텅스텐 카바이드의 초고속 레이저 제거: 임계값 범위의 정량화 및 특징 전환 해석
Xiong Zhang, Chunjin Wang, Benny C. F. Cheung, Gaoyang Mi, Chunming Wang
First published: 07 February 2024
https://doi.org/10.1111/jace.19718
Abstract
Tungsten carbide was manufactured by picosecond laser in this study. Shapes of the ablated craters evolved from parabolic-like (less than 10 pulses) to Gaussian-like (more than 500 pulses) as the pulse number increased. The shape changes were closely associated with the discontinuous diameter expansion of ablated crater. To explain these phenomena, two thresholds were identified: an upper threshold of 0.129 J/cm2 and a lower threshold of 0.099 J/cm2. When the laser energy exceeded the upper threshold, ablation occurred under the laser-energy-dominated mode. When the laser energy fell between the upper and lower thresholds, ablation occurred under the cumulative-effect-dominated mode. The transition of ablation mode contributed to the diameter expansion and shape change. In addition, elemental composition varied significantly at the ablated crater and heat-affected zone (HAZ), which were related to the degrees of reactions that occurred at different distances from the laser. Finally, surface hardness decreased from base material (32.52 GPa) to edge of crater (11.59 GPa) due to the escape of unpaired interstitial C atoms from the grain boundaries.
References
- 1Sun JL, Zhao J, Huang ZF, Yan K, Shen X, Xing J, et al. A review on binderless tungsten carbide: development and application. Nano-Micro Lett. 2020; 12(1): 37.ViewPubMedWeb of Science®Google Scholar
- 2Katiyar PK. A comprehensive review on synergy effect between corrosion and wear of cemented tungsten carbide tool bits: a mechanistic approach. Int J Refract Met Hard Mat. 2020; 92: 18.ViewCASWeb of Science®Google Scholar
- 3Sun JL, Zhao J, Gong F, Ni XY, Li ZL. Development and application of WC-based alloys bonded with alternative binder phase. Crit Rev Solid State Mat Sci. 2019; 44(3): 211–238.ViewCASWeb of Science®Google Scholar
- 4Lopez JML, Bakrania A, Coupland J, Marimuthu S. Droplet assisted laser micromachining of hard ceramics. J Eur Ceram Soc. 2016; 36(11): 2689–2694.ViewWeb of Science®Google Scholar
- 5Chen FJ, Yin SH, Huang H, Homori H, Wang Y, Fan YF, et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. Int J Mach Tools Manuf. 2010; 50(5): 480–486.ViewWeb of Science®Google Scholar
- 6Guo B, Zhao QL. On-machine dry electric discharge truing of diamond wheels for micro-structured surfaces grinding. Int J Mach Tools Manuf. 2015; 88: 62–70.ViewWeb of Science®Google Scholar
- 7Sciti D, Zoli L, Silvestroni L, Cecere A, Di Martino GD, Savino R. Design, fabrication and high velocity oxy-fuel torch tests of a Cf-ZrB2-fiber nozzle to evaluate its potential in rocket motors. Mater Des. 2016; 109: 709–717.ViewCASWeb of Science®Google Scholar
- 8Jiang G, Minhao G, Zhiguang Z, Xiaohua L, Nai MLS, Jun W. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater Des. 2018; 153: 211–220.ViewWeb of Science®Google Scholar
- 9Mishra S, Yadava V. Laser beam micromachining (LBMM)—a review. Opt Lasers Eng. 2015; 73: 89–122.ViewWeb of Science®Google Scholar
- 10Ali B, Litvinyuk IV, Rybachuk M. Femtosecond laser micromachining of diamond: current research status, applications and challenges. Carbon. 2021; 179: 209–226.ViewCASWeb of Science®Google Scholar
