Fig. 2. Design of the grate inlet types studied: (a) R1, (b) R2, (c) R3, (d) R4, (e) R5, (f) R6, (g) R7 (source: based on geometries of Chaparro Andrade and Abaunza Tabares, 2021)

쇠창살 격자 유입구의 수리효율 및 배출계수에 대한 3차원 수치적 평가

Melquisedec Cortés Zambrano*, Helmer Edgardo Monroy González,
Wilson Enrique Amaya Tequia
Faculty of Civil Engineering, Santo Tomas Tunja University. Address Av. Universitaria No. 45-202.
Tunja – Boyacá – Colombia

Abstract

홍수는 지반이동 및 이동의 원인 중 하나이며, 급속한 도시화 및 도시화로 인해 이전보다 빈번하게 발생할 수 있다. 도시 배수 시스템의 특성은 집수 요소가 결정적인 역할을 하는 범람의 발생 및 범위를 정의할 수 있습니다. 이 문서는 7가지 유형의 화격자 유입구의 수력 유입 효율 및 배출 계수에 대한 수치 조사를 제시합니다. FLOW-3D® 시뮬레이터는 Q = 24, 34.1, 44, 100, 200 및 300 L/s의 유속에서 풀 스케일로 격자를 테스트하는 데 사용되며 종방향 기울기가 1.0인 실험 프로토타입의 구성을 유지합니다. %, 1.5% 및 2.0% 및 고정 횡단 경사, 총 126개 모델. 그 결과를 바탕으로 종류별 및 종단경사 조건에 따른 수력유입구 효율곡선과 토출계수를 구성하였다. 결과는 다른 조사에서 제안된 경험적 공식으로 조정되어 프로토타입의 물리적 테스트 결과를 검증하는 역할을 합니다.

Floods are one of the causes of ground movement and displacement, and due to rapid urbanization and urban growth may occur more frequently than before. The characteristics of an urban drainage system can define the occurrence and extent of flooding, where catchment elements have a determining role. This document presents the numerical investigation of the hydraulic inlet efficiency and the discharge coefficient of seven types of grate inlets. The FLOW-3D® simulator is used to test the gratings at a full scale, under flow rates of Q = 24, 34.1, 44, 100, 200 and 300 L/s, preserving the configuration of the experimental prototype with longitudinal slopes of 1.0%, 1.5% and 2.0% and a fixed cross slope, for a total of 126 models. Based on the results, hydraulic inlet efficiency curves and discharge coefficients are constructed for each type and a longitudinal slope condition. The results are adjusted with empirical formulations proposed in other investigations, serving to verify the results of physical testing of prototypes.

Keywords

grate inlet, inlet efficiency, discharge coefficient, computational fluid dynamic, 3D modelling.

Fig. 1. Physical model of the experimental campaign (source: Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 1. Physical model of the experimental campaign (source: Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 2. Design of the grate inlet types studied: (a) R1, (b) R2, (c) R3, (d) R4, (e) R5, (f) R6, (g) R7 (source: based on geometries of Chaparro Andrade
and Abaunza Tabares, 2021)
Fig. 2. Design of the grate inlet types studied: (a) R1, (b) R2, (c) R3, (d) R4, (e) R5, (f) R6, (g) R7 (source: based on geometries of Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 4. Comparison between the results obtained during physical experimentation in prototype 7 and simulation results with FLOW-3D® (source:
made with FlowSight® and photographic record by Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 4. Comparison between the results obtained during physical experimentation in prototype 7 and simulation results with FLOW-3D® (source: made with FlowSight® and photographic record by Chaparro Andrade and Abaunza Tabares, 2021)
Fig. 6. Example of the results of flow depth and velocity vectors in the xy plane, for a stable flow condition in a grate inlet type and free surface
configuration and flow regime, of some grating types (source: produced with FlowSight®)
Fig. 6. Example of the results of flow depth and velocity vectors in the xy plane, for a stable flow condition in a grate inlet type and free surface configuration and flow regime, of some grating types (source: produced with FlowSight®)

