 대한 쓰나미 침해에 효율적입니다.

일본은 많은 생명과 재산을 잃은 해안선을 따라 많은 쓰나미 침해 이력을 가지고 있습니다. 최근에는 쓰나미가 수반되는 대규모 지진으로 인한 피해도 예측하고 있습니다. 따라서 해안 지역의 쓰나미 대책 개선이 요구됩니다. 저자들은 이러한 대책 중 하나로 플랩 게이트의 사용을 제안하고, 현재 수력 학적 특성에 대한 연구를 진행하고 있습니다.

그림 2에서 볼 수 있듯이 플랩 게이트는 하단 가장자리에 핀 메커니즘으로 설계되었으며 일반적으로 해저에 위치합니다. 쓰나미가 해안 지역을 강타 할 것으로 예상되면 플랩의 cell이 공기로 부풀려 부력이 빠르게 위로 떠오르게됩니다.

쓰나미가 지나간 후에는 문에있는 cell에 물이 채워져 다시 해저에 가라 앉습니다. 플랩 작동 시간은 쓰나미에 대해 몇 분으로 설정됩니다. 이탈리아의 “Progetto Moze”에서는 플랩 게이트의 작동 메커니즘이 이미 채택되었지만이 게이트는 폭풍 해일에는 적합하지만 쓰나미에는 적합하지 않습니다.

여기에 소개된 플랩 게이트는 해안 거주지의 쓰나미를 방지하기 위해 만이나 강 하구에 설치됩니다. 이 게이트는 도시의 쓰나미 침해를 막기 위해 해안선을 따라 육지에 설치할 수도 있습니다. 플랩 게이트 설치는 일본의 여러 지역에서 계획 단계에 있습니다. 플랩 게이트의 유효성을 확인하기 위해 유압 모델 테스트와 수치 시뮬레이션을 수행했습니다.  

Figure 1 Tsunami attacks coast line
Figure 1 Tsunami attacks coast line
Figure2 Outline of a flap gate
Figure2 Outline of a flap gate

OUTLINE OF MODEL TESTS

2.1 FLAP GATE 모델을  

부상 플랩 게이트의 두 종류가 있습니다: 첫 번째 유형은 플랩의 하부 표면에 설치된 스토퍼를 사용하여 플랩의 움직임을 제어하고 다른 하나는로드와 케이블로 트러스 메커니즘으로 플랩을 안정화합니다. 플랩은 바다 방향으로 자유롭게 이동하지만 육지로 이동할 수는 없습니다. 닫았을 때 수직이거나 바다쪽으로 기울어 진 플랩에 추가합니다.

Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)
Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)

그림 3 게이트의 초기 단계 그림 4 쓰나미 발생 (보어 웨이브) 모델의 규모는 S = 1 / 50으로 설정되었습니다. 플랩의 각도는 75°와 90°로 설정되었습니다. 텐션로드는수평에서 39° 각도로 똑 바르고 기울어 지도록 설정 됩니다. 인장로드는 직사각형 단면이 있는 3 개의 스테인리스 스틸 빔을 사용하여 제조되며 핀으로 연결됩니다. 초기 위치에서 텐션로드는 해저에 세 번 접힌 상태로 설치됩니다. 그림 3은 모델의 초기 설치 위치를 보여줍니다. 쓰나미 지루 파의 도착과 함께 플랩은 부력과 양력으로 인해 위로 떠 오릅니다. 수위가 0 일 때 보어 웨이브가 도착하더라도 수위가 상승하면 플랩이 즉시 위로 쉽게 이동할 수 있습니다. 이것은 플랩 게이트가 해안선을 따라 도로 또는 호안과 같은 육지 지역에 적용 가능하다는 것을 의미합니다. 플랩은 스티렌 폼으로 채워진 아크릴 및 폴리 염화 비닐 플레이트를 사용하여 제조되었습니다.