- 11Sansone M, De Bonis A, Santagata A, Rau JV, Galasso A, Teghil R. Pulsed laser ablation and deposition of niobium carbide. Appl Surf Sci. 2016; 374: 112–116.ViewCASWeb of Science®Google Scholar
- 12Wang HP, Guan YC, Zheng HY, Hong MH. Controllable fabrication of metallic micro/nano hybrid structuring surface for antireflection by picosecond laser direct writing. Appl Surf Sci. 2019; 471: 347–354.ViewCASWeb of Science®Google Scholar
- 13Jiangyou L, Zhijian H, Caixia Z, Xiaozhu X, Zuo C, Peiyang Z, et al. Hierarchical micro- and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance. Mater Des. 2018; 155: 185–193.ViewWeb of Science®Google Scholar
- 14Zemaitis A, Gecys P, Barkauskas M, Raciukaitis G, Gedvilas M. Highly-efficient laser ablation of copper by bursts of ultrashort tuneable (fs-ps) pulses. Sci Rep. 2019; 9: 8.ViewPubMedWeb of Science®Google Scholar
- 15Basler C, Brandenburg A, Michalik K, Mory D. Comparison of laser pulse duration for the spatially resolved measurement of coating thickness with laser-induced breakdown spectroscopy. Sensors. 2019; 19(19): 10.ViewWeb of Science®Google Scholar
- 16Qin Z, Xiang H, Liu J, Zeng X. High-performance oil-water separation polytetrafluoroethylene membranes prepared by picosecond laser direct ablation and drilling. Mater Des. 2019; 184:108200.ViewCASWeb of Science®Google Scholar
- 17Eberle G, Wegener K. Ablation study of WC and PCD composites using 10 picosecond and 1 nanosecond pulse durations at green and infrared wavelengths. In: 8th International Conference on Laser Assisted Net Shape Engineering (LANE); 2014 Sep 08–11, Furth, Germany. Amsterdam: Elsevier Science; 2014. p. 951–962.Google Scholar
- 18Boerner P, Zandonadi G, Eberle G, Wegener K. Experimental and modelling investigations into the laser ablation with picosecond pulses at second harmonics. In: Conference on laser-based micro- and nanoprocessing IX; 2015 Feb 10–12 San Francisco, CA. Bellingham: SPIE, the international society for optics and photonics; 2015. p. 19–31.Google Scholar
- 19Urbina JPC, Daniel C, Emmelmann C. Experimental and analytical investigation of cemented tungsten carbide ultra-short pulse laser ablation. In: 7th International WLT conference on Lasers in Manufacturing (LiM), 2013 May 13–16, Munich, Germany. Amsterdam: Elsevier Science; 2013. p. 752–758.Google Scholar
- 20Stankevic V, Cermak A, Mikalauskas S, Kozmin P, Indrisiunas S, Raciukaitis G. Processing of ultra-hard materials with picosecond pulses: from research work to industrial applications. J Laser Appl. 2018; 30(3): 7.ViewWeb of Science®Google Scholar
- 21Lickschat P, Metzner D, Weissmantel S. Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide. Int J Adv Manuf Technol. 2020; 109(3–4): 1167–1175.ViewWeb of Science®Google Scholar
- 22Ouyang JL, Mativenga PT, Liu Z, Li L. Energy consumption and process characteristics of picosecond laser de-coating of cutting tools. J Cleaner Prod. 2021; 290: 10.ViewWeb of Science®Google Scholar
- 23Metzner D, Lickschat P, Weissmantel S. Laser micromachining of silicon and cemented tungsten carbide using picosecond laser pulses in burst mode: ablation mechanisms and heat accumulation. Appl Phys A-Mater Sci Process. 2019; 125(7): 8.ViewWeb of Science®Google Scholar
- 24Marimuthu S, Dunleavey J, Smith B. Picosecond laser machining of tungsten carbide. Int J Refract Met Hard Mat. 2020; 92: 9.ViewWeb of Science®Google Scholar