References

Alia Md., S., and Sabtu, N. (2020). Comparison of Different Methodologies for Determining the Efficiency of Gully Inlets. In F. M.
Nazri (Ed.), Proceedings of AICCE‘19: Transforming the Nation
for a Sustainable Tomorrow (Vol. 53, pp. 1275-1284). Springer
Nature Switzerland AG. https://doi.org/10.1007/978-3-030-
32816-0_99
Antunes do Carmo, J. S. (2020). Physical Modelling vs. Numerical Modelling: Complementarity and Learning. July. https://doi.
org/10.20944/preprints202007.0753.v1
Aragón-Hernández, J. L. (2013). Modelación numérica integrada de los procesos hidráulicos en el drenaje urbano [Universidad Politécnica de Cataluña]. In Doctoral Tesis. https://
upcommons.upc.edu/handle/2117/95059?locale-attribute=es
Argue, J. R., and Pezzaniti, D. (1996). How reliable are inlet
(hydraulic) models at representing stormwater flow? Science
of the Total Environment, 189-190, 355-359. https://doi.org/10.1016/0048-9697(96)05231-X
Banco Mundial, O. (2019). Agua: Panorama general. https://
www.bancomundial.org/es/topic/water/overview
Cárdenas-Quintero, M., Carvajal-Serna, L. F., and Marbello-Pérez, R. (2018). Evaluación numérica tridimensional de un
sumidero de reja de fondo (Three-Dimensional Numerical Assessment of Grate Inlet). SSRN Electronic Journal, November.
https://doi.org/10.2139/ssrn.3112980
Carvalho, R. F., Lopes, P., Leandro, J., and David, L. M. (2019).
Numerical Research of Flows into Gullies with Different Outlet Locations. Water, 11(2), 794. https://doi.org/10.3390/
w11040794
Chaparro Andrade, F. G., and Abaunza Tabares, K. V. (2021). Importancia de los sumideros, su funcionamiento y diseño en redes de alcantarillado caso de estudio sector nororiental Tunja.
Universidad Santo Tomás.
Cortés Zambrano, M., Amaya Tequia, W. E., and Gamba Fernández, D. S. (2020). Implementation of the hydraulic modelling of
urban drainage in the northeast sector, Tunja, Boyacá. Revista
Facultad de Ingeniería Universidad de Antioquia. https://doi.
org/10.17533/udea.redin.20200578
Cosco, C., Gómez, M., Russo, B., Tellez-Alvarez, J., Macchione, F., Costabile, P., and Costanzo, C. (2020). Discharge coefficients for specific grated inlets. Influence of the Froude
number. Urban Water Journal, 17(7), 656-668. https://doi.org/10.1080/1573062X.2020.1811881
Despotovic, J., Plavsic, J., Stefanovic, N., and Pavlovic, D. (2005).
Inefficiency of storm water inlets as a source of urban floods.
Water Science and Technology, 51(2), 139-145. https://doi.
org/10.2166/wst.2005.0041
Ellis, J. B., and Marsalek, J. (1996). Overview of urban drainage:
Environmental impacts and concerns, means of mitigation and
implementation policies. Journal of Hydraulic Research, 34(6),
723-732. https://doi.org/10.1080/00221689609498446
Fang, X., Jiang, S., and Alam, S. R. (2010). Numerical simulations of efficiency of curb-opening inlets. Journal of Hydraulic
Engineering, 136(1), 62-66. https://doi.org/10.1061/(ASCE)
HY.1943-7900.0000131
Faram, M. G., and Harwood, R. (2000). CFD for the Water Industry; The Role of CFD as a Tool for the Development of Wastewater Treatment Systems. Hydro International, 21-22.
Faram, M. G., and Harwood, R. (2002). Assessment of the
effectiveness of stormwater treatment chambers using
computational fluid dynamics. Global Solutions for Urban Drainage, 40644(September 2002), 1-14. https://doi.
org/10.1061/40644(2002)7
Flow Science, I. (2018). FLOW-3D® Version 12.0 Users Manual.
In FLOW-3D [Computer software]. https://www.flow3d.com
Flow Science, I. (2019). FLOW-3D® Version 12.0 [Computer software] (No. 12). https://www.flow3d.com
Ghanbari, R., and Heidarnejad, M. (2020). Experimental and numerical analysis of flow hydraulics in triangular and rectangular
piano key weirs. Water Science, 00(00), 1-7. https://doi.org/10.
1080/11104929.2020.1724649

