The impacts of profile concavity on turbidite deposits: Insights from the submarine canyons on global continental margins

프로필 오목부가 탁도 퇴적물에 미치는 영향: 전 세계 대륙 경계에 대한 해저 협곡의 통찰력

Kaiqi Yu a, Elda Miramontes bc, Matthieu J.B. Cartigny d, Yuping Yang a, Jingping Xu a
aDepartment of Ocean Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen 518055, Guangdong, China
bMARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germanyc
Faculty of Geosciences, University of Bremen, Bremen, Germany
dDepartment of Geography, Durham University, South Road, Durham DH1 3LE, UK

Received 10 August 2023, Revised 13 March 2024, Accepted 13 March 2024, Available online 17 March 2024, Version of Record 20 March 2024.

What do these dates mean?Show lessAdd to MendeleyShareCite rights and content


  • •The impact of submarine canyon concavity on turbidite deposition was assessed.
  • •Distribution of turbidite deposits varies with changes in canyon concavity.
  • •Three distinct deposition patterns were identified.
  • •The recognized deposition patterns align well with the observed turbidite deposits.


Submarine canyons are primary conduits for turbidity currents transporting terrestrial sediments, nutrients, pollutants and organic carbon to the deep sea. The concavity in the longitudinal profile of these canyons (i.e. the downstream flattening rate along the profiles) influences the transport processes and results in variations in turbidite thickness, impacting the transfer and burial of particles. To better understand the controlling mechanisms of canyon concavity on the distribution of turbidite deposits, here we investigate the variation in sediment accumulation as a function of canyon concavity of 20 different modern submarine canyons, distributed on global continental margins. In order to effectively assess the isolated impact of the concavity of 20 different canyons, a series of two-dimensional, depth-resolved numerical simulations are conducted. Simulation results show that the highly concave profile (e.g. Surveyor and Horizon) tends to concentrate the turbidite deposits mainly at the slope break, while nearly straight profiles (e.g. Amazon and Congo) result in deposition focused at the canyon head. Moderately concave profiles with a smoother canyon floor (e.g. Norfolk-Washington and Mukluk) effectively facilitate the downstream transport of suspended sediments in turbidity currents. Furthermore, smooth and steep upper reaches of canyons commonly contribute to sediment bypass (i.e. Mukluk and Chirikof), while low slope angles lead to deposition at upper reaches (i.e. Bounty and Valencia). At lower reaches, the distribution of turbidite deposits is consistent with the occurrence of hydraulic jumps. Under the influence of different canyon concavities, three types of deposition patterns are inferred in this study, and verified by comparison with observed turbidite deposits on the modern or paleo-canyon floor. This study demonstrates a potential difference in sediment transport efficiency of submarine canyons with different concavities, which has potential consequences for sediment and organic carbon transport through submarine canyons.


Submarine canyons are pivotal links in source-to-sink systems on continental margins (Sømme et al., 2009; Nyberg et al., 2018; Pope et al., 2022a, Pope et al., 2022b) that provide efficient pathways for moving prodigious volumes of terrestrial materials to the abyssal basin (Spychala et al., 2020; Heijnen et al., 2022). When turbidity currents, the main force that transports the above mentioned sediments (Xu et al., 2004; Xu, 2010; Talling et al., 2013; Stevenson et al., 2015), slow down after entering a flatter and/or wider stretch of the canyon downstream, the laden sediments settle, often rapidly, to form a deposit called turbidite that is known for organic carbon burial, hydrocarbon reserves and the accumulation of microplastics (Galy et al., 2007; Pohl et al., 2020a; Pope et al., 2022b; Pierdomenico et al., 2023). A set of flume experiments by Pohl et al. (2020b) revealed that the variation of bed slope plays a dominant role in controlling the sizes and locations of the deposit: a) a more gently dipping upper slope leads to upstream migration of upslope pinch-out; b) the increase of lower slope results in a decrease of the deposit thickness (Fig. 1a).