구조의 질량은 19.4kg이며, 모델 구조는 높이 475mm, 깊이 790mm, 두께 50mm입니다. 테스트는 그림 4에 표시된 게이트 리프트 보어 생성기를 사용하여 유량 탱크에서 수행되었습니다. 실험 수로 치수는 길이 25,000mm, 폭 1,000mm (수류 섹션) 및 높이 1,500mm입니다. 저수조는 수로 좌측에 위치하고 있으며, 무거운 무게로 현관 문 (보어 생성 게이트)을 빠르게 들어 올려 보어 웨이브를 생성합니다. 이 방법은 댐 파괴 방법이라고도합니다. 플랩 모델은 수로의 채널 바닥에 설치할 수 있도록 설계되었으며 길이 735mm, 깊이 100mm입니다.

2.2 측정 방법  

플랩 동작과 쓰나미 파형은 디지털 비디오 카메라를 사용하여 기록되었습니다. 용량 성 파고계 6 대를 설치하여 보어 파의 수위와 유속을 측정 하였다. 유속은 지정된 수위에서 미터 사이의 시간 차이를 측정 한 다음 미터 사이의 거리를 해당 시간 차이로 나누어 계산했습니다. 고정 모형 시험에서는 5cm 간격으로 9 개의 파압 계를 배치하여 파압을 측정 하였다. 진동 모델 테스트에서는 파동 압력 게이지를 5 개 위치에 설치하여 파압을 측정했습니다. 고정 모델 테스트에서는 플랩에서 작동하는 회전 모멘트를 측정하기 위해 플랩의 회전 중심에서 450mm 떨어진 위치에 플랩에 수직 인 위치에로드 셀을 부착했습니다. 진동 모델 테스트에서 스트레인 게이지는로드 장력을 측정하기 위해 플랩의 회전 중심에서 450mm 위치에로드에 부착되었습니다. 회전 모멘트는 힘의 수평 성분을 사용하여 계산되었습니다.  

테스트 결과는 아래 문서를 참고하시기 바랍니다.

Sketch of a subaerial landslide-induced tsunami wave

NUMERICAL SIMULATION OF THREE-DIMENSIONAL TSUNAMI GENERATION BY SUBAERIAL LANDSLIDES

SUBAERIAL LANDSLIDES에 의한 3 차원 쓰나미 생성의 수치 시뮬레이션

A Thesis by GYEONG-BO KIM
Submitted to the Office of Graduate Studies of
Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

초록

쓰나미는 해저 지진으로 인해 종종 발생하는 해안 지역에 영향을 미치는 가장 치명적인 자연 현상 중 하나입니다. 그럼에도 불구하고 밀폐된 분지, 즉 피요르드, 저수지 및 호수에서, 수중 또는 해저 산사태는 유사한 결과로 파괴적인 쓰나미를 일으킬 수 있습니다. 큰 수역에 충돌하는 수중 또는 해저 산사태가 쓰나미를 발생시킬 수 있지만, 해저 산사태는 대응하는 것보다 훨씬 더 위협적인 쓰나미 발생원입니다.

이 연구에서 우리는 지하 산사태에 의한 쓰나미 발생에 대한 실험실 규모의 실험을 수치 모델과 통합하는 것을 목표로 합니다. 이 작업은 2 개의 3 차원 Navier-Stokes (3D-NS) 모델, FLOW-3D 및 당사가 개발 한 모델 TSUNAMI3D의 수치 검증에 중점을 둡니다.

이 모델은 Georgia Institute of Technology의 Hermann Fritz 박사가 이끄는 쓰나미 연구팀이 수행 한 이전의 대규모 실험실 실험을 기반으로 검증되었습니다. 일련의 실험실 실험에서 세 가지 대규모 산사태 시나리오, 즉 피요르드 유사, 곶 및 원거리 해안선이 선택되었습니다. 이러한 시나리오는 복잡한 파도 장이 지하 산사태에 의해 생성 될 수 있음을 보여주었습니다.