Gómez, M., and Russo, B. (2005a). Comparative study of methodologies to determine inlet efficiency from test data. HEC-12
methodology vs UPC method. Water Resources Management,
Algarve, Portugal., 80(October 2014), 623-632. https://doi.
org/10.2495/WRM050621
Gómez, M., and Russo, B. (2005b). Comparative study among
different methodologies to determine storm sewer inlet efficiency from test data. 10th International Conference on Urban
Drainage, August, 21-26. https://www.researchgate.net/publication/255602448_Comparative_study_among_different_methodologies_to_determine_storm_sewer_inlet_efficiency_
from_test_data
Gómez, M., Recasens, J., Russo, B., and Martínez-Gomariz, E.
(2016). Assessment of inlet efficiency through a 3D simulation: Numerical and experimental comparison. Water Science
and Technology, 74(8), 1926-1935. https://doi.org/10.2166/
wst.2016.326
Gómez, M., and Russo, B. (2011). Methodology to estimate hydraulic efficiency of drain inlets. Proceedings of the Institution of
Civil Engineers: Water Management, 164(2), 81-90. https://doi.
org/10.1680/wama.900070
Gómez Valentin, M. (2007). Hidrología urbana. In Hidrología Urbana (pp. 135-147). Instituto Flumen.
Jakeman, A. J., Letcher, R. A., and Norton, J. P. (2006). Ten iterative steps in development and evaluation of environmental
models. Environmental Modelling and Software, 21, 602-614.
https://doi.org/10.1016/j.envsoft.2006.01.004
Jang, J. H., Hsieh, C. T., and Chang, T. H. (2019). The importance of gully flow modelling to urban flood simulation. Urban Water Journal, 16(5), 377-388. https://doi.org/10.1080/1573062X.2019.1669198
Kaushal, D. R., Thinglas, T., Tomita, Y., Kuchii, S., and Tsukamoto, H. (2012). Experimental investigation on optimization of
invert trap configuration for sewer solid management. Powder Technology, 215-216, 1-14. https://doi.org/10.1016/j.powtec.2011.08.029
Khazaee, I., and Mohammadiun, M. (2010). Effects of flow field
on open channel flow properties using numerical investigation
and experimental comparison. International Journal of Energy
and Environment, 1(6), 1083-1096. https://doi.org/10.1016/
S0031-9384(10)00122-8
Kleidorfer, M., Tscheikner-Gratl, F., Vonach, T., and Rauch, W.
(2018). What can we learn from a 500-year event? Experiences
from urban drainage in Austria. Water Science and Technology,
77(8), 2146-2154. https://doi.org/10.2166/wst.2018.138
Leitão, J. P., Simões, N. E., Pina, R. D., Ochoa-Rodriguez, S.,
Onof, C., and Sá Marques, A. (2017). Stochastic evaluation of
the impact of sewer inlets‘ hydraulic capacity on urban pluvial
flooding. Stochastic Environmental Research and Risk Assessment, 31(8), 1907-1922. https://doi.org/10.1007/s00477-016-
1283-x
Lopes, P., Leandro, J., Carvalho, R. F., Russo, B., and Gómez, M.
(2016). Assessment of the ability of a volume of fluid model to
reproduce the efficiency of a continuous transverse gully with
grate. Journal of Irrigation and Drainage Engineering, 142(10),
1-9. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001058