From upper continental slopes to deepwater basins, turbidity currents are commonly confined by submarine canyons that facilitate the longer distance transport of sediments (Eggenhuisen et al., 2022; Pope et al., 2022a; Wahab et al., 2022, Li et al., 2023a). The concavity, defined here as the downstream flattening rate of profiles (Covault et al., 2011; Chen et al., 2019; Seybold et al., 2021; Soutter et al., 2021a), of the longitudinal bed profile of the submarine canyons is therefore a key factor that determines hydrodynamic processes of turbidity currents, including the accumulation of sediments along the canyon thalweg (Covault et al., 2014; de Leeuw et al., 2016; Heerema et al., 2022; Heijnen et al., 2022). Due to the comprehensive impacts of sediment supply, grain size, climate change, regional tectonics, associated river and self-incision, the concavity of submarine canyons on global continental margins varies greatly (Parker et al., 1986; Harris and Whiteway, 2011; Casalbore et al., 2018; Nyberg et al., 2018; Soutter et al., 2021a, Li et al., 2023b), which is much more complex than the two constant slope setup of Pohl et al. (2020b)’s flume experiment (Fig. 1a). This raises the question of how the more complex concavity influences the dynamics of turbidity currents and the resultant distribution of turbidite deposits. For instance, the longitudinal profile concavity can also be increased by steepening the upper slope and/or gentling the lower slope of canyons (Fig. 1b). Parameters, known as significant factors influencing flow dynamics, include dip angle (Pohl et al., 2019), bed roughness (Baghalian and Ghodsian, 2020), obstacle presence (Howlett et al., 2019), and confinement conditions (Soutter et al., 2021b). However, the role of channel concavity in determining the downstream evolution of flow dynamics remains poorly understood (Covault et al., 2011; Georgiopoulou and Cartwright, 2013), and it is still unclear whether changes in concavity can result in different locations of pinch-out points and variations in turbidite deposit thicknesses (Pohl et al., 2020b).

In this study, we hypothesize that a more concave profile resulting from a steeper upper slope and a gentler lower slope may lead to a downstream migration of the upslope pinch-out and an increase of deposit thickness (Fig. 1b). This hypothesis is tested in 20 modern submarine canyons (shown in Fig. 2) whose longitudinal profiles are extracted from the GEBCO_2022 grid. Due to the lack of data describing the turbidite thickness trends in these canyons, we used a numerical model (FLOW-3D® software) to simulate the depositional process. The simulation results allow us to address at least two questions: (1) How does the concavity affect the distribution and thickness of turbidite deposits along the canyon thalwegs? (2) What is the impact of canyon concavity on the dynamics of the turbidity currents? Such answers on a global scale are undoubtedly helpful in understanding not only the sediment transport processes but also the efficient transfer and burial of organic carbon along global continental margins.

Section snippets

Submarine canyons used in this study

The longitudinal profiles of 20 modern submarine canyons are obtained using Global Mapper® from a public domain database GEBCO_2022 (doi: The GEBCO_2022 grid provides elevation data, in meters, on a 15 arc-second interval grid. The 20 selected submarine canyons, which span the typical distance covered by turbidity currents, have been chosen from a diverse range of submarine canyon and channel systems that extend at least 250 km

Concavity of longitudinal canyon profiles

The NCI and α values of all 20 canyon profiles utilized in this study are plotted in Fig. 4, indicating the majority of these submarine canyons typically exhibit a concave profile, characterized by a negative NCI, except for the Amazon. In most of the profiles, the NCI is lower than −0.08, with the most concave point (indicated by the minimum ratio α) located closer to the canyon head than to the profile end, and their upper reaches are steeper than lower reaches, typically observed as the

Validation of the hypothesis

As previously mentioned in this paper, one of the primary objectives of this study is to evaluate the hypothesis inferred from the flume tank experiment of Pohl et al. (2020b): whether a more concave canyon profile can exert a comparable influence on turbidite deposits as the steepness of the lower and upper slopes in a slope-break system (Fig. 1). Shown as the modeling results, the deposition pattern of this study is more ‘irregular’ compared with the flume tank experiment (Pohl et al., 2020b


Based on global bathymetry, this study simulates the depositional behavior of turbidity currents flowing through the 20 different submarine canyons on the margins of open ocean and marginal sea. Influenced by the different concavities, the resulted deposition patterns are characterized by a variable distribution of turbidite deposits.

  • 1)The simulation results demonstrate that the accumulation of turbidite deposits is primarily observed in downstream regions near the slope break for highly concave

CRediT authorship contribution statement

Kaiqi Yu: Writing – review & editing, Writing – original draft, Validation, Software, Methodology, Investigation, Conceptualization. Elda Miramontes: Writing – review & editing, Supervision, Conceptualization. Matthieu J.B. Cartigny: Writing – review & editing, Supervision. Yuping Yang: Software, Methodology. Jingping Xu: Writing – review & editing, Supervision, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.


This study is supported by the Shenzhen Natural Science Foundation (JCYJ20210324105211031). Matthieu J. B. Cartigny was supported by Royal Society Research Fellowship (DHF/R1/180166). We thank the Chief Editor Zhongyuan Chen, the associate editor and two reviewers for their constructive comments that helped us improve our manuscript.

References (70)

There are more references available in the full text version of this article.