- 25Mensink K, Penilla EH, Martinez-Torres P, Cuando-Espitia N, Mathaudhu S, Aguilar G. High repetition rate femtosecond laser heat accumulation and ablation thresholds in cobalt-binder and binderless tungsten carbides. J Mater Process Technol. 2019; 266: 388–396.ViewCASWeb of Science®Google Scholar
- 26Miley G, Osman F, Hora H, Badziak J, Rohlena K, Jungwirth K, et al. Plasma block acceleration by ps-TW laser irradiation. In High-Power Laser Ablation V: SPIE; 2004. p. 973–986.Google Scholar
- 27Alidokht SA, Yue S, Chromik RR. Effect of WC morphology on dry sliding wear behavior of cold-sprayed Ni–WC composite coatings. Surf Coat Technol. 2019; 357: 849–863.ViewCASWeb of Science®Google Scholar
- 28Gao D, Li YH. An improved Gaussian laser beam probability distribution simulation based on Monte Carlo method. Mod Phys Lett B. 2020; 34(36): 9.ViewWeb of Science®Google Scholar
- 29Garcia-Lechuga M, Puerto D, Fuentes-Edfuf Y, Solis J, Siegel J. Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures. ACS Photonics. 2016; 3(10): 1961–1967.ViewCASWeb of Science®Google Scholar
- 30Bashir S, Rafique MS, Nathala CSR, Ajami A, Husinsky W. SEM and Raman spectroscopy analyses of laser-induced periodic surface structures grown by ethanol-assisted femtosecond laser ablation of chromium. Radiat Eff Defects Solids. 2015; 170(5): 414–428.ViewCASWeb of Science®Google Scholar
- 31Erfanmanesh M, Abdollah-Pour H, Mohammadian-Semnani H, Shoja-Razavi R. Kinetics and oxidation behavior of laser clad WC–Co and Ni/WC–Co coatings. Ceram Int. 2018; 44(11): 12805–12814.ViewCASWeb of Science®Google Scholar
- 32Petisme MVG, Johansson SAE, Wahnstrom G. A computational study of interfaces in WC–Co cemented carbides. Model Simul Mater Sci Eng. 2015; 23(4): 29.ViewWeb of Science®Google Scholar
- 33Kornaus K, Raczka M, Gubernat A, Zientara D. Pressureless sintering of binderless tungsten carbide. J Eur Ceram Soc. 2017; 37(15): 4567–4576.ViewCASWeb of Science®Google Scholar
- 34Kong XS, You YW, Xia JH, Liu CS, Fang QF, Luo GN, et al. First principles study of intrinsic defects in hexagonal tungsten carbide. J Nucl Mater. 2010; 406(3): 323–329.ViewCASWeb of Science®Google Scholar
- 35Wu X, Shen JY, Jiang F, Wu HR, Li L. Study on the oxidation of WC–Co cemented carbide under different conditions. Int J Refract Met Hard Mat. 2021; 94: 8.ViewWeb of Science®Google Scholar
- 36Rethfeld B, Ivanov DS, Garcia ME, Anisimov SI. Modelling ultrafast laser ablation. J Phys D: Appl Phys. 2017; 50(19):193001.ViewWeb of Science®Google Scholar
- 37Juslin N, Erhart P, Traskelin P, Nord J, Henriksson KOE, Nordlund K, et al. Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system. J Appl Phys. 2005; 98(12): 12.ViewWeb of Science®Google Scholar
- 38Sevy A, Huffaker RF, Morse MD. Bond dissociation energies of tungsten molecules: WC, WSi, WS, WSe, and WCl. J Phys Chem A. 2017; 121(49): 9446–9457.ViewCASPubMedWeb of Science®Google Scholar
- 39Burr PA, Oliver SX. Formation and migration of point defects in tungsten carbide: unveiling the sluggish bulk self-diffusivity of WC. J Eur Ceram Soc. 2019; 39(2–3): 165–172.ViewCASWeb of Science®Google Scholar
- 40Tahara M, Kim HY, Inamura T, Hosoda H, Miyazaki S. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy. J Alloys Compd. 2013; 577: S404–S407.ViewCASWeb of Science®Google Scholar