Mohsin, M., and Kaushal, D. R. (2016). 3D CFD validation of invert trap efficiency for sewer solid management using VOF model. Water Science and Engineering, 9(2), 106-114. https://doi.
org/10.1016/j.wse.2016.06.006
Palla, A., Colli, M., Candela, A., Aronica, G. T., and Lanza, L.
G. (2018). Pluvial flooding in urban areas: the role of surface
drainage efficiency. Journal of Flood Risk Management, 11,
S663-S676. https://doi.org/10.1111/jfr3.12246
Russo, B. (2010). Design of surface drainage systems according
to hazard criteria related to flooding of urban areas [Universitat
Politècnica de Catalunya]. https://dialnet.unirioja.es/servlet/
tesis?codigo=258828
Sedano-Cruz, K., Carvajal-Escoar, Y., and Ávila Díaz, A. J. (2013).
ANÁLISIS DE ASPECTOS QUE INCREMENTAN EL RIESGO
DE INUNDACIONES EN COLOMBIA. Luna Azul, 37, 219-218.
https://www.redalyc.org/articulo.oa?id=321729206014
Spaliviero, F., May, R. W. P., Escarameia, M. (2000). Spacing of road gullies. Hydraulic performance of BS EN 124 gully gratings. HR Walingford, 44(0). https://doi.org/10.13140/
RG.2.1.1344.0889
Téllez-Álvarez, J., Gómez, M., and Russo, B. (2020). Quantification of energy loss in two grated inlets under pressure. Water
(Switzerland), 12(6). https://doi.org/10.3390/w12061601
Téllez Álvarez, J., Gómez, V., Russo, B., and Redondo, J. M.
(2003). Performance assessment of numerical modelling
for hydraulic efficiency of a grated inlet. 1, 6-8. https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004
Téllez Álvarez, J., Gómez Valentin, M., Paindelli, A., and Russo,
B. (2017). ACTIVIDAD EXPERIMENTAL DE I+D+i EN INGENIERÍA
HIDRÁULICA EN ESPAÑA. In L. J. Balairón Pérez and D. López
Gómez (Eds.), Seminario 2017, Comunicaciones de las líneas prioritarias (pp. 41-43). Universitat Politècnica de València.
https://doi.org/10.1017/CBO9781107415324.004
Téllez Álvarez, J., Gómez Valentin, M., and Russo, B. (2019).
Modelling of Surcharge Flow Through Grated Inlet. In P. Gourbesville and G. Caignaert (Eds.), Advances in Hydroinformati-

cs. Springer, Singapore. https://doi.org/10.1007/978-981-
4451-42-0
UNDRR, I., and CRED, I. (2018). Pérdidas económicas, pobreza y
Desastres 1998 – 2017 (Vol. 6, Issue 1). https://doi.org/10.12962/
j23373520.v6i1.22451
Vyzikas, T., and Greaves, D. (2018). Numerial Modelling.
In D. Greaves and G. Iglesias (Eds.), Wave and Tidal Energy (pp. 289-363). John Wiley and Sons Ltd. https://doi.
org/10.1002/9781119014492
Yakhot, V., and Orszag, S. A. (1986). Renormalization Group Analysis of Turbulence. I . Basic Theory. Journal of Scientific Computing, 1(1), 3-51. https://doi.org/10.1007/BF01061452
Yakhot, V., and Smith, L. M. (1992). The renormalization group,
the ɛ-expansion and derivation of turbulence models. Journal
of Scientific Computing, 7(l), 35-61. https://doi.org/10.1007/
BF01060210
Yazdanfar, Z., and Sharma, A. (2015). Urban drainage system
planning and design – Challenges with climate change and urbanization: A review. Water Science and Technology, 72(2), 165-https://doi.org/10.2166/wst.2015.207