파동 장의 정확한 정의와 진화는 뒤 따르는 쓰나미와 해안 지역에서의 영향을 정확하게 모델링하는 데 중요합니다. 이 연구에서는 수치 결과와 실험실 실험을 비교합니다. 토양 유변학에 대한 방법론과 주요 매개 변수는 모델 검증을 위해 정의됩니다. 모델의 결과는 쓰나미 수치 모델의 검증을 위해 National Tsunami Hazard Mitigation Program (NTHMP), National Oceanic and Atmospheric Administration (NOAA) 지침에 명시된 허용 오차 미만일 것으로 예상됩니다.

이 연구의 궁극적 인 목표는 멕시코만과 카리브해 지역의 침수지도를 구축하는 데 필요한 해저 산사태 쓰나미에 대한 3D 모델의 실제 적용을 위한 더 나은 쓰나미 계산 도구를 얻는 것입니다.

주요 분석 이미지

 Sketch of a subaerial landslide-induced tsunami wave
Figure 1.4: Sketch of a subaerial landslide-induced tsunami wave: (a) cross section
defining parameters in the direction of slide motion; (b) plan view defining coordinate
system to reference and quantify the generated tsunami wave
A typical computational domain with moving and stationary objects
Figure 2.1: A typical computational domain with moving and stationary objects. Courtesy Dr. Juan J. Horrillo, Texas A&M at Galveston.
A typical tsunami computational domain
Figure 2.2: A typical tsunami computational domain: (a) Location of variables in a computational cell. The horizontal (ui,j ) and vertical (vi,j ) velocity components are located at the right cell face and top cell faces, respectively. The pressure pi,j and VOF function Fi,j are located at the cell center; (b) Volume and side cell apertures. Courtesy Dr. Juan J. Horrillo, Texas A&M at Galveston.
Figure A.1: Configurations of boundary conditions for fjord case: FLOW-3D
Figure A.1: Configurations of boundary conditions for fjord case: FLOW-3D

<자료 안내>

원문 다운로드

Water & Environmental 논문 자료보기

Structured FAVOR™ grid in cylindrical coordinates

CFD Modeling Techniques | CFD 모델링 기술

Modeling Techniques

CFD를 폭넓게 사용한 적이 있는 사람이라면 누구나 사용할 최적의 수치 기법이 뭔가에 관한 개인적인 취향이나 선입견을 가지고 있습니다.  이 절에서는 저자가 사용한 모델링 기법의 일부와 그들이 다른 기법보다 나은 선택이라고 생각하는 이유에 대해 설명합니다.

Anyone who has used CFD extensively will have his own preferences and prejudices for what are the best numerical methods to use.  The articles in this section explain some of the modeling techniques the author has used and why he believes they are good choices with respect to other methods.

Structured FAVOR™ grid in cylindrical coordinates
Structured FAVOR™ grid in cylindrical coordinates

이 절에서는 FAVOR (Fractional-Area-Volume-Obstacle-Representation ) 법과 VOF (Volume-of-Fluid) 법에 중점을두고 있습니다.  복잡한 장애물 주위의 유체 흐름을 모델링하는 경우 많은 숙련자는 장애물의 형상으로 변형된 계산 격자를 사용하는 것을 선호합니다.  이러한 계산 격자는 일반적으로 물체 적합 격자(body-fitted grids)라고합니다.  대조적으로, FAVOR 법은 요소에 면적 점유율 및 체적 점유율이 할당된 생성이 용이한 사각형 격자가 사용됩니다.  이러한 방식의 관련성에 대해서는 FAVOR와 물체 적합 좌표계 및 No Loss with FAVOR의 절에서 논의되고 있습니다.

These articles center on the FAVOR (Fractional-Area-Volume-Obstacle-Representation) method and the VOF (Volume-of-Fluid) method.  When modeling fluid flow around complex obstacles many practitioners prefer to use computational grids that are deformed to the shape of the obstacles, these are generally referred to as body-fitted grids.  The FAVOR method, in contrast, employees easy to generate rectangular grids whose elements are assigned fractional areas and volumes.  The connection between these approaches is discussed in the articles FAVOR vs. Body-Fitted Coordinates and No Loss with FAVOR.

Structured FAVOR™ Grids

VOF와 FAVOR ™은 모두 표면 기반의 계